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ABSTRACT

Neural networks trained on the same tasks achieve similar performance, but this is
not always reflected in their measured representational alignment. We propose that
this discrepancy arises from superposition or mixed selectivity, where individual
neurons represent mixtures of features. Consequently, two networks representing
an identical set of features can appear dissimilar if their neurons mix those fea-
tures differently. This may explain why higher-dimensional networks, which are
less prone to compressing mixtures of features, often show better alignment than
smaller models with greater behavioral similarity. We formalize this through an
analytic theory predicting apparent misalignment for common linear metrics like
Representational Similarity Analysis (RSA) and Linear Regression, validating it
from random projections to real neural networks. Using sparse autoencoders and
K-Means to extract disentangled features while controlling for dimensionality, we
find that feature-based alignment reveals higher similarity, particularly for early
and lower-dimensional regions. Some comparisons show decreased alignment
with disentanglement, and RSA and Linear Regression often disagree in these
cases. Simulations predict that higher RSA relative to Linear Regression in neu-
ral space indicates shared inductive biases—a pattern confirmed in real data. Our
results demonstrate that superposition and dimensionality interactions obscure the
true alignment of lower-dimensional systems, while feature-based alignment al-
lows us to more directly interrogate performance-relevant sources of misalign-
ment, with important implications for model selection.

1 INTRODUCTION

The development of deep neural networks capable of human-level performance on tasks such as
object recognition and natural language has prompted a fundamental question: do different neural
systems converge to similar representations (Rumelhart et al., 1986; Goldstein et al., 2022; Peterson
et al., 2018; Sucholutsky et al., 2023; Huh et al., 2024; Reizinger et al., 2024)? Answering this
requires comparing representations across models with varied architectures, training data, and ob-
jectives, a challenge central to ideas like the platonic representation hypothesis (Huh et al., 2024;
Reizinger et al., 2025). To measure these similarities, researchers turn to alignment metrics such as
Representational Similarity Analysis (RSA) (Kriegeskorte & Wei, 2021) which abstract away from
individual neurons to compare the geometry of population-level activity. Alternatively, Linear Re-
gression is also used which learns a linear map to predict one network’s activity from another. Both
metrics have become powerful alignment tools, yielding remarkable insights into shared structure
(Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Cadena et al., 2019; Khosla et al., 2021;
Schrimpf et al., 2021; Conwell et al., 2024; Prince et al., 2024). However, the neural networks with
highest alignment scores are not always the most behaviorally (e.g., task performance) or mech-
anistically (e.g., sharing computational strategies) similar, leading to low performance-alignment
correspondence (Schaeffer et al., 2024). This prompts the question: do behaviorally-similar models
truly arrive at distinct representational solutions, or do confounding factors obscure the true repre-
sentational similarities captured by standard metrics?

We propose the performance-alignment gap arises from superposition (or mixed selectivity), where
individual neurons represent mixtures of multiple independent features (Smolensky, 1990; Elhage
et al., 2022; Klindt et al., 2025). In this regime, neural networks can linearly represent more features
than they have neurons by distributing features across overlapping neural codes. Consequently,
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Figure 1: Illustration of Core Idea. Superposition: Two neural networks share an identical set
of latent features (Za = Zb), but compress them (red arrows) in different ways Ya ̸= Yb. Thus,
computing alignment over the raw neural activations of network A (Ya) and B (Yb) leads to low rep-
resentational similarity of these networks. We propose using sparse dictionary learning to recover
(blue arrows) the shared features of networks from their raw activations prior to using alignment
metrics (Donoho, 2006). Linear regression: Assuming perfect latent recovery, the maximum pair-
wise correlation between latent activations is 1.0, and will be greater than the correlation between
raw neural activations. Representational similarity analysis: Rather than directly correlating neu-
ral (or latent) activation, RSA first computes pairwise (dis)similarity matrices of neural responses
to features. Depicted are representational similarity matrices (or their dissimilarity counterparts),
which are correlated to produce an alignment score. As with linear regression, the RSA score for
perfectly recovered latents is 1.0, and greater than the RSA score over neural activations.

two networks could learn the exact same set of underlying features, yet appear dissimilar under
linear metrics like RSA and Linear Regression if they mix those features differently across neurons.
While different feature arrangements may reflect genuine differences in how networks organize –
and therefore act on – information, this phenomenon creates an unfair comparison problem: higher-
dimensional models achieve higher alignment scores simply because they can represent features
with less superposition (i.e., closer to one feature per neuron), making them inherently more linearly
decodable (Elmoznino & Bonner, 2024). This dimensional advantage occurs even when comparing
to lower-dimensional models with greater behavioral similarity to a target network.

We propose feature-based alignment to address these confounds and explore more performance-
relevant sources of representational (mis)alignment. The key insight is that if superposition causes
networks with identical features to appear misaligned, then disentangling those features should re-
veal their true similarity. Our approach has two steps: (1) extract disentangled features from each
network’s activations, and (2) compare networks using standard alignment metrics (RSA, Linear
Regression) applied to these disentangled feature representations rather than raw neural activations.
We fix the dimensionality of the disentangled space to be identical across all models, alleviating the
dimensional advantage that confounds standard comparisons. For deep neural networks, we disen-
tangle features using sparse autoencoders (SAEs) (Ng et al., 2011; Cunningham et al., 2023; Rao
et al., 2024; Lan et al., 2024), a form of sparse dictionary learning (Olshausen & Field, 1997) that
learns an overcomplete basis for neural activations. SAEs aim to represent each input as a sparse
combination of interpretable features (Bricken et al., 2023), effectively reversing the feature mixing
that occurs in superposition. For biological neural data (fMRI), where meaningful sparse features
are more difficult to extract, we use K-means clustering on the mixed-selective neural responses
instead.

In this work, we develop an analytic theory that quantifies how feature mixtures in superposition
lead to misalignment under RSA and Linear Regression, and validate it across settings of increasing
complexity. Applying feature-based alignment to real neural networks, we find that disentanglement
often increases alignment between systems, but also observe cases where relative alignment between
networks changes—with some networks becoming less similar in the latent space. Through simula-
tions and analysis of feature representations, we identify that alignment increases with shared feature
arrangements and feature weights. This is consistent with recent work showing elevated alignment
with increased overlap in training data (which influences feature arrangements) and shared training
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objectives (which influence feature weights and inductive biases) Li et al. (2025).Together, our re-
sults demonstrate that feature-based alignment facilitates fair comparisons and allows us to more
directly observe the factors (i.e., feature arrangements and biases) that truly differentiate neural sys-
tems.

