
Published in Transactions on Machine Learning Research (04/2025)

Change Point Detection in Dynamic Graphs
with Decoder-only Latent Space Model

Yik Lun Kei ykei@ucsc.edu
Department of Statistics
University of California, Santa Cruz

Jialiang Li jl2356@njit.edu
Department of Computer Science
New Jersey Institute of Technology

Hangjian Li hangjian.li@walmart.com
Walmart Global Tech

Yanzhen Chen imyanzhen@ust.hk
Department of Information Systems, Business Statistics and Operations Management
Hong Kong University of Science and Technology

Oscar Hernan Madrid Padilla oscar.madrid@stat.ucla.edu
Department of Statistics and Data Science
University of California, Los Angeles

Reviewed on OpenReview: https: // openreview. net/ forum? id= DVeFqV56Iz

Abstract

This manuscript studies the unsupervised change point detection problem in time series of
graphs using a decoder-only latent space model. The proposed framework consists of learn-
able prior distributions for low-dimensional graph representations and of a decoder that
bridges the observed graphs and latent representations. The prior distributions of the latent
spaces are learned from the observed data as empirical Bayes to assist change point detec-
tion. Specifically, the model parameters are estimated via maximum approximate likelihood,
with a Group Fused Lasso regularization imposed on the prior parameters. The augmented
Lagrangian is solved via Alternating Direction Method of Multipliers, and Langevin Dy-
namics are recruited for posterior inference. Simulation studies show good performance of
the latent space model in supporting change point detection and real data experiments yield
change points that align with significant events.

1 Introduction

Networks are often used to represent relational phenomena in numerous domains (Dwivedi et al., 2021; He
et al., 2023; Han et al., 2023) and relational phenomena by nature progress in time. In recent decades,
a plethora of dynamic network models has been proposed to analyze the interaction between entities over
time, including Temporal Exponential Random Graph Model (Hanneke et al., 2010; Krivitsky & Handcock,
2014), Stochastic Actor-Oriented Model (Snijders, 2001; Snijders et al., 2010), and Relational Event Model
(Butts, 2008; Butts et al., 2023). Although these interpretable models incorporate the temporal aspect for
network analysis, network evolution is usually time-heterogeneous. Without taking the structural changes
across dynamic networks into account, learning from the time series may lead to ambiguity, by confounding
the structural patterns before and after a change happens. Hence, it is practical for social scientists to first

1

https://openreview.net/forum?id=DVeFqV56Iz

Published in Transactions on Machine Learning Research (04/2025)

localize the change points in time series, and then study the networks within intervals, where no substantial
change dilutes the network effects of interest.

More recently, considerable attention has been directed toward methodologies for change point detection in
dynamic networks. Chen et al. (2020a) and Shen et al. (2023) employed embedding methods to detect both
anomalous graphs and vertices in time series of networks. Park & Sohn (2020) combined the multi-linear
tensor regression model with a hidden Markov model, detecting changes based on the transition between
the hidden states. Sulem et al. (2023) learned a graph similarity function using a Siamese graph neural
network to differentiate the graphs before and after a change point. Zhao et al. (2019) developed a screening
algorithm that is based on an initial graphon estimation to detect change points. Huang et al. (2020) utilized
the singular values of the Laplacian matrices as graph embedding to detect the differences across time. Chen
& Zhang (2015), Chu & Chen (2019), and Song & Chen (2022a) proposed a non-parametric approach to
delineate the distributional differences over time. Garreau & Arlot (2018) and Song & Chen (2022b) exploited
the patterns in high dimensions via a kernel-based method. Madrid Padilla et al. (2022) identified change
points by estimating the latent positions of Random Dot Product Graph (RDPG) models and by using a
non-parametric version of the CUSUM statistic. Zhang et al. (2024) jointly trained a Variational Graph
Auto-Encoder and a Gaussian Mixture Model to detect change points. Chen et al. (2024) and Athreya
et al. (2024) considered network evolution in the Euclidean space and showed that the associated spectral
estimates can localize the change points in network time series.

Inherently, network structures can be complex due to highly dyadic dependency. Acquiring a low-dimensional
representation of a graph can summarize the enormous individual relations to promote downstream analysis
(Hoff et al., 2002; Handcock et al., 2007; Gallagher et al., 2021). In particular, Larroca et al. (2021), Marenco
et al. (2022), Zhu et al. (2023), Chen et al. (2024), and Athreya et al. (2025) studied different latent space
models for dynamic graphs and focused on using node-level representation to detect changes in dynamic
graphs. Furthermore, Sharifnia & Saghaei (2022) and Kei et al. (2023b) proposed to detect changes using
an Exponential Random Graph Model (ERGM), which relies on user-specified network statistics to describe
the structural patterns a priori. Given the complexity of dynamic network patterns, detecting change points
in the data space can be challenging. Extending the framework of representation learning and network
statistics, we aim to infer the graph-level representations that induce the structural changes in the latent
space to support change point detection.

