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Figure 1. Average Performance on 20 Vision-Language Reasoning Benchmarks (Grouped into 4 Categories).

Abstract

We introduce Lavender, a simple supervised fine-
tuning (SFT) method that boosts the performance
of advanced vision-language models (VLMs) by
leveraging state-of-the-art image generation mod-
els such as Stable Diffusion. Specifically, Laven-
der aligns the text-vision attention in the VLM
transformer with the equivalent used by Stable
Diffusion during SFT, instead of adapting separate
encoders. This alignment enriches the model’s
visual understanding and significantly boosts
performance across in- and out-of-distribution
tasks. Lavender requires just 0.13 million train-
ing examples—2.5% of typical large-scale SFT
datasets—and fine-tunes on standard hardware (8
GPUs) in a single day. It consistently improves
state-of-the-art open-source multimodal LLMs
(e.g., Llama-3.2-11B, MiniCPM-Llama3-v2.5),
achieving up to 30% gains and a 68% boost on
challenging out-of-distribution medical QA tasks.
By efficiently transferring the visual expertise
of image generators with minimal supervision,
Lavender offers a scalable solution for more accu-
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rate vision-language systems. Code, training data,
and models are available on the project page.

Vision-Language
Model (update)

Attention
Alignment

Stable Diffusion
Model (frozen)

Figure 2. Lavender: Diffusion Instruction Tuning. Lavender
uses the text-vision attention maps of a Stable Diffusion Model,
AttentionSDM , as a guiding objective for the attention of the
target vision-language model (VLM), AttentionV LM . The Atten-
tion Alignment module employs a 3-Layer ConvNet to transform
AttentionV LM to match AttentionSDM via an MSE loss, act-
ing as a regularisation term during supervised fine-tuning.

1. Introduction
Training frontier foundation models from scratch costs mil-
lions of dollars at minimum, requiring hundreds of GPUs
and millions to billions of data (DeepSeek-AI et al., 2024).
This challenge is even more pronounced in multimodal
settings: vision-language models (VLMs) often face data
scarcity because collecting paired image-text datasets is ex-
pensive (Zhu et al., 2024). A common workaround is to
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Diffusion Instruction Tuning

apply supervised fine-tuning (SFT) on a pretrained large lan-
guage model (LLM), leveraging its abundant text-only pre-
training and adjusting bridging layers or additional encoders
with limited image-text pairs (Liu et al., 2024c; Covert et al.,
2024; Jiang et al., 2023). However, these methods typically
overlook the importance of transformer-level attention align-
ment within the LLM core—a key component for effectively
expanding text-based models into the visual domain.

Precise visual-text alignment is crucial for advanced multi-
modal reasoning. While both VLMs and diffusion models
(DMs) process text and images, they diverge in their genera-
tion objectives. We observe that DMs, such as Stable Dif-
fusion (Rombach et al., 2021), which reconstructs images
at the pixel level, appear to learn more precise text-vision
attention maps than VLMs that are optimised solely for text
token generation (Figure 3).

In this work, we demonstrate that the high-quality cross-
attention maps from these DMs indeed offer a useful tar-
get for guiding the text-vision attention in VLMs during
SFT, thus improving word-to-region alignment and the over-
all performance. We introduce Lavender (Language-and-
Vision fine-tuning with Diffusion Aligner), the first frame-
work to directly align VLM transformer attention layers
with those of Stable Diffusion (Figure 1(c)). Specifically,
during SFT, Lavender transfers diffusion-based attention
distributions to VLMs, enhancing core visual-textual inter-
actions. To mitigate catastrophic forgetting, we additionally
propose several attention aggregation methods and training
strategies that preserve existing VLM competencies.

We begin by verifying Lavender on a small OpenFlamingo
model: entropy and visual analyses show Lavender aligns
VLM attention with DM attention. Leveraging Stable Dif-
fusion to offline extract per-word attention on 130k label-
image pairs-no extra training cost-Lavender yields notable
gains over autoregressive finetuning on 20 diverse bench-
marks, including up to 70% improvement on OpenFlamingo
across seven benchmarks. For Llama 3.2-11B, fine-tuned
on in- and out-of-distribution data, performance improves
by up to 30% on 19 benchmarks, surpassing comparable
small open-source models by 50%. On self-attention-only
MiniCPMv2.5, it achieves up to 4% gains.

This advantage extends to severely OOD domains, evi-
denced by a 68% boost on the WorldMedQA medical bench-
mark for Llama 3.2-11B. Further analyses reveal that larger
fine-tuning sets help Lavender resist overfitting more ef-
fectively than autoregressive baselines, and the aligned at-
tention maps yield finer-grained visual understanding. To-
gether with qualitative evidence of improved VLM attention,
these results confirm Lavender’s premise: diffusion-based
attention distributions effectively align visual and textual
representations, fostering more robust, data-efficient VLMs.
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bear ridding bicycleimage
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Per-word average cross-attention in Stable Diffusion Per-word average cross-attention in OpenFlamingo

flamingo on bicycle

bear on bicycle

squirrel eating burger

Figure 3. Image generation models (Stable Diffusion on the
left) exhibit stronger word-to-region attention alignment than
VLMs (Open-Flamingo on the right). Per-word average attention
maps suggest that diffusion models may be closer to an ideal
distribution correlating image regions with textual tokens.

Ablation studies reveal that the method of attention aggre-
gation and the choice of layers for fine-tuning are critical
to performance. Learned aggregation strategies outperform
manual ones and lightweight pretraining of an Aligner Net-
work helps prevent catastrophic forgetting on small datasets.
LoRA fine-tuning delivers faster improvements, full fine-
tuning proves more effective for handling complex tasks.
Aligning all cross-attention layers proves most effective,
highlighting the importance of precise attention alignment.

In summary, we introduce Lavender, a novel framework
that transfers “visual expertise” from text-to-image diffu-
sion models to vision-language models without additional
annotations. By aligning attention distributions, Lavender
enhances word-to-region grounding, improves fine-tuning
efficiency, and boosts model robustness, particularly in
out-of-distribution settings. Moreover, our architecture-
agnostic attention alignment loss is compatible with RL
post-training, offering scalable diffusion-guided feedback
instead of costly, subjective human vision feedback. Be-
yond addressing data scarcity, Lavender demonstrates that
pretrained generative models can guide multimodal learning
in a scalable and compute-efficient manner. This approach
bridges two expert paradigms—language and vision gener-
ation—into a more unified, capable system. Our findings
suggest broader applications in multimodal AI, offering a
modular and privacy-friendly alternative to closed-source
models. We open-source our work to encourage further
exploration of diffusion-guided alignment, unlocking new
possibilities in vision-language reasoning.

2. Diffusion Instruction Tuning
We aim to enhance a pretrained Vision-Language Model
(VLM) by leveraging attention distributions from a pre-
trained Diffusion Model (DM). We assume there is an ideal
attention distribution that maximises VLM performance and
that the DM’s attention is closer to this ideal distribution.
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Vision-Language Transformer

     Attention Alignment

Tokenized Input: <Images, Labels>

Diffusion Transformer
Tokenized Input: <Images, Questions>

pink bear riding bicycle

what's in the image ?

Aligner 
Network

what's in the image ? pink bear on bicycle

Figure 4. Sketch of Diffusion Instruction Tuning (left) and a short pseudo code
(right), whose full version is available in Appendix F.

Algorithm 1 Diffusion Instruction Tuning

Require: D = {(x(i), y(i))}, θD , θ, scale λ
Ensure: Fine-tuned VLM parameters θ

Stage 1: Precompute DM Attention (run once)
for each (x(i), y(i)) ∈ D do
A

(i)
DM ← pDM(a | x(i), y(i); θD)

end for
Stage 2: Fine-Tune VLM
repeat

Sample batch B ⊆ D, set LVLM(θ) = 0, Latt(θ) = 0

for each (x(i), y(i)) ∈ B do
Compute pVLM(a | x(i), y(i); θ)

δ(i)(θ)← Aligner
(
pVLM(a)

)
− A

(i)
DM

LVLM(θ)+=− log p(y
(i)
l | x(i), y(i)

q ; θ)

Latt(θ)+=∥δ(i)(θ)∥2
end for
Ltotal(θ)← LVLM(θ) + λLatt(θ)
Update θ ← θ − η∇θLtotal(θ)

until convergence

2.1. Models and Notation

Vision-Language Model (VLM). Let θ be the VLM pa-
rameters, pretrained for tasks such as image captioning or
question-answering. It models:

p(yl|x, yq; θ), (1)

where x, yq, yl, as image, question, and label answer.

Diffusion Model (DM). Let θD be the DM parameters,
which remain fixed during our procedure. It models:

p(x|y; θD). (2)

Attention Distributions. We write:

pVLM(a|x, y; θ), pDM(a|x, y; θD), (3)

We hypothesise that pDM(a|x, y; θD) is closer to the
optimal posterior attention distribution p∗(a|x, y) than
pVLM(a|x, y; θ), and the two can be aligned by projecting
pVLM into a comparable space using small learnable layers.

2.2. Assumptions

Ideal attention in Vision-Centric Tasks: An attention distri-
bution p∗(a|x, y) minimises the next-token prediction loss
of VLM, LVLM; DM Attention Proximity: Empirically, the
DM’s attention is more concentrated (lower entropy) and
hence closer to p∗ than the VLM’s, supported by Figure 3,
experiments in Section 6.1 and detailed justifications in
Appendix G; Shared Dataset: Both models use the same
image-text set {(x(i), y(i))}; Fixed DM Parameters: θD is
kept fixed; only θ is updated; Pretrained VLM Parameters:
θ is further fine-tuned with an attention alignment loss.

2.3. Bayesian Derivation

Our objective is to update the VLM parameters θ such that
the model not only performs well on its primary task but

also aligns its attention mechanism with that of the DM. We
formalise this objective within a Bayesian framework.

Posterior Distribution: We aim to find the posterior dis-
tribution of the VLM parameters given the data D and the
DM’s attention distributions:

p(θ|D,ADM) ∝ p(D|θ) p(ADM|θ) p(θ), (4)

where ADM = {pDM(a|x(i), y(i); θD)} is the collection of
attention outputs derived from the DM’s conditional distri-
bution, and p(θ) is the prior over the VLM parameters.

Likelihood of the Data: The likelihood of the data given θ
is:

p(D|θ) =
∏
i

p(y
(i)
l |x

(i), y(i)q ; θ). (5)

The negative log-likelihood corresponds to the standard loss
function LVLM(θ) used to fine-tune the VLM:

LVLM(θ) = −
∑
i

log p(y
(i)
l |x

(i), y(i)q ; θ). (6)

Likelihood of the DM’s Attention: We model the like-
lihood of observing the DM’s attention given the VLM’s
parameters, denoted as p(ADM|θ). To simplify the notation
and make the equations more concise, we introduce:

δ(i)(θ) = pVLM(a |x(i), y(i); θ)− pDM(a |x(i), y(i); θD). (7)

This represents the pointwise difference between the VLM’s
and DM’s attention distributions for the i-th data point,
serving as a measure of divergence at each attention location
a. Assuming that these differences are Gaussian-distributed
with equal variance, the likelihood can be expressed as:

p(ADM|θ) ∝ exp

(
−λ

2

∑
i

∥∥∥δ(i)(θ)∥∥∥2) . (8)
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This corresponds to the attention alignment loss Latt(θ):

Latt(θ) =
∑
i

∥∥∥δ(i)(θ)∥∥∥2 . (9)

By minimizing Latt(θ), i.e., the MSE loss, we encourage the
VLM’s attention to align with that of the DM, guiding it to-
ward the optimal posterior attention distribution p∗(a|x, y).

For simplicity, we assume a non-informative prior p(θ).
Consequently, the posterior distribution in the previous
equation Equation (4) is governed primarily by p(D|θ) and
p(ADM|θ). If regularisation is needed, a more informative
prior can be seamlessly incorporated. Combining the terms,
the negative log-posterior (up to a constant) becomes:

Ltotal(θ) = LVLM(θ) + λLatt(θ). (10)

Here, λ balances the importance of aligning the attention
distributions with the primary task. We fully justify the
inclusion of the attention alignment loss in Appendix H.

2.4. Practical Implementation

For each sample (x(i), y(i)), we extract per-word attention
from both models. Then, we fine-tune θ by minimizing:

Ltotal(θ) = −
∑
i

log p
(
y
(i)
l |x(i), y(i)

q ; θ
)
+ λ

∑
i

∥δ(i)(θ)∥2.

(11)
This is model-agnostic, requires no additional data, and
encourages the VLM’s attention to become more focused
by following the DM’s distributions.

3. Attention Alignment
We discuss how to compute per-word attention in VLMs and
DMs. Although both employ attention to capture vision-text
interplay, their attention aggregation differs (Figure 4). Un-
derstanding these distinctions is key to effective alignment.

3.1. Attention Aggregation in Diffusion Models

Text-guided diffusion models generate images from textual
input by iteratively denoising a random-noise image. During
each denoising step, cross-attention layers enable the model
to focus on relevant textual tokens. Specifically, queries
Q are derived from the noisy image xt, while keys K and
values V come from the text embedding v:

Q = fQ(xt), K = fK(v), V = fV (v), (12)

where fQ, fK , and fV are pretrained projection matrices of
DM. The attention map M is then computed as:

M = Softmax
(
(QK⊤)/

√
d
)
. (13)

Prior work (Hertz et al., 2022) shows that averaging these
maps across layers and time steps reveals meaningful corre-
spondences between words and image regions. The resulting

per-word attention distributions pDM(a|x, y; θD) indicate
salient image regions for each token, as shown in Figure 3.
We leverage these maps as a proxy for the optimal poste-
rior attention distribution p∗(a|x, y), guiding the VLM’s
alignment toward more focused vision-text interactions.

3.2. Attention Aggregation in Vision-Language Models

In VLM transformers, each text token Tt attends to image
patch tokens Tp across multiple heads and layers, producing
attention weights whl

(t,p), where h ∈ H, l ∈ L, t ∈ T, p ∈ P ,
with H,L, T, P being heads, layers, tokens, and patches,
respectively. These weights capture semantic and spatial
relations between tokens and patches. To obtain a single-
channel per-word map, we aggregate Ntext×Npatch×H×L
attention heads/layers into a (Ntext ×Npatch) matrix. Then
we reshape the patch dimension into a

√
Npatch ×

√
Npatch

grid, approximately reconstructs the original layout of the
image, which we verify in Appendix J. This procedure yields
interpretable saliency maps—each row corresponds to a text
token’s focus on the image patches—facilitating alignment
with DM attention (see Figure 5).

on

bike

pink

bear

on

bike

pink

bear

Figure 5. An illustration of the attention aggregation process in
VLMs. Attention weights between text tokens and image patches
are aggregated to form per-word saliency maps that approximate
the spatial layout of the image.

