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ABSTRACT

Neural networks trained on the same tasks achieve similar performance but often
show surprisingly low representational alignment. We argue this is a measurement
artifact—a mirage of misalignment—caused by superposition, where individual
neurons represent mixtures of features. Consequently, two networks representing
identical feature sets can appear dissimilar if their neurons mix those features dif-
ferently. To formalize this intuition, we derive an analytic theory that predicts this
apparent misalignment for common linear metrics like representational similarity
analysis and linear regression. We validate our theory in settings of increasing
complexity. It perfectly predicts misalignment between random projections of
identical features. On real data, we use sparse autoencoders to find underlying
disentangled features, showing their latent codes are often far more aligned than
the raw neural representations. This work reveals that linear alignment metrics,
when applied to raw neural activations, can be systematically misleading due to
superposition. Our findings suggest that neural networks are more aligned than
previously believed and that the common practice of comparing raw neural acti-
vations with linear probing may systematically underestimate model similarity.

1 INTRODUCTION

The development of deep neural networks capable of human-level performance on tasks such as
object recognition and natural language has prompted a fundamental question: do different neural
systems learn to represent the same information? (?Goldstein et al., 2022; Peterson et al., 2018; Su-
cholutsky et al., 2023; Huh et al., 2024; Reizinger et al., 2024). Answering this requires comparing
representations across models with varied architectures, training data, and objectives, a challenge
central to ideas like the platonic representation hypothesis (Huh et al., 2024; Reizinger et al., 2025).
To measure these similarities, researchers turn to alignment metrics such as Representational Sim-
ilarity Analysis (RSA) (Kriegeskorte & Wei, 2021) which abstract away from individual neurons
to compare the geometry of population-level activity. Alternatively, Linear Regression is also used
which learns a linear map to predict one network’s activity from another. Both metrics have become
powerful alignment tools, yielding remarkable insights into shared structure (Yamins et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014; Cadena et al., 2019; Khosla et al., 2021; Schrimpf et al.,
2021; Conwell et al., 2024; Prince et al., 2024). However, even when models are trained on identical
tasks and data, comparisons consistently reveal a persistent “alignment ceiling,” (Schrimpf et al.,
2018; Ahlert et al., 2024; Chen & Bonner, 2025), suggesting that these systems do not converge to
identical representational solutions.

We propose this alignment ceiling is caused by the phenomenon of superposition, where neural
networks linearly represent more features than they have neurons (Smolensky, 1990; Elhage et al.,
2022; Klindt et al., 2025). Compressed sensing theory states that this is a viable strategy if the
features that the neurons represent are sparse. In that case, sparse dictionary learning is able to
recover the features from the representation in superposition (Donoho, 2006; Candes et al., 2006).
However, this highly efficient compression strategy comes at a cost for direct comparisons: to extract
the representations, we need a nonlinear decoding mechanism (O’Neill et al., 2024).

Consequently, two networks could learn the exact same set of underlying features, but if they rep-
resent them in different arrangements, then linear comparison metrics like RSA and Linear Regres-
sion will erroneously measure their representations as dissimilar. Geometric distortions (RSA) and
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Figure 1: Illustration of Core Idea. Superposition: Two neural networks share an identical set
of latent features (Za = Zb), but compress them (red arrows) in different ways Ya ̸= Yb. Thus,
computing alignment over the raw neural activations of network A (Ya) and B (Yb) will underesti-
mate the representational similarity of these networks. We propose using sparse dictionary learning
to recover (blue arrows) the shared features of networks from their raw activations prior to using
alignment metrics (Donoho, 2006). Linear regression: Assuming perfect latent recovery, the max-
imum pairwise correlation between latent activations is 1.0, and will be greater than the correlation
between raw neural activations. Representational similarity analysis: Rather than directly corre-
lating neural (or latent) activation, RSA first computes pairwise (dis)similarity matrices of neural
responses to features. Depicted are representational similarity matrices (or their dissimilarity coun-
terparts), which are correlated to produce an alignment score. As with linear regression, the RSA
score for perfectly recovered latents is 1.0, and greater than the RSA score over neural activations.

predictive performance (Linear Regression) occur not because the underlying representations are
different, but because the superposition arrangement, i.e., projection from features down to neurons
in each system is unique. This could explain why models with higher dimensionality, i.e., presum-
ably less superposition and closer to linear decodability, seem to lead to better linear regression
(Elmoznino & Bonner, 2024).

One approximate way of lifting features out of superposition is using sparse autoencoders (SAEs)
(Ng et al., 2011; Cunningham et al., 2023; Rao et al., 2024; Lan et al., 2024). This is a form of
sparse dictionary learning (Olshausen & Field, 1997), where the sparse inference (given a dictio-
nary) is amortized using a perceptron (i.e., linear-relu encoder) (O’Neill et al., 2024; ?). A common
implementation of SAEs finds an overcomplete (i.e., higher-dimensional) basis for representing neu-
ral activations, allowing for observation of more disentangled, interpretable features than the original
neural basis (Bricken et al., 2023). This should partially relieve low alignment due to the networks’
idiosyncratic feature mixtures.