2 THEORY

Let z ∈ Rn be latent variables and y ∈ Rm be neural representations, which are functions of these
latent variables, i.e., y = f(z).
Definition 2.1 (Superposition). We say that a representation f : Rn → Rm is in superposition if it
is a linear map and a low-dimensional projection, i.e., m < n.

2.1 ASSUMPTIONS

Throughout our analysis, we make the following assumptions:

1. Linearity: The neural representations are in superposition and are thus linear, described
by a matrix A ∈ Rm×n:

y = Az (1)
The condition m < n implies that the columns of A are not all orthogonal, aligning with
the common assumption of having fewer neurons than latent variables.

2. Sparsity of Latent Variables: The latent variables are sparse, e.g., ∥z∥0 ≤ K for some
K ≪ n.

3. Restricted Isometry Property (RIP): The matrix A satisfies the RIP, which allows for the
theoretical possibility of recovering z from observations of y via compressed sensing.

4. Distribution of Latent Variables: For a dataset of d inputs, the latent vectors z1, . . . , zd
are treated as independent and identically distributed (i.i.d.) random variables satisfying:

• Zero mean: E[zi] = 0 for all i.
• White distribution (Identity covariance): E[zizTi ] = In for all i.

If these assumptions do not fully hold, we incur an irreducible reconstruction error when retrieving
the sparse codes. This error would lower the ceiling of RSA alignment, correctly reflecting that if
two features cannot be separated in one system, it should count as a representational misalignment.

2.2 REPRESENTATIONAL SIMILARITY MATRIX (RSM)

For a dataset of neural responses Y = (y1, ..., yd), the representational similarity matrix (RSM) is
defined as:

M(Y )i,j = ⟨yi, yj⟩ ∀i, j ∈ {1, ..., d}. (2)
Given the linearity assumption equation 1, we can rewrite the RSM in terms of the latent variables:

M(Y )i,j = ⟨yi, yj⟩ = ⟨Azi, Azj⟩ = zTi A
TAzj (3)

This shows that the similarity between latent variables zi, zj is measured by a semi-inner product
⟨·, ·⟩G induced by the positive semi-definite Gram matrix G := ATA.

3 ALIGNMENT UNDER SUPERPOSITION

Consider two neural representations in superposition, with matrices Aa, Ab, generating responses
Ya = (Aaz1, ..., Aazd) and Yb = (Abz1, ..., Abzd) to the same set of latent variables Z =
(z1, ..., zd). While the underlying latent variables are identical, the observed neural representations
Ya and Yb may differ. We now analyze how standard alignment metrics behave in this scenario.

The key insight of our work is that while these two neural representations Ya, Yb originate from the
same latent variables, any direct linear measure of alignment will be confounded by the differing
projection matrices.
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3.1 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

The RSA metric is the Pearson correlation between the vectorized upper-triangular elements of two
RSMs, m⃗a and m⃗b.

ρ(Ya, Yb) =
Cov(m⃗a, m⃗b)√
Var(m⃗a)Var(m⃗b)

(4)

Under the assumptions outlined previously, we arrive at the following result in the limit of large
datasets.
Theorem 3.1 (Asymptotic RSA Alignment). The RSA correlation between two representations Ya

and Yb in superposition is approximately the cosine similarity between their respective Gram matri-
ces, Ga = AT

aAa and Gb = AT
bAb.

ρ(Ya, Yb) ≈
Tr(GaGb)√

Tr(G2
a)Tr(G2

b)
=

⟨Ga, Gb⟩F
∥Ga∥F ∥Gb∥F

(5)

where ⟨·, ·⟩F and ∥ · ∥F are the Frobenius inner product and norm, respectively.

This result shows that RSA is fundamentally sensitive to the similarity of the metric tensors induced
by the representations on the latent space.

3.2 LINEAR REGRESSION

Alternatively, we can measure alignment by determining how well one representation can be linearly
predicted from the other using a multivariate linear model Yb = WYa + E. The Ordinary Least
Squares (OLS) estimator Ŵ minimizes the squared Frobenius norm of the residuals, ∥Yb−WYa∥2F .
Theorem 3.2 (Asymptotic Linear Regression). In the asymptotic limit and under the stated assump-
tions, the OLS estimator Ŵ and the resulting model performance are given by:

1. Optimal Weights: The weight matrix Ŵ converges to:

Ŵ ≈ AbA
T
a (AaA

T
a )

−1 (6)

2. Mean-Squared Error (MSE):

MSE(Yb|Ya) ≈
1

mb

∥∥∥Ab − ŴAa

∥∥∥2
F

(7)

3. Explained Variance (R2):

R2 = 1−
Tr
(
(Ab − ŴAa)

T(Ab − ŴAa)
)

Tr(AT
bAb)

(8)

4. Pearson Correlation (ρ(Ŷb, Yb)ij):

ρ(Ŷb, Yb)ij =
(ŴAaA

T
b )ij√

(ŴAaAT
b )ii(AbAT

b )jj

(9)

4 SUPERPOSITION’S IMPACT ON ALIGNMENT IN REAL NETWORKS

4.1 EXPERIMENTAL SETUP

After verifying that idiosyncratic superposition arrangements are sufficient to reduce alignment (Fig
7), we now test whether superposition disentanglement changes alignment in real neural networks.
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Figure 2: Model-Model Comparison for SAE latents. Top Plots: Heatmaps: Neuron based
RSA (left), latent based RSA (middle), and difference (right). Scatterplot: Neuron versus latent
based RSA. Bottom Plots: Same as top row, but for Linear Regression. On the scatterplot, blue
datapoints indicate the X axis was used as the source for Linear Regression mapping, and orange
points indicate the Y axis was used as the source for Linear Regression mapping.