In addition, generative frameworks recently showed promising results in myriad applications, such as text
generation with Large Language Model (Devlin et al., 2018; Lewis et al., 2019) and image generation with
Diffusion Model (Ho et al., 2020; Rombach et al., 2022). Different from a graph generation task or network
modeling task, we aim to explore how generative frameworks can assist the change point detection task for
dynamic graphs. Specifically, Simonovsky & Komodakis (2018) proposed a Graph Variational Auto-Encoder
(VAE) for graph generation, with a zero-mean Gaussian prior to regularize the latent space of graph-level
representations. In the VAE framework (Kingma, 2013; Kipf & Welling, 2016; Lee et al., 2017; Bhattacharyya
et al., 2018), the regularization via Kullback Leibler (KL) divergence arises from the Evidence Lower Bound
(ELBO) for the marginal likelihood, encouraging the approximate posterior to be close to the fixed zero-
mean Gaussian prior. Different from the VAE framework which involves an encoder, we focus on learning
the mean of the Gaussian prior, with a decoder-only latent space model. In particular, we impose a Group
Fused Lasso (GFL) regularization to the sequential differences of the prior parameters, so that the priors
learned by minimizing the multivariate total variation can facilitate change point detection.

To exploit representation learning and generative frameworks for change point detection in dynamic graphs,
we make the following contributions in this manuscript:

• We develop a decoder-only architecture to bridge the observed networks and latent variables for our
change point detection method. We assume the graphs are generated from the latent variables that
follow Gaussian prior distributions. With the graph decoder, the latent variables are considered as
the graph-level representations of the observed networks.

• The parameters of the Gaussian priors for graph-level representations are learned to facilitate change
point detection. Specifically, we apply Group Fused Lasso (GFL) regularization to promote sparsity

2

Published in Transactions on Machine Learning Research (04/2025)

in the sequential differences of the multivariate prior parameters, effectively smoothing out minor
fluctuations and highlighting significant change points.

• We derive an Alternating Direction Method of Multipliers (ADMM) procedure to solve the optimiza-
tion problem associated with our method. Without an encoder, the model parameters are learned
by inferring from the posterior via Langevin Dynamics. Experiments show good performance of the
latent space model in supporting change point detection.

The rest of the manuscript is organized as follows. Section 2 specifies the proposed framework. Section 3
presents the objective function with Group Fused Lasso regularization and the ADMM procedure to solve
the optimization problem. Section 4 discusses change points localization and model selection. Section 5
illustrates the proposed method on simulated and real data. Section 6 concludes the work with a discussion
on the limitation and potential future developments.

2 Latent Space Model for Change Point Detection

2.1 Model Specification

For a node set N = {1, 2, · · · , n}, we use an adjacency matrix y ∈ {0, 1}n×n to represent a graph or network.
We denote the set of all possible node pairs as Y = N × N . In the adjacency matrix, yij = 1 indicates
an edge between nodes i and j, while yij = 0 indicates no edge. The relations can be either undirected or
directed. The undirected variant has yij = yji for all (i, j) ∈ Y. Denote yt as a network at a discrete time
point t. The observed data is a sequence of networks y1, . . . , yT .

For each network yt ∈ {0, 1}n×n, we assume there is a latent variable zt ∈ Rd such that the network yt is
generated from the latent variable with the following graph decoder:

yt ∼ P (yt|zt) =
∏

(i,j)∈Y

Bernoulli(yt
ij ; rij(zt))

where rij(zt) = P (yt
ij = 1|zt) is the Bernoulli parameter for dyad yt

ij and it is elaborated in Section 2.3.
Conditioning on the latent variable zt, we assume the network yt is dyadic independent. We also impose a
learnable Gaussian prior to the latent variable as

zt ∼ P (zt) = N (zt; µt, Id)

where µt ∈ Rd is the mean vector to be learned and Id is an identity matrix. With graph decoder P (yt|zt),
we consider zt ∈ Rd as a graph-level representation for yt ∈ {0, 1}n×n. In this work, we estimate the prior
parameters {µt}T

t=1 to facilitate change point detection in {yt}T
t=1.

2.2 Change Points

Anchored on the proposed framework, we can specify the change points to be detected, in terms of the prior
parameters µt ∈ Rd for t = 1, . . . , T . Let {Ck}K+1

k=0 ⊂ {1, 2, . . . , T} be a collection of ordered change points
with 1 = C0 < C1 < · · · < CK < CK+1 = T such that

µCk = µCk+1 = · · · = µCk+1−1, k = 0, . . . , K,

µCk ̸= µCk+1 , k = 0, . . . , K − 1, and µCK+1 = µCK .

The associated multiple change point detection problem comprises recovering the collection {Ck}K
k=1 from a

sequence of observed networks {yt}T
t=1, where the number of change points K is also unknown. In practice,

change point detection problem is often discussed in an unsupervised manner.

In this work, to facilitate change point detection for {yt}T
t=1 in the data space, we turn to learn the prior

parameters {µt}T
t=1 in the latent space. Intuitively, the consecutive prior parameters µt and µt+1 are similar

when no change occurs, but they are different when a change emerges. For notational simplicity, we denote
µ ∈ RT ×d as a matrix where the t-th row corresponds to µt ∈ Rd with t = 1, . . . , T .

3

Published in Transactions on Machine Learning Research (04/2025)

2.3 Choice of Graph Decoder

To facilitate change point detection in dynamic graphs, we choose to use the graph decoder that is standard
and common in the literature (Kipf & Welling, 2016; Hamilton et al., 2017; Pan et al., 2018; Yang et al.,
2019; Chen et al., 2020b; Wang et al., 2021b). Specifically, the graph decoder P (yt|zt) is formulated with a
Bernoulli parameter for dyad yt

ij ∈ {0, 1} as

rij(zt) = P (yt
ij = 1|zt) = gij

(
h(zt)

)
∀ (i, j) ∈ Y.