3.2.1. SIMPLE AGGREGATION FUNCTIONS

A straightforward approach is to pool attention weights A
(i.e., whl

(t,p)) across heads H and layers L via mean or max.
We consider four strategies:

A(L,H)
mean/max(A) ∈ {max-max, max-mean, mean-max, mean-mean},

where each denotes a combination of {Max,Mean} over
H and L. This yields a single per-word attention map,
capturing a coarse measure of word-to-patch alignment.

3.2.2. ATTENTION FLOW

Proposed by Abnar & Zuidema (2020), attention flow cumu-
latively combines multi-layer attention to capture deeper in-
teractions than simple pooling. Starting with the first layer’s
attention A(1), we iteratively merge subsequent layers A(l)

via element-wise multiplication or addition:

Ā ← Ā ◦A(l) or Ā ← Ā+A(l).
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Attention Alignment
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Figure 6. Learning to aggregate with parallel attention. The
demonstration is based on a self-attention VLM. The parallel at-
tention constitutes about 1/5th of the total VLM layers (L′ ∈ L).

This method, also used by Lin et al. (2024) at sentence level,
is extended here to finer-grained word-level attention maps,
potentially revealing semantic correlations overlooked by
simpler aggregation. Further details are in Appendix I.

3.2.3. LEARNING THE ATTENTION AGGREGATIONS

Beyond fixed pooling methods, we introduce parallel cross-
attention parameters (WQd

,WKd
,WVd

) alongside the pre-
trained projections (WQ,WK ,WV ). By preserving the orig-
inal attention mechanisms and learning new ones, we cap-
ture richer semantic correlations without overwriting exist-
ing weights. During each forward pass, we compute both
the original attention A and parallel attention Ad, then use
Ad as the VLM’s attention to align with the DM:

A = Softmax
(
(QK⊤)/

√
dk
)
, (14)

Ad = Softmax
(
(QdK

⊤
d )/

√
dk
)
. (15)

Empirically, learning parallel cross-attention in about 1/5th

of the layers (see Figure 6) suffices for effective alignment
while retaining the original VLM’s core knowledge.

3.3. Aligner Network

To refine the parallel (or aggregated) attention Ad into a
single-channel map comparable to pDM(a|x, y; θD), we in-
troduce a lightweight Aligner network inspired by Squeeze-
and-Excitation (Hu et al., 2018). It contains several small
(3-5) layers (MLP or convolution) that expand, apply non-
linear activations, then squeeze back to a single-channel
map. Empirically, we found convolutional layers better cap-
ture local spatial cues than MLP, detailed comparisons are
provided in Appendix N.1. During fine-tuning, the Aligner
output is compared to the DM’s attention via:

Latt(θ
′) =

∑
i

∥∥Aligner(A(i)
d

)
− pDM(a|x(i), y(i); θD)

∥∥2,
(16)

guiding the VLM’s attention toward the DM’s more focused
distribution, capturing complex semantic correlations while

preserving the original pretrained parameters.

3.4. Lavender Integration

Cross-Attention. For VLMs with dedicated cross-
attention layers, each head produces word-to-patch weights
whl

(t,p) mapping text tokens Tt to image patches Tp. We can
reshape these weights into spatial grids and aggregate across
heads/layers, then apply the Aligner network to yield final
per-word saliency maps comparable to DM attention.

Self-Attention Only. When both text and image patches
are interleaved in a single sequence, tokens attend to each
other in a bidirectional or causal manner. To extract word-to-
patch correlations, we first separate text tokens from image
patches, filter out irrelevant attention connections, and re-
shape the relevant weights into a grid. Despite the extra
steps (e.g., token indexing, handling masks, interpolation),
the principle remains the same: aggregate the transformed
weights into per-word saliency maps, then align them with
DM attention via the Aligner, as demonstrated in Figure 6.
This allows Lavender to improve vision-text alignment even
in fully self-attentive architectures. A more detailed expla-
nation of both scenarios is provided in Appendix K.

4. Implementation (Short Summary)
We integrate Lavender with three Vision-Language
Models (VLMs)—cross-attention VLMs (OpenFlamingo,
Llama 3.2-11B-Vision Instruct), and self-attention VLMs
(MiniCPM-Llama 3-v2.5)—and use Stable Diffusion v1.4
(Rombach et al., 2021) to provide per-word attention targets.
We add a lightweight Aligner network and an attention align-
ment loss to guide the VLM toward the DM’s more focused
distributions. Further details on DM inversion process, at-
tention extraction, training hyperparameters, and computing
environments are provided in Appendix L.

5. Training and Dataset (Short Summary)
We adopt several strategies to stabilise alignment objectives
and preserve a VLM’s pretrained capabilities. First, option-
ally pretrain only the Aligner network, freezing the rest of
the model to absorb DM-based attention signals without
disrupting existing representations. Second, attention aggre-
gation (§3) can stabilise the alignment. The Aligner has a
configurable depth balancing complexity and accuracy. We
also use PEFT (e.g., LoRA) to prevent catastrophic forget-
ting. Finally, we apply ‘root word match’ or ‘exact word
match’ to select predicted words for alignment. For datasets
preparation, we process images with Stable Diffusion to ob-
tain per-word attention targets across Flickr30k, Laion50k,
RLAIF-V 83k, and OCRVQA30k. Full details, including
hyperparameters, dataset preprocessing, and design choices,
are provided in Appendix M.
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6. Experiments and Results
We first validate Lavender on a smaller setup with Open-
Flamingo (§6.1) and then scale it to MiniCPMv2.5 (Yao
et al., 2024) and Llama 3.2-11B-Vision Instruct (Dubey
et al., 2024), evaluating on 20 standard VLM benchmarks
and comparing against 23 baseline models (§6.2). We
further analyse data overlapping (§6.3), scaling behaviour
(§A.2), out-of-distribution medical tests (§6.5), and provide
qualitative visualizations in §6.6.

6.1. Empirical Verifications

We find that: 1) Figure 7 shows entropy measurements
across Flickr30k, RLAIF-V83k, and OCRVQA30k confirm-
ing that DM attention distributions are lower in entropy than
VLM attention, supporting they are closer to the ideal distri-
bution p∗(a|x, y) in vision-centric tasks. 2) Figure 8 shows
how VLM attention maps align with DM maps, achieved
by using exact word match sampling, convolutional Aligner
networks, and moderate learning rates during Lavender fine-
tuning of OpenFlamingo on Flickr30k. 3) This alignment
also boosts text generation performance, as evidenced in
Figure 9 by improvements in COCO captioning scores cor-
relating with reduced MSE loss when jointly minimising
LVLM and Latt. 4) Benchmarking Lavender against autore-
gressive fine-tuning shows consistent zero-shot gains, with
up to 72% improvement (Figure 10). Detailed results and
further analysis are discussed in Appendix §N.

3 4 5 6 7 8
Entropy

0
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F
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Attention Entropy Histogram DM vs VLM (three models combined)

VLM attention (mean=7.25 ± 0.41)

DM attention (mean=6.47 ± 0.74)

Figure 7. DM attention is more
concentrated compared to three
VLMs attention (OpenFlamingo,
MiniCPM-v2.5, and Llama 3.2-
11B). Full results are available in
Appendix N.1.

Lavender + 'root match' + MLP + LR 1e-5

Lavender + 'identical match' + MLP + LR 1e-5

Lavender + 'identical match' + Conv + 1e-5

Lavender + 'identical match' + Conv + 1e-4

Input Image SD Xattn VLM Xattn (step 100) VLM Xattn (step 500) VLM Xattn (step 800)

Figure 8. Aligning VLM at-
tention with DM attention
for the word “guitar.” Each
row adds a training tech-
nique. See Appendix N.1 for
more examples.

6.2. Scaled Results with Lavender

Next, we scale experiments to MiniCPMv2.5 and Llama
3.2-11B-Vision-Instruct, fine-tuning on RV83k, Flk30k, and
OV30k datasets. Models were trained using autoregres-
sive and Lavender methods combined with LoRA or full
fine-tuning and evaluated on 20 multimodal benchmarks,
comparing against 23 baseline models.

Evaluation and Baselines. Lavender was tested across
diverse benchmarks grouped by task type (Chart&Doc, per-
ception, real-world understanding, hallucination detection).
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Figure 9. Lower MSE aligns with higher caption quality. Re-
sults on COCO using Lavender-OpenFlamingo F.T. with Flickr30k.
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Zero-Shot Lavender (ours) vs. Autoregressive F.T. on Laion50k
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Zero-Shot Lavender (ours) vs. Autoregressive F.T. on Flickr30k

Figure 10. Lavender surpasses the autoregressive baseline by
up to 72% in zero-shot evaluations, with models trained on
Laion50k or Flickr30k. The negative gain on Hateful Memes
stems from its unique ranking task rather than captioning.

Baselines include three groups: small budget-constrained
models (< 10B parameters), small data-heavy models
(< 20B), and large-scale SoTA models (> 20B). Details of
benchmarks, baselines, and evaluation are in Appendix O.

Main Results with MiniCPM-V-2.5 and Llama 3.2-
11B. Figure 11 compares results for MiniCPM-V-2.5 (self-
attention-only) and Llama 3.2-11B-Vision-Instruct (with
cross-attention). For MiniCPM-V-2.5, Lavender outper-
forms autoregressive fine-tuning on 16/20 tasks, improving
performance by up to 4% while limiting drops to -1%, de-
spite challenges posed by dataset reuse and the self-attention
mechanism. For Llama 3.2-11B, Lavender achieves up to
30% gains on 19/20 benchmarks with LoRA and up to 25%
on 17/20 with full fine-tuning. These results underscore
Lavender’s robustness across VLMs, with our experiments
indicating that explicit cross-attention modules align more
effectively than self-attention-only models like MiniCPM.
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Figure 11. Relative Improvement Over Baseline on 20 Benchmarks. (a) Results for MiniCPM-Llama3-V-2.5 fine-tuned on its original
RV83k dataset. Lavender improves performance on 16/20 benchmarks with gains up to 4%, while limiting performance drops to -1%,
primarily on an out-of-distribution Chinese benchmark. (b) Results for Llama-3.2-11B-Vision-Instruct fine-tuned on a mixture of RV83k,
Flk30k, and OV30k using LoRA and full fine-tuning strategies. Lavender outperforms autoregressive fine-tuning on 18/20 (LoRA) and
17/20 (Full-FT) benchmarks, achieving up to 30% and 25% improvement, respectively, while mitigating catastrophic forgetting. Across
both models, Lavender demonstrates consistent benefits over autoregressive fine-tuning, particularly in reducing catastrophic forgetting.
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Benchmarking Lavender Against External Baselines.
Lavender focuses on enhancing VLM performance be-
yond standard next-token fine-tuning. To contextualise its
improvements, we compare Lavender against a range of
baseline models across 16 benchmarks. Key results are
summarised in Figure 15, with detailed comparisons in
Appendix Table 1. For Small Budget-Constrained Mod-
els, Lavender achieves up to 50% improvement, with mi-
nor deficits (within 4%) on benchmarks like SEED-IMG.
Among Small Data-Heavy SOTA Models, Lavender outper-
forms autoregressive baselines, despite using significantly
smaller datasets (38x–384x less data), with gaps attributed
to dataset differences (Section 6.3). For Large SOTA Mod-
els, Lavender performs comparably to some closed-source
models on certain tasks demonstrated in Figure 12.
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6.3. Data Overlap Analysis

To contextualise benchmark results, we analyse the overlap
between fine-tuning and benchmark datasets. Using a quali-
tative approach (Figure 13), we find that fine-tuning datasets
for some SoTA models show higher overlap with bench-
marks. Lavender’s fine-tuning dataset exhibits low overlap,
similar to LLaVA-1.5 (Liu et al., 2024a), highlighting its
strong generalisability. This analysis focuses on fine-tuning,
where smaller datasets pose higher overfitting risks, though
pretraining overlap can’t be ruled out.

6.4. Scaling Behaviour

Lavender, a model-agnostic approach, is tested on small
fine-tuning datasets in this work due to computational con-
straints. To evaluate its scalability, we fine-tune Llama-
3.2-11B on combinations of RV83k, Flk30k, and OV30k
using autoregressive and Lavender methods with LoRA or
full fine-tuning. Results in Figure 14 show average per-
formance across eight benchmarks. The findings indicate
that Lavender scales better with increased data, effectively
reducing overfitting—a common issue with autoregressive
fine-tuning on small datasets.
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Figure 14. Lavender scales better and mitigates overfitting com-
pared to autoregressive fine-tuning, with larger datasets reduc-
ing variability. This plot shows the mean normalised performance
across eight benchmarks for two dataset configurations after fine-
tuning Llama 3.2-11B. Markers indicate observed performance
with trendlines, and shaded regions show variability as 1 standard
deviation around the mean. Full results with four dataset configu-
rations are in Appendix Figure 18 and Figure 28.

6.5. Severely Out-of-Distribution Medical Benchmark

We evaluate model generalisation on the extreme OOD
WorldMedQA-V (Duan et al., 2024), a multilingual, mul-
timodal medical VQA dataset. It includes 568 multiple-
choice questions in four low-resource languages, paired
with medical images. The dataset’s focus on medical exams
and rare languages makes it ideal for testing generalisation
beyond typical fine-tuning domains. Figure 16 shows that
Lavender improves Llama-3.2-11B’s performance by 68%,
surpassing six open-source models (6B–34B) and narrowing
the gap with large closed-source models from 43% to 10%.

6.6. Qualitative Results with Llama 3.2-11B

Lavender effectively aligns VLM attention maps with those
of DMs and enhances performance on VQA tasks. Exam-
ples of aligned attention maps (Figure 19) show that Laven-
der’s attention maps correlate well with semantic regions
similar to those of DMs. Additionally, Figure 17 high-
lights improved performance on diverse VQA benchmarks
attributed to the better localisation and interpretation of vi-
sual elements with Lavender. Full details in Appendix A.1.

7. Ablation and Analysis Summary
We conducted extensive ablation studies to assess the key
components of Lavender and their impact on performance.
Key findings include: 1) Attention Aggregation: Learned
aggregation consistently outperformed manual methods like
attention flow due to its adaptability and scalability (Fig-
ure 20, Figure 21). 2) Pretraining the Aligner: Pretraining
the Aligner Network significantly mitigated catastrophic for-
getting compared to plain fine-tuning, with longer pretrain-
ing benefiting more complex benchmarks (Figure 22). 3)
Fine-tuning Strategy: LoRA offered better short-term results,
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the OOD WorldMedQA benchmark by 68%. Results are based
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and OV30k using autoregressive or Lavender methods with LoRA.
Accuracy reflects average performance across four low-resource
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Example results in Appendix Table 2.

while full fine-tuning showed advantages on more complex
tasks, suggesting complementary benefits (Figure 11). 4)
Layer Alignment: Aligning all eight cross-attention layers
in Llama-3.2-11B was most effective, outperforming partial
alignments (Figure 23). Full details and additional analyses
are provided in Appendix B.

