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Task of Cross-view Referring Multi-Object Tracking (CRMOT)

Fine-grained Language Description:
A man in a black coat and blue trousers, carrying a blue bag and holding a book.
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sequences that matches the language description.

Task of Referring Multi-Object Tracking (RMOT)

Fine-grained Language Description:
A man in a black coat and blue trousers, carrying a blue bag and holding a book.

Abstract

Referring Multi-Object Tracking (RMOT) is an important
topic in the current tracking field. Its task form is to guide the
tracker to track objects that match the language description.
Current research mainly focuses on referring multi-object
tracking under single-view, which refers to a view sequence
or multiple unrelated view sequences. However, in the single-
view, some appearances of objects are easily invisible, result-
ing in incorrect matching of objects with the language de-
scription. In this work, we propose a new task, called Cross-
view Referring Multi-Object Tracking (CRMOT). It intro-
duces the cross-view to obtain the appearances of objects
from multiple views, avoiding the problem of the invisible ap-
pearances of objects in RMOT task. CRMOT is a more chal-
lenging task of accurately tracking the objects that match the
language description and maintaining the identity consistency
of objects in each cross-view. To advance CRMOT task, we
construct a cross-view referring multi-object tracking bench-
mark based on CAMPUS and DIVOTrack datasets, named
CRTrack. Specifically, it provides 13 different scenes and
221 language descriptions. Furthermore, we propose an end-
to-end cross-view referring multi-object tracking method,
named CRTracker. Extensive experiments on the CRTrack
benchmark verify the effectiveness of our method.

Dataset, Code — https://github.com/chen-si-jia/CRMOT

Single-view

Making the incorrect judgment.
I find a person wearing a black coat and blue
trousers, holding a book, but she is carrying a @
black bag. So I think there is no target in the
sequence that matches the language description.

Network for
RMOT task

Figure 1: The difference between CRMOT and RMOT. The CRMOT task introduces the cross-view to obtain the appearances
of objects from multiple views, avoiding the problem that the appearances of objects are easily invisible in the RMOT task.

Introduction

Multi-Object Tracking (MOT) is one of the most challeng-
ing tasks in computer vision. It is widely used in fields
such as autonomous driving (Li et al. 2024b), video surveil-
lance (Yi et al. 2024), and smart transportation (Bashar et al.
2022). Existing MOT methods have already demonstrated
effectiveness in addressing most visual generic scenarios.
However, when it comes to multimodal contexts, i.e., vision-
language scenarios, traditional MOT methods face signifi-
cant challenges and limitations. To solve this problem, the
task of Referring Multi-Object Tracking (RMOT) was re-
cently proposed. The form of this task is to guide the tracker
to track the objects that match the language description.
For example, if the input “A man in a black coat and blue
trousers, carrying a blue bag and holding a book.”, the net-
work for the RMOT task will predict all target trajectories
corresponding to that language description. Current research
mainly focuses on the RMOT task under the single-view,
which refers to a view sequence or multiple unrelated view
sequences. However, in the single-view, some appearances
of the objects are easily invisible, causing the network for
the RMOT task to incorrectly match objects with the fine-
grained language description.



To overcome the limitation of the single-view, we propose
a new task called Cross-view Referring Multi-Object Track-
ing (CRMOT). It introduces the cross-view, which refers to
different views with large overlapping areas, to obtain the
appearances of objects from multiple views, thereby avoid-
ing the problem that the appearances of objects are easily
invisible in the RMOT task. CRMOT is a more challenging
task of accurately tracking the objects that match the fine-
grained language description and maintaining the identity
(ID) consistency of the objects in each cross-view. As illus-
trated in Figure 1, we can observe that the network for the
RMOT task makes the incorrect judgment when some ap-
pearances of the objects are invisible in the single-view of
the RMOT task. In contrast, in the cross-views of the CR-
MOT task, the appearance of the objects can be fully cap-
tured, so that the network for the CRMOT task can accu-
rately track the objects that match the fine-grained language
description and can know which objects have the same iden-
tity (ID) in each cross-view, i.e., the network for the CRMOT
task makes the correct judgment.

To advance the research on the cross-view referring multi-
object tracking (CRMOT) task, we propose a benchmark,
called CRTrack. Specifically, CRTrack includes 13 different
scenes, 82K frames, 344 objects, and 221 language descrip-
tions, as detailed in Table 1. These sequence scenes come
from two cross-view multi-object datasets, DIVOTrack (Hao
etal. 2024) and CAMPUS (Xu et al. 2016). Additionally, we
propose a new annotation method based on the unchanging
attributes of the objects throughout the sequences. These at-
tributes include headwear color, headwear style, coat color
and style, trousers color and style, shoes color and style, held
item color, held item style, and transportation. Then, we uti-
lize the large language model GPT-40 to generate language
descriptions from the annotated attributes, followed by care-
ful manual checking and correction to ensure the accuracy
of language descriptions. Finally, we propose a set of evalu-
ation metrics specifically designed for the CRMOT task.