The h(·) is parameterized by neural networks with h : Rd → Rn×n and g(·) is the element-wise sigmoid
function with g : Rn×n → [0, 1]n×n. In particular, we use neural networks, transferring the latent variable
zt ∈ Rd to U t ∈ Rn×k and V t ∈ Rn×k. We let the latent dimensions d and k be smaller than the number
of nodes n, and the outputs of neural networks are defined as

h(zt) =
{

U tV t⊤ ∈ Rn×n, for directed network,

U tU t⊤ ∈ Rn×n, for undirected network.
(1)

Comparing to a decoder that directly outputs an n by n matrix, the decoder via matrix multiplication can
reduce the number of neural network parameters. While this decoder focuses on homophily (the tendency
for similar nodes to connect), an extension to consider heterophily (the tendency for dissimilar nodes to
connect) as in Luan et al. (2022), Zhu et al. (2023), Di Francesco et al. (2024), and Luan et al. (2024) is
allowed for future development.

Figure 1 gives an overview of the proposed framework, where graphs are sampled from latent variables in a
top-down manner. Intuitively, the graph decoder can be helpful for learning graph-level representations in
a bottom-up manner, compressing the enormous relations in yt to extract the structural patterns through
node-level representations U t and V t as an intermediary. The graph decoder Pϕ(yt|zt), with neural network
parameter ϕ, is shared across the time points t = 1, . . . , T . It is also worth pointing out the simplicity of
our framework, without the need of encoders.

z1

U1, V 1

y1

N (µ1, Id)

z2

U2, V 2

y2

N (µ2, Id)

z3

U3, V 3

y3

N (µ3, Id)

zT

UT , V T

yT

N (µT , Id)

Pϕ(y1|z1) Pϕ(y2|z2) Pϕ(y3|z3) Pϕ(yT |zT)

. . .

∥µ2 − µ1∥2 ∥µ3 − µ2∥2

Figure 1: An overview of prior distributions and graph decoder for time-series of networks. The Group Fused
Lasso regularization imposed on the sequential differences of prior parameters is elaborated in Section 3.

3 Learning and Inference

3.1 Learning Priors from Dynamic Graphs

Inspired by Vert & Bleakley (2010) and Bleakley & Vert (2011), we formulate the change point detection
problem as a Group Fused Lasso problem (Alaíz et al., 2013). Denote the log-likelihood of the distribution
for y1, . . . , yT as l(ϕ, µ). We want to solve

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ

T −1∑
t=1
∥µt+1 − µt∥2 (2)

4

Published in Transactions on Machine Learning Research (04/2025)

where λ > 0 is a tuning parameter for the Group Fused Lasso penalty term.

The Group Fused Lasso penalty is useful for change point detection because it enforces piecewise constant
patterns in the learned parameters, by minimizing the multivariate total variation. Specifically, the regular-
ization term, expressed as the sum of the ℓ2 norms, encourages sparsity of the differences µt+1 − µt ∈ Rd,
while allowing multiple coordinates across the d dimensional differences to change at the same time t. The
latter is often referred as a grouping effect that could not be achieved with the ℓ1 penalty of the differences.
Furthermore, since the regularization is imposed on the prior parameters that relate to the likelihood of the
data, the learned priors incorporate the structural changes from the observed graphs into the latent space.
In summary, by penalizing the sum of sequential differences between the prior parameters, the proposed
framework focuses on capturing meaningful structural changes while smoothing out minor variations.

Albeit the proposed framework in Section 2 is straightforward, parameter learning is challenging. To solve
the optimization problem in (2) that involves latent variables, we need to manipulate the objective function
accordingly. We first introduce a slack variable ν ∈ RT ×d where νt ∈ Rd denotes the t-th row of matrix ν,
and we rewrite the original problem as a constrained optimization problem:

ϕ̂, µ̂ = arg min
ϕ,µ

−l(ϕ, µ) + λ
T −1∑
t=1
∥νt+1 − νt∥2

subject to µ = ν.

(3)

Let w ∈ RT ×d be the scaled dual variable. The augmented Lagrangian can be expressed as

L(ϕ, µ, ν, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥νt+1 − νt∥2 + κ

2 ∥µ− ν + w∥2
F −

κ

2 ∥w∥
2
F (4)

where κ > 0 is a penalty parameter for the augmentation term.

In practice, gradient descent may not work well for an objective function with Group Fused Lasso penalty. To
this end, we introduce two more variables (γ, β) ∈ R1×d ×R(T −1)×d to ease the optimization, by converting
it into a Group Lasso problem (Yuan & Lin, 2006). They are defined as

γ = ν1 and βt,· = νt+1 − νt ∀ t = 1, . . . , T − 1.