In this work, we formalize this intuition and investigate its consequences for representational align-
ment. Specifically, we develop an analytic theory that precisely quantifies how idiosyncratic feature
mixtures in superposition lead to misalignment under RSA and Linear Regression. We validate
this theory in a series of simulation studies. On real neural activity from brains and models, we use
SAEs to learn a disentangled feature basis; showing that RSA and Linear Regression performed with
these recovered features, rather than the raw activations, often reveal significantly higher alignment
across systems. Taken together, our results highlight a critical limitation of standard similarity met-
rics and demonstrate that accounting for superposition is a necessary step toward a more complete
understanding of representational alignment.

2 RELATED WORK

Comparing Neural Representations. A central goal in neuroscience and machine learning is to
compare learned representations across different systems, be they biological or artificial (Goldstein
et al., 2022; Peterson et al., 2018; Sucholutsky et al., 2023). A primary tool for this is Representa-
tional Similarity Analysis (RSA), which abstracts away from the activity of individual neurons to
compare the geometric structure of population-level responses (Kriegeskorte & Wei, 2021). Another
common approach is linear regression, which assesses alignment by training a linear map to predict
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the activations of one system from another. These methods have been instrumental in revealing
shared representational structure between brains and models (Yamins et al., 2014; Khaligh-Razavi
& Kriegeskorte, 2014; Cadena et al., 2019), across different models (Khosla et al., 2021; Schrimpf
et al., 2021; Conwell et al., 2024), and under varying training objectives (Prince et al., 2024). How-
ever, despite their power, these linear methods consistently encounter an “alignment ceiling,” where
even models trained on identical tasks fail to converge to perfectly aligned solutions (Schrimpf
et al., 2018; Ahlert et al., 2024; Chen & Bonner, 2025). This limitation has spurred the develop-
ment of more sophisticated techniques, such as generalized shape metrics, to capture more complex
representational transformations (Williams et al., 2021). Our work posits that this ceiling is not nec-
essarily a failure of the models to learn similar features, but a failure of linear metrics to account for
non-linear encoding schemes like superposition.

Superposition in Neural Networks. The concept of superposition was formally introduced by
Smolensky (1990) as the principle that networks represent concepts through linear combination.
This idea has strong theoretical grounding in identifiability theory, which explores the conditions
under which underlying latent variables can be recovered from their mixtures, with theoretical guar-
antees now extending from classic approaches (Hyvarinen & Morioka, 2016; Hyvärinen et al., 2023;
Park et al., 2023; Arora et al., 2016; 2018) to modern supervised (Reizinger et al., 2024) and self-
supervised paradigms (Zimmermann et al., 2021). However, the universality of linear feature en-
coding has been debated (Pfau et al., 2020; Higgins et al., 2018; Bouchacourt et al., 2021; Engels
et al., 2024). More recently, the term has been used to describe the specific case where a network
linearly represents more features than it has available neurons (Elhage et al., 2022), reviewed in
Klindt et al. (2025). When features are sparse, representing them in superposition becomes a stan-
dard compressed sensing problem, where a small number of features can be reliably recovered from
a compressed representation (Donoho, 2006; Candes et al., 2006). This insight has fueled signif-
icant progress in AI interpretability, enabling the use of tools like sparse autoencoders to uncover
meaningful, disentangled features from within modern architectures like Transformers (Yun et al.,
2021; Bricken et al., 2023; Templeton et al., 2024) and other large foundation models (Simon &
Zou, 2024). Beyond artificial networks, these principles have deep roots in theoretical neuroscience.
Foundational work demonstrated that sparse coding applied to natural scenes yields features resem-
bling V1 receptive fields (Olshausen & Field, 1996), while superposition has been explored as a
coding strategy in biological circuits (Fyshe et al., 2014; Klindt et al., 2023) and as an explanation
for mixed selectivity, where single neurons respond to conjunctions of features (Rigotti et al., 2013).

3 THEORY

Let z ∈ Rn be latent variables and y ∈ Rm be neural representations, which are functions of these
latent variables, i.e., y = f(z).

Definition 3.1 (Superposition). We say that a representation f : Rn → Rm is in superposition if it
is a linear map and a low-dimensional projection, i.e., m < n.

3.1 ASSUMPTIONS

Throughout our analysis, we make the following assumptions:

1. Linearity: The neural representations are in superposition and are thus linear, described
by a matrix A ∈ Rm×n:

y = Az (1)

The condition m < n implies that the columns of A are not all orthogonal, aligning with
the common assumption of having fewer neurons than latent variables.

2. Sparsity of Latent Variables: The latent variables are sparse, e.g., ∥z∥0 ≤ K for some
K ≪ n.

3. Restricted Isometry Property (RIP): The matrix A satisfies the RIP, which allows for the
theoretical possibility of recovering z from observations of y via compressed sensing.