Moreover, to further advance the research on the CRMOT
task, we propose an end-to-end cross-view referring multi-
object tracking method, called CRTracker. Specifically, CR-
Tracker combines the accurate multi-object tracking capa-
bility of CrossMOT (Hao et al. 2024) and the powerful
multi-modal capability of APTM (Yang et al. 2023). Fur-
thermore, a prediction module is designed within the CR-
Tracker network. The novel design idea of this prediction
module is to use the frame-to-frame association results of
the network as detection results, the fusion scores as confi-
dences, and the prediction module plays the role of a tracker.

Finally, we evaluate our proposed CRTracker method
and other methods on the in-domain and cross-domain test
sets of the CRTrack benchmark. The evaluation results
demonstrate that our method achieves state-of-the-art per-
formance while showing significant generalization capabil-
ities. Specifically, compared to the best-performing method
among other single-view approaches, our method surpasses
it by 31.45% in CVRIDF1 and 25.83% in CVRMA across
all scenes in the in-domain evaluation, and by 8.74% in
CVRIDFI and 1.92% in CVRMA across all scenes in the
cross-domain evaluation.

In summary, our main contributions are as follows:

1. We propose a new task, called Cross-view Referring
Multi-Object Tracking (CRMOT). It is a challenging
task of accurately tracking the objects that match the
language description and maintaining the identity con-
sistency of the objects in each cross-view.

2. We construct a benchmark, called CRTrack, to advance
the research on the CRMOT task. This benchmark in-
cludes 13 different scenes, 82K frames, 344 objects,
and 221 language descriptions.

3. We propose an end-to-end cross-view referring multi-
object tracking method, called CRTracker. We evaluate
CRTracker and other methods on the CRTrack bench-
mark both in-domain and cross-domain. The evalua-
tion results show that CRTracker achieves state-of-the-
art performance, fully demonstrating its effectiveness.

Related Work

Cross-View Multi-Object Tracking. Cross-view multi-
object tracking is a specific category of multi-object tracking
(Zhang et al. 2021; Zeng et al. 2022; Yu et al. 2022, 2023a,b;
Chen et al. 2024; Gao, Zhang, and Wang 2024; Li et al.
2024a) that shares large overlapping areas between different
views. Currently, mainstream methods (Cheng et al. 2023;
Hao et al. 2024) use appearance and motion features to mea-
sure the similarity of the same pedestrians across different
views and associate them. There are several commonly used
cross-view multi-object tracking datasets, including DIVO-
Track (Hao et al. 2024), CAMPUS (Xu et al. 2016), EPFL
(Fleuret et al. 2007), WILDTRACK (Chavdarova et al.
2018), and MvMHAT (Gan et al. 2021). The DIVOTrack
dataset is the latest cross-view multi-object tracking dataset
with 10 scenes captured by 3 moving cameras. The CAM-
PUS dataset contains real scenes captured by static cameras
from 3 or 4 different views. The EPFL dataset is one of the
traditional cross-view tracking datasets, but its very low res-
olution makes it difficult to learn the appearance embeddings
of objects. The WILDTRACK was shot in a square, but the
pedestrian annotations are incomplete. The MVMHAT was
shot on a rooftop, but all videos in the dataset use the same
scene and the same person. Therefore, we choose the DIV-
OTrack and CAMPUS datasets to construct the benchmark.
Referring Multi-Object Tracking. Referring multi-object
tracking is divided into two architectures: two-stage meth-
ods and end-to-end methods. The two-stage methods first
explicitly extract object trajectories and then select object
trajectories that match the language descriptions. The main-
stream two-stage methods include iKUN(Du et al. 2024) and
LaMOT (Li et al. 2024c). The end-to-end methods directly
obtain object trajectories that match the language descrip-
tions. The mainstream end-to-end methods include TransR-
MOT (Wu et al. 2023) and TempRMOT (Zhang et al. 2024).

