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ABSTRACT

Building very large and highly capable language models has been a trend in the
past several years. Despite their great performance, they incur a high computa-
tional cost. A common solution is to apply model compression or choose light-
weight architectures, which often need a separate fixed-size model for each de-
sirable computational budget, and may lose performance in case of heavy com-
pression. This paper proposes an effective dynamic inference approach, which
distributes the inference between large accurate Super-models and light-weight
Swift models. To this end, a decision making module routes the incoming samples
to one of the two models based on the energy characteristics of the representations
in the latent space. The proposed approach is easily adoptable and architecture ag-
nostic. As such, it can be applied to black-box pre-trained models without a need
for architectural manipulations, careful reassembling of modules, or re-training.
Unlike existing methods that are for the most part only applicable to encoder-only
backbones and classification tasks, our method also works for encoder-decoder
structures and sequence-to-sequence tasks such as translation. The performance
of the proposed Energy-based joint inferencing of LANGuage models, E-LANG,
is verified through an extensive set of experiments with TS5 and BERT architec-
tures on GLUE, SuperGLUE, and WMT benchmarks. In particular, we outper-
form T5-11B with an average computations speed-up of 3.3 on GLUE and 2.9 x
on SuperGLUE. We also achieve BERT-based SOTA (state-of-the-art) on GLUE
with 3.2x less computations. Code is available in the supplementary materials.

1 INTRODUCTION

With the introduction of influential language models such as BERT (Devlin et al., 2019)), a trend in
natural language processing (NLP) research has been to develop high capacity models and push their
performance to new levels. Consequently, state-of-the-art (SOTA) results were achieved on various
benchmarks using these models; GPT-3 (Brown et al.,|2020), XLNet (Yang et al.,|2019), RoBERTa
(L1u et al.L 2019), TS5 (Raffel et al., [2020), ELECTRA (Clark et al., 2020), and DeBERTa (He et al.,
2021) to name a few. A potential down-side, however, is that the number of parameters or floating
point operations (FLOPs) for these models can get extremely large. For example, Gshard (Lepikhin
et al.,2021) comes with 600B parameters and it requires an enormous amount of computation. This
in turn results in a higher inference latency, which is not desirable for latency-sensitive applications.

A common solution to speed-up the large language models is to apply model compression (Gupta
et al., 2020). Although generally successful, compression does come with a trade-off on accuracy,
and may lose performance if compression is heavy. In addition, these methods usually compress a
model to a fixed smaller size, where a separate model is required for each possible computational
budget. An alternative approach explored in the literature is to leverage dynamic inferencing in a
way that examples may be routed to different (potentially lower cost) paths throughout the network.
For example, a temporal early-exit model (Shen et al.| 2017} [Yu et al.| 2018)) terminates the proce-
dure of reading the input sequence when sufficient evidence has been found for accurate predictions.
Instance-wise early-exiting (Xin et al.| 2020) is another technique, which allows a sample to adap-
tively choose from multiple available exit nodes if some conditions are met. Consequently, earlier
exists require less computation and lead to a lower latency. Adjusting the size of the model at the in-
ference time by choosing adaptive width and depth is also another approach employed for dynamic
inference (Kim & Cho, 2021} Hou et al., 2020). There is a variety of adaptive/dynamic inference
approaches proposed, however, a general down-side for many of these methods is that often times
they require a careful architecture design, manipulation of network modules, or even re-training.

In this paper, we propose a simple but rather effective approach of dynamically distributing the
inference between the original large model (called the Super model) and a light-weight (e.g., com-
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pressed) model referred to as the Swift model. To this end, we design an energy-based decision
making module that routes examples to the appropriate model based on the negative free energy
of the latent space representations, such that the Swift model attains a high accuracy on the exam-
ples sent to it. The remaining samples are then forwarded to the Super model that is supposed to
have a good performance on all examples. Since the Swift model can make highly accurate pre-
dictions over the majority of the samples, E-LANG significantly reduces the overall computational
cost, while maintains the high accuracy of the Super model. Although simple, this strategy achieves
SOTA results on multiple structures (e.g., TS and BERT) and benchmarks (e.g., GLUE and Su-
perGLUE). Due to its desirable practical characteristics, this method is a strong candidate for the
practical application of Super models.

The main contributions of this paper can therefore be summarized as follows:

e Combining Super models with high accuracy and latency and Swift models with lower accu-
racy and latency, to achieve high accuracy and low latency. In other words, by employing our
method, we can achieve the high levels of accuracy provided by Super models, but at a lower
computational cost. Our method is easily adoptable, architecture agnostic, and orthogonal to
many other existing methods. It can be applied to black-box pre-trained models without a need
for architectural manipulations, careful reassembling of modules, or re-training.

e An energy-based routing mechanism for directing examples to the Super or Swift models. This
provides a dynamic trade-off between the accuracy and computational cost that outperforms the
previous works in both fixed-size and dynamic inference (with zero overhead for real-time adjust-
ment of speed/accuracy). As such, E-LANG acts like a knob for adjusting the accuracy-latency
trade-off in real-time during model serving.

o To the best of our knowledge, our method is the first generic approach to apply dynamic inference
on both encoder-only and encoder-decoder architectures (e.g., T5) and also can extend the usage
beyond classification tasks, to sequence-to-sequence tasks such as translation.