We measure model-model (Fig. 2), model-brain (Fig. 3), and brain-brain (Fig. 4) alignment using
RSA and Linear Regression. To begin, we measure alignment on raw neural activations to obtain a
baseline. Next, we train SAEs and K-Means on models and brains to recover latent features and use
them in place of neurons for computing alignment. For RSA, we replace the neurons of both systems
with latents, whereas with Linear Regression, only the source neurons are replaced with latents.
This is done to keep the targets the same as in the base comparison (i.e., predicting neurons). It is
technically sound because Linear Regression is capable of remixing the source latents back into the
target’s superposition arrangement. Finally, we report the difference between alignment over latent
activations and alignment over raw neural activations to quantify the relative increase in alignment
provided by disentangling features from superposition.

4.2 DATA

We obtained neural activations from both biological and artificial neural networks. Biological data
is from the publicly available Natural Scenes Dataset (NSD) (Allen et al., 2022), which uses fMRI
to record human neural responses to subsets of the COCO natural images dataset (Lin et al., 2014).
We use data from six brain areas along the visual processing hierarchy: early to mid-level visual
cortex (V1v, V2v, V3v, hV4), the occipital face area (OFA) and the fusiform face area 1 (FFA-
1). All activations were preprocessed (the result of Step 5 described in (Allen et al., 2022)) neural
responses from NSD Subject 1 in response to 10,000 unique COCO images. Each neural response
was averaged over 3 image presentations and z-scored.

Model activations are from the early and penultimate layers of ResNet-50 (layer 1 and layer4.2) (He
et al., 2016) and CLIP-ViT-B/32 (layer 3 and feature layers) (Radford et al., 2021). Both models
are trained on ImageNet classification (Deng et al., 2009), with activations from the same 10,000
images viewed by Subject 1 of the NSD for consistency.

4.3 SAE TRAINING

We train sparse autoencoders with an L1 sparsity penalty (L1-SAEs) to learn disentangled latent
features (z). The SAE has an encoder and a decoder. Encoding is given by:

z = ReLU(Wencx+ benc)

where x represents the raw neural activations, and learned parameters Wenc and benc are the encoder
weights and bias respectively. Decoding is given by:

x̂ = Wdecz + bdec

5
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Figure 3: Model-Brain Comparison for K-Means latents. Top Plots: Heatmaps: Neuron based
RSA (left), latent based RSA (middle), and difference (right). Scatterplot: Neuron versus latent
based RSA. Bottom Plots: Same as top row, but for Linear Regression. On the scatterplot, blue
datapoints indicate the X axis was used as the source for Linear Regression mapping, and orange
points indicate the Y axis was used as the source for Linear Regression mapping.

where x̂ are reconstructed neural activations, and learned parameters Wdec and bdec are the decoder
weights and bias respectively. The model is trained using a combined loss function, which is the
sum of a reconstruction loss

Lreconstruction =
1

d ·M

d∑
i=1

(xi − x̂i)
2

and sparsity loss

Lsparsity =
λ

d ·N

d∑
i=1

N∑
j=1

|(Wdec):,j | · |zji |

which is the L1 norm of latent activations scaled by the decoder norm (to avoid collapse with van-
ishing latents and exploding decoder norms) and weighted by the hyperparameter λ. We varied λ
from 10−3 to 20 and set the number of latent dimensions to 2048 for all neural networks.

We train SAEs on activations of all models and brains to the the 10,000 Natural Scenes Dataset
(NSD) images shown to Subject 1 in the Allen et al. (2022) study. A total of 100 SAEs are trained
on each set of neural responses. We choose the best SAE using an unsupervised metric described in
section 4.5

4.4 K-MEANS LATENT TRANSFORMATION

We perform K-means clustering over columns (images) on the original (MxI) neural datasets, where
M is the number of neurons and I is the number of images. In the resulting feature space of N
clusters, each cluster represents a visual feature (i.e., cat images), each datapoint is an (M, 1) vector
containing all single-neuron responses to one image, and each centroid can be thought of as repre-
senting the canonical population response associated with a particular visual feature. We transform
each original datapoint (M, 1) into a population response vector (N, 1) by computing the negative
Euclidean distance between the datapoint and N cluster centers. This results in a population response
dataset (NxI), which represents the distance of each population vector from the canonical response
to a given feature. We train 50 randomly initialized K-means seeds per neural network comparison,
choosing the best model with an unsupervised metric outlined in section 4.5.

4.5 MODEL SELECTION AND VALIDATION
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Figure 4: (Within-Subject) Brain-Brain Comparison for K-Means latents. Top Plots:
Heatmaps: Neuron based RSA (left), latent based RSA (middle), and difference (right). Scatter-
plot: Neuron versus latent based RSA. Bottom Plots: Same as top row, but for Linear Regression.
On the scatterplot, blue datapoints indicate the X axis was used as the source for Linear Regression
mapping, and orange points indicate the Y axis was used as the source for Linear Regression map-
ping.

For both SAEs and K-Means, we report alignment results using the most disentangled model, iden-
tified via a variant of the Unsupervised Disentanglement Ranking (UDR) metric (Higgins et al.,
2021). Briefly, we train multiple models (100 for SAEs, 50 for K-Means) and compute an RSA-
based similarity matrix across all models. The model with the highest average pairwise similarity
to all others receives the highest UDR score and is considered most disentangled, as it represents
the most consistent solution across the optimization landscape. Validating this approach, we find
that UDR scores correlate with alignment performance: models with higher UDR achieve higher
cross-system alignment (Figure 8).

To verify that UDR-selected models produce visually interpretable features consistent with observed
alignment changes, we employed an automated interpretability metric derived from human psy-
chophysics. This metric quantifies feature interpretability through an odd-one-out task, analogous
to word intrusion tasks used to evaluate topic models Chang et al. (2009), but adapted for the visual
modality. We identify the top K preferred images (or maximally exciting images; MEIs) for each
neuron or latent and compute their average pairwise similarity to establish a top K image similarity
threshold. We then compute the average similarity between each remaining image in the dataset
and these top K images. The feature or neuron receives one point for each image whose average
similarity falls below the top K threshold, indicating the algorithm correctly identified it as an ’odd
one out’ or dissimilar to the feature’s preferred stimuli. Higher odd-one-out scores indicate more
interpretable features with consistent selectivity. We visualize the preferred images of the most
interpretable features for a subset of comparisons in the Appendix.