Reversely, the slack variable ν ∈ RT ×d can be reconstructed as

ν = 1T,1γ + Xβ

where X is a T × (T − 1) design matrix with Xij = 1 for i > j and 0 otherwise. Substituting the ν in (4)
with (γ, β), the augmented Lagrangian is updated to

L(ϕ, µ, γ, β, w) = −l(ϕ, µ) + λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ− 1T,1γ −Xβ + w∥2
F −

κ

2 ∥w∥
2
F . (5)

Thus, we can derive the following Alternating Direction Method of Multipliers (ADMM) procedure (Boyd
et al., 2011; Zhu, 2017; Wang et al., 2019) to solve the constrained optimization problem in (3):

ϕ(a+1), µ(a+1) = arg min
ϕ,µ

−l(ϕ, µ) + κ

2 ∥µ− ν(a) + w(a)∥2
F , (6)

γ(a+1), β(a+1) = arg min
γ,β

λ

T −1∑
t=1
∥βt,·∥2 + κ

2 ∥µ(a+1) − 1T,1γ −Xβ + w(a)∥2
F , (7)

w(a+1) = µ(a+1) − ν(a+1) + w(a), (8)

where subscript a denotes the current ADMM iteration. We recursively implement the three updates until
certain convergence criterion is satisfied. Essentially, ADMM decomposes the optimization problem in (5)
into smaller problems, solving each component with specific method derived in Section 3.2.

5

Published in Transactions on Machine Learning Research (04/2025)

3.2 Parameters Update

3.2.1 Updating µ and ϕ

In this section, we derive the updates for the prior and graph decoder parameters. The prior parameters are
inferred from the observed data as empirical Bayes. Denote the objective function in (6) as L(ϕ, µ). Setting
the gradients of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd to zeros, we have the following:
Proposition 1. The solution for µt at an iteration of our proposed ADMM procedure is a weighted sum:

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt) (9)

between the conditional expectation of the latent variable under the posterior distribution P (zt|yt) and the
difference between the slack and the scaled dual variables. The term wt ∈ Rd denotes the t-th row of the
scaled dual variable w ∈ RT ×d. The derivation is provided in Appendix 7.1.

Moreover, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is calculated as

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
. (10)

The parameter ϕ can be updated efficiently through back-propagation.

Notably, calculating the solution in (9) and gradient in (10) requires evaluating the conditional expectation
under the posterior distribution P (zt|yt) ∝ P (yt|zt)× P (zt). We employ Langevin Dynamics, a short-run
MCMC, to sample from the posterior distribution, approximating the conditional expectations (Xie et al.,
2017; 2018; Nijkamp et al., 2020; Pang et al., 2020). In particular, let subscript τ be the time step of the
Langevin Dynamics and let δ be a small step size. Moving toward the gradient of the posterior with respect
to the latent variable, the Langevin Dynamics to draw samples from the posterior distribution is achieved
by iterating the following:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log Pϕ(yt|zt)− (zt

τ − µt)
]

+
√

2δϵ (11)

where ϵ ∼ N (0, Id) is a random perturbation to the process. The derivation is provided in Appendix 7.2.
Different from the VAE framework where latent variables are obtained through an encoder, we sampled the
latent variables from the posterior distributions via Langevin Dynamics.

3.2.2 Updating γ and β

In this section, we derive the update in (7), which is equivalent to solving a Group Lasso problem. The
grouping effect allows the d dimensional differences to change at the same time t. With ADMM, the updates
on γ and β do not require the observed network data {yt}T

t=1. By adapting the derivation in Bleakley &
Vert (2011), we have the following:
Proposition 2. [Bleakley & Vert, 2011] The Group Lasso problem to update β ∈ R(T −1)×d is solved in
a block coordinate descent manner, by iteratively applying the following equation to each row t:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt (12)

where (·)+ = max(·, 0) and

bt = κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·).

The derivation is provided in Appendix 7.3.

6

Published in Transactions on Machine Learning Research (04/2025)

In particular, βt,· ∈ Rd becomes 0 when ∥bt∥2 ≤ λ. Also, the convergence of the procedure can be monitored
by the Karush-Kuhn-Tucker (KKT) conditions:

λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −Xβ) = 0 ∀βt,· ̸= 0,

∥−κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −Xβ)∥2 ≤ λ ∀βt,· = 0.

Lastly, the minimum in γ ∈ R1×d is achieved at

γ = (1/T)11,T · (µ(a+1) + w(a) −Xβ).

The algorithm for the ADMM procedure is provided in Appendix 7.4 and details about the implementation
are provided in Appendix 7.5.

4 Change Point Localization and Model Selection

4.1 Change Point Localization

In this section, we provide two effective methods to localize the change points after parameter learning, and
they can be used for different purposes. For the first approach, we resort to the prior distribution where
zt ∼ N (µt, Id). When no change occurs or µt − µt−1 = 0, we have zt − zt−1 ∼ N (0, 2Id) and

ut := 1
2(zt − zt−1)⊤(zt − zt−1) ∼ χ2

d.

Furthermore, the mean of ut over m samples follows a Gamma distribution:

ūt
m ∼ Γ(θ = 2

m
, ξ = md

2)

where θ and ξ are the respective scale and shape parameters.

As we capture the structural changes in the latent space, we can draw samples from the learned priors to
reflect the sequential changes. In particular, for a time point t, we sample ẑt− ẑt−1 from N (µ̂t− µ̂t−1, 2Id),
and we perform the same transformation:

vt := 1
2(ẑt − ẑt−1)⊤(ẑt − ẑt−1).

Then we compare the mean of vt over m samples with a quantile:

P(v̄t
m > qthr) = 1− α

T − 1 (13)

where qthr is the 1 − α/(T − 1) quantile of the Gamma distribution for ūt
m when no change occurs. We

consider the time point t with v̄t
m > qthr as the detected change point.