2 RELATED WORKS

As mentioned, compression is a widely used strategy to speed-up the large language models (Gupta
et al.} |2020; \Gupta & Agrawal, [2020). This involves incorporating techniques such as quantization
of weights and activations (Zafrir et al., [2019; [Bai et al., 2020; Shen et al., 2020; |[Kim et al., 2021}
Zhang et al 2020} Jin et al.l [2021), knowledge distillation (KD) (Hinton et al., 2015}, Jiao et al.|
2020; Sanh et al., [2019), pruning/sharing (Fan et al.,|2019; |Gordon et al., |2020; (Chen et al.| |2020),
multi-device distribution (Banitalebi-Dehkordi et al., 2021), or a combination of these techniques
(Han et al., 2016; (Cheng et al.||2017; |Polino et al., [2018]).

Among all the compression techniques, creating a fixed-size small version of large models along
with knowledge distillation has been popular in the recent years. Sanh et al.[(2019)) introduced Dis-
tillBERT, which was a smaller size version of BERT trained with distillation for general purposes.
Another compact variant of BERT was proposed by MobileBERT (Sun et al., [2020) in which in-
verted bottleneck structures and progressive knowledge transfer were used. TinyBERT (Jiao et al.,
2020) also presented a novel two-stage transformer distillation for both pre-training and task-specific
fine-tuning. In (Iandola et al., 2020), the usage of computer vision grouped convolutions was studied
to design an efficient BERT model called SqueezeBERT. ELM (Jiao et al.| 2021}, a layer mapping
search framework, was also proposed for improving downstream BERT distillation. One of the
most recent methods is GhostBERT (Huang et al., [2021) that employed softmax-normalized 1D
convolutions as ghost modules to generate more features with cheap operations.

Although compression techniques in general are effective, they come with a trade-off on accuracy,
and may lose performance in case of high ratio compression. In addition, an individual fixed-size
model is required for each possible computational budget. As stated in the introduction, the alter-
native solution is dynamic inference, which can be achieved with either early-exit or length/depth-
adaptive models. One of the first temporal early-exit strategies was proposed by ReasoNet (Shen
et al., 2017), which stops its reading procedure when sufficient evidence has been found for answer-
ing a question. Similarly, in (Yu et al., 2018)), an early stopping method applicable to classification
tasks was presented. DeeBERT (Xin et al., 2020) also proposed an instance-wise multi-exit method
via the entropy of the output probability distribution to speed-up BERT inference.

As a length-adaptive method, Kim & Chol (2021)) introduced a dynamic inference framework with
one-shot training of transformers for both sequence- and token-level classification. Also, in (Hou
et al.,[2020), an architecture named DynaBERT was proposed for adaptively adjusting the the latency
and computations by choosing sub-networks of different widths and depths. Both Length-Adaptive
and DynaBERT utilized knowledge distillation and data augmentation to improve their performance.
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Figure 1: Overall framework of the proposed energy-based joint inference strategy (E-LANG).

Although early-exit and adaptive methods have made significant progress and work well in practice,
they often require architectural manipulation and re-training. In addition, they are only applicable to
encoder-only backbones and classification tasks. In contrast, our method can work with out-of-the-
box pre-trained models without a need for re-training and are also applicable for encoder-decoder
structures and sequence-to-sequence tasks.

3 PROPOSED METHOD

We propose a new energy-based joint inference method called E-LANG, where a large/accurate lan-
guage model (Super) is jointly employed with a small/fast one (Swift) to achieve efficient inference
without sacrificing the accuracy. To this end, a routing mechanism empowered by energy-based
models (EBM) is introduced to dynamically distribute the input samples between the Super and
Swift models. Similar to the out-of-distribution (OOD) detection problem, our goal is to identify
the OOD samples that are hard to handle for the Swift and forward them to the Super model. On
the other hand, we have the in-distribution data for which the Swift can make highly reliable and
accurate predictions. In other words, the routing mechanism needs to detect whether or not the input
data fits in the Swift’s distribution (i.e., the one the Swift has been trained with). Inspired by the
success of EBMs in dealing with OOD detection problems [2019), the energy character-
istics of data samples for an efficient and effective routing are investigated in our work. The overall
framework of E-LANG is shown in Figure[T]

3.1 ENERGY-BASED MODELS

The main goal of an EBM is to build an energy function denoted by £(x) : R” — R that maps an
input data point x € R¥ to a non-probabilistic energy value y € R. In order to turn a collection of
arbitrary energies for all possible outputs (denoted by Y') into a normalized probability distribution,
Gibbs distribution can be used as follows (LeCun et al.| [2006):

efE(XﬂU)
p(ylx) = Tooy e P00

)

where the negative log of the denominator (called the partition function) expresses the Helmholtz
free energy (LeCun et all,[2006) of  defined as:

F(x) = —log(/ e_E(x’y/)). (2)
y' ey

In machine learning, there is a deep relationship between the EBMs and discriminative models,
which can be seen by connecting the Gibbs distribution in Equation (I)) and the categorical distri-
bution derived for a discriminative model. A discriminative classifier is defined as a function for
mapping the input x to C real-valued logits (i.e., for C number of class labels): f(x) : RP? — R,
In order to derive a categorical distribution over C' possible outputs, the softmax function is utilized:

efy (x)

7 3

p(ylx) =

where f,(x) denotes the logit (probability) of the yth class label. Based on the inherent connection
between the Gibbs and categorical distributions defined in (I and (3), the energy function for a given
input (x,y) can be defined as E(x,y) = — f,(x). Similar to Equation , the free energy function
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F(x; f) can then be obtained by taking the negative log of the categorical distribution denominator:
c
F(x; f) = —logy_eli™. €)

3.2 ENERGY-BASED JOINT INFERENCE

Our goal is to detect the easy samples suitable for the Swift, which are indeed the ones with high
likelihood in the density function. The energy-based density function for Swift is then defined as:

efF(X;f)
p(X) = fx e_F(x;f) ) (5)

where the denominator is the normalized densities, which can be intractable to compute or estimate.
By taking the logarithm of both sides, we obtain:

log(p(x)) = —F(x; f) — log( / ¢ FD). ©)

The log( fx e~F 1)) term has no effect on the distribution of the overall energy values because it
is constant for all x. As a result, —F'(x; f), i.e., the negative free energy, has a linear alignment
with the log likelihood function, which makes it a well-suited solution to the easy vs. hard detection
problem in our framework. To this end, lower energy values indicate higher likelihood and represent
easier (more fit) samples for the Swift model.

More precisely, for a threshold ¢ on the density function such that p(x) < 4, then a threshold ¢ on
the negative free energy can be calculated according to (6) as —F (x; f) < t = log(éd [, e Fx:f)),
In practice, for a given input, an energy function is applied to the outputs of the Swift model during
inference time to calculate the energy score. Then, if the negative energy value is smaller than a
threshold, the input is identified as a bad sample for the Swift, and is sent to the Super model.

Given the energy threshold ¢, the Swift classifier f(x), and the Super classifier defined as g(x) :
RP — R, the joint inference function J(x; f, g,t) € [1, C] for a classification task with C' classes
can then be expressed by:

fx) if —F(x f) =t
g(x) otherwise.

J(X;fvgat)_{ )

3.2.1 ENCODER-DECODER ARCHITECTURES

The proposed energy-based joint inference solution can be directly applied to the encoder-only mod-
els such as BERT that are designed for text classification tasks. To this end, the energy scores corre-
sponding to the BERT-based Swift model are obtained using Equation (4) and the joint inference is
performed based on Equation

On the other hand, for the encoder-decoder (auto-encoder) architectures such as TS5, which are usu-
ally considered as generative models, some modifications are required. Encoder-decoder models are
basically designed for sequence-to-sequence (e.g., text-to-text) problems such as translation or sum-
marization. Although such models can also be employed for classification tasks, they still consider
the task as a text generation (sequence-to-sequence) problem, where the target labels and the output
predictions are treated as a sequence or a piece of text.

In Section[3.7] it was discussed that there is an inherent connection between the discriminative clas-
sifiers and the EBMSs. In order to benefit from this characteristic for encoder-decoder architectures,
we consider adding an extra classification head (i.e., a single linear layer) to the Swift model. As
encoders are commonly considered as better feature extractors for training a classifier rather than the
decoders, we place the extra head after the Swift encoder. While freezing the pre-trained encoder
model (denoted by f%), the extra energy head (denoted by h) is trained as a regular classifier head
with C class labels. Note that the decoder is not required for training the head. The corresponding
free energy function is then defined as follows:

c E
F(x: f7,h) = —log 3" M7 @) (8)

where f¥(z) denotes the outputs of the encoder’s last hidden state. These features are then fed to
the extra head h to obtain the logits for the ith class required for computing the energy scores.
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In this approach, as the decoder part of the Swift model is not required for calculating the energy
scores, less computations are involved and the joint inference is performed more efficiently.

For text-to-text (or sequence-to-sequence) problems such as translation, the output is a sequence of
M word-pieces from a vocabulary/dictionary of size IN. To still utilize the relationship of discrimi-
native models and EBMs in designing and training the extra energy head, we can treat the text-to-text
models as M multi-class classifiers. In this case, the number of class labels, i.e., C in @ is equal
to V. The final energy score is then calculated as the average of M energy values as follows:

1 M C =
F(x; f2,n) = —MZ(logZeh"”(f @), 9)

where h,,, ;(.) denotes the logits corresponding to the mth word in the sequence and ith class label.