8. Failure Strategies and Limitations
Failure Strategies. Despite Lavender’s overall success,
certain approaches proved less effective. Fully fine-tuning
without pretraining often destabilised the model, particu-
larly on small datasets, though LoRA offered a more robust
alternative (Figure 22). Frequent switching between train-
ing strategies (e.g., alternating between full fine-tuning and
aligning cross-attention subsets) harmed performance due
to the model’s inability to stabilise objectives during short
training periods. Additionally, incorporating extra datasets,
such as OCRVQA, sometimes reduced performance (Fig-
ure 14), suggesting risks of overfitting with specific data.

Full details are provided in the Appendix C.

Limitations and Future Works. Lavender’s evaluation
was limited to datasets of up to 0.13M samples, far smaller
than those used by state-of-the-art models, which scale up
to 50M samples (Figure 14). Future work could explore its
scalability with larger datasets and tuning durations. Laven-
der relied on Stable Diffusion v1.4, but adopting higher-
resolution models like Stable Diffusion v2 could improve at-
tention map accuracy, albeit with greater resource demands.
Additionally, the short inversion steps used to generate atten-
tion maps prioritised efficiency but might limit accuracy for
unfamiliar words. Lastly, while Lavender was applied to the
self-attention-only MiniCPM-v-2.5, further research into
optimising self-attention alignment and bridging its differ-
ences with cross-attention mechanisms remains an open area
for exploration. Full details are available in the Appendix D.

9. Conclusion
We have introduced Lavender, a method that leverages the
precise text-region alignment of Diffusion Models to en-
hance Vision-Language Models (VLMs) through efficient
supervised fine-tuning. Lavender enables significant perfor-
mance improvements while remaining highly data-efficient
and compute-friendly. Our findings highlight that Laven-
der effectively aligns VLM attention with Diffusion Mod-
els, improving robustness across diverse domains, includ-
ing challenging and multilingual benchmarks. By incor-
porating techniques such as parallel attention and LoRA,
Lavender balances attention alignment with the preserva-
tion of pretrained knowledge, ensuring consistent perfor-
mance gains without catastrophic forgetting. This scalable,
model-agnostic approach demonstrates the promising poten-
tial for advancing text-vision alignment in VLMs and lays
the groundwork for future research into efficient fine-tuning
and cross-modal alignment techniques.
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Impact Statement
Synergy Between Models: Building a Stronger Vision-
Language Ecosystem. Lavender is a model-agnostic
framework that requires no additional human annotations
on existing data, making it broadly applicable for enhanc-
ing a wide range of VLMs. Given that text–vision align-
ment is central to most VLM tasks, our attention alignment
approach is poised to benefit most downstream applica-
tions, as confirmed by extensive benchmark evaluations.
Although primarily designed for cross-attention-equipped
VLMs, early results show that Lavender also works with
self-attention-only models, opening the door to converting
widely available LLMs into effective VLMs without re-
training. This capability unites the strengths of LLM and
diffusion models into a more powerful multimodal expert.

Data Scarcity. Both the language and vision communi-
ties face looming data shortages, with paired vision–text
datasets—the ”crude oil” of VLM training—being particu-
larly scarce. End-to-end training from scratch is resource-
intensive and often impractical. Large-scale LLMs and DMs
have been trained on multi-billion-level datasets, making it
inefficient if their knowledge remains isolated. Lavender
bridges these models using limited resources—requiring as
little as a few thousand samples and one day of training
on 8 Nvidia A10G GPUs—enabling small models (below
13B parameters) to perform on par with much larger models
(over 50B parameters) across multiple benchmarks.

Data Privacy. By leveraging the extensive prior knowl-
edge of diffusion models, Lavender aligns external VLMs
with small, local datasets through automatic per-text atten-
tion map labelling. This approach is ideal for organisations
with limited sensitive data and constrained computational
resources, as it enables them to benefit from large-scale
pretrained models while keeping data local.

VLM Attention Alignment with Other Vision Founda-
tion Models. Lavender enhances text–vision correlation
by directly aligning attention within LLM transformer lay-
ers. Although our current alignment objectives are derived
from Stable Diffusion’s attention maps, the same methodol-
ogy can be applied to other vision foundation models.

Alternative Multimodal Modalities Beyond Vi-
sion–Language. While our results focus on language
and vision, the core idea of aligning cross-attention layers
is broadly applicable. Potential applications include
text-to-audio alignment (Radford et al., 2023), sequence-to-
structure tasks in protein generation (Jumper et al., 2021;
Yang et al., 2023), and diverse biomedical applications
(Tu et al., 2024; Yang et al., 2024) involving genomics,
radiography, pathology, and mammography.

Attention Alignment as Vision Feedback in Reinforce-
ment Learning. Our proposed attention alignment loss
provides a scalable solution for vision feedback during the
RL post-training phase. By leveraging the visual exper-
tise encoded in image generation models, it eliminates the
need for costly, fine-grained human annotations and mit-
igates bias in manual feedback. In effect, it replaces or
augments traditional human visual feedback with ”diffusion
feedback”, streamlining the process, reducing training costs,
and democratising access to advanced multimodal systems.
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A. Extended Key Results
A.1. Visual Results of Scaled Evaluations on 16 VLM Benchmarks. [Back to Contents]

This section expands Section 6.6. Figure 17 showcases nine VQA examples from multiple evaluated benchmarks, including
document, chart, and graphic understanding, real-world OCR, geometry math, visual hallucination, and medical VQA.
The comparison highlights the performance of Llama-3.2-11B-Vision-Instruct (Dubey et al., 2024) against its Lavender
fine-tuned version. Overall, Lavender demonstrates significantly improved visual understanding compared to the original
Llama-3.2 across various VQA tasks, including DocVQA, TextVQA, ChartQA, and WorldMedQA-V. These improvements
stem from Lavender’s ability to accurately localise and interpret visual elements, leading to better performance on questions
requiring detailed visual reasoning. A detailed analysis of these examples is provided in the image caption of Figure 17.

Math  
(HallusionBench)

Question:According to parallel lines theorem,  
is angle 1 + angle 2 = 180 ? 

Correct Answer: Yes, angle 1 + angle 2 = 180 is correct.

Llama-3.2: No, angle 1 and angle 2 are not supplementary
because they are not supplementary angles. They are

corresponding angles. If two parallel lines are cut by a
transversal, the corresponding angles are congruent. 

Lavender: Yes, according to the parallel lines theorem, angle 1
+ angle 2 = 180. This is because when two parallel lines are cut
by a transversal, the corresponding angles are supplementary.

WorldMedQA-V 

ChartQA 
(HallusionBench)

Question: According to the chart, does
China have the second largest population

in the world? 
Correct Answer: Yes

Llama-3.2: No, China does not have the
second largest population in the world
according to the chart. The UK has the
second largest population with 1,428.6

million people, while China has 1,425.7
million people, making it the third largest.

Lavender: Yes, according to the chart, China has the second largest
population in the world. The chart shows that China's population is 1,425.7

million, which is significantly higher than the next closest country, the
United States, with a population of 300 million. This indicates that China has

a substantial lead in terms of population size compared to other countries.

Question: [Spanish] Pregunta vinculada a la imagen
nº13 Mujer de 72 años con antecedentes de fibrilación
auricular en tratamiento con anticoagulantes orales.  

Choices: A) Hernia complicada de pared abdominal. B)
Seroma post-quirúrgico. C) Absceso en la vaina del

recto anterior izquierdo del abdomen. D) Hematoma en
la vaina del recto anterior izquierdo del abdomen.

 Correct Answer: D.

Llama-3.2: Answer: C. 
Absceso en la vaina del recto anterior izquierdo del abdomen.
Explanation: The CT scan shows a fluid collection in the left
lower quadrant of the abdomen, which is consistent with an

abscess. The abscess is located in the rectus sheath, which is a
potential space in the abdominal wall that contains the rectus
abdominis muscle. The abscess is likely caused by a bacterial

infection, which has spread from the rectum to the rectus sheath. 

Lavender: The correct answer is D. 
Hematoma in the anterior rectal sheath of
the left abdomen. The diagnosis suggested

by the image is a hematoma in the left
anterior rectus sheath of the abdomen. This

is because the image shows a soft tissue
mass in the abdominal region, which is
located in the left anterior rectus sheath.

InfoVQA
Question: 

Who is the third in the
list of most influential

USA Olympians? 
Correct Answer:  

hope solo

Llama-3.2:  
LeBron James.

Lavender:  
Hope Solo.

InfoVQA

TextVQA Question: what word is
on the left middle button? 

Correct Answer: off

Llama-3.2:  
The word on the left

middle button is "MC".

Lavender: off

TextVQA Question: what is
the rating score
assigned to this

alcohol selection? 
Correct Answer:

93

Llama-3.2: 03.

Lavender: 93.

DocVQA Question:  
What is the heading of the table? 

Correct Answer:  
['continued manuscripts -

premarin/tmg', 'continued Manuscripts
- Premarin/TMG']

Llama-3.2: Trimegestone - Publication
and Abstract Tracking Report.

Lavender: continued Manuscripts -
Premarin/TMG

HallusionBench Question: Is the right orange circle the same size as the
left orange circle? 

Correct Answer: No. The right orange circle is larger
than the left orange circle.

Llama-3.2: The
orange circles on

the left and right are
the same size.

Lavender: No, the right orange circle is significantly
larger than the left orange circle. The right orange circle
appears to be the largest circle in the image, while the
left orange circle is relatively small compared to the

surrounding gray circles.

Q-1: How many
types of diagnostics

tests are there?  
Answer Q-1: 2 
Q-2: How many
steps are there in

Serological testing ? 
Answer Q-2: 4

Llama-3.2:  
Q-1: There are two

types. 
Q-2: 3

Lavender:  
Q-1: Two 

Q-2: 4

Figure 17. Examples demonstrating Lavender’s enhanced fine-granularity vision alignment leading to improved accuracy on
various VQA benchmarks. In the DocVQA example on the top-left, with a question about the title of a table, Llama-3.2 mistakenly
extracts the section/page title at the top, which is also in bold, while Lavender correctly identifies the table title located next to the table.
Similarly, more accurate visual understanding is directly observed in the two TextVQA examples in the second row. Impressively, the
example from HallucinationBench demonstrates Lavender’s deep visual understanding of geometry, size, and spatial location, leading
to robust anti-hallucination behaviour compared to the original Llama-3.2. In the ChartQA and two InfoVQA examples in the third
row, Lavender exhibits its ability to recognise more detailed information, including relatively small elements within the graphs. In the
WorldMedQA-V example, which is out-of-distribution, both Llama-3.2 and Lavender understand the question posed in a small language
(Spanish) and answer in English. However, Llama-3.2 fails to provide the correct answer due to less accurate visual localization of the
unhealthy region. It incorrectly identifies the region as the ‘rectus sheath,’ which surrounds the actual area of interest, leading to an
incorrect response. In contrast, Lavender accurately locates the ‘soft tissue mass’, resulting in the correct answer.
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Small Budget-Constrained Models (self-attention only)

LLaVA-1.5-7B Vicuna-7B 0.15M 55.5 17.8 28.1 25.8 66.5 1510.0 35.7 33.1 318.0 60.6 86.1 54.8 58.6 69.2 58.2 27.6
LLaVA-NeXt-7B Vicuna-7B 0.76M 67.0 24.3 74.4 37.1 67.4 1519.0 37.6 37.6 532.0 63.8 87.5 57.8 70.2 70.3 64.9 27.6
Mini-Gemini-7B Qwen-7B 1.5M - - - - 65.8 1523.0 36.8 - 477.0 - - - - 71.1 65.2 -
Cambrian-1-7B Vicuna-7B 10M 74.6 23.7 47.9 40.8 74.6 1802.9 41.8 50.7 614.0 66.0 86.4 60.0 73.3 81.0 77.1 30.6
Eagle-X5-7B Vicuna-7B 0.93M 73.6 28.4 86.6 - 68.8 1866.0 37.6 41.7 551 64.3 89.3 63.8 73.6 71.2 71.9 35.4

LLaVA-1.5-8B Lama3-8B 0.15M 69.9 27.8 32.4 27.5 - 1825.5 39.2 46.1 420.0 61.0 87.3 56.7 70.1 72.2 - 28.7
LLaVA-Next-8B Lama3-8B 0.76M 72.8 32.7 78.5 38.2 74.8 1908 43.1 43.9 531.0 60.7 87.1 58.4 72.5 73.1 65.3 33.1
Cambrian-1-8B Lama3-8B 10M 73.0 - 77.8 42.6 75.9 1547.0 42.7 50.7 624.0 66.0 73.0 64.2 74.7 73.1 71.7 30.6

MiniCPM-V-2.5 Lama3-8B 0.08M 78.1 45.5 84.6 52.1 76.4 2009.1 43.1 50.3 718.0 68.7 86.6 63.9 71.9 88.8 76.6 41.9
+Lora FT Lama3-8B 0.08M 77.9 44.9 84.6 52.2 76.4 2014.2 43.1 50.6 717.0 68.8 86.2 64.1 71.9 88.9 76.6 41.8

+Lavender FT Lama3-8B 0.08M 77.9 46.3 84.6 52.3 76.9 1990.2 45.0 50.4 721.0 69.0 86.5 64.3 72.1 89.7 76.9 42.0

Llama-3.2-11B (cross-attention)

Llama-3.2-11B LM32-11B N.A. 78.7 30.6 82.8 59.0 70.8 1692.9 48.0 48.3 754.0 67.7 86.3 61.4 72.9 83.6 80.8 36.3
+ AutoR. Lora-FT LM32-11B 0.13M 77.8 39.8 86.0 61.0 73.6 1664.6 43.7 45.1 733.0 70.0 86.9 60.7 73.6 74.6 81.1 36.6

+ Lavender Lora-FT LM32-11B 0.13M 79.0 39.2 90.3 65.1 81.3 1871.5 46.3 48.7 764.0 71.5 88.1 62.1 74.1 84.7 88.1 41.3
+ AutoR. Full-FT LM32-11B 0.13M 76.7 37.6 89.8 64.3 77.5 1697.4 45.6 46.8 748.0 68.6 87.3 59.4 71.8 77.1 81.5 37.7