For the second approach, we can directly utilize the localizing method from Kei et al. (2023b), which is more
robust in practice, as compared in the simulation study of Section 5.1. First, we calculate the differences
between consecutive time points in µ̂ ∈ RT ×d as

∆µ̂t = ∥µt − µt−1∥2 ∀ t ∈ [2, T].

Then we standardize the differences as

∆ζ̂t = ∆µ̂t −median(∆µ̂)
std(∆µ̂) ∀ t ∈ [2, T] (14)

and construct a data-driven threshold defined as

Tthr := mean(∆ζ̂) + Zq × std(∆ζ̂) (15)

7

Published in Transactions on Machine Learning Research (04/2025)

where Zq is the q% quantile of the standard Gaussian distribution N (0, 1). We declare a change point Ck

when ∆ζ̂Ck > Tthr.

The data-driven threshold in (15) is intuitive, as the standardized differences ∆ζ̂ between two consecutive
change points are close to zeros, while the differences that are at the change points are substantially greater
than zeros. When traced in a plot over time t, the ∆ζ̂ can exhibit the magnitude of structural changes,
and the threshold that deviates from the mean provides a reasonable cut-off value for the standardized
differences, as demonstrated in Figures 11 and 12. In summary, the localizing method derived from the prior
distribution has a statistical justification, while the localizing method with the data-driven threshold is more
robust for different types of network data in practice.

4.2 Model Selection

The optimization problem in (3) involves a tuning parameter that can yield different sets of detected change
points when it is varied. In this work, we use Cross-Validation to select λ. In particular, we split the original
time series of graphs into training and testing sets: the training set consists of graphs at odd indexed time
points and the testing set consists of graphs at even indexed time points. Fixed on a specific λ value, we
learn the model parameters with the training set, and we evaluate the learned model with the testing set.

For a list of λ values, we choose the λ giving the maximal log-likelihood on the testing set. Note that the
log-likelihood is approximated by Monte Carlo samples {zt

u}s
u=1 drawn from the prior distribution P (zt) as

T∑
t=1

log P (yt) ≈
T∑

t=1
log

[1
s

s∑
u=1

[∏
(i,j)∈Y

Pϕ(yt
ij |zt

u)
]]

.

Further computational details are discussed in Appendix 7.5. With the selected λ value, we learn the model
parameters again with the full data, resulting the final set of detected change points.

5 Simulated and Real Data Experiments

5.1 Simulation Study

In this section, we implement the proposed method on simulated data. To evaluate the performance of
change point detection, we use three standard metrics in the literature that focus on the number of change
points, the time gap between the true and detected change points, and the coverage over the segmented
time intervals. The first metric is the absolute error |K̂ −K| where K̂ and K are the respective numbers
of the detected and true change points. The second metric described in Madrid Padilla et al. (2021) is the
one-sided Hausdorff distance, which is defined as

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|

where Ĉ and C are the respective sets of detected and true change points. Also, we report the reversed
one-sided Hausdorff distance d(C|Ĉ). By convention, when Ĉ = ∅, we let d(Ĉ|C) = ∞ and d(C|Ĉ) = −∞.
The last metric described in van den Burg & Williams (2020) is the coverage of a partition G by another
partition G′, which is defined as

C(G,G′) = 1
T

∑
A∈G
|A| · max

A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T]. The G and G′ are collections of intervals between consecutive change points for the
respective ground truth and detected results.

We simulate dynamic graphs from three scenarios to compare the performance of the proposed and competitor
methods: Separable Temporal Exponential Random Graph Model, Stochastic Block Model, and Recurrent
Neural Networks. For each scenario with different numbers of nodes n ∈ {50, 100}, we simulate 10 Monte

8

Published in Transactions on Machine Learning Research (04/2025)

Carlo trials of directed networks with time span T = 100. The true change points are located at t =
{26, 51, 76}, so the number of change points K = 3. Moreover, the K + 1 = 4 intervals in the partition G are
A1 = {1, . . . , 25}, A2 = {26, . . . , 50}, A3 = {51, . . . , 75}, and A4 = {76, . . . , 100}. In each specification, we
report the means and standard deviations over 10 Monte Carlo trials for the evaluation metrics. CPDlatentN

denotes our proposed approach with the data-driven threshold in (15), using 90% quantile from standard
Normal distribution. We let the latent dimensions d = 10 and k = 5 for the graph decoder. CPDlatentG

denotes our proposed approach with the localizing method in (13), using α = 0.01 from Gamma distribution.
We let the latent dimensions d = n/10 and k = 10 for the graph decoder. The number of samples drawn
from the Gamma distribution is m = 1000 when d = 5 and m = 500 when d = 10.

Five competitors, gSeg (Chen & Zhang, 2015), kerSeg (Song & Chen, 2022b), CPDrdpg (Madrid Padilla et al.,
2022), CPDnbs (Wang et al., 2021a), and CPDstergm (Kei et al., 2023b), are provided for comparison. The
gSeg method utilizes a graph-based scan statistics and the kerSeg method employs a kernel-based framework
to test the partition before and after a potential change point. The CPDrdpg method detects change points
by estimating the latent positions from a RDPG model and by constructing a non-parametric CUSUM
statistic that allows for temporal dependence. The CPDnbs method detects change points by combining
sample splitting with wild binary segmentation (WBS) and by maximizing the inner product of two CUSUM
statistics computed from the samples. The CPDstergm method fits a STERGM with user-specified network
statistics to detect change points based on the total variation of estimated parameters.