Denote the Swift model’s decoder by 7, the joint inference function based on energy scores defined
in either Equation (8) or (9) can accordingly be expressed as:

b El‘ if — X: E
J(x;f,g,h,w:{f (FP(x)) if — F(xi f2,h) >t

10
g(x) otherwise. (10)

3.3 ALTERNATIVE MECHANISMS: SOFTMAX AND ENTROPY

In addition to energy, softmax and entropy (Xin et al.,|2020) scores can also be used for analyzing the
Swift model’s performance in the routing mechanism. In this sub-section, we study the mathematical
connection of them with the energy score and their potential to solve our problem.
3.3.1 SOFTMAX-BASED MECHANISM
The softmax score for a classifier is expressed by:

efy(x) efma.'l:(x)
SCefi) T Cefix)
By taking the logarithm of both sides, we start to see the connection between the log of the softmax
and the free energy score formulated in Equation ():

(1)

max p(y|x) = max
y y

c
logmax p(ylx) = log(e ™) —log 3" ™ = f..(x) + F(x; f), (12)
Y -
7
where all logits are shifted by their maximum f,,,,..(x). Plugging in the energy term to (@) yields:

fog s plufx) = —109(p(x)) + fnae(x) — o ( [ D). (13)

X
It is observed that for the samples with high likelihood of being in the Swift’s distribution, the free
energy goes lower, but the maximum logit tends to go higher. Due to this shifting, unlike the energy
score, the softmax confidence score is not well-aligned with the probability density p(x). As a result,
the confidence score is less reliable for our routing module to analyze the performance of the Swift.

3.3.2 ENTROPY-BASED MECHANISM
The entropy score is a measure of randomness in the processed information, and is calculated as:

C
H(x; f) = — Z fi-log(f:), (14)

where f;(x) is the probability (logit) corresponding to the ith class label. Let U be the internal
energy, i.e., the expectation value of the energy function (Oh et al.|[2020), defined by:

C
Ux; f) = E(xi)fi (15)

According to |Oh et al.| (2020), the entropy can be defined in terms of the internal and free energy
functions as: H(x; f) = U(x; f) — F(x; f), where all logits are shifted by the internal energy U.
Substituting the free energy from (6)) yields:

H(x: f) = log(p(x)) + U(x: ) + log( / e P01, (16)

X
which shows that, due to the shifting caused by the internal energy, the entropy score is not reliably
aligned with the probability density p(x). Thus, it is a less suitable routing mechanism, as opposed
to the energy score.
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GLUE SuperGLUE WMT

MNLI QNLI SST2 RTE MRPC COLA RTE BoolQ MRC COPA CB WIC WSC EnRo

& 5, Time (ms) 216 283 57 263 160 56 287 303 201 96 223 185 133 1609
Z 5 Accuracy (%) 89.7 939 955 903 909 627 885 843 807 810 920 727 865 28.6
5 5 Time (ms) 821 980 281 964 433 213 818 3205 1731 268 844 671 2211 3041
vg; = Accuracy (%) 91.7 959 966 924 91.7 69.1 93.1 894 849 93.0 931 774 894 289
Accuracy (%) 91.7 96.0 96.6 924 922 69.5 932 887 849 900 931 781 894 289
w FLOPs (x10'h 478 257 295 504 115 399 420 50.8 469 526 134 403 206 63.4
E Time (ms) 582 495 132 716 190 147 671 1978 1022 222 302 447 545 2800

< Swift Ratio (%) 49 75 70 46 91 58 56 45 50 43 89 57 81 30

= Speed-up (FLOPs) 1.8X 34X 29X 17X 7.6X 22X 21X 17X 19X 17X 65X 22X 42X 14X

Speed-up (time) 14X 20X 21X 14X 23X 15X 12X 1.6X 17X 12X 28X 15X 41X 1.1X

Table 1: Joint inference results with T5 architecture on GLUE and SuperGLUE development sets, and WMT’s
English-to-Romanian translation. The FLOPs for Super and Swift are respectively 87x 10" and 4.25x 10",
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Figure 2: Joint inference trade-off curves with T5 architecture on GLUE and SuperGLUE development sets.
Each point is obtained with a different energy threshold.

4 EXPERIMENTAL RESULTS

In this section, the performance of E-LANG on different architectures such as T5 and BERT; and
benchmarks such as GLUE (Wang et al.l |2019b), SuperGLUE (Wang et all [2019a), and WMT
(Bojar et al.,|2016) is evaluated and compared with the Super models and previous works.