Benchmark

To advance the research on the cross-view referring multi-
object tracking (CRMOT) task, we construct a cross-view
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referring multi-object tracking benchmark, named CRTrack.
Below, we provide details about the CRTrack benchmark.
Dataset Collection. The emphasized properties of the cross-
view referring multi-object tracking dataset are two ma-
jor elements: cross-view and referring. Cross-view refers
to the overlapping area between different camera views,
and referring refers to the language description. Therefore,
based on the cross-view multi-object tracking datasets DIV-
OTrack (Hao et al. 2024) and CAMPUS (Xu et al. 2016),
we add language descriptions to construct the cross-view re-
ferring multi-object tracking benchmark, named CRTrack.
The DIVOTrack dataset contains data from 10 different real-
world scenes, and it is currently the most scene-rich cross-
view multi-object tracking dataset. All sequences are cap-
tured using three moving cameras and manually synchro-
nized. The CAMPUS dataset contains 3 different scenes
with frequent object occlusion problems. All sequences are
captured using 3 or 4 static cameras and manually synchro-
nized. It should be noted that we only use their training data,
and unify the image sizes and annotation formats of the DIV-
OTrack and CAMPUS datasets.

Dataset Annotation. We divide the content of the lan-
guage description into different attributes. These attributes
include headwear color, headwear style, coat color and style,
trousers color and style, shoes color and style, held item

Scene Views . Number of Object Density Average number of frgmes
rames per view of language descriptions

Floor 3 825 10.8 712
Gatel 3 1251 9.9 780
Ground 3 901 18.9 743
Moving 3 581 4.6 418
Park 3 601 7.7 599
Shop 3 1101 12,5 561
Square 3 601 9.1 457
Circle 3 1601 83 952
Gate2 3 801 3.6 685
Side 3 751 12,5 624
Gardenl 4 2849 9.6 2742
Garden2 3 6000 5.2 3265
ParkingLot 4 6475 4.0 3419

Table 1: Dataset Statistics of the CRTrack Benchmark.

color, held item style, and transportation. Detailed attributes
can be found in the supplementary materials. Previously,
some language descriptions of the RMOT task’s benchmark
Refer-KITTI (Wu et al. 2023) only annotate a certain frag-
ment sequence of the object, not the whole sequence from
the appearance to the disappearance of the object. This an-
notation method is obviously not suitable for the new task of
cross-view referring multi-object tracking, because the in-
troduction of cross-view can observe the whole sequence
from the appearance to the disappearance of the object in
more detail from multiple views. Therefore, we propose a
new annotation method that aims to annotate objects from
the perspective of their invariant attributes in the sequence,
such as clothing, held items and transportation. We anno-
tate the attributes of the objects in each scene. After obtain-
ing the object annotation attributes, we use the large lan-
guage model GPT-40 (OpenAl 2024) to produce the lan-
guage descriptions based on the object annotation attributes.
The language descriptions generated by GPT-40 are manu-
ally checked and corrected. With the help of the large lan-
guage model, the richness of the language descriptions has
been greatly improved. Finally, 344 labeled objects and 221
language descriptions are obtained. The entire annotation
process is shown in Figure 2.
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Figure 4: Pipeline of CRTracker. It includes a detection head, a single-view Re-ID head, a cross-view Re-ID head, a full Re-ID
head and APTM framework. The prediction module outputs the trajectories of objects that match the language description.

Dataset Split. For the DIVOTrack dataset with language
descriptions, we evenly selected three scenes as the in-
domain test set based on the scene’s object density, and
the remaining seven scenes as the training set. The CAM-
PUS dataset with language descriptions is used as the cross-
domain test set. In short, the CRTrack benchmark is divided
into training set, in-domain test set and cross-domain test
set. Specifically, the training set contains “Floor”, "Gatel”,
”Ground”, "Moving”, ”Park”, ”Shop” and ”Square” scenes,
the in-domain test set contains ”Circle”, ”’Gate2” and ~’Side”
scenes, and the cross-domain test set contains ’Gardenl”,
”Garden2” and “ParkingLot” scenes.

Dataset Statistics. i) Word Cloud. Figure 3 shows the word
cloud of the CRTrack benchmark we constructed. We can
observe that the CRTrack benchmark contains a large num-
ber of words describing clothing, held items and transporta-
tion information. The rich variety of word clouds shows
the difficulty of our benchmark. ii) Object Density. Object
density indicates how many objects there are per frame per
cross-view of a scene on average. The object density of each
scene in the CRTrack benchmark is shown in Table 1. We
can observe that the CRTrack benchmark has scenes with
different object densities. iii) Average Number of Frames
of Language Description. It indicates the average number
of frames in which the object corresponding to each lan-
guage description appears. Table 1 shows the average num-
ber of frames of the language description of each scene.
The average number of frames of the language description
of “Parkinglot” scene of the CRTrack benchmark reaches
an astonishing 3419. The extremely long number of frames
brings great challenges to the cross-view referring multi-
object tracking in the temporal dimension.