For CPDstergm, we first use two network statistics, edge count and mutuality, in both formation and
dissolution models to let p = 4. We then add one more network statistic, number of triangles, to let p = 6
as another specification. For CPDrdpg, we let the number of intervals for WBS be W = 50, and we let
the number of leading singular values of an adjacency matrix in the scaled PCA algorithm be d = 5. For
CPDnbs, we let the number of intervals for WBS be W = 15 and we set the threshold to the order of
n log2(T). For kerSeg, we use the approximated p-value of fGKCP1, and we set α = 0.001. For gSeg, we
use the minimum spanning tree to construct the similarity graph, with the approximated p-value of the
original edge count scan statistic, and we set α = 0.05. Moreover, as gSeg and kerSeg are general methods
for change point detection, we use networks (nets.) and network statistics (stats.) as two types of input
data. Throughout the paper, we choose these settings because they produce good performance on average
for the competitors. Changing these settings can enhance their performance on some specifications, while
severely jeopardizing their performance on other specifications.

Scenario 1: Separable Temporal Exponential Random Graph Model

In this scenario, we apply time-homogeneous Separable Temporal Exponential Random Graph Model
(STERGM) between change points to simulate sequences of dynamic networks (Krivitsky & Handcock,
2014). We use three network statistics, edge count, mutuality, and number of triangles, in both formation
(F) and dissolution (D) models. The p = 6 parameters for each time point t are

θt
F , θt

D =
{
−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3 \ 1,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.

Figure 2 exhibits examples of simulated networks. Visually, STERGM produces adjacency matrices that are
sparse, which is often the case in real world social networks.

Table 1 displays the means and standard deviations of the evaluation metrics for comparison. Since the
dynamic networks are directly sampled from STERGM, the CPDstergm method with correctly specified
network statistics (p = 6) achieves the best performance, in terms of greater converge of time intervals.
However, when the network statistics are mis-specified with p = 4, the performance of CPDstergm is sub-
stantially worsened, with greater time gaps between the true and detected change points. The deteriorating
performance of CPDstergm emphasizes the importance of graph-level features in change point detection.
Similarly, while the CPDrdpg method detects the correct numbers of change points on average, the time
gaps between the true and detected change points are large. Similarly, the detected change points from the
CPDnbs method also have greater time gaps. Moreover, using either networks (nets.) or network statistics
(stats.) cannot improve the performance of gSeg and kerSeg methods. The binary segmentation approach

9

Published in Transactions on Machine Learning Research (04/2025)

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 2: Examples of networks simulated from STERGM with number of nodes n = 100. The edge density
is approximately 15% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

tends to detect excessive numbers of change points, capturing noises from the data. In this scenario, although
the CPDstergm method with p = 6 achieves the best performance, the true network statistics are usually not
known to the modeler a priori. Our CPDlatent method, without the need of specifying network statistics,
can achieve good performance on average.

Scenario 2: Stochastic Block Model

In this scenario, we use Stochastic Block Model (SBM) to simulate sequences of dynamic networks, and
we impose a time-dependent mechanism in the simulation process as in Madrid Padilla et al. (2022). Two
probability matrices P , Q ∈ [0, 1]n×n are constructed and they are defined as

Pij =
{

0.5, i, j ∈ Bl, l ∈ [3],
0.3, otherwise,

and Qij =
{

0.45, i, j ∈ Bl, l ∈ [3],
0.2, otherwise,

where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. Then a sequence of matrices
Et ∈ [0, 1]n×n are arranged for t = 1, . . . , T such that

Et
ij =

{
Pij , t ∈ A1 ∪ A3,

Qij , t ∈ A2 ∪ A4.

Lastly, the networks are simulated with ρ = 0.5 as the time-dependent mechanism. For t = 1, . . . , T − 1, we
let y1

ij ∼ Bernoulli(E1
ij) and

yt+1
ij ∼

{
Bernoulli

(
ρ(1−Et+1

ij) + Et+1
ij

)
, yt

ij = 1,

Bernoulli
(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

With ρ > 0, the probability to form an edge for i, j becomes greater at time t + 1 when there exists an edge
at time t, and the probability becomes smaller when there does not exist an edge at time t. Figure 3 exhibits

10

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Means (standard deviations) of evaluation metrics for dynamic graphs simulated from STERGM.
The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0.1 (0.3) 4.3 (5.7) 2.6 (1.3) 90.87%
CPDlatentG 0.4 (0.6) 4.2 (6.9) 3.4 (3.4) 90.97%
CPDrdpg 0.9 (1.6) 8.7 (9.5) 8.5 (6.0) 76.27%
CPDnbs 1.2 (0.6) 4.6 (3.9) 11.0 (0.9) 75.80%
CPDstergmp=4 1.5 (0.8) 11.7 (7.5) 10.5 (2.3) 67.68%
CPDstergmp=6 0.2 (0.4) 1.6 (1.2) 3 (3.5) 91.54%
gSeg (nets.) 12.3 (0.5) 0 (0.0) 19 (0.0) 27.90%
gSeg (stats.) 15.8 (0.7) 1.5 (0.5) 20.1 (0.3) 24.55%
kerSeg (nets.) 9.7 (0.9) 1.4 (0.9) 17.9 (1.2) 37.62%
kerSeg (stats.) 9.4 (0.7) 3.9 (1.3) 18 (1.8) 35.86%