4.1 T5-BASED JOINT INFERENCE

In Table |I|, the T5-based results on GLUE, SuperGLUE, and WMT benchmarks are reported. For
all the tasks, we use T5-11B (with 87x 10! FLOPs) and T5-large (with 4.25x 10" FLOPs) as our
Super and Swift models, respectively. The average GPU-based running time and accuracy of both
models compared with E-LANG are also summarized in the table. Note that the TS5 models used
in this experiment have been separately fine-tuned on each of the downstream tasks given in Table
[[] The extra energy head for each of these tasks was also separately trained and used based on the
task-specific number of classes, i.e., C' in Equation @)

The total FLOPs for our method is measured as a weighted average of the Super and Swift FLOPs
based on their usage frequency as:
1
FLOPs = —————(Nyw.(FE, + Fy + FL) + Now.(FL, + Fy + Fiu)), 17)
NSU/ + NSU
where Ny, and Ny, are respectively the number of samples processed by the Super (with F,
FLOPs) and Swift (with FZ | F2 and F,, FLOPs for the encoder, decoder, and energy head). Note

sw? sw?

that F}, is equal to ~0.00001 x 10!, which has a very insignificant overhead in our framework.

As presented in Table [T} E-LANG can reach the Super model’s accuracy on all GLUE tasks with
an average 3.3X in FLOPs and 1.8X in running time speed-ups. For some tasks such as QNLI,
MRPC, and COLA, we even outperform the Super model, which leads to a higher average accuracy
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Figure 3: Energy score distribution for GLUE tasks. ¢ shows the optimal threshold.

of 89.7% than the Super model with 89.5% on GLUE. For the SuperGLUE benchmark, with an
average FLOPs and running time speed-up of 2.9X and 2.0X, our method achieves the same accuracy
as the Super model on MRC and CB; and better accuracy on RTE and WIC. On BoolQ and COPA,
although 99% and 97% of the Super’s accuracy are respectively obtained, it is with 1.7X and 1.4X
less FLOPs and latency, on average.

In order to analyze the generality of E-LANG to other NLP problems rather than text classification
(Section [3.21)), we also apply our method to two text-to-text tasks including SuperGLUE’s WSC
and WMT’s English-to-Romanian (EnRo) translation. As given in the table, our method achieves
the Super model’s accuracy on both WSC and EnRo with 4.2X and 1.4X less FLOPs, respectively.

Figure [2) illustrates the accuracy vs. FLOPs trade-off curves for some tasks in GLUE and Super-
GLUE benchmarks. The curves related to all tasks are given in the appendix. The trade-off points
on the curves are dynamically achieved at the inference time by selecting different thresholds, i.e.,
t in Equations (7) and (I0). Larger values for ¢ will result in routing more input data to the Super
model, which consequently provides more accurate, but slower inference. As the Swift is able to
make accurate predictions for the majority of input data, the dynamic inference with a small enough
t can reach the Super model’s accuracy but with a much lower computational cost and latency.

Figure[3]illustrates the distribution of the energy scores across the input samples in GLUE tasks. For
each task, the distributions of the samples processed by the Super and the Swift models are plotted.
As shown, the samples routed to the Super model tend to have lower energy scores that are indeed
considered as out-of-distribution samples for the Swift. On the other hand, in overall, higher scores
are observed for the Swift distribution, that is for the samples handled by the Swift only. For some
tasks such as MRPC and QNLI, the Swift is shown to be highly capable of handling the majority
of the input samples. This is also supported by the results in Table [T|and Figure 2} where 91% (for
MRPC) and 75% (for QNLI) of the samples are accurately processed by the Swift. In contrast, for
other datasets including RTE and MNLI with Swift ratio of less than 50%, most of the samples are
hard for the Swift, which are transferred to the Super model. Based on our experiments, the most
optimal results for our joint inference framework is achieved when the crossing point of the two
distributions (highlighted in green in the figures) is chosen as the threshold ¢ in Equation (T0).

4.1.1 ABLATION STUDIES

In Sections [3:3.1] and [3.3.2] the possibility of using softmax and entropy scores instead of energy
score was theoretically analyzed. In order to support that analysis and also experimentally evaluate
the performance of different routing mechanisms, a set of ablation studies on GLUE is performed,
which is presented in Table 2] In this study, we report the joint inference results based on softmax,
entropy, and random scores (i.e., randomly distributing the samples between Super and Swift). Our
experiments show that, compared to the random score, softmax and entropy can result in satisfactory
performance on routing the samples. However, as also discussed in Sections [3.3.1] and 3:3.2} the
energy score is still a better routing mechanism with about 14% less FLOPs.

The results with the usage of different Swift models including T5-small (with 0.33x10'! FLOPs)
and T5-base (with 1.24x10'! FLOPs) are also given in Table [2| Using these models as Swifts can
lead to good performance on some tasks, but not all of them. For example, on SST2, the joint
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MNLI QNLI SST2 RTE MRPC COLA Average
Super (11B) 87.0/91.7 87.0/959 87.0/96.6 87.0/924 87.0/91.7 87.0/69.1 | 87.0/89.5
Random (Encoder) 78.5/91.5 619/953 58.7/963 60.2/91.2 47.5/919 61.6/67.2 | 61.4/88.9
Softmax (Encoder) 57.7/91.6  36.5/959 34.6/96.5 52.0/923 13.8/92.1 457/69.3 | 40.1/89.6
Entropy (Encoder) 55.7/91.6  27.1/96.0 40.2/96.5 50.7/92.0 23.0/922 48.1/69.3 | 40.8/89.6
Energy (Swift,,q11) 71.3/91.0 58.8/956 47.0/96.6 712/885 55.0/914 753/68.3 | 63.1/88.5
Energy (Swifty, s¢) 545/91.5 50.5/95.8 359/96.6 558/90.6 44.0/91.9 50.6/684 | 48.5/89.1
Energy (Decoder) 57.9/90.6  68.1/95.5 75.8/963 60.5/91.5 20.2/909 45.1/693 | 54.6/89.0
Energy (Encoder) 47.8/91.7 25.7/96.0  32.0/96.6 50.4/92.4 11.5/92.2 39.9/69.5 | 34.5/89.7