4. Distribution of Latent Variables: For a dataset of d inputs, the latent vectors z1, . . . , zd
are treated as independent and identically distributed (i.i.d.) random variables satisfying:
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• Zero mean: E[zi] = 0 for all i.
• White distribution (Identity covariance): E[zizTi ] = In for all i.

If these assumptions do not fully hold, we incur an irreducible reconstruction error when retrieving
the sparse codes. This error would lower the ceiling of RSA alignment, correctly reflecting that if
two features cannot be separated in one system, it should count as a representational misalignment.

3.2 REPRESENTATIONAL SIMILARITY MATRIX (RSM)

For a dataset of neural responses Y = (y1, ..., yd), the representational similarity matrix (RSM) is
defined as:

M(Y )i,j = ⟨yi, yj⟩ ∀i, j ∈ {1, ..., d}. (2)
Given the linearity assumption equation 1, we can rewrite the RSM in terms of the latent variables:

M(Y )i,j = ⟨yi, yj⟩ = ⟨Azi, Azj⟩ = zTi A
TAzj (3)

This shows that the similarity between latent variables zi, zj is measured by a semi-inner product
⟨·, ·⟩G induced by the positive semi-definite Gram matrix G := ATA.

4 ALIGNMENT UNDER SUPERPOSITION

Consider two neural representations in superposition, with matrices Aa, Ab, generating responses
Ya = (Aaz1, ..., Aazd) and Yb = (Abz1, ..., Abzd) to the same set of latent variables Z =
(z1, ..., zd). While the underlying latent variables are identical, the observed neural representations
Ya and Yb may differ. We now analyze how standard alignment metrics behave in this scenario.

The key insight of our work is that while these two neural representations Ya, Yb originate from the
same latent variables, any direct linear measure of alignment will be confounded by the differing
projection matrices.

4.1 REPRESENTATIONAL SIMILARITY ANALYSIS (RSA)

The RSA metric is the Pearson correlation between the vectorized upper-triangular elements of two
RSMs, m⃗a and m⃗b.

ρ(Ya, Yb) =
Cov(m⃗a, m⃗b)√
Var(m⃗a)Var(m⃗b)

(4)

Under the assumptions outlined previously, we arrive at the following result in the limit of large
datasets.
Theorem 4.1 (Asymptotic RSA Alignment). The RSA correlation between two representations Ya

and Yb in superposition is approximately the cosine similarity between their respective Gram matri-
ces, Ga = AT

aAa and Gb = AT
bAb.

ρ(Ya, Yb) ≈
Tr(GaGb)√

Tr(G2
a)Tr(G2

b)
=

⟨Ga, Gb⟩F
∥Ga∥F ∥Gb∥F

(5)

where ⟨·, ·⟩F and ∥ · ∥F are the Frobenius inner product and norm, respectively.

This result shows that RSA is fundamentally sensitive to the similarity of the metric tensors induced
by the representations on the latent space.

4.2 LINEAR REGRESSION

Alternatively, we can measure alignment by determining how well one representation can be linearly
predicted from the other using a multivariate linear model Yb = WYa + E. The Ordinary Least
Squares (OLS) estimator Ŵ minimizes the squared Frobenius norm of the residuals, ∥Yb−WYa∥2F .
Theorem 4.2 (Asymptotic Linear Regression). In the asymptotic limit and under the stated assump-
tions, the OLS estimator Ŵ and the resulting model performance are given by:
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1. Optimal Weights: The weight matrix Ŵ converges to:

Ŵ ≈ AbA
T
a (AaA

T
a )

−1 (6)

2. Mean-Squared Error (MSE):

MSE(Yb|Ya) ≈
1

mb

∥∥∥Ab − ŴAa

∥∥∥2
F

(7)

3. Explained Variance (R2):

R2 = 1−
Tr
(
(Ab − ŴAa)

T(Ab − ŴAa)
)

Tr(AT
bAb)

(8)

4. Pearson Correlation (ρ(Ŷb, Yb)ij):

ρ(Ŷb, Yb)ij =
(ŴAaA

T
b )ij√

(ŴAaAT
b )ii(AbAT

b )jj

(9)

5 SIMULATING SUPERPOSITION’S IMPACT ON ALIGNMENT

5.1 EXPERIMENTAL SETUP

In this section, we test our theoretical prediction that superposition is sufficient to reduce alignment
in cases where two networks use an identical set of features. We generate a single feature set Z
of d × N dimensional features (i.e. Z ∈ Rd×N ), which are random uniform values between 0
and 1, i.e., Zi,j ∼ U(0, 1). To simulate the sparsity condition, we then zero mask all but the top K
activating latent variables within each generated sample (i.e. individual row in Z). Next, we generate
two projection matrices, each N × M dimensional, with elements drawn from a standard normal
distribution, i.e., A0, A1 ∈ RN×M where Ai,j ∼ N (0, 1). These matrices are used to produce two
random linear projections of a shared set of features. We manipulate the degrees of superposition by
varying M from 0.2K log(N/K) to 50K log(N/K). Next, we measured alignment of the random
linear projections using RSA (Experiment 1) and Linear Regression (Experiment 2). To test the
effect of sparsity, we repeated these experiments across different numbers of active latents (K). We
also calculate and show the minimum dimensionality of M required for accurate latent recovery
under compressed sensing as M = K log(N/K) (Candes et al., 2006).