100

CPDlatentN 0 (0.0) 3.9 (1.3) 3.9 (1.3) 91.33%
CPDlatentG 0.7 (1.3) 3.1 (1.3) 6.0 (4.0) 88.55%
CPDrdpg 0.8 (1.0) 4.5 (2.0) 8.2 (4.7) 80.54%
CPDnbs 1.4 (0.5) 4.9 (3.7) 11.0 (0.9) 72.99%
CPDstergmp=4 0.7 (0.6) 21.9 (10.3) 7.6 (4.3) 67.21%
CPDstergmp=6 0 (0.0) 1.1 (0.3) 1.1 (0.3) 94.01%
gSeg (nets.) 12 (0.0) 0 (0.0) 19 (0.0) 28.00%
gSeg (stats.) 14.5 (2.3) 3.3 (3.6) 20.2 (0.4) 26.13%
kerSeg (nets.) 9.3 (0.8) 1 (0.0) 17.7 (0.6) 37.62%
kerSeg (stats.) 8.5 (0.8) 4.5 (1.4) 17.3 (1.7) 36.92%

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

1 34 67 100

1
3
4

6
7

1
0
0

Figure 3: Examples of networks simulated from SBM with number of nodes n = 100. The edge density
is approximately 30% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

11

Published in Transactions on Machine Learning Research (04/2025)

examples of simulated networks. Visually, SBM produces adjacency matrices with block structures, where
mutuality serves as an important pattern for the homophily within communities.

Table 2 displays the means and standard deviations of the evaluation metrics for comparison. As expected,
both CPDstergm methods with p = 4 and p = 6 that utilize mutuality as a network statistic for detection
achieve good performance, in terms of greater converge of time intervals. The CPDrdpg method also produce
relatively good performance, but the time gaps between the true and detected change points are large.
Similarly, the CPDnbs method also produces change points that have greater time gaps from the ground
truth. Furthermore, using network statistics (stats.) with mutuality included for both gSeg and kerSeg
methods improve their performance substantially, comparing to using networks (nets.) as input for detection.
This again emphasizes the significance of using graph-level representation in change point detection for
dynamic networks. Lastly, our CPDlatent method, which infers the features in the latent space that induce
the structural changes, achieves the best performance in this scenario.

Table 2: Means (standard deviations) of evaluation metrics for dynamic networks simulated from SBM. The
best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0.0) 0.1 (0.3) 0.1 (0.3) 99.80%
CPDlatentG 0.3 (0.6) 0.1 (0.3) 3.1 (6.2) 96.70%
CPDrdpg 1.4 (1.8) 2.2 (1.2) 8.2 (6.0) 81.01%
CPDnbs 1.6 (0.5) 3.8 (3.6) 11.4 (1.2) 73.13%
CPDstergmp=4 0.1 (0.3) 1 (0.0) 2.4 (4.2) 97.04%
CPDstergmp=6 0.3 (0.5) 1 (0.0) 4.6 (5.6) 94.74%
gSeg (nets.) 12.9 (1.8) 0 (0.0) 19.4 (0.8) 27.20%
gSeg (stats.) 2.2 (0.7) Inf (na) −Inf (na) 49.21%
kerSeg (nets.) 6.4 (1.4) 0 (0.0) 16.6 (2.0) 45.50%
kerSeg (stats.) 0.9 (1.2) 0 (0.0) 5.6 (6.8) 93.50%

100

CPDlatentN 0.1 (0.3) 0.1 (0.3) 1.3 (3.6) 98.60%
CPDlatentG 0.5 (0.7) 0.2 (0.4) 5.1 (6.1) 94.81%
CPDrdpg 0.3 (0.6) 1.5 (0.5) 2.5 (2.0) 91.05%
CPDnbs 1.8 (0.6) 3.5 (3.3) 12.3 (1.3) 72.04%
CPDstergmp=4 0 (0.0) 1 (0.0) 1 (0.0) 98.04%
CPDstergmp=6 0 (0.0) 1 (0.0) 1 (0.0) 98.04%
gSeg (nets.) 12.3 (0.9) 0 (0.0) 19 (0.0) 27.80%
gSeg (stats.) 2 (0.4) Inf (na) −Inf (na) 55.75%
kerSeg (nets.) 6 (0.8) 0 (0.0) 15.2 (2.0) 47.00%
kerSeg (stats.) 0.9 (0.7) 0 (0.0) 9.6 (7.6) 93.40%

Scenario 3: Recurrent Neural Networks

In this scenario, we use Recurrent Neural Networks (RNNs) to simulate sequences of dynamic networks.
Specifically, we sample latent variables zt from pre-defined priors, and we randomly initialize the RNNs with
uniform weights. The graphs are then generated by the matrix multiplication defined by Equation (1), using
the outputs U t and V t from RNNs. The parameters for the pre-defined priors are

zt ∼

{
N (−1, 0.1Id), t ∈ A1 ∪ A3,

N (5, 0.1Id), t ∈ A2 ∪ A4.

12

Published in Transactions on Machine Learning Research (04/2025)

Similar to the previous two scenarios, the simulation using RNNs also imposes a time-dependent mechanism
across the dynamic networks. Figure 4 exhibits examples of simulated networks. Visually, RNNs produce
adjacency matrices that are dense, and no discernible pattern can be noticed.