Evaluation Metrics

The cross-view tracker is different from the single-view
tracker. The cross-view tracker processes multiple views in
each batch of synchronized video sequences. The same ob-

ject should have the same identity (ID) in different views.

The standard cross-view multi-object tracking evaluation

metrics include the cross-view IDF1 (CVIDF1) and the

cross-view matching accuracy (CVMA) (Gan et al. 2021).

The definitions of CVIDF1 and CVMA are as follows:
2CVIDP x CVIDR

CVIDE = o P+ CVIDR (1)
CVMA=1- Yo, me + [+ 2mme; )
Zt gty

where CVIDP and CVIDR denote the cross-view object
matching precision and recall, respectively. m;, fp;, mmey,
and gt; are the numbers of misses, false positives, mis-
matched pairs, and the total number of objects in all views
at time ¢, respectively.

It should be noted that cross-view referring multi-object
tracking is different from cross-view multi-object tracking.
When predicting non-referring but visible objects, they are
considered false positives in our evaluation. When the track-
ing corresponding to the language description is not good,
there will be a lot of false detections. This will make CVMA
become a relatively large negative number, resulting in a
huge impact on the evaluation metrics. We take a maximum
value between CVMA value and 0 to prevent the influence
of negative numbers.

We aim to comprehensively evaluate each language de-
scription, so we propose new evaluation metrics CVRIDF1
and CVRMA for the cross-view referring multi-object track-
ing (CRMOT) task, and their value range is 0 to 1. The defi-
nitions of the evaluation metrics CVRIDF1 and CVRMA for
the CRMOT task we proposed are as follows:

IDF1

CVRIDF1 = ZZC+ 3)
MA

CVRMA = 2 maX(ZV »0) (4)

where [ represents a language description and n; denotes the
number of language descriptions.



Strong Baseline of CRMOT

The challenge of the CRMOT task is to simultaneously de-
tect and track the objects that match the language description
and maintain the identity consistency of the objects in each
cross-view. To address the challenge of the CRMOT task,
we propose an end-to-end cross-view referring multi-object
tracking method, named CRTracker, as a strong baseline.

Training
APTM. APTM (Yang et al. 2023) is a framework for joint
attribute prompt learning and text matching learning, includ-
ing image encoder, text encoder and cross encoder. Specif-
ically, the image encoder uses Swin Transformer (Liu et al.
2021) to output image features. The text encoder uses the
first 6 layers of BERT (Devlin et al. 2018) to output text fea-
tures. The cross encoder adopts the last 6 layers of BERT,
fuses image features and text features, and captures seman-
tic relationships by the cross-attention mechanism.
Pipeline of Training. The pipeline of our training frame-
work is shown in Figure 4. The input is synchronized video
sequences from multiple cross-views and language descrip-
tions. Similar to the CrossMOT (Hao et al. 2024) algorithm,
our model uses CenterNet (Zhou, Wang, and Krihenbiihl
2019) as the backbone, followed by four heads, including a
detection head, a single-view Re-ID head, a cross-view Re-
ID head and a full Re-ID head. In addition, it also includes
APTM image encoder and APTM text encoder. It is worth
noting that for single-view Re-ID, the same object in differ-
ent views is considered as different objects in single-view
tracking; for cross-view Re-ID, the same object in different
views is considered as the same object; the full Re-ID head
is used for language description calculation. We use the im-
age encoder of APTM to encode the object ground truth area
in the input video sequence into the feature F'4;. Then, the
feature F'4; is merged with the feature I’y output by the full
Re-ID head to obtain the object image feature F;;. Mathemat-
ically, the merging operation can be formulated as follows:
FiZFf—f—OéFAi 5)
where o represents the feature fusion weight of Fy;.
Additionally, we use the text encoder of APTM to encode
language descriptions and obtain text features. The object
image features and text features are calculated using the re-
ferring loss L,.. The detection, single-view Re-ID and cross-
view Re-ID are calculated using the 1oss L¢, ot
Loss Functions. Our cross-view referring multi-object
tracking loss Lc,mo¢ 1S divided into two parts, cross-view
multi-object tracking loss L,,.; and referring loss L,..
The Lot is formulated as follows:

1

1 1
Lcmot = 5 (ewlLd + CTZ (Ls + Lc) +wi + ’LU2> (6)

where L, represents the detection loss, L, represents the
single-view Re-ID loss, L. represents the cross-view Re-ID
loss. wy and wo are are learnable parameters.