Table 2: Ablation study on different T5-based scenarios. Each cell shows FLOPs/Accuracy.

inference with T5-small and T5-base Swifts can respectively reach the Super’s accuracy with 1.9X
and 2.X less computations. In general, although these models are smaller and require less FLOPs,
our results in Table[2]indicate that they perform worse than T5-large in our joint inference structure.
In Figure[2] the trade-off curves for different Swift models are shown for GLUE and SuperGLUE.

Moreover, to show the effectiveness of the proposed energy head for the Swift encoder, the E-LANG
results based on the last linear layer of the Swift decoder is also given and compared in Table[2] As
reported, the E-LANG empowered by the energy head on the Swift encoder outperforms the case
with the decoder’s head in both FLOPs (36.8% less) and accuracy (0.7% better). As also explained in
Section@ this shows the deep connection between the encoder’s features, discriminative models,
and the proposed routing mechanism via the energy head.

We observed that E-LANG can achieve a high per-

. . g . QNLI SST2 COLA
formance even when applied to individually pre-  “Super (11s) 87.0/950 87.0/966 87.0/60.1
trained Super and Swift models. However, more  Swift (Large) 425/939 425/955 4.25/627

improvement can still be obtained by performing _+Distillation  4.25/950  4.25/95.7  4.25/63.3

; E-LANG 2571960  29.5/96.6  39.9/69.5
KD from the Super model to the Swift model, es- ", piination  18.2/96.0 152/96.6  34.2/69.5
pecially at the fine-tuning process for downstream — - -
tasks. To study this, we apply the KD technique in Table 3: Distillation-based results with T5 in terms
(Sanh et al.,|2019) to the Super and Swift models of FLOPs/Accuracy.
for some GLUE tasks. As summarized in Table[3] the Super model’s accuracy for QNLI, SST2, and
COLA is respectively attained by the distillation-based E-LANG with 29.2%, 48.5%, and 14.3%
less FLOPs than E-LANG (without distillation). The results in this experiment show the effective-
ness of E-LANG along with other compression techniques such as distillation. The corresponding
trade-off curves for this experiment will be provided in the appendix.

4.2 BERT-BASED JOINT INFERENCE

In this section, the proposed energy-based joint inference method is applied to the BERT architec-
ture (Devlin et al., 2019) and compared with BERT-based SOTA in both fixed-size and dynamic
inference. The majority of the previous methods employ knowledge distillation and data augmenta-
tion techniques for training their student models. For a fair comparison, we follow the same practice
and use the transformer distillation and augmentation strategies in TinyBERT (Jiao et al., [2020) to
train and prepare our Swift model (i.e., BERT7;,,, with 1.2 x 10° FLOPs). Moreover, similar to the
other works, we use BERT . (with 21.8 x 10 FLOPs) as our Super (i.e., teacher) model.

In Table El], the comparison results with the baseline BERT 5,4, and SOTA on GLUE benchmark
are presented in terms of accuracy, FLOPs, and latency. Compared to the Super model, E-LANG
delivers better accuracy on SST2 and RTE with 3.5X and 2.0X FLOPs speed-up; and the same
accuracy on QNLI, MRPC, and QQP with 2.4X, 2.7X, and 7.0X FLOPs speed-up, respectively.
On MNLI and COLA, 99.8% and 97.3% of the Super model’s accuracy are achieved, but with an
average FLOPs speed-up of 2.3X. On average, E-LANG outperforms the Super model with 0.1%
higher accuracy, 3.2X less FLOPs, and 1.6X less latency.

Compared with SOTA, our method achieves the best performance on all GLUE tasks, except MRPC
for which SqueezeBERT outperforms all due to having a more accurate teacher (landola et al.,
2020). There are some works such as ELECTRA (Clark et al.,[2020) and MobileBERT (Sun et al.,
2020) that require less FLOPs than our method, but they only reach 95% of the baseline’s accuracy.
Compared to other methods, GhostBERT (Huang et al.| [2021)) and DynaBERT (Hou et al., [2020)
give the closest performance to the baseline and even the same as ours on some tasks such as QNLI.
However, on average, they still need about 30% more FLOPs on GLUE compared to E-LANG.