5.2 RESULTS

Consistent with our analytical predictions, we observe that RSA alignment decreases as superposi-
tion—i.e., compression—increases (Fig. 2, left). The relative rate of this decrease is similar across
varying sparsity levels (K active components). Notably, this decay in alignment persists even be-
low the critical compression threshold (M = K log(N/K)), the regime where compressed sensing
theory guarantees that feature recovery is, in principle, possible (Donoho, 2006).

Analogously, the variance explained by linear regression also declines with greater compression,
exhibiting a similar relative drop across all sparsity levels (Fig. 2, right). Nevertheless, in regimes
with low compression (high M ) and low sparsity (high K), performance remains high, with ex-
plained variance exceeding 0.8. Together, these simulations validate our theory, confirming that
superposition systematically decreases linear alignment measures like RSA and linear regression
performance.
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Figure 2: Neural Network Alignment Decreases with Superposition. Alignment measured with
RSA (Left) as well as with Linear Regression (Right) as a function of compression (N/M ). This
experiment is repeated across multiple sparsity levels (K). Analytical predictions are represented by
solid curves, while empirical results from simulation across different superposition compressions is
represented by the dots. We note where accurate latent recovery from compressed representations is
(CS; green shading) or is not (No CS; red shading) possible Donoho (2006).

6 SUPERPOSITION’S IMPACT ON ALIGNMENT IN REAL NETWORKS

6.1 EXPERIMENTAL SETUP

We now test whether superposition disentanglement increases alignment in real neural networks.
We measure model-model (Fig. 3), model-brain (Fig. 4), and brain-brain (Fig. 5) alignment using
RSA and Linear Regression. To begin, we measure alignment on raw neural activations to obtain a
baseline. Next, we train SAEs on models and brains to recover latent features and use them in place
of neurons for computing alignment. For RSA, both networks have their neurons replaced with
SAE latents for alignment, whereas with Linear Regression, only the source neurons are replaced
with their SAE latents. This is done to keep the targets the same as in the base comparison (i.e.,
predicting neurons). It is technically sound because Linear Regression is capable of remixing the
source latents back into the target’s superposition arrangement. Finally, we report the difference
between alignment over latent activations and alignment over raw neural activations to quantify the
relative increase in alignment provided by disentangling features from superposition.

6.2 DATA

We obtained neural activations from both biological and artificial neural networks. Biological data
is from the publicly available Natural Scenes Dataset (NSD) (Allen et al., 2022), which uses fMRI to
record human neural responses to subsets of the COCO natural images dataset (Lin et al., 2014). We
analyzed three brain areas along the visual processing hierarchy: the ventral portion of the primary
visual cortex (V1v), fusiform face area 1 (FFA-1) and the parahippocampal place area (PPA).

For model-model alignments, we obtained activations from the penultimate layers of ResNet50
(layer4.2) (He et al., 2016), ViT-B/16 (encoder.layers.encoder layer 11) (Dosovitskiy et al., 2021),
and CLIP-ViT-B/32 (visual.transformer.resblocks.11) (Radford et al., 2021), with ResNet50 and
ViT-B/16 being trained on ImageNet classification (Deng et al., 2009). To be consistent with the
brain alignment experiments, we use the 10,000 images for NSD Subject 1.

For model-brain alignments, we used preprocessed (the result of Step 5 described in (Allen et al.,
2022)) neural activations from NSD Subject 1 in response to 10,000 unique images. Each neural
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response was averaged over 3 image presentations and z-scored. The same images were used to
obtain activations from ResNet-50 layers 1-4 (He et al., 2016).

For brain-brain alignments, we use Subjects 1 and 2 of the NSD. NSD subjects largely viewed
non-overlapping images, so neural activations in response to 1,000 images viewed by both study
participants were used. Given the limited data, we trained sparse autoencoders on each subjects’
neural responses to the 10,000 images they viewed, before latent activations in response to the
shared 1,000 images were extracted for further analysis.