4.6 RESULTS

Model to Model. Alignment results between models are presented in Figure 2. RSA: Both neural
and feature space showed the highest similarity between more analogous model layers. Feature-
based alignment yielded overall higher scores. Notably, ResNet-50 layer 1 showed a shift in its
alignment profile, with the highest alignment increase with the CLIP feature layer, followed by
ResNet50-layer 4 and decreased alignment with earlier CLIP layer 3. Figure 9 visualizes the pre-
ferred images for neurons versus latents, confirming greater correspondence in preferred features
between the CLIP feature layer and ResNet-50 layer 1 in latent space compared to neural space.
Linear Regression: As with RSA, early model layers are most related. Unlike RSA, late model
layers showed less selective similarity profiles, and feature-based alignment did not produce a pro-
nounced overall increase in alignment scores. Where alignment increased in RSA, it sometimes
decreased with Linear Regression (e.g., CLIP feature layer’s comparisons to both ResNet50 layer3
and CLIP layer 3), and this was enough to invert similarity profiles in feature space for Linear Re-
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gression relative to RSA (e.g., for the CLIP feature layer). The opposite was also true: ResNet-50
layer 1 and CLIP layer 3 become more similar with feature-based Linear Regression, and less similar
with feature-based RSA. We explore the sources metric disagreement in Section 5.

Model to Brain. Alignment results for model-to-brain comparisons are presented in Figure 3.
RSA: In neural space, early model layers roughly aligned more strongly with early visual cortex
(V1-V3) while later layers aligned with late visual cortex (V4-FFA-1). Feature-based alignment
strengthened this hierarchical bias for early layers/regions and decreased it for later layers/regions.
Linear Regression: In neural space, early model layers showed broader alignment across visual
cortex, with a subtle hierarchical alignment observed for later model layers. Feature-based align-
ment produced different effects than RSA. Early layers, particularly ResNet-50 layer 1, became
more strongly aligned to all visual cortical regions. Late layers showed modest increases in align-
ment—contrasting with the decreases observed using RSA. We address potential causes of the dif-
ferences between Linear Regression and RSA in Section 5.

Brain to Brain. Alignment results for brain-to-brain comparisons are presented in Figure 4.
RSA: Both neural and feature space exhibited hierarchically organized alignment, with neighbor-
ing visual regions showing greater similarity. Feature-based alignment strengthened this pattern for
early visual areas but weakened it for higher-order regions. Notably, hV4—a mid-level visual re-
gion—shifted its alignment profile in feature space: while most similar to V3v in neural space, it
became most similar to OFA (a face-selective area) in feature space. Figure 10 visualizes the pre-
ferred images for neurons versus latents in V3v, hV4, and OFA, demonstrating greater overlap in
preferred features between hV4 and OFA in the latent space compared to the neural space. This shift
in relative alignment demonstrates how feature-based methods can reveal functional relationships
obscured by neural-level comparisons. We hypothesize this shift arises because disentanglement re-
duces the geometric effects of OFA’s strong bias towards facial features, allowing shared mid-level
representations to emerge. We explore this mechanism in Section 5. Linear Regression: Neural
space showed weaker hierarchical organization than RSA, though neighboring regions still exhib-
ited some preferential alignment. In contrast to RSA, feature-based alignment uniformly decreased
similarity scores across all region pairs, suggesting that Linear Regression is differentially sensitive
to disentanglement. We elaborate on how bias may also contribute to RSA - Linear Regression
disagreement in Section 5.

5 INVESTIGATING SOURCES OF REPRESENTATIONAL ALIGNMENT

In the previous section, we observed several intriguing trends in neural alignment. First, early and
lower-dimensional model layers and brain regions exhibited increased alignment in feature space
for both RSA and Linear Regression, consistent with our initial hypothesis about superposition ar-
rangements obscuring their true similarity. Second, higher-order brain regions with similar intrinsic
dimensionality to lower-level areas often exhibited decreases in alignment. In several of these cases,
RSA and Linear Regression even disagreed, causing changes in selectivity profiles for regions mea-
sured with one metric but not the other. These last two findings prompt us to investigate whether
(un)known inductive biases (e.g., shared face selectivity), particularly of higher-order regions, con-
tributes to relatively high alignment in the neural space that is reduced in feature space.

5.1 EXPERIMENTAL SETUP FOR SIMULATION STUDIES

For all simulation studies, we produce two random linear projections from a shared set of features.
Specifically, we generate a single feature set Z of d × N dimensional features (i.e. Z ∈ Rd×N ),
which are random uniform values between 0 and 1, i.e., Zi,j ∼ U(0, 1). To simulate the sparsity
condition, we then zero mask all but the top K activating latent variables within each generated
sample (i.e. individual row in Z). Next, we generate two projection matrices, each N × M di-
mensional, with elements drawn from a standard normal distribution, i.e., A0, A1 ∈ RN×M where
Ai,j ∼ N (0, 1). These matrices are used to produce two random linear projections of a shared set
of features. We perform Linear Regression and RSA on the resulting simulated neural activations.
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In Experiment 1, we simulate the impact of shared feature arrangements by progressively constrain-
ing the projection matrices A0 and A1 such that features maintain similar projection patterns across
systems. This is achieved by generating a random feature correlation matrix and multiplying it
with an increasing number of columns in A0 and A1. In Experiment 2, we simulate the impact
of shared biases by multiplying the columns of projection matrices A0 and A1 with progressively
larger weights from a feature importance matrix. This matrix follows an exponential decay function
that assigns the highest weights to the initial features. In Experiment 3, we simulate the impact of
dimensionality on one of the networks by increasing its dimensionality through a scalar multiplier.

5.2 SIMULATION STUDY RESULTS

Experiment 1 reveals that overlapping feature arrangements increase alignment similarly for both
RSA and Linear Regression, consistent with shared training statistics benefiting both metrics. Ex-
periment 2 shows a strong dissociation: shared feature bias decreases Linear Regression alignment
but increases RSA alignment, with RSA yielding higher absolute scores when bias is sufficiently
strong. This mirrors the metric dissociations we observed in real neural data for multiple compar-
isons involving FFA-1, a region known to exhibit bias towards faces. Experiment 3 demonstrates
that the RSA-Linear Regression gap is amplified by high dimensionality, confirming that dimen-
sional mismatches disproportionately inflate Linear Regression scores.