The accuracy vs. FLOPs trade-off curves corresponding to E-LANG compared to SOTA on some
of tasks in the GLUE benchmark are shown in Figure ] The trade-off curves for all the tasks are
reported in the appendix. Among the SOTA methods presented in Table 4] and Figure [d] only Dee-
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MNLI (wmm) QNLI SST2 RTE MRPC COLA QQP | Avg. FLOPs(G) Time (ms)
BERTr,, Swify  82.8/829 879 926 657 858 497 905 | 785 12 7
BERTp.c (Super) 84.9/85.5 922 935 711 873 603 915 | 833 218 20
DistillBERT 822/- 892 927 599 875 SI3 885 | 788 113 -

, ELECTRA 789/- 87.9 883 685 844 568 883 | 790 37 -

£ DeeBERT 83.9/829 909 934 695 - - - - - 17

S MobileBERT 84.3/- 915 925 704 870 511 - 795 57 -

2 SqueezeBERT 825/82.9 909 922 718 898 537 895 | 817 74 .

2 Len-Adaptive 84.4/- - 93.1 - - - - - 8.8 -

$  TinyBERT 845/845 918 930 693 872 540 910 | 81.9 113 10

& ELM 84.2/- 908 927 722 890 542 9L1 | 820 109 -
GhostBERT 84.7/- 922 929 722 83 581 912 | 827 113 :
DynaBERT 84.7/852 922 933 730 848 584 913 | 829 109 16
Accuracy (%) 84.7/854 922 937 733 873 587 915 | 834 - R

» FLOPs G 9.1 92 63 108 82 99 31 |81 - -

Z  Time @) 14 4 11 16 13 15 9 13 : .

S Swift Ratio (%) 64 63 77 56 68 60 9l 68 - -

£ Speed-up (FLOPs)  2.4X 24X 35X 20X 27X 22X 70X | 32X - -
Speed-up (time) 1.4X 14X 18X 13X 15X 13X 22X | L6X - -

Table 4: Joint inference results with BERT architecture on GLUE development set compared with SOTA.

GLUE (MNLI) GLUE (55T2) GLUE (QQP)
85.0 . 94 92.0
84.5 935 — . 915 /f"—‘ s .
A
84.0 . 93 1 91.0 {7
——o0urs ——Ours L-
T 835 GhOStBERT (ACL'21) z e #* s DynaBERT (NIPS'20) & 905 -7 o
o ~—s—DynaBERT (NIPS'20) © 925 GhostBERT (ACL'21) © ‘. —+—0urs .
3 830 Len-Adaptive (ACL'21) = o ~ « —TinyBERT (EMNLP'20) 5 90.0 GhostBERT (ACL21)
S -« ~TIVBERT (EMNLP'20) & g P MobileBERT (AcL20) —— DynagERT (NIPS'20)
< 825 --=--MobileBERT (ACL'20) <[ ’ Len-Adaptive (ACL21) o 895 . - = - TinyBERT (EMNLP'20)
! +  SqueezeBERT (ACL'20) J J *  SqueezeBERT (ACL'20) --EmNean)
82.0 i == =FIM[NCDY)___ 91.5 - -EM{NC21) 289.0 *  SqueezeBERT (ACL'20)
K / +  DIStIBERT (NIPS'19) +  DistilIBERT (NIPS'19) *  DistilBERT (NIPS'19)
815 4 . o BERT-Base 91 ® BERT-Base 885 , © BERTEae
1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25 1 4 7 10 13 16 19 22 25

FLOPs (x 10°) FLOPs (x 10°) FLOPs (x 10°)

Figure 4: Joint inference trade-off curves with BERT on GLUE development set compared with SOTA.

BERT (Xin et al., [2020), Length-Adaptive (Kim & Cho, [2021)), and DynaBERT (Hou et al., [2020)
are in the category of dynamic inference, where a single model can operate at different trade-off
points between accuracy and computational cost. The other approaches propose fixed-size smaller
versions of BERT g, s, which require re-training for every trade-off point.

To investigate the orthogonality of our method

) - h MNLI SST2 QQP
with others, we integrate our energy-based joint  "DynaBERT swify  2.7/82.0  2.7/91.9  2.7/904
inference strategy with DynaBERT model that (=05, 4=025)
is SOTA in BERT-based adaptive inference. In DynaBERT (supery  16.3/84.7  16.3/93.3  16.3/91.4
other words, we analyze whether E-LANG can (w=0.75, d=1.0)
be added on top of other efficient methods t0  Ours+DynaBERT ~ 9.4/847  52/933  6.2/915

benefit both from their designs and our ap- i ]
proach. In this experiment, the DynaBERT Table 5_: Orthogonality of E-LANG (ours) with Dyn-
. . . . aBERT in terms of FLOPs/Accuracy.

configurations with the highest accuracy (i.e.,

width=0.75 & depth=1.0) and the lowest FLOPs (i.e., width=0.5 & depth=0.25) are respectively
employed as the Super and Swift models in our framework. The corresponding joint inference re-
sults on MNLI, SST2, and QQP are reported in TableE} As observed, we accomplish the DynaBERT
Super’s accuracy for MNLI and SST2 with 1.7X and 3.1X less FLOPs. For QQP, our method com-
bined with DynaBERT even outperforms DynaBERT by 0.1% with 2.6X FLOPs speed-up.