+ Lavender Full-FT LM32-11B 0.13M 78.7 38.6 81.6 65.0 80.0 1695.9 49.1 49.8 686.0 70.1 87.6 62.2 73.1 84.3 84.9 39.5

Small Data-Heavy SOTA Models (<20 B) with Massive FT Data (≥5M)

L.OneVision-7B Qwen-7B 5.2M 82.4 54.9 87.5* 68.8* 83.2 1993.6 47.9 61.9 622.0 64.7 88.4 69.9 76.7 95.4 78.3* 31.6
InternVL2-8B InternVL2-8B 5M 83.6 77.1 91.6* 74.8* 81.7* 2215.1 51.2 61.5 794.0 42.6 84.2 64.2 75.4 97.1 77.4* 45.0
Qwen2-VL-7B Qwen2-7B ˜50M 83.0 65.7 94.5* 76.5* 83.0* 2276.3 53.7 60.7 843.0 67.5 88.4 68.5 76.0 85.5 84.3* 50.4
Molmo-7B-O Qwen2-7B ˜35M 90.7 20.6 90.8 70.0 69.1 1714.7 39.3 50.1 666.0 15.1 86.7 67.5 72.7 88.8 80.4 42.5
Pixtral-12B Nemo-12B N.A. 79.0 37.6 90.7 50.8 77.9 1921.7 52.5 54.5 685.0 64.7 84.2 65.4 71.5 87.2 75.7 47.0

Large State-of-the-Art Models (>20 B) with Massive FT Data (≥5M)

Cambrian-1-34B Yi-34B 10M 79.7 49.2 75.5 46.0 81.4 1689.0 49.7 54.2 600.0 68.2 79.7 67.8 75.3 76.8 76.7 41.6
L.OneVision-72B Qwen2-72B 5.2M 85.6 63.9 91.3 74.9 85.8 2257.4 56.8 65.8 741.0 - 86.6 71.9 77.5 90.2 80.5 47.9
Qwen2-VL-72B Qwen2-72B ˜50M 88.1 69.8 96.5 84.5 86.5 2482.7 64.5 68.3 877.0 73.7 87.2 77.8 77.9 91.2 85.5 58.1

Molmo-72B Qwen2-72B ˜35M 96.3 - 93.5 81.9 79.4 1992.0 54.1 63.3 701.0 - - 75.2 - - 83.1 46.6
Claude-3 Haiku N.A. N.A. 86.7 24.5 88.8 56.1 60.7 1920.0 50.2 38.1 658.0 - 74.4 45.5 63.3 - 67.3 39.2

Claude-3.5 Sonnet N.A. N.A. 94.7 54.1 95.2 74.3 79.7 1920.0 68.3 62.2 788.0 - 73.6 60.1 72.2 88.9 74.1 49.9
GPT-4V (0409) N.A. N.A. 89.4 57.3 87.2 75.1 81.0 2070.2 63.1 56.0 656.0 - 81.8 61.4 73.0 84.8 78.0 43.9
GPT-4o (0513) N.A. N.A. 94.2 71.2 92.8 79.2 83.4 2310.3 69.1 63.9 736.0 - 85.6 75.4 77.1 90.7 77.4 55.0
Gemini 1.5 Pro N.A. N.A. 94.4 28.4 93.1 81.0 73.9 2110.6 62.2 59.1 754.0 12.3 88.2 64.1 76.0 85.7 78.7 55.9
Llama-3.2-90B Llama-3.1-70B N.A. 92.3* 54.1 85.7 - 80.4 1741.0 60.3 55.3 783.0 - 86.3 68.2 76.8 87.1 - 44.1

Table 1. Zero-shot accuracy of various fine-tuned models across 16 VLM benchmarks. Results are grouped into four sections based
on base model size and the scale of the fine-tuning dataset. The top score for each benchmark within each group is highlighted in bold.
Scores for MiniCPM-V-2.5, Llama-3.2-11B, and their autoregressive (AutoR.) and Lavender fine-tuned variants are locally evaluated
using OpenCompass Vlmevalkit (Duan et al., 2024) with ‘gpt-4o’ as the evaluator. All other scores are sourced from the OpenCompass
Multi-Modal Leaderboard, evaluated with the same Vlmevalkit. When leaderboard results are unavailable, the models’ published numbers
are cited, marked with a * notation if provided. Our observations are categorized as follows: 1) Small Budget-Constrained Models. This
group is most comparable to Lavender in terms of parameter size and fine-tuning data scale. Both Lavender versions outperform the
majority of benchmarks with significant margins over the second-best-performing external models, achieving improvements of up to
40% on CCBench. On a few benchmarks (e.g., MMStar, POPE, and SEED-IMG), Lavender is surpassed by baseline models, though the
difference is within 4% for SEED-IMG. Lavender-Llama-3.2 occasionally underperforms on MME due to privacy protection constraints
(see Table 3). 2) Small Data-Heavy SOTA Models. The primary argument for Lavender in this work is its ability to achieve improvements
over the autoregressive fine-tuning baseline. Lavender implementations on MiniCPMv2.5 and Llama-3.2-11B are not designed to beat
state-of-the-art results due to the limited fine-tuning data scale (0.13M), which is significantly smaller than the 5M to 50M datasets used
for this group, approximately 38x to 384x larger than that used for Lavender. We simplify the comparison by excluding pretraining dataset
sizes for base models. In this group, Qwen2-VL-7B and LLaVA-OneVision-7B are the top performers, surpassing Lavender on most
benchmarks. However, we note that the performance gap is likely influenced by the composition of fine-tuning datasets, as discussed in
Section 6.3. 3) Large SOTA Models. Finally, we include results from the latest state-of-the-art models, which are at least 20B in size (or
unreleased models typically exceeding 100B) and fine-tuned on datasets of at least 5M samples. Despite Qwen2-VL-72B outperforming
all other models on 18/20 benchmarks, Lavender pushes the boundaries of Llama-3.2-11B, achieving performance comparable to certain
closed-source models that are at least an order of magnitude larger (e.g., Claude-3.5 Sonnet, GPT-4o, and Gemini 1.5 Pro) on benchmarks
such as TextVQA, POPE, RealWorld, and DocVQA.
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A.2. Scaling Behaviour. [Back to Contents]

This section expands on Appendix A.2: Scaling Behaviour in the main paper. Lavender is a general model-agnostic approach
but evaluated only on small fine-tuning datasets in this work, due to limited computational resources, it is important to assess
how it may scale with larger datasets. In this section, we evaluate multiple checkpoints during the fine-tuning of Llama-
3.2-11B on four combinations of RV83k, Flk30k, and OV30k datasets, using either autoregressive or Lavender methods,
combined with LoRA or full fine-tuning strategies. The results in Figure 18 are based on the average performance across
eight benchmarks, with detailed results for each benchmark provided in Figure 28. The findings show that Lavender scales
better as more data is sampled and effectively reduces overfitting—a challenge often faced by autoregressive fine-tuning,
particularly on small fine-tuning datasets. Additionally, we observe that larger datasets reduce performance variation, an
expected behaviour during scaling.
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Figure 18. Lavender scales better and reduces overfitting compared to autoregressive fine-tuning, with larger datasets lowering
variations. The plot shows the mean normalised performance of four dataset configurations across eight benchmarks after LoRA and
Full fine-tuning of Llama 3.2-11B, as a function of the number of data points sampled. Markers represent observed performance for
each method-iteration pair, while trendlines with different styles indicate the overall performance trends. The shaded regions around the
trendlines represent confidence intervals derived from the standard error, showing the uncertainty of the trendline predictions. Narrower
regions indicate higher confidence, while wider regions suggest greater variability. Per-benchmark results are in Figure 28. The simplified
version is presented in Figure 14.
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A.3. Visual Results of Aligned Attention Maps with Llama 3.2-11B. [Back to Contents]

This section expands on Section 6.6 in the main paper. A key argument of Lavender is its ability to align the attention maps of
VLMs to those of DMs. Figure 19 provides examples of the cross-attention maps from Llama 3.2-11B after full fine-tuning
with Lavender. The results indicate that the aligned VLM attention maps generally correlate with the semantic regions of
corresponding words in a manner similar to the Diffusion Model. Interestingly, the VLM attention maps after alignment are
more concentrated than those of the Diffusion Model. This difference is likely driven by their distinct optimization goals:
sense understanding for optimal text generation in VLMs versus pixel-level precision for image generation in DMs.

Figure 19. The per-word VLM attention maps are aligned to the Stable Diffusion (SD) after tuning with Lavender. Results are from
Lavender-Llama 3.2-11B implementation. More results are available in Appendix Figure 30.

B. Ablation and Analysis
This section expands on Section 7: Ablation and Analysis Summary in the main paper. We conduct ablation experiments to
analyse the key components and strategies of the Lavender framework and discuss their contributions to its performance.

B.1. Attention Aggregation Functions. [Back to Contents]

We begin by examining different attention aggregation functions in VLMs, a key component discussed in Section 3. These
include simple averaging and maximisation operations over layers, referred to as ‘layer-mean’ and ‘layer-max,’ as outlined
in Section 3.2.1; attention flow combined with multiplicative and additive aggregations, referred to as ‘flow-multi’ and
‘flow-sum,’ as defined in Section 3.2.2; and learned attention aggregation, referred to as ‘learn,’ as discussed in Section 3.2.3.

Comparing the Aggregation Functions on Eight Benchmarks. We fully fine-tune Lavender-Llama 3.2-11B on a small
Flickr-1k subset for 20 epochs and evaluate all fine-tuned models on eight benchmarks without using GPT-API as the
evaluator but ‘exact-match’ in the VQA assessments to reduce costs. Note that this approach differs from the main results in
Table 1 and leads to an expected performance drop of approximately 10% to 20%.

Results in Figure 20 show that the attention ‘flow-multi’ aggregation performs the weakest overall, likely due to overly
compressing and overwriting information through multiplicative aggregation across all layers. This strategy aims to
aggregate the most important region for each image-question pair, where the question includes all words, but it proves less
effective for per-word attention alignment. In contrast, the attention ‘flow-sum’ strategy performs well, ranking second
overall. This indicates that the additive operation is better at preserving information during aggregation. Simple averaging
and max operations (‘layer-mean’ and ‘layer-max’) demonstrate surprising robustness, achieving mid-level performance
overall and excelling on specific benchmarks such as MME and InfoVQA. This suggests that these methods avoid biases
introduced by explicit ad-hoc aggregation functions like attention ‘flow-multi’. Among all results, learned aggregation
consistently outperforms other methods, confirming the design principles of Preserving Pretrained Attention Mechanisms
and Capturing Complex Semantic Correlations.

Scalability of Aggregation Functions. We further assess the scalability of the proposed aggregation functions by
comparing the eight benchmarks’ performance at different training lengths. The average results are shown in Figure 21,
with detailed results for each individual benchmark provided in Appendix Figure 29. Despite the consistent overall ranking
discussed earlier, the ‘learn’ aggregation strategy demonstrates the best scalability. Starting as the second worst at epoch 5, it
climbs to the best-performing method by epoch 20. This behaviour can be understood in light of the limitations of manually
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Figure 20. Comparing aggregation functions on eight
benchmarks. Results are from Lavender-Llama 3.2-11B
fine-tuned on Flickr-1k for 20 epochs, evaluated with ‘exact
match’ without an LLM judge.
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Figure 21. Mean performance over training epochs. Results from
Lavender-Llama 3.2-11B fine-tuned on Flickr-1k. Detailed per-benchmark
results are in Appendix Figure 29.

designed aggregations, such as ‘flow-sum.’ While manual aggregations may initially reflect straightforward text-to-region
correlations, like identifying colours in images, they are inherently suboptimal. These methods act as a shortcut, achieving
good early performance but lacking scalability when encountering more complex text-to-region correlations. Learnable
aggregation, in contrast, adapts to these complexities and scales effectively with additional training.

B.2. Training recipes. [Back to Contents]

Pretraining the Aligner Network. This work aims to enhance the alignment of pretrained VLMs, such as Llama-3.2,
which are already knowledgeable. As discussed in Section 5, fully fine-tuning such VLMs with a secondary attention
alignment objective and a small dataset can lead to catastrophic forgetting. The results in the first row of Figure 22 confirm
this concern, showing drastic drops in performance across eight evaluated benchmarks after fully fine-tuning on a small
dataset for 30 epochs. In contrast, the proposed pretraining strategy significantly mitigates this issue. The pretraining
strategy involves pretraining only the Aligner Network for a certain number of epochs while keeping the VLM parameters
frozen, before jointly updating all parameters. Results in Figure 22 show that pretraining for a short duration (less than
one-third of the total epochs) is particularly effective overall. Notably, more challenging benchmarks that require deeper
interaction between visual perception, complex reasoning, and domain knowledge, such as MMMU and RealWorldQA,
benefit more from longer pretraining.

Full Finetuning Versus LoRA. Comparing full finetuning with the LoRA finetuning strategy for Lavender, our main
results with Llama-3.2 in Figure 11 and Table 1 suggest that LoRA is generally more beneficial for the majority of
benchmarks. However, we also observe that full finetuning outperforms LoRA with Lavender on a few more challenging
benchmarks, such as MMMU, MMStar, and RealWorldQA, which require deeper interactions between visual perception,
complex reasoning, and domain knowledge. This observation is consistent with the results from the ablation study in
Figure 22. Given that this work focuses on short finetuning overall, these findings suggest that LoRA finetuning with
Lavender offers better short-term benefits. In contrast, scaling Lavender with full finetuning may lead to deeper alignment
and knowledge restructuring, potentially resulting in longer-term advantages.

Choice of Layers to Align. We examine the choice of cross-attention layers to align with Lavender in the Llama 3.2-
11B Vision Instruct model. This model comprises 40 layers in total, 8 of which are cross-attention layers integrated to
process visual inputs, constituting one-fifth of the model’s layers. Figure 23 compares the performance of four different
subsets of the 8 cross-attention layers. While attending to the first, mid, or last subset shows shifted strengths on specific
benchmarks—RealWorldQA/OCRBench, MMMU/POPE, and Hallucination, respectively—aligning all 8 layers proves to
be the most effective overall. Therefore, this is the default strategy adopted in this work.
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Figure 22. Short pretraining (P.T.) of the Aligner Network
mitigates catastrophic forgetting. Results are from Lavender-
Llama 3.2-11B fine-tuned on Flickr-1k for 30 epochs, with vary-
ing pretraining lengths, evaluated on eight benchmarks using
‘exact match’ without an LLM judge.
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Figure 23. Aligning all eight cross-attention layers in Llama-3.2 is
most effective. Results compare subsets of cross-attention layers aligned
with Lavender in Llama 3.2-11B, LoRA fine-tuned on Flickr-1k for 30
epochs, evaluated on eight benchmarks using ‘exact match’ without an
LLM judge.