Figure 5: Sources of (mis) alignment in neural space Left: Simulation manipulating the degree of
shared feature arrangement statistics (Experiment 1). Middle: Simulation manipulating the strength
of shared bias (Experiment 2). Right: Simulation manipulating the dimensionality of the target
neural network (Experiment 3).

5.3 EXTENSION TO REAL DATA

Experiment 2 of the previous section (simulating bias) represents the only condition where RSA
yields higher alignment than Linear Regression and where the same manipulation produces opposing
directional effects on the two metrics. As this means RSA-Linear Regression disagreement of this
nature might be a diagnostic indicator for bias, we focus our analysis on the real data in this section
on bias. We identified cases where RSA > Linear Regression in the neural space: ResNet-50 layer
4 to FFA-1 and CLIP feature layer to FFA-1. We sort neural activity for each system according
to the L-1 norm to identify the top 10 features for each system, and found they overlap in their
semantic selectivity more than features where RSA <= Linear Regression 6. We apply the same
L1-sorting strategy to the latents of each system, finding a decrease in semantic selectivity over
the top 10 features that coincides with the decrease in RSA observed in feature-based alignment.
Visual inspection confirms the nature of this shared bias: Figure 6. All systems in this comparison
show strong selectivity for faces and human figures—a well-documented inductive bias in both deep
networks and FFA-1. This concentration of shared semantic selectivity in high-magnitude features
indicates that high RSA, coupled with RSA-Linear Regression dissociation, may be diagnostic of
shared feature-level biases.

6 LIMITATIONS

There are several limitations in our study. The first is our assumptions that 1) projections from the
latent to neural basis are random and 2) that all features are shared. These assumptions are purely

9
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Figure 6: Preferred features of neural networks with high baseline RSA. Images: Top 5 Max-
imally Exciting Images (MEIs) for the top 5 features from ResNet-50 Layer 4 (Left), the CLIP
feature layer (Middle) and FFA-1 (Right). Barplot: Degree of categorical overlap for the top 10
MEIs for high baseline RSA vs low baseline RSA comparisons.

practical; allowing us to test whether disentangling superimposed features is sufficient to increase
true alignment in cases where feature arrangements obscure it. At certain scales and in certain areas,
biological neural networks have a bias towards privileged, rather than random, projections (Khosla
et al., 2024; Posani et al., 2025). The impact of this on alignment is likely complex and worth further
exploration. It is also unlikely that all of the real networks in our study represent the exact same
feature set. The second limitation stems from our use of SAEs, known to suffer various problems
such as an amortization gap O’Neill et al. (2024), inconsistent latents across training seeds (Paulo
& Belrose, 2025) and the sensitivity of discovered latents to dictionary dimensionality (Leask et al.,
2025; Chanin et al., 2024). Further work could explore recent efforts to alleviate such problems (Fel
et al., 2025), but we stress that our theory does not depend on SAEs. We pragmatically adopt SAEs
as the current best method to disentangle features in superposition, and our experiments should be
revisited if improved approaches are designed. The final limitation concerns scope: we only test
linearly combined features. This is grounded in the superposition hypothesis (Elhage et al., 2022)
and the success of linear and SAE-based probing in large models, which demonstrate that many
features are linearly combined and linearly recoverable. However, the success of nonlinear metrics
Huh et al. (2024); Insulla et al. (2025); Kornblith et al. (2019); Williams et al. (2021) suggests that
follow-up studies may uncover additional sources of alignment obscured in neural space.

7 DISCUSSION

In this work, we derive analytic predictions and contribute simulation experiments demonstrating
that representational alignment decreases as a function of distinct superposition arrangements of the
same underlying features (i.e., compression via random projections). These experiments suggested
that alignment computed over disentangled features would be higher. Based on this prediction, we
used SAEs and K-Means to extract approximations of features in real neural networks, showing that
alignment over latent activations is often significantly higher for the commonly used metrics of RSA
and Linear Regression, particularly for early, lower-dimensional layers. We also observe a restruc-
turing of relative representational similarities between models and across biological and artificial
networks. Our findings have implications for model selection criteria. If superposition masks sim-
ilarity between two systems that represent even identical features, then computing RSA or Linear
Regression over raw activations of models with variable dimensionality places smaller models at a
systematic disadvantage. This may explain why scaling models often produces more reliable align-
ment gains than designing models with more apparent alignment to human perception (Schaeffer
et al., 2022; 2024). Additionally, identifying the causes of restructured representational similarity
in feature space may help explain why two systems are similar in neural space, and whether this
stems from a dimensionality confound or a more substantive property of the neural networks (i.e.,
shared inductive biases). As we seek to understand whether models and brains share representational
strategies, it is important to consider the best uses of common alignment metrics. In this work, we
demonstrate that performing alignment on raw neural activations imposes a systematic disadvan-
tage for earlier, lower-dimensional models. We offer superposition disentanglement as a practical
and effective solution to address this confound currently facing neural network comparisons with
otherwise similar behavior.

10
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David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and Joseph
Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders.
arXiv preprint arXiv:2409.14507, 2024.

Colin Conwell, Jacob S Prince, Kendrick N Kay, George A Alvarez, and Talia Konkle. A large-scale
examination of inductive biases shaping high-level visual representation in brains and machines.
Nature communications, 15(1):9383, 2024.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. IEEE Computer Society, 2009.

David L. Donoho. Compressed sensing. IEEE Transactions on information the-
ory, 52(4):1289–1306, 2006. URL https://ieeexplore.ieee.org/
abstract/document/1614066/?casa_token=vtpGjU5mzFcAAAAA:
rU2N5NCWY2K9IaaU0GHdJEuOj8P0dFk39KnF-rchFhrMrAe9T0XiWvCPGgJ5pszVR4-UWxvhvg.
Publisher: IEEE.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Eric Elmoznino and Michael F Bonner. High-performing neural network models of visual cortex
benefit from high latent dimensionality. PLoS computational biology, 20(1):e101a1792, 2024.

Thomas Fel, Ekdeep Singh Lubana, Jacob S. Prince, Matthew Kowal, Victor Boutin, Isabel Pa-
padimitriou, Binxu Wang, Martin Wattenberg, Demba E. Ba, and Talia Konkle. Archety-
pal SAE: Adaptive and stable dictionary learning for concept extraction in large vision mod-
els. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=9v1eW8HgMU.