5 CONCLUSION

In this paper, we introduced E-LANG, an energy-based joint inference approach, which integrates
Super and Swift language models for achieving efficient inference without sacrificing the accu-
racy. Our method can work with both encoder-only (e.g., BERT) and encoder-decoder (e.g., TS)
architectures, and is also applicable for text classification and sequence-to-sequence problems. The
proposed joint inference strategy was theoretically and experimentally analyzed with an extensive
set of experiments and ablation studies. Our results showed that E-LANG outperforms SOTA in
both fixed-size and dynamic inference over different benchmarks such as GLUE and SuperGLUE.
One potential future direction to this work is to apply E-LANG to multiple Super and Swift models
with different sizes and adaptively choose the most fit model for the input data.
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REPRODUCIBILITY STATEMENT

In order to make the results in this paper reproducible, our implementation code is shared and at-
tached to the supplementary materials in the ‘code’ directory. The detailed instructions for training
and evaluating our models are also provided in the ‘README.md’ and ‘README.pdf’ files.
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A APPENDIX

The trade-off curves (for the experiments given in Table [T)) with T5 architecture on GLUE and
SuperGLUE tasks are respectively shown in Figures 5] and [6] The ablation over different Swift
models are also given in the figures.

In Figure [/| the accuracy vs. FLOPs trade-off curves for distillation-based experiments (reported
in Table [3) are also given. On QNLI, distillation-based E-LANG (denoted by DE-LANG) with
4.8x less computations than the Super model outperforms E-LANG with 3.4x FLOPs speed-up,
although both methods performs 0.1% more accurate than the Super model. DE-LANG on SST2 can
also achieve the Super model’s accuracy with 5.7 x less computations, while the original E-LANG
achieves the same performance with only 2.9x speed-up. Moreover, DE-LANG can improve the
Super model’s accuracy by 0.1% with 2.9x speed-up on SST2. For COLA, DE-LANG achieves
a better FLOPs speed-up of 2.5x than E-LANG with 2.2x speed-up, where both outperform the
Super model’s accuracy by 0.4%.

Figure[§]also illustrates the corresponding curves for the BERT-based results of Table ] which are
compared with previous works in fixed-size and adaptive inference.

GLUE (MNLI-m) GLUE (QNLI)
93 Super model’s accuracy 97 Better than Super model's
with ~1.8X speed-up o accuracy with ~3.4X speed-up Super model (118)
91 96 °
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89 suift (Large)
94
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o © 9
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<z wift (Base g 92 . —
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81 —+—Base+11B 9 —>—Base+118
Swift (Small) —e—Small+11B Swift (Smal) ——Small+118
79 89
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 20
FLOPS (x 10%) FLOPs (x 10%)
GLUE (S5T2) GLUE (COLA)
975 Supermodel's accuracy 75 Better than Super model's
with~2.9X speed-up accuracy with “2.2X speed-up
96.5 . 70 E
Swift (Large)
Super model (11B) Swift (Large,
65 Super model ( 11B)
955
= 60
® 945 g
3
g 55 suift (Base)
<
93.5 -swift (Base) | =
& T5-Baseline 50 o T5-Baseline
. —e—Large+11B —e—Large+11B
' ——Base+11B 45 —+Base+11B
Swift (small) ——Small+118 Swift (small) ——Small+118
91.5 40
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
FLOPs (x10'?) FLOPs (x 1011)
GLUE (RTE) GLUE (MRPC)
95 Super model's accuracy 93 Better than Super model's
/ﬂ% . aceuracy with “7.6X speed-up
92
20 Super model { 118) Swift (Large) °
91
Swift (Large) Super model ( 11B)
a5 90 Swift (Base)
> >
9 [
e c 89
5 Swift (Base) 5
o (5}
g %0 g s
® T5-Baseline & T5-Baseline
75 ——Large+11B 87 ——Large+11B
Swift (Small) —+—Base+11B 86 switt (small) —+—Base+11B
—+—Small+118 ——Small+11B
70 85
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
FLOPS (x 10) FLOPS (x 1011)

Figure 5: Trade-off curves with T5 backbone on GLUE tasks.
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Figure 6: Trade-off curves with T5 backbone on SuperGLUE tasks.
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Figure 7: Distillation-based trade-off curves with T5 backbone on some GLUE tasks.
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Figure 8: Trade-off curves compared with BERT-based SOTA on GLUE tasks.

16

22



	Introduction
	Related Works
	Proposed Method
	Energy-based Models
	Energy-based Joint Inference
	Encoder-Decoder Architectures

	Alternative Mechanisms: Softmax and Entropy
	Softmax-based Mechanism
	Entropy-based Mechanism


	Experimental Results
	T5-Based Joint Inference
	Ablation Studies

	BERT-Based Joint Inference

	Conclusion
	Appendix