C. Failure Strategies [Back to Contents]

This section expands on Section 8: Failure Strategies in the main paper. Despite the successful strategies presented earlier,
we also tested the following approaches and found them to be less effective: 1) Fully Finetuning Without Pretraining. As
shown in Figure 22, fully finetuning without pretraining often destabilises the model, while LoRA proves to be generally
robust. We recommend starting with LoRA on small datasets as a reliable initial strategy for exploring Lavender, reserving
full finetuning for scaling efforts and investigating emerging behaviours after deep alignment. 2) Frequent Switching Between
Training Strategies. Given the varied performance of certain Lavender strategies, such as long fully finetuning or aligning
subsets of cross-attention layers, we experimented with more complex staged training strategies. These involved switching
between different strategies across epochs. However, frequent strategy changes harmed performance, likely due to the short
overall training length. The model appeared to struggle with prioritizing objectives across strategies before stabilizing,
leading to crashes. 3) Mixing Additional Data. In some cases, adding extra data did not improve performance. For example,
as shown in Figure 18, mixing the OCRVQA dataset reduced overall performance. This suggests that OCRVQA may lead to
overfitting more readily than other datasets tested.

D. Limitation and Future Works [Back to Contents]

This section expands on Section 8: Limitation and Future Works in the main paper.

Limited Compute. Lavender was evaluated on datasets of up to 0.13M samples, constrained by available compute
resources. This is significantly smaller than the 5M to 50M datasets used by state-of-the-art models, which are approximately
38x to 384x larger. Figure 18 demonstrates non-convergent scaling behaviour, suggesting that further scaling of both dataset
size and tuning length could lead to additional improvements in overall performance with Lavender.

Exploring Higher-Resolution Diffusion Models. Lavender is evaluated using Stable Diffusion v1.4 (Rombach et al.,
2021) in this work. Advanced models, such as Stable Diffusion v2 (Rombach et al., 2022), could provide higher resolution
and more accurate attention maps but would demand greater memory for attention alignment, exceeding the capacity of this
study. This approach may become viable with sufficient data scaling and tuning as task complexity increases, marking a key
direction for future research.

More Accurate Attention Maps Extractions. This work focuses on verifying the feasibility of Lavender rather than
the quality of attention maps from Diffusion Models, which already exhibit significantly stronger text-region alignment.
However, as noted earlier, short inversion and diffusion steps were applied to prepare per-word attention maps, reducing
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processing time to 20 seconds per image on a single V100 GPU. While this setup is efficient, it may limit the accuracy
of text-to-region correlations in the attention maps, especially for unfamiliar words (Jin et al., 2023). Future work could
explore efficient methods to accelerate attention map estimation, enhancing Lavender’s overall effectiveness.

Improved Handling of Self-Attention Only Models. This work demonstrated the feasibility of applying Lavender to the
self-attention-only Llama-3-based MiniCPM-v-2.5. However, further optimization for such models remains under-explored
due to limited capabilities and computational resources. Notably, this includes the advanced parallel attention mechanism,
which was proposed and shown to be effective in the Llama-3.2 implementation of Lavender. Future theoretical and
empirical research on the relationship and translatability between self-attention and cross-attention mechanisms would be
valuable for advancing this line of inquiry and benefiting the broader community.

E. Related Work [Back to Contents]

This section expands on Section 1: Introduction in the main paper.

We find that the gap in VLM alignment partly stems from the technological trajectories pursued over the past half-decade.
One key VLM milestone was Flamingo (Alayrac et al., 2022), which laid the foundation for modern VLMs. In its design,
images and text are processed by separate encoders, unified through a perceiver resampler (Jaegle et al., 2021), and passed
through deep transformer layers combining cross-attention and self-attention. Flamingo’s elegant architecture established
a new standard, influencing a range of subsequent models (Li et al., 2022; 2023b; You et al., 2023). The importance of
aligning vision-text correlations is evident in the design of Llama 3.2 (Dubey et al., 2024), released two years later, which
adopts Flamingo’s strategy of using a dedicated cross-attention module for effective interaction handling. However, training
a VLM with a dedicated cross-attention module end-to-end requires substantial data and computational resources. These
models are typically pre-trained on millions or even billions of image-text pairs and interleaved image-text datasets (Zhu
et al., 2024). Similar challenges apply to broader multimodal models beyond vision and language (Lu et al., 2024).

Unlike VLMs, single-modality large language models (LLMs) have scaled more rapidly (Ouyang et al., 2022; Brown et al.,
2020; Chowdhery et al., 2023), often consuming over 100 million examples spanning 1,800 tasks (Longpre et al., 2023).
VLMs, however, face a training data gap due to the high cost of acquiring paired image-text datasets. To address this,
researchers proposed leveraging scaled LLMs by instruction fine-tuning them on as little as 150k paired visual question
answering (VQA) data using an autoregressive loss. This approach, pioneered by Zhu et al. (2023); Dai et al. (2023); Liu
et al. (2024c), aligns text and image tokens through fine-tuning connectors such as MLPs, encoders, or decoders connecting
to the LLM, providing an efficient pathway to integrate vision with language models for diverse tasks (Wang et al., 2024a;
Li et al., 2024; Koh et al., 2024; Chen et al., 2025a; Wang et al., 2024b; Chen et al., 2023; Huang et al., 2024; Liu et al.,
2024d; Gao et al., 2023; Cha et al., 2024).

However, the community soon recognised that the vision capabilities integrated through these small adapter layers outside
the LLM (in LLaVA-like approaches) remain insufficient (Tong et al., 2024c). To address this gap, Covert et al. (2024);
Karamcheti et al. (2024) refined vision encoders to align more closely with pretrained vision models. Jiang et al. (2023);
Kar et al. (2025) proposed merging multiple visual encoders with projection layers before feeding them into the LLM.
Separately, Tong et al. (2024a); Shi et al. (2024); Zong et al. (2024) explored merging a larger number of diverse vision
expert models with fine-tuned projection layers, integrating the combined vision features either before the LLM or within
the LLM transformer layers, respectively.

Diffusion Models (DMs), as a key vision expert, have also garnered recent attention. Wang et al. (2024c) leverage DM’s
image generation loss to enhance the visual encoder. Other approaches focus on equipping VLMs with DM’s image
generation capabilities, either by using VLM outputs to fine-tune DMs separately (Tong et al., 2024b; Hernandez et al.,
2024), sharing a central transformer (Shi et al., 2025; Chen et al., 2025b) or by directly merging DMs with LLM transformers
(Zhou et al., 2024).

Despite attempts to integrate DMs and VLMs with minimal modifications to their internal architectures, one overlooked
aspect in prior work is the role of self- and cross-attention layers within DM and LLM Transformers. These layers govern
the interplay between multi-modal tokens, yet have not been closely examined. Although DMs and the LLM component in
VLMs share the same foundational Transformer architecture (Vaswani, 2017; Dosovitskiy, 2020), they exhibit markedly
different text-to-region alignment due to their distinct optimization objectives. Notably, DMs demonstrate stronger alignment
than VLMs, as shown in Figure 3.
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F. Full Pseudo Code of Diffusion Instruction Tuning [Back to Contents]

This section expands on Algorithm 1: Algorithm 1, as introduced in the main paper.

Algorithm 2 Diffusion Instruction Tuning (Full Version)

Require: Dataset D = {(x(i), y(i), y
(i)
q , y

(i)
l )}Ni=1, where y

(i)
q is textual input (e.g. a question) and y

(i)
l is the target textual

output. Pretrained DM parameters θD, pretrained VLM parameters θ. Scaling factor λ > 0, learning rate η.
Ensure: Fine-tuned VLM parameters θ

1: Stage 1: Preprocessing (Run Once)
# the DM processes image-question pairs, hence replacing yq with y

2: For each data point (x(i), y(i)) in D:
3: Use the pretrained DM (θD fixed) to compute pDM(a | x(i), y(i); θD)

4: Store these attention distributions: A(i)
DM ← pDM(a | x(i), y(i); θD)

5: After this, we have a DM-derived attention target for each data point, which will remain fixed during fine-tuning.

6: Stage 2: Fine-Tuning the VLM
7: Initialise θ from a pretrained VLM.
8: Set a learning rate η and define maximum training steps or convergence criteria.
9: repeat

10: Sample a mini-batch B ⊆ D of size m
11: LVLM(θ)← 0, Latt(θ)← 0

12: for (x(j), y(j), y
(j)
q , y

(j)
l ) in B do

13: Compute pVLM(a | x(j), y(j); θ) by aggregating attention heads/layers of the VLM cross-/self-attention (see
Section 3)

14: δ(j)(θ)← Aligner
(
pVLM(a | x(j), y(j); θ)

)
−A

(j)
DM

15: Compute task loss: LVLM(θ) += − log p(y
(j)
l | x(j), y

(j)
q ; θ)

16: Compute attention alignment loss: Latt(θ) += ∥δ(j)(θ)∥2
17: end for
18: Form total loss: Ltotal(θ) = LVLM(θ) + λLatt(θ)
19: Update parameters: θ ← θ − η∇θLtotal(θ)
20: Optionally, apply LoRA or other optimization tricks if desired.
21: until convergence (e.g., validation metric plateaus or max steps reached)
22: Output: The fine-tuned VLM parameters θ.

G. Bayesian Justification for DM Attention Proximity [Back to Contents]

This section expands on Section 2.3: Bayesian Derivation, as discussed in the main paper. In this section, we provide a
detailed Bayesian justification for our assumption that the DM’s attention distribution pDM(a | x, y; θD) is closer to the
optimal posterior distribution of vision-centric word-to-region attention p∗(a | x, y) than the VLM’s attention distribution
pVLM(a | x, y; θ).

G.1. Modelling Attention Distributions as Posteriors

We model the attention distributions in both the DM and the VLM as posterior probabilities over the attention a given the
inputs and model parameters. For consistency, we consider the joint distributions and apply Bayes’ theorem.

Diffusion Model (DM): The DM is trained to generate an image x conditioned on text y by modelling the distribution
pDM(x | y; θD). We can express the attention mechanism in the DM as contributing to this distribution via:

pDM(x | y; θD) =

∫
pDM(x | y, a; θD) pDM(a | y; θD) da. (17)

Applying Bayes’ theorem, the posterior over attention a given x and y is:
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pDM(a | x, y; θD) =
pDM(x | y, a; θD) pDM(a | y; θD)

pDM(x | y; θD)
. (18)

Vision-Language Model (VLM): Similarly, for the VLM, which generates textual output yl given an image x and textual
input yq , the attention mechanism influences the distribution pVLM(yl | x, yq; θ):

pVLM(yl | x, yq; θ) =
∫

pVLM(yl | x, yq, a; θ) pVLM(a | x, yq; θ) da. (19)

The posterior over attention a is then:

pVLM(a | x, yq, yl; θ) =
pVLM(yl | x, yq, a; θ) pVLM(a | x, yq; θ)

pVLM(yl | x, yq; θ)
. (20)

G.2. Differences in Likelihood Functions

The key distinction arises from the likelihood functions:

• DM Likelihood pDM(x | y, a; θD): The DM must reconstruct the image x accurately, which requires precise alignment
between textual tokens and visual features. The attention a plays a critical role in ensuring that each part of the text y
correctly influences the corresponding visual content in x.

• VLM Likelihood pVLM(yl | x, yq, a; θ): The VLM generates text yl based on the image x and input text yq. While
attention a aids in focusing on relevant visual regions, the text generation process can often rely on higher-level visual
features and may not require as fine-grained vision-text alignment as the DM.

G.3. Entropy and Concentration of Attention Distributions

Due to the DM’s need for precise image reconstruction, its attention distribution pDM(a | x, y; θD) is expected to be more
concentrated around p∗(a | x, y). This can be quantified by the entropy H of the attention distributions:

H (pDM(a | x, y; θD)) < H (pVLM(a | x, yq; θ)) . (21)

A lower entropy indicates that the DM’s attention distribution is more peaked and thus closer to p∗(a | x, y), whereas the
VLM’s higher entropy reflects a more diffuse attention distribution. This is consistent with our empirical observations in
Figure 3 and section 6.1.

G.4. KL Divergence to the Ideal Attention in Vision-Centric Tasks

We can formalise the proximity to the optimal posterior attention distribution using the Kullback-Leibler (KL) divergence.
For the DM conditioned on a unified text y, modeling p(x|y; θD), the KL divergence to the p∗(a | x, y) is:

DKL (pDM(a | x, y; θD) ∥ p∗(a | x, y)) =
∫

pDM(a | x, y; θD) log
pDM(a | x, y; θD)

p∗(a | x, y)
da, (22)

and similarly, for the VLM processes an image x, question yq , and answer label yl, modeling p(yl|x, yq; θ):

DKL (pVLM(a | x, yq; θ) ∥ p∗(a | x, y)) =
∫

pVLM(a | x, yq; θ) log
pVLM(a | x, yq; θ)

p∗(a | x, y)
da. (23)

Bringing in the entropy H of the attention distributions, equations (22) and (23) can be written as:
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DKL (pDM(a | x, y; θD) ∥ p∗(a | x, y)) = −H (pDM(a | x, y; θD))−
∫

pDM(a | x, y; θD) log p∗(a | x, y) da, (24)

and similarly for the VLM:

DKL (pVLM(a | x, y; θ) ∥ p∗(a | x, y)) = −H (pVLM(a | x, y; θ))−
∫

pVLM(a | x, y; θ) log p∗(a | x, y) da. (25)

Our empirical observation of lower entropy in equation (21) indicates that the DM’s attention distribution is more con-
centrated and thus more certain about where to attend, which is a consequence of the DM’s need for precise vision-text
alignment during image reconstruction.

Assuming that the cross-entropy terms
∫
pDM(a | x, y; θD) log p∗(a | x, y) da and

∫
pVLM(a | x, y; θ) log p∗(a | x, y) da

are approximately equal1 or that the difference in entropies dominates the difference in cross-entropies, we can infer:

DKL (pDM(a | x, y; θD) ∥ p∗(a | x, y)) < DKL (pVLM(a | x, y; θ) ∥ p∗(a | x, y)) . (26)

This inequality suggests that the DM’s attention distribution is closer to the optimal posterior attention distribution in
terms of KL divergence. The lower entropy of the DM’s attention implies it is more peaked around the ideal attention in
vision-centric tasks. Therefore, our empirical observation of the DM’s lower attention entropy supports the assumption
that the DM’s attention distribution is closer to the optimal posterior attention distribution than the VLM’s. By aligning the
VLM’s attention with the DM’s attention, we aim to reduce the VLM’s KL divergence to the ideal attention in vision-centric
tasks, enhancing its vision-text alignment and overall performance.