The L, uses the Cross-Entropy Loss (Zhang and Sabuncu
2018), which is formulated as:

1 N K
Ly= = > D wijlog (pis) )

i=1 j=1

Algorithm 1: Prediction Module

Input: Frame-to-frame association results, i.e. input tracks
of the prediction module 7;y,.,:; fusion scores S’y
Parameter: Fusion scores of views where the track exists
S; fusion score of the track Sy; j-th view V;; Number of
views for the track Ny ; threshold of average fusion score
T,s; threshold of single-view fusion score 7; threshold of
hit score T},,; hit score of the track S% ; average hit score s1;
single-view hit score ss; single-view miss score S3
Output: Output tracks of the prediction module Toyipus

1: Let Toutput < 0; S 0.

2: for T; € Tinpur do

3:  /* summarize scores and view number of the track */

4. Ny =0

5: forV; e {Vq,...,Vn} do
6: if 7; exists in V; then
7: S+ SuUsy

8: Nv—|— =1

9: end if

10:  end for

11:  /* use scores to filter the track */
12: if (%S)/NV > T, then

13: 57—7"_ = 851

14: 7:)utput — 7:)utput U 7;
15:  else

16: for Sy € Sdo

17: if Sy > T, then

18: A =int(Sy/Tss)
19: S7E+ = Asa

20: else

21: SH— =53

22: ST = max(S%,0)
23: end if

24: end for

25: if SZ > T),, then

26: %utput — 7;utput U 7:
27: end if

28:  end if

29: end for

30: return Toutput

where IV represents the number of objects, K represents the

number of all language descriptions in the training data, y; ;

represents the label of the j-th language description corre-

sponding to the i-th object, p; ; represents the probability

that the ¢-th object is predicted to be the j-th label value.
Thus, the final 10SS Lot 18:

Lcrmot = Lcmot + Lr (8)

where Lm0t represents the cross-view referring multi-
object tracking loss.

Inference

Pipeline of Inference. The pipeline of our inference frame-
work is shown in Figure 4. During the inference phase, we
process language descriptions one by one. First, multiple
cross-view video sequences are input into the network, and



In-domain Evaluation

. \ All scenes | Circle | Gate2 | Side
Method Published | Epochs
| CVRIDFIT CVRMAT | CVRIDFIT CVRMAT | CVRIDFIT CVRMAT | CVRIDFIT CVRMA?
TransRMOT (Wu et al. 2023) CVPR2023 20 23.30 8.03 18.85 6.94 68.03 28.51 14.33 2.65
TransRMOT (Wu et al. 2023) CVPR2023 100* 17.72 5.17 16.74 5.52 33.03 14.87 13.92 1.48
TempRMOT (Zhang et al. 2024)  arXiv2024 20 22.18 8.62 17.53 5.66 62.08 36.00 15.09 343
TempRMOT (Zhang et al. 2024)  arXiv2024 60* 23.43 10.14 20.26 8.49 63.86 45.18 14.17 0.65
CRTracker(Ours) - 20 54.88 35.97 58.38 42.44 91.60 73.40 37.97 14.87
Cross-domain Evaluation
Method Published | Epochs All scenes Gardenl Garden2 ParkingLot
CVRIDF1T CVRMAT | CVRIDF1T CVRMAT | CVRIDF1T CVRMAT | CVRIDF1T CVRMAT?T
TransRMOT (Wu et al. 2023) CVPR2023 20 3.66 0.20 2.85 0.01 423 0.55 3.87 0
TransRMOT (Wu et al. 2023) CVPR2023 100* 2.15 0 2.22 0 2.23 0 1.97 0
TempRMOT (Zhang et al. 2024)  arXiv2024 20 3.78 0.39 3.86 0.29 291 0.65 4.68 0.19
TempRMOT (Zhang et al. 2024)  arXiv2024 60* 2.68 0.40 2.20 0 2.17 0.75 3.77 0.42
CRTracker(Ours) - 20 12.52 2.32 14.96 2.77 11.87 2.80 10.66 1.30

Table 2: Quantitative results on the in-domain and cross-domain test sets of the CRTrack benchmark. * Indicates that the epoch
is the epoch of training in the author’s paper. 1 indicates that higher score is better. The best results are marked in bold.