6.3 SAE TRAINING

We train sparse autoencoders with an L1 sparsity penalty (L1-SAEs) to learn disentangled latent
features (z). The SAE has an encoder and a decoder. Encoding is given by:

z = ReLU(Wencx+ benc)

where x represents the raw neural activations, and learned parameters Wenc and benc are the encoder
weights and bias respectively. Decoding is given by:

x̂ = Wdecz + bdec

where x̂ are reconstructed neural activations, and learned parameters Wdec and bdec are the decoder
weights and bias respectively. The model is trained using a combined loss function, which is the
sum of a reconstruction loss

Lreconstruction =
1

d ·M

d∑
i=1

(xi − x̂i)
2

and sparsity loss

Lsparsity =
λ

d ·N

d∑
i=1

N∑
j=1

|(Wdec):,j | · |zji |

which is the L1 norm of latent activations scaled by the decoder norm (to avoid collapse with van-
ishing latents and exploding decoder norms) and weighted by the hyperparameter λ. We varied λ
from 10−3 to 20 and tested expansion factors of 1, 2 and 4 times the dimensionality of the base
neural activations.

For the model-model analysis, we train SAEs on the three models using their layer activations to
the ImageNet training set, with a batch size of 1024 for 300 epochs. Alignment is taken over each
SAE architecture and we report the SAE with the highest mean alignment increase for each metric.
For model-brain alignment analysis, to ensure fair comparison of the latents across model and brain,
both the model and brain voxel’s SAEs were trained on their respective activations towards the same
set of 10,000 unique images that Subject 1 was exposed to. For analysis of brain-brain alignment
between Subject 1 and Subject 2, Subject 1’s and Subject 2’s SAEs were trained on their respective
voxel recordings (in response to their respective sets of images). For the alignment calculations, only
the activations/sparse codes that correspond to the overlapping subset of 1000 images were used.

6.4 RESULTS

Model to Model. Alignment results between the three models are presented in Figure 3, where
each number in the grid shows the increase in alignment obtained over the respective SAE latents
relative to the raw neural activations. In all model pairs and across both RSA and Linear Regression,
we see a positive value, reflecting SAE latents have at least partially recovered the true alignment
obscured in the raw neurons. The SAE with the largest RSA increase has an expansion of 4 and
λ = 0.1, and the largest Linear Regression increase has an expansion of 4 and λ = 0.01. We
also plot the raw alignment values beside the grid, where each point is the Neuron-versus-Latent
alignment for a given model pair, with all points lying above the diagonal. It is noteworthy that
the relative alignment gain seems more pronounced in RSA versus Linear Regression, which may
indicate how different metrics interact with superposition deflation and/or sparse matrices. We leave
this inquiry for future work.
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Model to Brain. Alignment results between model and brain are presented in Figure 4. Across
most model-brain pairs, we observe an increase in alignment with both RSA and Linear Regression,
when transitioning from neuron/voxel to SAE latent representation. In the case of alignment with
Linear Regression, we find that the increase in alignment is much more noticeable when using the
brain latents as the source mapping to model neurons, as opposed to using model latents as the
source mapping to brain voxels.

Brain to Model. Alignment results between two different brains are presented in Figure 5. We
find relatively stable or modest decreases in alignment with RSA transitioning from voxel-voxel to
latent-latent across all pairs, while no significant differences in alignment with Linear Regression
transitioning from voxel-voxel to latent-voxel, regardless of whether subject 1 or subject 2 is used
as the source.

Figure 3: Model-Model Comparison. Left Plots: Increase in RSA over features compared
to neurons shown as a difference (heatmap) and over the identity line (scatterplot). Right Plots:
The same results for Linear Regression. The scatterplot legend indicates which set of comparisons
served as a source for Linear Regression mapping.

Figure 4: Model-Brain Comparison. Left Plots: Increase in RSA over features compared to
neurons shown as a difference (heatmap) and over the identity line (scatterplot). Right Plots: The
same results for Linear Regression. The scatterplot legend indicates which set of comparisons served
as a source for Linear Regression mapping.

Figure 5: Brain-Brain Comparison. Left Plots: Increase in RSA over features compared to
neurons shown as a difference (heatmap) and over the identity line (scatterplot). Right Plots: The
same results for Linear Regression. The scatterplot legend indicates which set of comparisons served
as a source for Linear Regression mapping.

8
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7 LIMITATIONS

There are several limitations in our study. The first is our practical assumptions that 1) projections
from the latent to neural basis are random and 2) that all features are shared. At certain scales
and in certain areas, biological neural networks have a bias towards privileged, rather than random,
projections (Khosla et al., 2024; Posani et al., 2025). The impact of this on alignment is likely
complex (e.g., higher alignment over neurons if biases are shared, lower alignment if biases differ
between systems) and worth further exploration. It is also unlikely that all of the real networks in
our study represent the exact same feature set.

The second limitation stems from our use of SAEs, known to suffer various problems such as an
amortization gap O’Neill et al. (2024), inconsistent latents across training seeds (Paulo & Belrose,
2025) and the sensitivity of discovered latents to dictionary dimensionality (Leask et al., 2025;
Chanin et al., 2024). Further work could explore recent efforts to alleviate such problems (Fel et al.,
2025), but we stress that our theory does not depend on SAEs. We pragmatically adopt SAEs as the
current best method to disentangle features in superposition, and our experiments should be revisited
if improved approaches are designed. Finally, we have only focused on the visual domain, but our
hypothesis is modality-agnostic and should be further tested in other domains such as language.