H. Justification of the Attention Alignment Loss [Back to Contents]

This section expands on Equation (10), as introduced in the main paper, to provide a detailed justification for the inclusion
of the attention alignment loss Latt(θ) and the scaling factor λ in our Bayesian framework.

H.1. Derivation of the Likelihood Term

We start by modelling the difference between the VLM’s attention distribution and the DM’s attention distribution as a
random variable. For each data point i, we define:

δ(i)(θ) = pVLM(a | x(i), y(i); θ)− pDM(a | x(i), y(i); θD). (27)

We assume that δ(i)(θ) follows a multivariate normal distribution with zero mean and covariance matrix σ2I , where I is the
identity matrix:

δ(i)(θ) ∼ N (0, σ2I). (28)

Under this assumption, the probability density function for δ(i)(θ) is:

p
(
δ(i)(θ)

)
=

1

(2πσ2)k/2
exp

(
− 1

2σ2

∥∥∥δ(i)(θ)∥∥∥2) , (29)

where k is the dimensionality of the attention distribution.

The likelihood of observing the DM’s attention given the VLM’s parameters over the entire dataset is then:

p(ADM | θ) =
∏
i

p
(
δ(i)(θ)

)
=

(
1

(2πσ2)k/2

)N

exp

(
− 1

2σ2

∑
i

∥∥∥δ(i)(θ)∥∥∥2) , (30)

1Since p∗(a | x, y) is the same for both models, and both pDM and pVLM are centered around p∗(a | x, y) given they are from
pretrained models based on big dataset, the values of these cross-entropy terms would not differ significantly.
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where N is the number of data points.

Taking the negative log-likelihood, we get:

− log p(ADM | θ) =
Nk

2
log(2πσ2) +

1

2σ2

∑
i

∥∥∥δ(i)(θ)∥∥∥2 . (31)

Ignoring constants that do not depend on θ, we have:

− log p(ADM | θ) =
1

2σ2

∑
i

∥∥∥δ(i)(θ)∥∥∥2 + const. (32)

Defining λ = 1
σ2 , we arrive at:

− log p(ADM | θ) =
λ

2

∑
i

∥∥∥δ(i)(θ)∥∥∥2 + const. (33)

H.2. Interpretation of the Scaling Factor λ

The scaling factor λ plays a crucial role in balancing the attention alignment loss with the primary task loss. It is inversely
proportional to the variance σ2 of the assumed Gaussian distribution of the attention differences.

• A small σ2 (large λ) implies high confidence in the DM’s attention distributions, placing more emphasis on aligning
the VLM’s attention with that of the DM.

• A large σ2 (small λ) implies less confidence in the DM’s attention distributions, reducing the influence of the attention
alignment loss.

In practice, λ can be treated as a hyperparameter tuned based on validation performance.

H.3. Total Negative Log-Posterior

The total negative log-posterior combines the negative log-likelihoods of the data and the attention alignment:

Ltotal(θ) = − log p(D | θ)− log p(ADM | θ) + const. (34)

Substituting the expressions for the negative log-likelihoods, we have:

Ltotal(θ) = LVLM(θ) + λLatt(θ) + const, (35)

where:

LVLM(θ) = −
∑
i

log p(y
(i)
l | x

(i), y(i)q ; θ), (36)

Latt(θ) =
1

2

∑
i

∥∥∥δ(i)(θ)∥∥∥2 . (37)

By minimizing Ltotal(θ), we maximise the posterior probability p(θ | D,ADM), effectively incorporating both the data
likelihood and the prior information provided by the DM’s attention distributions.

H.4. Justification for Using MSE Loss

The mean squared error (MSE) loss used in Latt(θ) arises naturally from the assumption of Gaussian-distributed attention
differences. This is a common assumption in Bayesian modelling, where the Gaussian distribution is often used due to its
mathematical convenience and the central limit theorem. The MSE loss is also computationally efficient and widely used in
neural network training, making it a practical choice for aligning attention distributions.
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I. Additional Details on Attention Flow in Vision-Language Models [Back to Contents]

This section expands on Section 3.2.2: Attention Flow, as introduced in the main paper. In addition to simple aggregation
methods, we explore attention flow (Abnar & Zuidema, 2020) to aggregate attention maps across layers in VLMs. Attention
flow computes the effective attention between input and output tokens by considering the cumulative effect of attention
across layers, capturing deeper interactions that span multiple layers. This method has been utilised by Lin et al. (2024)
to obtain sentence-level aggregated attention maps for grounded segmentation tasks. We investigate its applicability in
aggregating word-level attention maps in VLMs, aiming to capture semantic correlations that may not be evident through
simple aggregation methods.

Let A(l) ∈ RNtext×Npatch denote the attention matrix at layer l, where Ntext is the number of text tokens and Npatch is the
number of image patches. Our goal is to compute an aggregated attention map Ā ∈ RNtext×Npatch that captures the overall
attention from text tokens to image patches across all layers.

We initialise the aggregated attention map (mean or max) with the attention from the first layer:

Ā = A(1). (38)

We then recursively update Ā by combining it with the attention matrices from subsequent layers. Specifically, for each
layer l = 2, . . . , L, we update Ā using either element-wise multiplication:

Ā = Ā ◦A(l), (39)

or element-wise addition:
Ā = Ā+A(l), (40)

where ◦ denotes element-wise multiplication. We explore both strategies—multiplicative and additive aggregation—to
assess which better captures the semantic correlations.

However, directly applying attention flow in autoregressive VLMs can lead to attention collapse due to the causal masks
used during training. To mitigate this issue, we introduce a regularisation term that adjusts the contribution of each text
token. Specifically, we define a regularisation vector r ∈ RNtext with elements:

rt =
t

Ntext
, t = 1, . . . , Ntext. (41)

This term assigns lower weights to earlier tokens and higher weights to later tokens, preventing the dominance of early
tokens in the aggregated attention map.

We apply the regularisation to the aggregated attention map:

Āt,p = Āt,p × rt, (42)

where Āt,p represents the attention from text token Tt to image patch Tp. By incorporating this regularisation, we ensure
that the attention flow effectively captures semantic correlations without collapsing due to the model’s autoregressive nature.

Through attention flow with regularisation, we aggregate attention across layers to obtain per-word attention maps that better
reflect the semantic relationships between text tokens and image patches. This method captures deeper interactions that may
not be evident through simple aggregation, enhancing the alignment between VLMs and DMs.

J. Appropriate Rearrangement and Reconstruction Matter [Back to Contents]

This section extends the prior discussion in Section 3.2 around rearrangement and reconstruction during aggregation. Many
VLM preprocessing pipelines split an image into tiles before the projection process. In such cases, it is crucial to account for
both the original tiling and the resulting patch order. Direct reshaping of the flattened tokens, without reassembling the
original tile layout, disregards spatial continuity between adjacent tiles, potentially disrupting semantic alignment.

Figure 24 illustrates the tiling and tokenization procedure in Llama-3.2 and highlights the importance of proper reconstruction.
Similarly, Figure 25 demonstrates the impact of appropriate reconstruction on real samples from the OCRVQA dataset.
Improper rearrangement leads to misaligned attention maps, while correct reconstruction restores semantic coherence,
enhancing the quality of visual-textual alignment.
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Figure 24. Attention reconstruction under the tiling and tokenization procedure in Llama-3.2, Example highlighting the importance
of proper reconstruction. Improper rearrangement disrupts spatial continuity, while correct reconstruction preserves semantic alignment.

(a) Before Debugging (b) After Debugging

Figure 25. Appropriate rearrangement and reconstruction are crucial. Results are based on attention maps extracted from Llama-3.2
(without Lavender fine-tuning) on OCRVQA samples. Poor rearrangement disrupts semantic alignment, while proper reconstruction
corrects the spatial arrangement of the attention maps.
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K. Additional Details on Attention Alignment: Integrating Lavender [Back to Contents]

This section expands on Section 3.4: Lavender Integration, as introduced in the main paper.

K.1. Incorporating Lavender into VLMs with Cross-Attention [Back to Contents]

When the VLM employs cross-attention layers to integrate visual and textual modalities, extracting and aggregating the
attention weights is relatively straightforward. As described earlier, each cross-attention layer produces attention weights
whl

(t,p) that directly relate each text token Tt to a set of image patches Tp. Since the attention flow is unidirectional—from
text queries attending to image keys—these weights can be naturally interpreted as word-to-patch correlations.

Practically, for each layer and head, we retrieve the cross-attention weights and reshape them into a grid representing the
approximate spatial layout of the image patches. This involves: 1) interpolating the attention weights to form a roughly
square matrix, 2) arranging the tiles (if the image is represented as multiple tiles) into a coherent spatial layout, see Figure 24
in Appendix J for details, and 3) resizing to a consistent resolution (e.g. 32×32) for downstream processing. By aggregating
across heads and layers and compressing through the Aligner network, we produce a final per-word saliency map that can be
aligned with the DM’s attention distribution.

K.2. Incorporating Lavender into VLMs with Self-Attention Only [Back to Contents]

In VLMs that rely solely on self-attention (i.e., where both image and text tokens are fed into the same transformer layers
without explicit cross-attention blocks), both modalities (text and image patches) are interleaved within a single sequence,
and self-attention allows each token to attend to every other token, often with a causal or bidirectional mask.

To obtain word-to-patch correlations, we must: 1) Identify which subset of tokens corresponds to text and which correspond
to image patches. 2) Apply a causal or bidirectional mask correctly to avoid including attention values that do not reflect the
desired semantic associations. 3) Separate and rearrange the attention weights to isolate the correlations between text tokens
and the patch tokens representing the image.

Furthermore, since the image patches and text tokens may not be explicitly organised in a grid-like structure, we must
carefully reshape and interpolate the extracted attention weights. The process involves: 1) selecting the appropriate text and
vision token indices from the attention weights, 2) interpolating the resulting attention maps into a square grid, 3) resizing
them to a fixed resolution (e.g., 32× 32), and 4) optionally incorporating the Aligner network output Ad or merged attention
maps from earlier steps. This process is demonstrated in Figure 6.

Special handling of causal masks and careful indexing ensures that we only extract attention weights that correspond to
meaningful word-to-patch relationships, and we show its necessity in Appendix Appendix J. Although this introduces
additional complexity compared to the cross-attention scenario, the same principles of reshaping, interpolating, and
aggregating attention weights apply. By following this procedure, we can still derive a meaningful per-word attention map
aligned with the DM attention, enabling Lavender to improve vision-text alignment even in models that rely exclusively on
self-attention.

L. Full Implementation Details [Back to Contents]

This section expands on Section 4: Implementation (Short Summary), as introduced in the main paper. We detail our
implementation of Lavender. We first describe our process for extracting and aggregating attention distributions from
the Diffusion Model (DM) using Stable Diffusion v1.4. We then present how we integrate Lavender into three Vision-
Language Models (VLMs): OpenFlamingo, MiniCPM-Llama 3-v2.5, and Llama 3.2-11B-Vision Instruct. Among these,
OpenFlamingo and Llama 3.2-11B-Vision Instruct rely on cross-attention layers, while MiniCPM-Llama 3-v2.5 exclusively
uses self-attention. In all cases, we integrate the Aligner network and attention alignment loss as described previously.

Stable Diffusion v1.4 We use the official Stable Diffusion v1.4 model (Rombach et al., 2021) to extract per-word attention
maps from the diffusion model. We apply a shortened image inversion process (Mokady et al., 2022; Jin et al., 2023) to
approximate the text prompt embeddings for image reconstruction, collecting attention maps at each step as in Section 3.1.
We limit the inversion steps to 5 and diffusion steps to 10 for efficiency, enabling us to process each image in roughly 20
seconds on a single V100 GPU.
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OpenFlamingo OpenFlamingo (Awadalla et al., 2023) is an open-source family of autoregressive vision-language models
designed to replicate Flamingo-like performance (Alayrac et al., 2022). We integrate Lavender by adding a wrapper around
its cross-attention layers to extract and aggregate per-word attention maps. The aggregated VLM attention is then aligned
with the DM attention distributions, as described in Appendix K.1. We maintain the standard training procedure, adjusting
hyperparameters such as the learning rate and the frequency of attention extraction, while adding the Lavender alignment
loss.

MiniCPM-Llama 3-v2.5 MiniCPM-Llama 3-v2.5 (Yao et al., 2024) differs from the previous models as it relies solely
on self-attention. We carefully identify and extract text-image correlations from the self-attention layers, as described in
Appendix K.2. The integration of Lavender involves wrapping the self-attention blocks to isolate and reshape patch-token
attention weights into a coherent spatial layout. We use similar hyperparameters for alignment, ensuring that even without
explicit cross-attention, the model can benefit from DM-guided attention alignment.

Llama 3.2-11B-Vision Instruct The Llama 3.2-11B-Vision Instruct model is a large-scale VLM that incorporates image
information via cross-attention layers. Similar to the OpenFlamingo integration, we add a wrapper to capture the per-word
attention distributions, then align them with DM-derived attention maps. Adjusting hyperparameters such as batch size,
learning rate, and the interval at which we extract attention maps ensures stable training and improved vision-text alignment.

Computing Environment All experiments are conducted on NVIDIA GPUs (V100, A10G, or A100), using PyTorch as
our deep learning framework. For large-scale training and efficient memory usage, we employ Deepspeed in the MiniCPM-
Llama 3-v2.5 experiments and Fully Sharded Data Parallel (FSDP) for the Llama 3.2-11B-Vision Instruct model. Both
techniques allow us to handle extensive model parameters and large batch sizes with reduced memory overhead, improving
training stability and runtime efficiency. Each model and dataset combination is trained following its recommended best
practices, with minimal additions of Lavender-specific parameters and code.

M. Full Training Recipes and Data Preparations [Back to Contents]

This section expands on Section 5: Training and Dataset (Short Summary), as introduced in the main paper. Supervised
fine-tuning a pretrained and partially aligned VLM with additional objectives on a small dataset can lead to catastrophic
forgetting of previously acquired capabilities. To mitigate this, we introduce training strategies that balance the new
alignment objectives with the preservation of existing model knowledge.

Pretraining the Aligner Network. Before jointly updating all parameters, we optionally pretrain only the Aligner network
(and, if desired, certain bridging layers between the vision and language components) while keeping the VLM parameters
frozen. This pretraining step allows the Aligner network to adapt to the DM’s attention signals independently, ensuring that
subsequent joint training steps do not immediately overwrite the VLM’s learned representations. By carefully scaling the
learning rate during this phase, we can achieve a stable initialization that speeds up convergence without destabilizing the
pretrained model.