the detection head outputs the object bounding boxes. Each
bounding box is matched with the corresponding single-
view Re-ID features, cross-view Re-ID features, and full Re-
ID features. In the frame-to-frame association step, we use
the MVMHAT (Gan et al. 2021) to associate between frames
and multiple cross-views. Next, we use the APTM image
encoder to encode the object bounding box areas and ob-
tain the encoded features F'4;. The encoded features Fy; is
fused with the full Re-ID features F'y according to Formula
(5) to generate the object image features F;. Subsequently,
the APTM text encoder is used to encode the input language
description to obtain the text feature F'4,. Attribute prompts
are extracted from the language description and input into
the APTM text encoder to obtain the attribute features F4,,.
Next, the APTM cross encoder is used to process the at-
tribute features F'4, and the image features F;, and the at-
tribute scores S, is obtained through the head; the APTM
cross encoder is used to process the text feature F'4; and the
image features Fj, and the text scores .S; is obtained through
the head. Then, the text scores .S is merged with the attribute
scores S, to obtain the fusion scores Sy. Mathematically, the
merging operation can be formulated as follows:
Sp =S¢ + Be Q)
where (3 represents the score fusion weight of eSe.
Finally, the frame-to-frame association results and the fusion
scores are input into the prediction module to generate the
trajectories of objects that match the language description.
Prediction Module. The design idea of the prediction mod-
ule is to regard the frame-to-frame association results as the
detection results, the fusion scores Sy as the confidences,
and the prediction module plays a tracking role. The algo-
rithm of the prediction module is shown in Algorithm 1.

Experiments
Settings

For evaluation, we conduct experiments on the CRTrack
benchmark we constructed and follow its evaluation met-
rics. Our models are trained for 20 epochs and tested on a

single NVIDIA RTX 3090 GPU. The feature dimensions of
single-view embedding, cross-view embedding, and full em-
bedding are all set to 512. During the training phase, we use
the Adam optimizer (Kingma and Ba 2014), the initial learn-
ing rate is set to 1 X 104, the batchsize to 12, and the feature
fusion weight a in Formula (5) to 0.01. During the inference
phase, we set the score fusion weight 3 in Formula (9) is set
to 0.1, threshold of average fusion score 7, to 0.5, thresh-
old of single-view fusion score T to 0.75, threshold of hit
score T, to 30, average hit score s to 3, single-view hit
score sg to 3, and single-view miss score s3 to 1.

Quantitative Results

On the CRTrack benchmark, we compared our CRTracker
with other methods. Since previous referring multi-object
tracking methods are designed for single-view, they can-
not be used for the cross-view referring multi-object track-
ing task. Thus, we combine previous referring multi-object
tracking methods with the MvMHAT (Gan et al. 2021)
cross-view association algorithm to enable them to be used
in the cross-view referring multi-object tracking task. In ad-
dition, since our method is end-to-end, for fair compari-
son, we choose two end-to-end referring multi-object track-
ing methods, including TransRMOT (Wu et al. 2023) and
TempRMOT (Zhang et al. 2024). For in-domain evalua-
tion, all methods are trained using the benchmark training
set and tested on the benchmark in-domain test set. For
cross-domain evaluation, all methods are trained using the
benchmark training set and tested on the benchmark cross-
domain test set. It is worth noting that our CRTracker and
other methods use the same model and parameter settings
for cross-domain evaluation as for in-domain evaluation.
In-domain Evaluation. As shown in Table 2, our CR-
Tracker achieves 54.88% CVRIDFI and 35.97% CVRMA
on all scenes of the in-domain test set. In particular, it
achieves 91.60% CVRIDF1 and 73.40% CVRMA on the
”Gate2” scene. Notably, our CRTracker far outperforms all
other methods in the in-domain evaluation. The results indi-
cate that CRTracker can tackle in-domain scenes well.
Cross-domain Evaluation. As illustrated in Table 2, all
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Figure 5: Qualitative results of our proposed CRTracker method and other methods, including TransRMOT and TempRMOT,
on the CRTrack benchmark’s in-domain and cross-domain evaluations. The rows and columns represent the camera views and
different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target.

methods suffer vital performance degradation, which is ex-
pected due to the high difficulty of the cross-domain test set
of the benchmark. The cross-domain test set and the train-
ing set differ in terms of the number of cross views, scenes,
pedestrians, camera angles, and lighting. In addition, the
cross-domain test set contains many language descriptions
that do not appear in the training set, and the average number
of frames of language descriptions is very long. Despite this,
our CRTracker still surpasses other methods, with achieving
12.52% CVRIDFI and 2.32% CVRMA on all scenes of the
cross-domain test set. The results show that CRTracker has
a good generalization ability for unseen domains.

Qualitative Results

To further demonstrate the superiority of our CRTracker, we
visualize some results of our proposed CRTracker method
and other methods trained for 20 epochs in in-domain and
cross-domain evaluations. As shown in Figure 5, CRTracker
is able to accurately detect and track the objects that match
the language description in a variety of challenging scenes
and keep the same object with the same identity in each
cross-view. In the ”Garden2” scene example, CRTracker can
accurately detect and track the target and keep the target with
the same identity in each cross-view even with the untrained
language description, which fully demonstrates the gener-
alization capability of our method. Many qualitative results
can be found in the supplementary materials.