8 DISCUSSION

In this work, we derive analytic predictions and contribute simulation experiments showing that rep-
resentational alignment decreases as a function of distinct superposition arrangements of the same
underlying features (i.e., compression via random projections). These experiments suggested that
alignment computed over disentangled features would be higher. Based on this prediction, we used
SAEs to extract approximations of the features in real neural networks, showing that alignment over
the SAE latent activations is often significantly higher for the commonly used metrics of RSA and
Linear Regression. These findings suggest that the representational similarities between models and
across biological and artificial networks is greater than previously estimated. A notable exception is
brain-brain alignment. Given the relatively low number of shared images in this comparison (1,000
shared NSD images), it is difficult to attribute this result to data and related processing limits, reso-
lution limits (e.g., voxels instead of neurons), or to biological phenomena. Applying our methods to
single- or multi-unit datasets and datasets with more shared stimuli is a critical next step.

Our findings have implications for model selection criteria. If superposition masks similarity be-
tween two systems that represent even identical features, then computing RSA or Linear Regression
between models and brains over base activations of models with variable dimensionality puts small
models at a systematic disadvantage. This may explain why scaling models often produces more
reliable alignment boosts than producing models that have more apparent alignment with human
perception (Schaeffer et al., 2022; 2024).

As we seek to understand whether models and brains represent the same information, it is important
to consider the best uses of common representational alignment metrics. In this work, we demon-
strate that alignment metrics systematically underestimate the similarity of neural networks because
of the manner in which they arrange features across their neurons. We offer superposition disen-
tanglement via SAEs as a practical and effective solution to address the alignment ceiling currently
facing neural network comparisons with otherwise similar behavior.

REFERENCES

Jannis Ahlert, Thomas Klein, Felix Wichmann, and Robert Geirhos. How aligned are different
alignment metrics? arXiv preprint arXiv:2407.07530, 2024.

Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge
cognitive neuroscience and artificial intelligence. Nature neuroscience, 25(1):116–126, 2022.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A Latent Variable
Model Approach to PMI-based Word Embeddings. Transactions of the Association for Compu-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

tational Linguistics, 4:385–399, dec 2016. ISSN 2307-387X. doi: 10.1162/tacl a 00106. URL
https://direct.mit.edu/tacl/article/43373.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear Algebraic
Structure of Word Senses, with Applications to Polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, dec 2018. ISSN 2307-387X. doi: 10.1162/tacl a 00034.
URL https://direct.mit.edu/tacl/article/43451.
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A APPENDIX

A.1 DERIVATION OF ANALYTICAL RSA

To derive an analytic expression for the RSA under superposition, we first express the RSMs in
terms of the Gram matrices Ga = AT

aAa and Gb = AT
bAb. These matrices act as metric tensors,

defining the geometry of the representations.

M(Ya) = (AaZ)T(AaZ) = ZTGaZ (10)

M(Yb) = (AbZ)T(AbZ) = ZTGbZ (11)

An individual element of these matrices is the quadratic form M(Ya)ij = zTi Gazj . Our derivation
relies on the following standard assumptions about the distribution of the latent variable vectors zi:

1. The latent vectors z1, . . . , zd are independent and identically distributed (i.i.d.).

2. The distribution has a mean of zero: E[zi] = 0.

3. The distribution is white, with an identity covariance matrix: E[zizTj ] = δijIn.

Expectation of RSM Elements We first derive the empirical mean of all RSM matrix elements
µY in asymptotic limit, then derive the empirical mean of only the off-diagonal upper triangular
RSM matrix elements µUT

Y , and show that in the asymptotic limit the two empirical quantities are
equivalent and converge to zero:

µY ≡ 1

d2

∑
i,j

M(Y )ij =
1

d2

∑
i,j

zTi Gzj (12)

=
1

d

∑
i

zTi G

1
d

∑
j

zj

 (13)

≈ 1

d

∑
i

zTi GE[zj ] = zTi G0 (14)

= 0 (15)

µUT
Y ≡ 1

d(d− 1)/2

∑
i<j

M(Y )ij =
1

d(d− 1)

∑
i̸=j

M(Y )ij (16)

=
1

d(d− 1)


∑

i,j

M(Y )ij

−

[∑
i

M(Y )ii

] (17)

=
d2

d(d− 1)
µY − 1

d− 1
µdiag
Y (18)

≈ µY (19)
= 0 (20)

Covariance and Variance Since the mean of the off-diagonal elements is zero, their covariance
for i ̸= j is the empirical mean of their product: The Covariance of the off-diagonal elements of two
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RSMs can then be shown as:

Cov(m⃗a, m⃗b) = Cov(M(Ya)
UT,M(Yb)

UT) (21)

=
1

d(d− 1)/2

∑
i<j

{M(Ya)ij − µUT
a }{M(Yb)ij − µUT

b } (22)