Ariel Goldstein, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi Aubrey, Samuel A
Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al. Shared computational principles for
language processing in humans and deep language models. Nature neuroscience, 25(3):369–380,
2022.

11

https://transformer-circuits.pub/2023/monosemantic-features
https://transformer-circuits.pub/2023/monosemantic-features
https://ieeexplore.ieee.org/abstract/document/1614066/?casa_token=vtpGjU5mzFcAAAAA:rU2N5NCWY2K9IaaU0GHdJEuOj8P0dFk39KnF-rchFhrMrAe9T0XiWvCPGgJ5pszVR4-UWxvhvg
https://ieeexplore.ieee.org/abstract/document/1614066/?casa_token=vtpGjU5mzFcAAAAA:rU2N5NCWY2K9IaaU0GHdJEuOj8P0dFk39KnF-rchFhrMrAe9T0XiWvCPGgJ5pszVR4-UWxvhvg
https://ieeexplore.ieee.org/abstract/document/1614066/?casa_token=vtpGjU5mzFcAAAAA:rU2N5NCWY2K9IaaU0GHdJEuOj8P0dFk39KnF-rchFhrMrAe9T0XiWvCPGgJ5pszVR4-UWxvhvg
https://openreview.net/forum?id=9v1eW8HgMU
https://openreview.net/forum?id=9v1eW8HgMU


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Irina Higgins, Le Chang, Victoria Langston, Demis Hassabis, Christopher Summerfield, Doris Tsao,
and Matthew Botvinick. Unsupervised deep learning identifies semantic disentanglement in single
inferotemporal face patch neurons. Nature communications, 12(1):6456, 2021.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024.

Francesco Insulla, Shuo Huang, and Lorenzo Rosasco. Towards a learning theory of representation
alignment. arXiv preprint arXiv:2502.14047, 2025.

Seyed-Mahdi Khaligh-Razavi and Nikolaus Kriegeskorte. Deep supervised, but not unsupervised,
models may explain it cortical representation. PLoS computational biology, 10(11):e1003915,
2014.

Meenakshi Khosla, Gia H Ngo, Keith Jamison, Amy Kuceyeski, and Mert R Sabuncu. Cortical re-
sponse to naturalistic stimuli is largely predictable with deep neural networks. Science Advances,
7(22):eabe7547, 2021.

Meenakshi Khosla, Alex H Williams, Josh McDermott, and Nancy Kanwisher. Privileged represen-
tational axes in biological and artificial neural networks. bioRxiv, pp. 2024–06, 2024.

David Klindt, Charles O’Neill, Patrik Reizinger, Harald Maurer, and Nina Miolane. From su-
perposition to sparse codes: interpretable representations in neural networks. arXiv preprint
arXiv:2503.01824, 2025.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMlR, 2019.

Nikolaus Kriegeskorte and Xue-Xin Wei. Neural tuning and representational geometry. Nature
Reviews Neuroscience, 22(11):703–718, 2021.

Michael Lan, Philip Torr, Austin Meek, Ashkan Khakzar, David Krueger, and Fazl Barez. Sparse
autoencoders reveal universal feature spaces across large language models. arXiv preprint
arXiv:2410.06981, 2024.

Patrick Leask, Bart Bussmann, Michael T Pearce, Joseph Isaac Bloom, Curt Tigges, Noura Al
Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of
analysis. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=9ca9eHNrdH.

Zeyu Michael Li, Hung Anh Vu, Damilola Awofisayo, and Emily Wenger. Exploring causes of
representational similarity in machine learning models. arXiv preprint arXiv:2505.13899, 2025.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Charles O’Neill, Alim Gumran, and David Klindt. Compute optimal inference and provable amor-
tisation gap in sparse autoencoders. arXiv preprint arXiv:2411.13117, 2024.
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A APPENDIX

B SIMULATING SUPERPOSITION’S IMPACT ON ALIGNMENT

B.1 EXPERIMENTAL SETUP

In this section, we test our theoretical prediction that superposition is sufficient to reduce alignment
in cases where two networks use an identical set of features. We generate a single feature set Z
of d × N dimensional features (i.e. Z ∈ Rd×N ), which are random uniform values between 0
and 1, i.e., Zi,j ∼ U(0, 1). To simulate the sparsity condition, we then zero mask all but the top K
activating latent variables within each generated sample (i.e. individual row in Z). Next, we generate
two projection matrices, each N × M dimensional, with elements drawn from a standard normal
distribution, i.e., A0, A1 ∈ RN×M where Ai,j ∼ N (0, 1). These matrices are used to produce two
random linear projections of a shared set of features. We manipulate the degrees of superposition by
varying M from 0.2K log(N/K) to 50K log(N/K). Next, we measured alignment of the random
linear projections using RSA (Experiment 1) and Linear Regression (Experiment 2). To test the
effect of sparsity, we repeated these experiments across different numbers of active latents (K). We
also calculate and show the minimum dimensionality of M required for accurate latent recovery
under compressed sensing as M = K log(N/K) (Candes et al., 2006).

B.2 RESULTS

Figure 7: Neural Network Alignment Decreases with Superposition. Alignment measured with
RSA (Left) as well as with Linear Regression (Right) as a function of compression (N/M ). This
experiment is repeated across multiple sparsity levels (K). Analytical predictions are represented by
solid curves, while empirical results from simulation across different superposition compressions is
represented by the dots. We note where accurate latent recovery from compressed representations is
(CS; green shading) or is not (No CS; red shading) possible Donoho (2006).

B.3 DERIVATION OF ANALYTICAL RSA

To derive an analytic expression for the RSA under superposition, we first express the RSMs in
terms of the Gram matrices Ga = AT

aAa and Gb = AT
bAb. These matrices act as metric tensors,

defining the geometry of the representations.

M(Ya) = (AaZ)T(AaZ) = ZTGaZ (10)

M(Yb) = (AbZ)T(AbZ) = ZTGbZ (11)
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Figure 8: A We plot the UDR of trained SAEs for clip layer3 (system A) against alignment of those
SAEs with resnet50 layer2 (system B), finding that high UDR scores coincide with high alignment.
B We perform the reverse comparison to select the most disentangled model for resnet50 layer2.C-D
Same as A-B, but selecting models for clip features (C) and resnet50-layer4 (D).