Ablation Study

To study the role of each part of our method CRTracker, we
conduct ablation experiments on the CRTrack benchmark.
All experiments follow in-domain evaluation, that is, train-
ing on the training set and testing on the in-domain test set.
Analysis of Prediction Module. To demonstrate the effec-
tiveness of prediction module, we compare CRTracker with

Prediction Module \ CVRIDF11 CVRMA?T

b 4 47.54 28.68
4 54.88 35.97

Table 3: Results of CRTracker without and with the predic-
tion module. The best results are marked in bold.

and without prediction module. As shown in Table 3, we
can observe that the CRTracker with prediction module is
7.34% higher in CVRIDF1 and 7.29% higher in CVMA
than the CRTracker without prediction module. This phe-
nomenon shows that the prediction module fully fuses the
trajectory and language description scores from each cross-
view to maximize the matching of trajectory to description.
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Conclusion

In this work, we propose a novel task, named Cross-view
Referring Multi-Object Tracking (CRMOT). It is a challeng-
ing task of accurately tracking the objects that match the
fine-grained language description and maintaining the iden-
tity consistency of the objects in each cross-view. To ad-
vance the CRMOT task, we construct the CRTrack bench-
mark. Furthermore, to address the challenge of the new task,
we propose CRTracker, an end-to-end cross-view referring
multi-object tracking method. We validate CRTracker on the
CRTrack benchmark, which achieves state-of-the-art perfor-
mance and demonstrates good generalization ability.
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Supplementary Material

In this supplementary material, we provide specific details of
attributes of our annotation method, as well as more qualita-
tive results in both in-domain and cross-domain evaluations.

Details of Attributes

Our annotation method aims to annotate objects from the
perspective of their invariant attributes in the sequence, such
as clothing, held items and transportation. We annotate the
CRTrack benchmark with 8 attributes and 74 words with
specific representations, as shown in Table 4. The attributes
are carefully selected, considering the object’s appearance
characteristics in the CRTrack benchmark, including head-
wear color, headwear style, coat color and style, trousers
color and style, shoes color and style, held item color,
held item style, and transportation. Although the attribute
of clothing color may have more than one representation, at
most two representations corresponding to the image are se-
lected for annotation. In most cases, the representation that
best corresponds to the image is selected for annotation.

More Qualitative results

To further demonstrate the superiority of our proposed CR-
Tracker method, we visualize some results of our method
and other methods for each scene in both in-domain and
cross-domain evaluations.

Before looking at the visualization results, the following
content will help you understand. The rows and columns
represent the camera views and different methods, respec-
tively. The red arrows indicate targets that are not correctly
detected or matched. Other colored arrows represent cor-
rectly detected targets, with arrows of the same color indi-
cating the same target. The double-colored arrows indicate
that the IDs of the same target are inconsistent in the time di-
mension or view dimension. In short, the fewer red arrows,
the better the performance.

Some in-domain evaluation results are shown in Fig-
ures 6, 7, 8, 9, 10 and 11. We can find that our CR-
Tracker shows extremely outstanding performance. Some
cross-domain evaluation results are shown in Figures 12,
13, 14, 15 and 16. We can observe that other methods can-
not find the target at all. For the amazing 6330 frames of
long tracking in Figure 16, our method suffers from the ID
switching problem.

In summary, Our proposed CRTracker method is able to
accurately detect and track the objects that match the fine-
grained language description while maintaining the identity
(ID) consistency of the objects in each cross-view, providing
a good method for the CRMOT task we proposed.

Questions and Replies

(1) We can see that a reference description corresponds
to a very long sequence. I wonder whether a reference
may describe multiple persons during the same period or
different persons at different moments in a long video.

A reference can describe any number of people at any
time who match the language description, as evidenced by
Figures 6, 9 and 11 in the Supplementary Material.

(2) The motivation of the task does not look convincing
to me. As long as we can identify the target object from
any camera view, why do we have to perform cross-view
association?

For some complex language descriptions, it is difficult to
correctly judge whether the target matches the language de-
scription from a single view. To overcome the limitation of
the single-view, our CRMOT task introduces the cross-view,
to obtain the appearances of objects from multiple views,
thereby avoiding the problem that the appearances of objects
are easily invisible in the single view. For example, in Figure
5 of the Manuscript, the person indicated by yellow arrows
in Viewl and View3 is difficult to locate accurately from a
single view because some appearances of their appearance
are occluded. By introducing cross-views, we can clearly
know the same person across all three views and identify
the target indicated by the yellow arrow in View2, which al-
lows us to confirm that the persons in View1 and View3 are
also the targets we want.

(3) Can CrossMOT be extended as another baseline?

The CrossMOT method we currently use can be replaced
with other networks.