≈ 1

d(d− 1)/2

∑
i<j

M(Ya)ijM(Yb)ij =
1

d(d− 1)

∑
i̸=j

M(Ya)ijM(Yb)ij (23)

=
1

d(d− 1)


∑

i,j

M(Ya)ijM(Yb)ij

−

[∑
i

M(Ya)iiM(Yb)ii

] (24)

≈ 1

d(d− 1)

∑
i,j

M(Ya)ijM(Yb)ij (25)

=
1

d(d− 1)

∑
i,j

(zTi Gazj)(z
T
i Gbzj) (26)

=
1

d(d− 1)

∑
i,j

(zTi Gazj)(z
T
j G

T
b zi) (27)

=
1

d− 1

∑
i

zTi Ga

1
d

∑
j

zjz
T
j

Gbzi (28)

≈ 1

d− 1

∑
i

zTi GaE[zjzTj ]Gbzi (29)

=
1

d− 1

∑
i

zTi GaGbzi (30)

=
d

d− 1
Tr

[
GaGb

(
1

d

∑
i

ziz
T
i

)]
(31)

≈ Tr
[
GaGbE[zzT]

]
(32)

= Tr [GaGb] (33)

The variance of the elements is found by setting Ga = Gb, and can be related to the Frobenius norm
(∥X∥2F = Tr(XTX)):

Var(m⃗a) = Var(M(Ya)
UT) = Tr(GaGa) = Tr(GT

aGa) = ∥Ga∥2F (34)

Var(m⃗b) = Var(M(Yb)
UT) = Tr(GbGb) = Tr(GT

bGb) = ∥Gb∥2F (35)

For a large number of data points d, the correlation of the vectorized RSMs is well-approximated
by the correlation of their constituent elements. Substituting the covariance and variance into the
Pearson formula yields our main result:

ρ(Ya, Yb) ≈
Tr(GaGb)√
∥Ga∥2F ∥Gb∥2F

=
⟨Ga, Gb⟩F

∥Ga∥F ∥Gb∥F
(36)

A.2 DERIVATION OF ANALYTICAL LINEAR REGRESSION RESULTS

We consider a multivariate linear regression model to predict the activity of representation Yb from
Ya:

Yb = WYa + E (37)

where W ∈ Rmb×ma is the weight matrix and E is the matrix of residuals. The Ordinary Least
Squares (OLS) method finds the estimator Ŵ that minimizes the sum of squared errors, given by the
squared Frobenius norm ∥Yb −WYa∥2F .
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OLS Estimator and Asymptotic Simplification The standard OLS solution for the weight matrix
is:

Ŵ = YbY
T
a (YaY

T
a )−1 (38)

To find an analytic expression in terms of the underlying superposition matrices, we substitute Ya =
AaZ and Yb = AbZ. We then leverage the same statistical properties of the latent variables Z used
in the RSA derivation. For a large number of i.i.d. samples d, the sample covariance of the latent
variables converges to a scaled identity matrix:

1

d
ZZT =

1

d

d∑
i=1

ziz
T
i → E[zzT] = In =⇒ ZZT ≈ dIn

Using this approximation, the terms in the OLS estimator simplify:

YbY
T
a = (AbZ)(AaZ)T = Ab(ZZT)AT

a ≈ d(AbA
T
a ) (39)

YaY
T
a = (AaZ)(AaZ)T = Aa(ZZT)AT

a ≈ d(AaA
T
a ) (40)

Substituting these into the formula for Ŵ gives the ideal ”population” level regression coefficient,
which is free from the sampling noise of a specific Z:

Ŵ ≈ d(AbA
T
a )
(
d(AaA

T
a )
)−1

= AbA
T
a (AaA

T
a )

−1 (41)

Derivation of the Mean Squared Error The Mean Squared Error (MSE) is the total squared
error divided by the total number of predicted elements, mbd. The prediction error matrix is E =

Yb − ŴYa.

E ≈ AbZ −
(
AbA

T
a (AaA

T
a )

−1
)
AaZ (42)

=
(
Ab −AbA

T
a (AaA

T
a )

−1Aa

)
Z (43)

The total squared error is the squared Frobenius norm of E.