Figure 9: SAE latents MEIs for Model-Model Comparisons. Top rows: 10 maximally exciting
images (MEIs) for the most interpretable neuron from ResNet-50 Layer 1 and CLIP feature layer.
Bottom rows: 10 maximally exciting images (MEIs) for the most interpretable latent from ResNet-
50 Layer 1 and CLIP feature layer. This supports the increase in feature-based alignment between
ResNet-50 Layer 1 and the CLIP feature layer observed in Figure 3.

An individual element of these matrices is the quadratic form M(Ya)ij = zTi Gazj . Our derivation
relies on the following standard assumptions about the distribution of the latent variable vectors zi:

1. The latent vectors z1, . . . , zd are independent and identically distributed (i.i.d.).

2. The distribution has a mean of zero: E[zi] = 0.

3. The distribution is white, with an identity covariance matrix: E[zizTj ] = δijIn.

Expectation of RSM Elements We first derive the empirical mean of all RSM matrix elements
µY in asymptotic limit, then derive the empirical mean of only the off-diagonal upper triangular
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Figure 10: K-means latents MEIs for Brain-Brain Comparisons. Top rows: 10 maximally
exciting images (MEIs) for the most interpretable neuron from brain areas V3v, hV4 and OFA.
Bottom rows: 10 maximally exciting images (MEIs) for the most interpretable latent from brain
areas V3v, hV4 and OFA. This supports the switch from higher hV4-V3v similarity in the neural
space to higher hV4-OFA similarity in the latent space observed in Figure 5.

RSM matrix elements µUT
Y , and show that in the asymptotic limit the two empirical quantities are

equivalent and converge to zero:

µY ≡ 1

d2

∑
i,j

M(Y )ij =
1

d2

∑
i,j

zTi Gzj (12)

=
1

d

∑
i

zTi G

1
d

∑
j

zj

 (13)

≈ 1

d

∑
i

zTi GE[zj ] = zTi G0 (14)

= 0 (15)
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µUT
Y ≡ 1

d(d− 1)/2

∑
i<j

M(Y )ij =
1

d(d− 1)

∑
i̸=j

M(Y )ij (16)

=
1

d(d− 1)


∑

i,j

M(Y )ij

−

[∑
i

M(Y )ii

] (17)

=
d2

d(d− 1)
µY − 1

d− 1
µdiag
Y (18)

≈ µY (19)
= 0 (20)

Covariance and Variance Since the mean of the off-diagonal elements is zero, their covariance
for i ̸= j is the empirical mean of their product: The Covariance of the off-diagonal elements of two
RSMs can then be shown as:

Cov(m⃗a, m⃗b) = Cov(M(Ya)
UT,M(Yb)

UT) (21)

=
1

d(d− 1)/2

∑
i<j

{M(Ya)ij − µUT
a }{M(Yb)ij − µUT

b } (22)

≈ 1

d(d− 1)/2

∑
i<j

M(Ya)ijM(Yb)ij =
1

d(d− 1)

∑
i̸=j

M(Ya)ijM(Yb)ij (23)

=
1

d(d− 1)


∑

i,j

M(Ya)ijM(Yb)ij

−

[∑
i

M(Ya)iiM(Yb)ii

] (24)

≈ 1

d(d− 1)

∑
i,j

M(Ya)ijM(Yb)ij (25)

=
1

d(d− 1)

∑
i,j

(zTi Gazj)(z
T
i Gbzj) (26)

=
1

d(d− 1)

∑
i,j

(zTi Gazj)(z
T
j G

T
b zi) (27)

=
1
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∑
i

zTi Ga

1
d

∑
j

zjz
T
j

Gbzi (28)

≈ 1

d− 1

∑
i

zTi GaE[zjzTj ]Gbzi (29)

=
1

d− 1

∑
i

zTi GaGbzi (30)

=
d

d− 1
Tr

[
GaGb

(
1

d

∑
i

ziz
T
i

)]
(31)

≈ Tr
[
GaGbE[zzT]

]
(32)

= Tr [GaGb] (33)

The variance of the elements is found by setting Ga = Gb, and can be related to the Frobenius norm
(∥X∥2F = Tr(XTX)):

Var(m⃗a) = Var(M(Ya)
UT) = Tr(GaGa) = Tr(GT

aGa) = ∥Ga∥2F (34)

Var(m⃗b) = Var(M(Yb)
UT) = Tr(GbGb) = Tr(GT

bGb) = ∥Gb∥2F (35)

For a large number of data points d, the correlation of the vectorized RSMs is well-approximated
by the correlation of their constituent elements. Substituting the covariance and variance into the
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Pearson formula yields our main result:

ρ(Ya, Yb) ≈
Tr(GaGb)√
∥Ga∥2F ∥Gb∥2F

=
⟨Ga, Gb⟩F

∥Ga∥F ∥Gb∥F
(36)

B.4 DERIVATION OF ANALYTICAL LINEAR REGRESSION RESULTS

We consider a multivariate linear regression model to predict the activity of representation Yb from
Ya:

Yb = WYa + E (37)
where W ∈ Rmb×ma is the weight matrix and E is the matrix of residuals. The Ordinary Least
Squares (OLS) method finds the estimator Ŵ that minimizes the sum of squared errors, given by the
squared Frobenius norm ∥Yb −WYa∥2F .

OLS Estimator and Asymptotic Simplification The standard OLS solution for the weight matrix
is:

Ŵ = YbY
T
a (YaY

T
a )−1 (38)

To find an analytic expression in terms of the underlying superposition matrices, we substitute Ya =
AaZ and Yb = AbZ. We then leverage the same statistical properties of the latent variables Z used
in the RSA derivation. For a large number of i.i.d. samples d, the sample covariance of the latent
variables converges to a scaled identity matrix:

1

d
ZZT =

1

d

d∑
i=1

ziz
T
i → E[zzT] = In =⇒ ZZT ≈ dIn

Using this approximation, the terms in the OLS estimator simplify:

YbY
T
a = (AbZ)(AaZ)T = Ab(ZZT)AT

a ≈ d(AbA
T
a ) (39)

YaY
T
a = (AaZ)(AaZ)T = Aa(ZZT)AT

a ≈ d(AaA
T
a ) (40)

Substituting these into the formula for Ŵ gives the ideal ”population” level regression coefficient,
which is free from the sampling noise of a specific Z:

Ŵ ≈ d(AbA
T
a )
(
d(AaA

T
a )
)−1

= AbA
T
a (AaA

T
a )

−1 (41)

Derivation of the Mean Squared Error The Mean Squared Error (MSE) is the total squared
error divided by the total number of predicted elements, mbd. The prediction error matrix is E =

Yb − ŴYa.