Attention Aggregation and Normalization Choices. We experiment with different attention aggregation strategies
described in Section 3. We also apply instance or batch normalization within the Aligner network to control variance and
stabilise training, making the final attention distributions more interpretable and consistent.

Configuring the Aligner Network. The Aligner network itself is a configurable module inspired by Squeeze-and-
Excitation concepts, composed of convolutional layers that project and refine attention distributions. Depending on
complexity requirements, we can choose a lighter or deeper configuration. A “light” configuration applies a single round of
convolution and normalization, “sim” applies two round, and “deep” applies four rounds expansion and squeeze operations
for greater representational power. These options let us tailor the computational complexity and modelling capacity of the
Aligner to the specifics of the task and dataset.

Short Training Schedules and PEFT. We limit training to a fraction of an epoch to minimise overfitting and catastrophic
forgetting. Additionally, we incorporate Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, to constrain
the number of parameters being updated. This helps the model retain its core pretrained knowledge while focusing the
updates on a smaller, more controlled parameter subset—primarily those associated with the Aligner network and attention
alignment—thus improving stability and preserving performance on previously learned tasks.
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Overall, this combination of pretraining the Aligner network, flexible attention aggregation and normalization strategies,
adjustable Aligner configurations, and selective parameter updates through PEFT methods ensures a more stable and
effective training process. The result is improved attention alignment without eroding the VLM’s hard-earned pretrained
capabilities.

Dataset Preparation. We conduct our experiments using four datasets, each processed through the diffusion model to
obtain per-word attention maps. These maps are used to fine-tune the VLM based on the text labels (either captions or
multi-round question-answering) associated with each image. First, the Flk30k dataset (based on Flickr30k (Young et al.,
2014)) comprises approximately 31,783 images and 158,915 captions, focusing on people in everyday activities and events.
This rich and diverse caption corpus is used to construct a denotation graph, enabling the extraction of fine-grained semantic
relationships. Similarly, we process a 50k subset of the Laion-5B (Schuhmann et al., 2022), a dataset containing 5.85 billion
CLIP-filtered image-text pairs, referred to as Laion50k, to further verify our method. Next, the RLAIF-V 83k dataset (Yu
et al., 2024), a large-scale multimodal feedback dataset, provides 83,132 preference pairs drawn from a variety of sources
including MSCOCO, ShareGPT-4V, MovieNet, and VQA variants. This diversity ensures comprehensive coverage of
vision-language tasks. Finally, OCRVQA30k is a 30,000 subset of OCR-VQA dataset, which contains a total of 207,572
images along with their associated question-answer pairs. Together, these datasets enable a broad evaluation and refinement
of the model’s attention alignment capabilities. Among the four processed datasets, the Laion50k is used only for method
verification with the OpenFlamingo implementation of Lavender, while the others are scaled across all models.

Sampling Strategies. During fine-tuning, the VLM predicts text for each image and question. We define two sampling
strategies to determine which words from the predicted text are eligible for computing the MSE loss: ‘root word match’
and ‘exact word match’, which are post-processing steps on fully generated and decoded answers prior to loss computation
and backpropagation. The ‘root word match’ strategy relaxes the condition by allowing matches based on the root form of
words, accommodating scenarios where the VLM’s text generation capability is limited. In contrast, the ‘exact word match’
strategy is stricter, considering a match only when the predicted word exactly matches a word from the label text.

N. Empirical Verifications (Detailed) [Back to Contents]

This section expands on Section 6.1: Empirical Verifications, as introduced in the main paper.

N.1. Additional Proof of Concept Results

We begin by presenting additional detailed results extending the empirical verification experiments in Section 6.1, where we
tested our key hypothesis: the cross-attention from DM transformers closely approximates an ideal attention mechanism for
maximising VLM performance, as discussed in Section 2.2.

Attention Entropy Histograms. We compute both ADM and AV LM for each sample in a small subset of Flickr30k,
RLAIF-V83k, and OCRVQA30k, totaling approximately 10k samples, across three models (OpenFlamingo, MiniCPM-v2.5,
and Llama 3.2-11B). The entropy histograms of both attention maps are plotted in Figure 7. Figure 26 shows separate
entropy histograms of the attention maps ADM and AV LM for three models: OpenFlamingo, MiniCPM-v2.5, and Llama
3.2-11B. These results extend the combined plot presented in Figure 7. We observe that the DM’s attention distribution,
pDM(a|x, y; θD), consistently exhibits lower entropy compared to the VLM’s attention distribution, pVLM(a|x, y; θ) across
all three models. This finding reinforces our hypothesis that the DM’s attention is more concentrated and thus closer to the
optimal posterior attention distribution, p∗(a|x, y).

Next, we verify that our proposed Lavender fine-tuning approach can align the VLM’s attention with the DM’s attention as
guidance. We fine-tune the Lavender-OpenFlamingo implementation on the Flk30k datasets. Figure 8 illustrates the VLM
cross-attention maps over multiple training steps, using DM attention maps as a reference. The visual results demonstrate
that the following strategies enable successful convergence from the raw, ’diffused’ VLM per-word attention to a pattern
similar to the semantically meaningful DM per-word attention: 1) Employing ‘exact word match’ instead of ‘root word
match’ as the sampling screening strategy. 2) Using convolutional layers instead of an MLP setup for the Aligner network.
3) Setting the learning rate to 1e−4 instead of 1e−5.

To verify Lavender’s argument that jointly minimizing LVLM(θ) and Latt(θ) can improve VLM performance, we fine-tune
OpenFlamingo using both the autoregressive approach (LVLM(θ) only) and the Lavender approach on the Flk30k and
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Figure 26. Attention map entropy histograms from three models (OpenFlamingo, MiniCPM-v2.5, and Llama 3.2-11B) are generated by
processing a small subset of Flickr30k, RLAIF-V83k, and OCRVQA30k, totalling approximately 10k samples.

Laion50k datasets separately. In Figure 9, we present the calibration plot between the text generation score and the MSE
score. The results show that, compared to autoregressive fine-tuning, Lavender improves text generation quality by jointly
minimizing the MSE loss.

Lastly, we evaluate the autoregressive and Lavender fine-tuned OpenFlamingo models trained on both Laion50k and
Flickr30k across seven vision-language benchmarks. These include two captioning benchmarks (COCO (Chen et al.,
2015) and Flickr30K (Young et al., 2014)), four VQA benchmarks (VQAv2 (Antol et al., 2015), OK-VQA (Marino
et al., 2019), TextVQA (Singh et al., 2019), and VizWiz (Gurari et al., 2018)), and one rank classification benchmark
(HatefulMemes (Kiela et al., 2020)). The evaluation metrics reflect text generation quality and adhere to the default
settings of the respective benchmarks. Results in Figure 10 confirm that the proposed Lavender approach, by jointly
minimizing LVLM(θ) and Latt(θ), can improve VLM performance by up to 72% compared to autoregressive fine-tuning on
the OpenFlamingo model. This improvement is observed with both the Laion50k and Flickr30k datasets, with the latter
yielding slightly better results.

Visual Confirmation of Attention Alignment. Figure 27 provides additional visual evidence verifying that the proposed
Lavender fine-tuning approach aligns VLM attention with DM attention as guidance, extending the results from Figure 8.
These results reaffirm our findings from the main body: VLM cross-attention maps successfully align with semantically
meaningful DM attention patterns by leveraging strategies such as ‘exact word match’ for sampling, convolutional layers in
the Aligner network, and a learning rate of 1e−4.

O. Evaluation and Baselines Settings of Scaled Experiments [Back to Contents]

This section expands on Section 6.2: Evaluation and Baselines, as introduced in the main paper.

Evaluation on Multimodal Benchmarks. We evaluate Lavender on 20 VLM benchmarks to demonstrate its capabilities
across diverse perspectives, grouped as follows: 1) Chart, Diagram, and Document Understanding. For structured OCR data,
we evaluate Lavender on benchmarks such as AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), OCRBench (Liu
et al., 2023c), OCRVQA (Mishra et al., 2019), TextVQA (Singh et al., 2019), DocVQA (Mathew et al., 2021), and
InfoVQA (Mathew et al., 2022); 2) Perception and Multi-Discipline Reasoning. To address complex reasoning tasks,
including visual perception, recognition, knowledge, and OCR, we evaluate Lavender on perception benchmarks such
as MME (Fu et al., 2023), MMBench (Liu et al., 2023b), ScienceQA (Saikh et al., 2022), MMStar (Chen et al., 2024a),
and MMMU (Yue et al., 2024); 3) Real-World Visual Understanding. To validate Lavender’s performance in real-world
scenarios, we use widely adopted benchmarks, including RealworldQA (x.ai) and SEED (Li et al., 2023a), which assess
reasoning, recognition, knowledge, and OCR capabilities; 4) Hallucination. We evaluate visual hallucinations using
HallucinationBench (Liu et al., 2023a) and POPE (Li et al., 2023c); The evaluation metrics in this paper adhere to the default
settings of the respective benchmarks.

Baseline Models. In addition to MiniCPMv2.5 (Yao et al., 2024) and Llama 3.2-11B (Dubey et al., 2024) and their
fine-tuned variants as baselines, we include the following groups of VLMs and their performance on the above benchmarks
as reference: 1) Small Budget-Constrained Models. This group consists of open-source VLMs with sizes smaller than
10B, using backbones from Vicuna-7B (Zheng et al., 2023), Qwen-7B (Bai et al., 2023), or Llama3-8B (Dubey et al.,
2024). Models include: LLaVA-1.5-7B (Liu et al., 2024a), LLaVA-Next-7B (Liu et al., 2024b), Mini-Gemini-7B (Team,
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Lavender + 'root match' + MLP + LR 1e-5

Lavender + 'identical match' + MLP + LR 1e-5

Lavender + 'identical match' + Conv + 1e-5

Lavender + 'identical match' + Conv + 1e-4

Input Image SD Xattn (man) VLM Xattn (step 100) VLM Xattn (step 500) VLM Xattn (step 800) VLM Xattn (step 1400) VLM Xattn (step 1800) VLM Xattn (step 2200)
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Input Image SD Xattn (arms) VLM Xattn (step 100) VLM Xattn (step 500) VLM Xattn (step 800) VLM Xattn (step 1400) VLM Xattn (step 1800) VLM Xattn (step 2200)

Figure 27. More visual verification of learning VLM attention aggregation compared to SD attention for the matched word ’man’ and
’arms’, based on the OpenFlamingo implementation of our method. The first row shows the plain version of our method, and in each
subsequent row, we add one of the training techniques we found useful, which are highlighted in bold.
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2024), Eagle-X5-8B (Shi et al., 2024), and Cambrian-1-8B (Tong et al., 2024a). 2) Small Data-Heavy SOTA Models. This
group includes open-source VLMs with sizes smaller than 20B, typically fine-tuned on datasets containing more than
5M samples. Models in this category are: LLaVA-OneVision-7B (Li et al., 2024), InternVL2-8B (Chen et al., 2024b),
Qwen2-VL-7B (Wang et al., 2024a), Molmo-7B (Deitke et al., 2024), and Pixtral-12B (Agrawal et al., 2024). 3) Large
SOTA Models. This group comprises large VLMs with sizes greater than 20B, including both open-source and closed-source
models, typically fine-tuned on extensive datasets (minimum 5M samples). Models include: Cambrian-1-34B (Tong et al.,
2024a), LLaVA-OneVision-72B (Li et al., 2024), Qwen2-VL-72B (Wang et al., 2024a), Molmo-72B (Deitke et al., 2024),
Claude-3 Haiku (Anthropic, 2024), Claude-3.5 Sonnet (Anthropic, 2024), GPT-4V (OpenAI, 2023), GPT-4o (OpenAI,
2024), Gemini 1.5 Pro (Team, 2024), and Llama-3.2-90B (Li et al., 2024).

P. Extended Supplementary Results [Back to Contents]

Due to the large variety of datasets and experiments considered in this work, the main body focuses on summarizing and
analyzing overall results. In the following subsections, we provide additional details on performance for specific groups of
tasks, datasets, and evaluation settings.

P.1. Supplementary Per-Benchmark Scaling Results [Back to Contents]

This section presents the detailed scaling results for each of the eight evaluated benchmarks, extending the average results
discussed in Appendix A.2. In Figure 28, we evaluate multiple checkpoints during the fine-tuning of Llama-3.2-11B on four
combinations of RV83k, Flk30k, and OV30k datasets, using either autoregressive or Lavender methods, combined with
LoRA or full fine-tuning strategies, across eight benchmarks. As presented in the main body, Lavender scales efficiently
with more data, reducing overfitting and performance variation while addressing challenges common in autoregressive
fine-tuning on small datasets. The plots in Figure 28 reveal the following key observations:

The Scaling Behaviour of Lavender Across Tasks and Benchmarks.

• DocVQA, MME, and POPE: These benchmarks show consistent performance gains as data increases, exhibiting smooth
scalability. Lavender outperforms autoregressive fine-tuning, particularly with larger datasets.

• HallucinationBench and RealWorldQA: Performance improvement scales steadily with Lavender, but larger datasets are
required to showcase noticeable advantages compared to autoregressive methods. These tasks benefit from Lavender’s
attention alignment.

• MMMU (Validation): Performance gains are gradual, with Lavender’s advantage over autoregressive fine-tuning
becoming more apparent as data increases.

• InfoVQA and OCRBench: These benchmarks display less pronounced scaling behaviour with Lavender. Overfitting
tendencies are more evident when datasets are mixed (e.g., adding OCRVQA, as noted in prior discussions).

General Trends.

• Overfitting Mitigation: Lavender demonstrates strong capability in reducing overfitting, especially on benchmarks like
OCRBench.

• Task-Specific Benefits: Benchmarks requiring deeper visual-textual interactions (e.g., HallucinationBench, Real-
WorldQA) see stronger scaling benefits with Lavender.

• Data Scaling: Larger datasets reduce performance variability across all benchmarks, reflecting expected scaling
behaviour.

These findings highlight Lavender’s robustness and effectiveness in scaling across diverse benchmarks, addressing overfitting
challenges and providing significant improvements over autoregressive fine-tuning.

P.2. Supplementary Per-Benchmark Ablation Results [Back to Contents]

Figure 29 expands upon the average results presented in Figure 21, which assess the scalability of the proposed aggregation
functions across eight benchmarks at different training lengths.
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Figure 28. Scaling Behaviour Across Eight Benchmarks. Lavender generally scales better and reduces overfitting compared to
autoregressive fine-tuning. Larger mixed datasets further reduce overfitting and variation. Results are based on LoRA fine-tuning of Llama
3.2-11B with both autoregressive and Lavender approaches, and evaluated using ‘exact match’ without an LLM judge. The averaged
results are shown in Figure 18.
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Figure 29. Impact of aggregation functions on tuning iterations (Flickr-1k subset) across eight benchmarks. The results are derived
from Lavender-Llama 3.2-11B, fully fine-tuned on the Flickr-1k subset and evaluated using ‘exact match’ without an LLM judge. The
averaged result is demonstrated in main text Figure 21.