∥E∥2F = Tr(ETE) ≈ Tr
(
ZT (. . . )

T
(. . . )Z

)
(44)

= Tr
(
(. . . )

T
(. . . ) (ZZT)

)
(using cyclic property of trace)

≈ d · Tr
(
(. . . )

T
(. . . )

)
= d

∥∥Ab −AbA
T
a (AaA

T
a )

−1Aa

∥∥2
F

Dividing the total squared error by mbd yields the final MSE expression:

MSE(Yb|Ya) ≈
1

mb

∥∥Ab −Ab

(
AT

a (AaA
T
a )

−1Aa

)∥∥2
F

(45)

Notation:

Ŷb = (ŷb,(1), ..., ŷb,(d)) (46)

E[Ŷb
i
] ≡ 1

d

d∑
k=1

ŷib,(k) =
1

d

d∑
k=1

∑
m

Ŵ imyma,(k)

=
1

d

d∑
k=1

∑
m,n

Ŵ imAmn
a zn(k) =

∑
m,n

Ŵ imAmn
a

1

d

d∑
k=1

zn(k)

≈
∑
m,n

Ŵ imAmn
a E[zn]

= 0

E[yiyj ] =
∑
m,n

AimAjnE[zmzn] =
∑
m,n

AimAjnδmn =
∑
m

AimAjm = (AAT)ij
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Derivation of the Explained Variance R2 The Explained Variance R2 is defined by:

R2 = 1− SSres

SStot
(47)

where

SSres =

d∑
k=1

||yb,(k) − ŷb,(k)||2 (48)

SStot =

d∑
k=1

||yb,(k) − ȳb||2 (49)

ȳb =
1

d

d∑
k=1

yb,(k) (50)

We can derive an analytical expression of SSres, SStot, and ȳb in terms of the projection matrices
Aa and Ab:

ȳb =
1

d

d∑
k=1

yb,(k) = Ab
1

d

d∑
k=1

zk ≈ AbE[z] (51)

= 0 (52)

SSres =

d∑
k=1

||yb,(k) − ŷb,(k)||2 = Tr[(Yb − Ŷb)
T(Yb − Ŷb)] = Tr[ZT(Ab − ŴAa)

T(Ab − ŴAa)Z]

(53)

= Tr[(Ab − ŴAa)
T(Ab − ŴAa)ZZT] ≈ d · Tr[(Ab − ŴAa)

T(Ab − ŴAa)] (54)

SStot =

d∑
k=1

||yb,(k) − ȳb||2 ≈
d∑

k=1

||yb,(k)||2 = Tr[Y T
b Yb] (55)

= Tr[ZTAT
bAbZ] = Tr[AT

bAbZZT ] (56)

≈ d · Tr[AT
bAb] (57)

Thus the analytical expression of R2 can be expressed as:

R2 = 1− SSres

SStot
= 1− Tr[(Ab − ŴAa)

T(Ab − ŴAa)]

Tr[AT
bAb]

(58)

Derivation of the Pearson Correlation The prediction is Ŷb = ŴYa

The Pearson Correlation matrix between the prediction and the ground truth is given by:

ρ(Ŷb, Yb)ij ≡ ρ(Ŷb
i
, Yb

j) =
Cov(Ŷb

i
, Yb

j)√
Var(Ŷb

i
)Var(Yb

j)

(59)

Where indices i and j correspond to system dimensions. The Covariances can be expressed as:
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Cov(Ŷb
i
, Yb

j) =
1

d− 1

d∑
k=1

ŷib,(k)y
j
b,(k) =

1

d− 1

d∑
k=1

∑
m

Ŵ imyma,(k)y
j
b,(k)

=
1

d− 1

d∑
k=1

∑
m,n,l

Ŵ imAmn
a zn(k)A

jl
b z

l
(k) =

1

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b

d∑
k=1

zn(k)z
l
(k)

≈ 1

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b d · E[znzl] =
d

d− 1

∑
m,n,l

Ŵ imAmn
a Ajl

b δnl

≈
∑
m,n

Ŵ imAmn
a Ajn

b = (ŴAaA
T
b )ij = (AbA

T
a (AaA

T
a )

−1AaA
T
b )ij

And the Variances:

Var(Ŷb
i
) =

1

d− 1

d∑
k=1

ŷib,(k)ŷ
i
b,(k) =

1

d− 1

d∑
k=1

∑
m,n

Ŵ imyma,(k)Ŵ
inyna,(k)

=
1

d− 1

∑
m,n

Ŵ imŴ in
d∑

k=1

yma,(k)y
n
a,(k)

≈ 1

d− 1

∑
m,n

Ŵ imŴ ind · E[yma yna ]

=
d

d− 1

∑
m,n

Ŵ imŴ in(AaA
T
a )mn

≈ (Ŵ (AaA
T
a )Ŵ

T)ii

= (AbA
T
a (AaA

T
a )

−1(AaA
T
a )Ŵ

T)ii

= (AbA
T
a (AaA

T
a )

−1AaA
T
b )ii

Var(Y j
b ) =

1

d− 1

d∑
k=1

yjb,(k)y
j
b,(k) ≈

d

d− 1
E[yjby

j
b ]

≈ (AbA
T
b )jj

Expressed in Aa and Ab, the Pearson Correlation matrix becomes:

ρ(Ŷb, Yb)ij ≈
(AbA

T
a (AaA

T
a )

−1AaA
T
b )ij√

(AbAT
a (AaAT

a )
−1AaAT

b )ii(AbAT
b )jj

=
(ŴAaA

T
b )ij√

(ŴAaAT
b )ii(AbAT

b )jj

(60)
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