E ≈ AbZ −
(
AbA

T
a (AaA

T
a )

−1
)
AaZ (42)

=
(
Ab −AbA

T
a (AaA

T
a )

−1Aa

)
Z (43)

The total squared error is the squared Frobenius norm of E.

∥E∥2F = Tr(ETE) ≈ Tr
(
ZT (. . . )

T
(. . . )Z

)
(44)

= Tr
(
(. . . )

T
(. . . ) (ZZT)

)
(using cyclic property of trace)

≈ d · Tr
(
(. . . )

T
(. . . )

)
= d

∥∥Ab −AbA
T
a (AaA

T
a )

−1Aa

∥∥2
F

Dividing the total squared error by mbd yields the final MSE expression:

MSE(Yb|Ya) ≈
1

mb

∥∥Ab −Ab

(
AT

a (AaA
T
a )

−1Aa

)∥∥2
F

(45)

Notation:

Ŷb = (ŷb,(1), ..., ŷb,(d)) (46)
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E[Ŷb
i
] ≡ 1

d

d∑
k=1

ŷib,(k) =
1

d

d∑
k=1

∑
m

Ŵ imyma,(k)

=
1

d

d∑
k=1

∑
m,n

Ŵ imAmn
a zn(k) =

∑
m,n

Ŵ imAmn
a

1

d

d∑
k=1

zn(k)

≈
∑
m,n

Ŵ imAmn
a E[zn]

= 0

E[yiyj ] =
∑
m,n

AimAjnE[zmzn] =
∑
m,n

AimAjnδmn =
∑
m

AimAjm = (AAT)ij

Derivation of the Explained Variance R2 The Explained Variance R2 is defined by:

R2 = 1− SSres

SStot
(47)

where

SSres =

d∑
k=1

||yb,(k) − ŷb,(k)||2 (48)

SStot =

d∑
k=1

||yb,(k) − ȳb||2 (49)

ȳb =
1

d

d∑
k=1

yb,(k) (50)

We can derive an analytical expression of SSres, SStot, and ȳb in terms of the projection matrices
Aa and Ab:

ȳb =
1

d

d∑
k=1

yb,(k) = Ab
1

d

d∑
k=1

zk ≈ AbE[z] (51)

= 0 (52)

SSres =

d∑
k=1

||yb,(k) − ŷb,(k)||2 = Tr[(Yb − Ŷb)
T(Yb − Ŷb)] = Tr[ZT(Ab − ŴAa)

T(Ab − ŴAa)Z]

(53)

= Tr[(Ab − ŴAa)
T(Ab − ŴAa)ZZT] ≈ d · Tr[(Ab − ŴAa)

T(Ab − ŴAa)] (54)

SStot =

d∑
k=1

||yb,(k) − ȳb||2 ≈
d∑

k=1

||yb,(k)||2 = Tr[Y T
b Yb] (55)

= Tr[ZTAT
bAbZ] = Tr[AT

bAbZZT ] (56)

≈ d · Tr[AT
bAb] (57)
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Thus the analytical expression of R2 can be expressed as:

R2 = 1− SSres

SStot
= 1− Tr[(Ab − ŴAa)

T(Ab − ŴAa)]

Tr[AT
bAb]

(58)

Derivation of the Pearson Correlation The prediction is Ŷb = ŴYa

The Pearson Correlation matrix between the prediction and the ground truth is given by:

ρ(Ŷb, Yb)ij ≡ ρ(Ŷb
i
, Yb

j) =
Cov(Ŷb

i
, Yb

j)√
Var(Ŷb

i
)Var(Yb

j)

(59)

Where indices i and j correspond to system dimensions. The Covariances can be expressed as:

Cov(Ŷb
i
, Yb

j) =
1

d− 1

d∑
k=1

ŷib,(k)y
j
b,(k) =

1

d− 1

d∑
k=1

∑
m

Ŵ imyma,(k)y
j
b,(k)

=
1

d− 1

d∑
k=1

∑
m,n,l

Ŵ imAmn
a zn(k)A

jl
b z

l
(k) =

1

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b

d∑
k=1

zn(k)z
l
(k)

≈ 1

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b d · E[znzl] =
d

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b δnl

≈
∑
m,n

Ŵ imAmn
a Ajn

b = (ŴAaA
T
b )ij = (AbA

T
a (AaA

T
a )

−1AaA
T
b )ij

And the Variances:

Var(Ŷb
i
) =

1

d− 1

d∑
k=1

ŷib,(k)ŷ
i
b,(k) =

1

d− 1

d∑
k=1

∑
m,n

Ŵ imyma,(k)Ŵ
inyna,(k)

=
1

d− 1

∑
m,n

Ŵ imŴ in
d∑

k=1

yma,(k)y
n
a,(k)

≈ 1

d− 1

∑
m,n

Ŵ imŴ ind · E[yma yna ]

=
d

d− 1

∑
m,n

Ŵ imŴ in(AaA
T
a )mn

≈ (Ŵ (AaA
T
a )Ŵ

T)ii

= (AbA
T
a (AaA

T
a )

−1(AaA
T
a )Ŵ

T)ii

= (AbA
T
a (AaA

T
a )

−1AaA
T
b )ii

Var(Y j
b ) =

1

d− 1

d∑
k=1

yjb,(k)y
j
b,(k) ≈

d

d− 1
E[yjby

j
b ]

≈ (AbA
T
b )jj

Expressed in Aa and Ab, the Pearson Correlation matrix becomes:

ρ(Ŷb, Yb)ij ≈
(AbA

T
a (AaA

T
a )

−1AaA
T
b )ij√

(AbAT
a (AaAT

a )
−1AaAT

b )ii(AbAT
b )jj

=
(ŴAaA

T
b )ij√

(ŴAaAT
b )ii(AbAT

b )jj

(60)
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