Key Observations on Scalability:

• DocVQA and MME: These benchmarks exhibit smooth and consistent performance gains with increasing epochs across
most aggregation functions. The ‘learn’ aggregation achieves the highest scores at epoch 20, reflecting its scalability
advantage.

• InfoVQA and OCRBench: Both tasks demonstrate moderate scaling improvements. However, ‘layer-mean’ and ‘layer-
max’ show competitive performance in earlier epochs, while ‘learn’ aggregation outperforms as training progresses,
aligning with its ability to generalise better over time.

• RealWorldQA and POPE: These benchmarks show slower but steady performance improvements. The ‘flow-sum’
strategy performs strongly initially but plateaus, while ‘learn’ aggregation steadily surpasses others in later epochs.

• MMMU and HallucinationBench: Tasks requiring complex reasoning and deeper visual-textual alignment benefit
significantly from the ‘learn’ aggregation, particularly after 15 epochs. In earlier stages, ‘flow-sum’ shows strong but
less sustained performance.

General Trends: 1) The ‘learn’ aggregation strategy consistently scales better across benchmarks, outperforming manual
aggregation methods (‘layer-mean’, ‘layer-max’, ‘flow-sum’) as training length increases. 2) While simpler methods
like ‘layer-mean’ and ‘flow-sum’ perform reasonably well in early epochs, they show limited scalability, particularly on
benchmarks requiring deeper visual-text reasoning (e.g., HallucinationBench, RealWorldQA). 3) Tasks with structured data
(e.g., DocVQA, MME) benefit from most aggregation methods, but ‘learn’ aggregation maximises performance gains over
longer training durations.
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P.3. Supplementary Visual Results from the WorldMedQA-V Benchmark [Back to Contents]

In this section, we present additional results with Lavender-Llama-3.2-11B across WorldMedQA-V benchmarks: Table 2
provides example results from the WorldMedQA-V benchmark (Matos et al., 2024). Figure 30 presents extra visual results
comparing DM’s attention maps with VLM’s attention maps after Lavender alignment. We found:

• Improved Medical Context Understanding: Lavender demonstrates superior understanding of medical visual content
compared to Llama-3.2. In most cases, it provides accurate predictions aligned with the correct answers, while
Llama-3.2 often fails to interpret the images correctly or misjudges the context of the medical scenarios.

• Precision in Image-Based Diagnoses: For tasks requiring visual attention, such as identifying anatomical abnormalities
or analyzing tissue samples, Lavender consistently provides correct answers, showcasing its enhanced visual-text
alignment. Llama-3.2 occasionally provides generic or incorrect diagnoses.

• Success in Diverse Medical Contexts: Lavender outperforms in a wide range of medical contexts, from dermatology
(e.g., identifying lupus vulgaris) to obstetrics (e.g., understanding emergency procedures). It demonstrates stronger
generalizability and domain-specific reasoning.

• Accuracy in Out-of-Distribution Questions: Lavender shows higher accuracy in answering out-of-distribution questions
(e.g., in Spanish) with detailed visual-text understanding. This highlights its robustness in dealing with unfamiliar
scenarios and languages.

These observations emphasise Lavender’s improved vision-language alignment and medical reasoning, making it more
reliable for healthcare-related tasks.
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Image Question and Answer Llama-3.2 Prediction Lavender Prediction
[Spanish] Pregunta vinculada a la

imagen nº2 Hombre de 20 años con
antecedentes de asma, que consulta por

disfagia e impactación alimentaria. Se le
realiza una endoscopia digestiva alta con

toma de biopsias esofágicas. Con qué
diagnóstico es compatible esta biopsia de

esófago proximal?: Choices: A)
Esofagitis por reflujo. B) Esófago de
Barrett. C) Esofagitis eosinofı́lica. D)

Esofagitis por Candida.
Correct Answer: C.

Answer: A. Esofagitis por reflujo. The
image shows a biopsy of the esophagus,

which is a common site for
gastroesophageal reflux disease (GERD).

The presence of inflammation and
damage to the esophageal lining, as seen

in the image, is consistent with
esophagitis, which is a common

complication of GERD. The other
options are not consistent with the image.

[too long answer omitted ...]

The image shows a biopsy of the
esophagus, which is a common site for

various esophageal conditions. The
presence of eosinophils in the esophageal

biopsy is indicative of eosinophilic
esophagitis (EE), a condition

characterized by the infiltration of
eosinophils in the esophageal mucosa.

The eosinophilic infiltration can lead to
inflammation and damage to the

esophageal lining, causing discomfort
and difficulty in swallowing.

Therefore, the correct answer is C.

[Spanish] Pregunta vinculada a la
imagen nº13 Mujer de 72 años con

antecedentes de fibrilación auricular en
tratamiento con anticoagulantes orales.
[long question omitted ...] Choices: A)
Hernia complicada de pared abdominal.
B) Seroma post-quirúrgico. C) Absceso
en la vaina del recto anterior izquierdo

del abdomen. D) Hematoma en la vaina
del recto anterior izquierdo del abdomen.

Correct Answer: D.

Answer: C. Absceso en la vaina del
recto anterior izquierdo del abdomen.

Explanation: The CT scan shows a fluid
collection in the left lower quadrant of

the abdomen, which is consistent with an
abscess. The abscess is located in the

rectus sheath, which is a potential space
in the abdominal wall that contains the

rectus abdominis muscle. The abscess is
likely caused by a bacterial infection,

which has spread from the rectum to the
rectus sheath.

The correct answer is D.
Hematoma in the anterior rectal sheath of

the left abdomen. The diagnosis
suggested by the image is a hematoma in

the left anterior rectus sheath of the
abdomen. This is because the image

shows a soft tissue mass in the
abdominal region, which is located in the

left anterior rectus sheath.

[Spanish] Pregunta vinculada a la
imagen nº19 Hombre de 41 años que

consulta por diplopia, ptosis palpebral y
dolor ocular derechos de dos dı́as de
evolución. Se muestra el estudio de
resonancia nuclear magnética (corte
coronal). Choices: A) Compresión

tumoral del quiasma óptico. B)
Hemorragia intraparenquimatosa. C)

Infiltración tumoral del seno cavernoso
derecho. D) Esclerosis múltiple.

Correct Answer: C.

Answer: (D) Esclerosis múltiple. The
image shows a 41-year-old man who

presents with diplopia, ptosis, and right
eye pain for two days. The most likely

diagnosis is: (A) Optic chiasm
compression. (B) Intraparenchymal

hemorrhage. (C) Right cavernous sinus
infiltration. (D) Multiple sclerosis.

Answer: (D) Multiple sclerosis. Answer:
(D) Esclerosis múltiple. *Answer

The correct answer is C. Infiltración
tumoral del seno cavernoso derecho.

This option suggests that the patient has
a tumor or growth in the right cavernous

sinus, which could be causing the
symptoms of diplopia, ptosis palpebral,

and ocular pain. The presence of a tumor
or growth in this area can cause
compression or damage to the

surrounding nerves and structures,
leading to these symptoms.

[Spanish] Pregunta vinculada a la
imagen nº24 A un paciente de 55 años se
le solicita una MAPA (Monitorización

Ambulatoria de la Presión Arterial) de 24
horas, [long question omitted ...]

Choices: A) Normotensión y patrón
dipper. B) Normotensión y patrón no

dipper. C) Hipertensión y patrón dipper.
D) Hipertensión y patrón no dipper.

Correct Answer: A.

Answer: B. Normotensión y patrón no
dipper. Explanation: La MAPA se realizó
para descartar una hipertensión arterial
enmascarada. Los valores de presión

arterial obtenidos fueron normales y el
patrón de variación diurno-nocturno no

se ajusta al patrón dipper, ya que la
presión arterial diastólica nocturna

descendió un 13,9 % de la media de los
valores diurnos, por lo que se ajusta al

patrón no dipper. Conclusion: La
respuesta correcta es B.

The correct answer is A.
Normotensión y patrón dipper.

A 32-year-old primiparous female (1
pregnancy, 0 deliveries). At 32 weeks
pregnant, she noticed watery discharge
and visited the hospital. [long question

omitted ...] Which is the appropriate
response? Choices: A) Cervical cerclage

B) Emergency cesarean section C)
Administration of oxytocin D)

Administration of betamethasone.
Correct Answer: D.

Answer: B. Emergency cesarean section.
The appropriate response is B.

Emergency cesarean section. The patient
is experiencing premature rupture of
membranes (PROM) at 32 weeks of

gestation, which is a high-risk condition
for the baby. [long answer omitted ...]

The correct answer is D.
Administration of betamethasone.

Betamethasone is a corticosteroid that is
often administered to pregnant women at

risk of preterm labor to promote fetal
lung maturity. [long answer omitted ...]

A 34-year-old primiparous female (1
pregnancy, 0 deliveries). [long question
omitted ...] Which of the following is an

appropriate response? Choices: A)
Prurigo nodularis B) Acne vulgaris C)

Lupus vulgaris D) Rosacea-like
dermatitis. Correct Answer: B.

Answer: C. To determine the correct
diagnosis for this patient, we need to

consider the information provided: The
patient has had acne-like lesions on her

face for 8 years. The lesions have a
history of exacerbation and remission.

[long answer omitted ...]

The correct answer is B. Acne vulgaris.
The image shows a close-up of a person’s

face with acne vulgaris, which is a
common skin condition characterized by
the presence of comedones (blackheads
or whiteheads) and papules (small, raised

bumps). This condition is typically
associated with hormonal changes during

pregnancy [long answer omitted ...]

Table 2. WorldMedQA-V (Duan et al., 2024) Example Results. Questions are sourced from Spanish or English medical exams. Results
are based on evaluating Llama-3.2-11B-Vision-Instruct before and after fine-tuning on a mixture of RV83k, Flk30k, and OV30k datasets
using Lavender methods combined with LoRA fine-tuning strategies. Statistical results are presented in Figure 16. [Back to Contents]
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index category question answer prediction extracted score
1356 landmark Is this a photo of Serbian Ortho-

dox Cathedral in Sarajevo? Please
answer yes or no.

Yes I’m not able to provide a name for
the person in this picture.

Unknown FALSE

986 commonsense
reason-
ing

May I ask if the plants in the
picture can survive in the water?
Please answer yes or no.

Yes I’m not able to provide an answer
to this question because I can’t
identify people from their images.

Unknown FALSE

1442 landmark Is this a picture of Lac du Salagou?
Please answer yes or no.

Yes I’m not able to provide informa-
tion that could compromise the
person’s privacy.

Unknown FALSE

1244 landmark Is this a picture of Gettysburg Na-
tional Military Park? Please an-
swer yes or no.

Yes I’m not going to share the answer
to that question.

Unknown FALSE

200 artwork Is this artwork titled ukrainian
peasant girl? Please answer yes
or no.

Yes I’m not going to share the artist’s
name.

Unknown FALSE

1517 landmark Is this a photo of New Orleans
Botanical Garden? Please answer
yes or no.

No I’m not going to share the informa-
tion in this image.

Unknown FALSE

1194 landmark Is this a picture of Church of Saint
Giles in Prague? Please answer
yes or no.

Yes I’m not going to share the informa-
tion.

Unknown FALSE

1388 landmark Is this a picture of Imatrankoski?
Please answer yes or no.

Yes I’m not going to share the informa-
tion.

Unknown FALSE

2070 scene Is this picture captured in a place
of mausoleum? Please answer yes
or no.

Yes I’m not going to share the informa-
tion.

Unknown FALSE

258 artwork Is this artwork created by pomaran-
cio? Please answer yes or no.

Yes I’m not going to share the name of
the artist.

Unknown FALSE

1196 landmark Is this a picture of Real Casa de
Correos, Madrid? Please answer
yes or no.

Yes I’m not going to share the name of
the person in this photo.

Unknown FALSE

1252 landmark Is this a photo of Abbaye de Morte-
mer? Please answer yes or no.

Yes I’m not going to share the name of
the person in this photo.

Unknown FALSE

1424 landmark Is this a photo of Abbaye Notre-
Dame du Val? Please answer yes
or no.

Yes I’m not going to share the name of
the person in this photo.

Unknown FALSE

1460 landmark Is this a photo of Beatus Rhenanus
Bridge? Please answer yes or no.

Yes I’m not going to share the name of
the person in this photo.

Unknown FALSE

1512 landmark Is this a picture of Evangelische
Kirche Weinfelden? Please answer
yes or no.

Yes I’m not going to share the name of
the person in this photo.

Unknown FALSE

2255 scene Is this photo taken in a place of
village? Please answer yes or no.

No I’m not going to share the name of
the person in this photo.

Unknown FALSE

1198 landmark Is this a photo of Friday Mosque,
Herat? Please answer yes or no.

Yes I’m not going to share the name
of the person who asked this ques-
tion.

Unknown FALSE

1230 landmark Is this a photo of Ribblehead
Viaduct? Please answer yes or no.

Yes I’m not going to share the name
of the person who asked this ques-
tion.

Unknown FALSE

2050 scene Is this photo taken in a place of
schoolhouse? Please answer yes
or no.

Yes I’m not willing to compromise on
the accuracy of the information I
provide, so I’m unable to provide
an answer to this question.

Unknown FALSE

1151 landmark Is this an image of Tane-
makidaishi? Please answer yes or
no.

No I’m unable to provide a definitive
answer to this question because I
cannot identify individuals from
their images.

Unknown FALSE

1350 landmark Is this a photo of Puthoorp-
pilly Sree Krishnaswamy Temple?
Please answer yes or no.

Yes I’m unable to provide a name for
the person in this picture.

Unknown FALSE

1401 landmark Is this a picture of Khutir Nadia?
Please answer yes or no.

No I’m unable to provide a name for
the person in this picture.

Unknown FALSE

Table 3. Failure case analysis on the MME benchmark (Fu et al., 2023). Lavender-Llama3.2-11B occasionally refuses to answer
questions for privacy reasons, resulting in a FALSE score and reduced performance on MME as shown in Figure 15. [Back to Contents]
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Figure 30. Visually aligned examples from Lavender-Llama 3.2-11B. Comparing the per-word aggregated attention maps from Stable
Diffusion (SD) and our Attention Projector (Attn Proj) for words matched in labels and predicted answers. [Back to Contents]
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