Attribute

Representation in words

Headwear color

99 9 95 9 99 9

“white”, ”black”, ”gray”, "green”, ”pink”, "red”, "yellow”, “blue”, “orange”, ’purple”, “null”

Headwear style

“with cap”, “with helmet”, ’null”

Coat color and style

CIINET) CLINET 5% 99

“white coat”, “black coat”, “gray coat”, green coat”,

5% 99 CLIET)

”yellow coat”, ’blue coat”, “orange coat”,

5% 99

pink coat”, “red coat”,

93 99

purple coat”, "null”

Trousers color and style

93 99 EEERET) 95 99

“white trousers”, “black trousers”, ”gray trousers”, ’green trousers”, ~’pink trousers”,

ERIRET) 9% 9 99 99 99 9

“red trousers”, yellow trousers”, ”blue trousers”, ”orange trousers”, ”purple trousers”, "null”

Shoes color and style

59 99 [LEET) [IEET)

“white shoes”, ”black shoes”, gray shoes”, ”green shoes”, ”pink shoes”, “red shoes”,

ELERET] 93 99, EEIRET)

”yellow shoes”, ’blue shoes”, ”orange shoes”, ’purple shoes”, ’null”

Held item color

99 99 93 99 CERNET)

“white”, black”, "gray”, “green”, "pink”, ’red”, "yellow”, blue”, “orange”, purple”, “null”

Held item style

CLINET) CEINET) 99 9 CLINET)

”abag”, "a plastic bag”, ”a handbag”, ~a schoolbag”, "a cart”, a box”, a child”, "a stick”,

[IIET) [T

”a book”, ”a mobile phone”, ”a can”, ’null”

Transportation

59 99 CERNET) 59 99

a bicycle”, ”an electric bike”, “a tricycle”, “null”

Table 4: Details of attributes.



o In-domain Evaluation (Scene:Circle)
Language Description:

A man wearing a white coat and black trousers.
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Figure 6: Qualitative results for the “Circle” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



o In-domain Evaluation (Scene:Circle)
Language Description:

A man in a blue helmet, blue coat, black trousers and black shoes, carrying a red plastic bag.
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Figure 7: Qualitative results for the “Circle” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



o In-domain Evaluation (Scene:Circle)
Language Description:

A man in a blue coat, black trousers and white shoes, carrying a white plastic bag.

View?2 Viewl

View3
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Figure 8: Qualitative results for the “Circle” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



In-domain Evaluation (Scene:Circle)

Language Description:
A man in a black coat and blue trousers, dragging a cart.

CRTracker(Ours) TransRMOT TempRMOT

Figure 9: Qualitative results for the “Circle” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



o In-domain Evaluation (Scene:Gate2)
Language Description:

A man wearing a black coat, gray trousers and gray shoes.
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Figure 10: Qualitative results for the “Gate2” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



o In-domain Evaluation (Scene:Side)
Language Description:

A man wearing a gray coat and black trousers.
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Figure 11: Qualitative results for the “Side” scene in the in-domain test set. The rows and columns represent the camera views
and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored arrows
represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows indicate
that the IDs of the same target are inconsistent in the time dimension or view dimension.



o Cross-domain Evaluation (Scene:Garden2)
Language Description:

A man in a black coat and blue trousers, carrying a black schoolbag.
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Figure 12: Qualitative results for the “Garden2” scene in the cross-domain test set. The rows and columns represent the camera
views and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored
arrows represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows
indicate that the IDs of the same target are inconsistent in the time dimension or view dimension.



Language Description:
A man in a cap, black coat and blue trousers, holding a white dog.
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Figure 13: Qualitative results for the “Garden2” scene in the cross-domain test set. The rows and columns represent the camera
views and different methods, respectively. Red arrows indicate targets that are not correctly detected or matched. Other colored
arrows represent correctly detected targets, with arrows of the same color indicating the same target. Double-colored arrows
indicate that the IDs of the same target are inconsistent in the time dimension or view dimension.
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o Cross-domain Evaluation (Scene:Gardenl)
Language Description:

A man in a black helmet, blue coat and gray trousers, riding a bicycle.
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Figure 14: Qualitative results for the “Gardenl” scene in the cross-domain test set.



Cross-domain Evaluation (Scene:Gardenl)

Language Description:
A man in a white cap, black coat and gray trousers, holding a stick.
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Figure 15: Qualitative results for the “Gardenl” scene in the cross-domain test set.



Cross-domain Evaluation (Scene:ParkingLot)

Language Description:
A man wearing a blue coat and gray trousers.
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Figure 16: Qualitative results for the “Parkingl.ot” scene in the cross-domain test set.