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 4: Examples of networks generated from RNNs with number of nodes n = 100. The edge density
is approximately 50% for each network. In the first row, from left to right, each plot corresponds to the
network at t = 25, 50, 75 respectively. In the second row, from left to right, each plot corresponds to the
network at t = 26, 51, 76 respectively (the change points).

Table 3 displays the means and standard deviations of the evaluation metrics for comparison. Because no
significant structural pattern or suitable network statistics can be determined a priori, neither CPDstergm
method with p = 4 nor with p = 6 can detect the change points accurately. Likewise, both gSeg and kerSeg
methods that utilize the mis-specified network statistics (stats.) cannot produce satisfactory performance.
The CPDrdpg method that focuses on node-level representation also does not perform well for networks with
complex structures. Notably, the kerSeg method that exploits the features in high dimension with networks
(nets.) as input data can produce good performance. The CPDnbs method that assumes the networks
are generated from inhomogeneous Bernoulli models and uses weighted averages of adjacency matrices also
achieve good performance. Lastly, our CPDlatent method that first infers the graph-level representations
from the networks and then utilizes them to detect change points yields the best performance in this scenario.

5.2 Degree Distributions and Shared Partner Distributions Comparison

Besides the ability to detect change points, our proposed framework includes a decoder that can sample
graphs from latent variables. Consider the originally simulated networks as ground truth. To evaluate the
model’s goodness of fit, we compare the degree distributions and shared partner distributions (Hunter &
Handcock, 2006) between the generated graphs and ground truth, as in Hunter et al. (2008a), Hunter et al.
(2008b), Kolaczyk & Csárdi (2014) and Handcock et al. (2022). Specifically, we first estimate the model
parameters using the simulated data that excludes the graphs at time t ∈ {10, 20, . . . , 100}. Then we sample
zt−1 from the estimated priors N (µ̂t−1, Id) to generate ŷt−1 with the learned decoder, as out-of-sample
forecasts for the networks at t ∈ {10, 20, . . . , 100}. For each time point, we generate s = 200 networks and
we visualize the degree and shared partners distributions. If the corresponding distributions are similar, it
indicates that the graph decoder effectively captures the underlying structures, and the generated graphs
closely resemble the originally simulated graphs. Figures 5, 6, and 7 display the degree distributions and
Figures 8, 9, and 10 display the shared partner distributions of the generated graphs predicted from the
learned decoder for Scenarios 1, 2, and 3 respectively.

13

Published in Transactions on Machine Learning Research (04/2025)

Table 3: Means (standard deviations) of evaluation metrics for dynamic networks simulated from RNNs.
The best coverage metric is bolded.

n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

50

CPDlatentN 0 (0.0) 1.8 (0.7) 1.8 (0.7) 94.77%
CPDlatentG 0.3 (0.6) 1.7 (0.6) 3.2 (3.0) 93.04%
CPDrdpg 2.4 (1.6) 12.7 (7.5) 11.2 (5.3) 58.07%
CPDnbs 0.1 (0.3) 3.5 (6.8) 1.2 (0.4) 93.87%
CPDstergmp=4 2.0 (1.7) 6.0 (7.7) 15.2 (4.9) 72.10%
CPDstergmp=6 1.0 (0.4) 18.5 (9.4) 14.3 (2.9) 60.25%
gSeg (nets.) 2.3 (0.6) Inf (na) −Inf (na) 29.42%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 2.47%
kerSeg (nets.) 1.5 (0.9) 1.4 (0.7) 5.3 (3.3) 89.25%
kerSeg (stats.) 2.8 (0.4) Inf (na) −Inf (na) 9.89%

100

CPDlatentN 0 (0.0) 2.5 (0.7) 2.5 (0.7) 91.96%
CPDlatentG 0.2 (0.6) 2.1 (0.7) 2.8 (1.8) 92.34%
CPDrdpg 1.5 (1.0) 12.3 (8.2) 10.4 (3.7) 60.15%
CPDnbs 0.1 (0.3) 2.5 (2.5) 3.3 (3.4) 90.74%
CPDstergmp=4 2.0 (1.4) 10.6 (8.0) 14.1 (3.1) 60.37%
CPDstergmp=6 1.2 (1.3) 20.6 (12.6) 15.2 (5.9) 53.21%
gSeg (nets.) 3 (0.0) Inf (na) −Inf (na) 0%
gSeg (stats.) 2.9 (0.3) Inf (na) −Inf (na) 4.27%
kerSeg (nets.) 1.4 (0.7) 1.9 (0.7) 5.4 (1.9) 88.95%
kerSeg (stats.) 3 (0.0) Inf (na) −Inf (na) 0%

Since the networks simulated from STERGM are sparse, the node degrees for both simulated and generated
graphs are low in Figure 5. The sparsity challenges the decoder to capture the structural patterns, which ex-
plain why some peaks in the degree distributions are not fully covered by the generated graphs. Nevertheless,
for nodes with low degrees on the left tails, the trends are well captured by the decoder. Similarly, due to the
sparsity, the majority of edges has fewer shared partners in Figure 8. Though the generated networks tends
to over-estimate the numbers of edges with particular numbers of shared partners, the decreasing trends are
captured by the decoder.

Next, the networks simulated from SBM have strong inter-block interactions and the networks simulated
from RNNs are dense, resulting in higher node degrees for the simulated and generated graphs in Figures 6
and 7. For these two scenarios, both the tails and peaks of the degree distributions are fully covered by the
generated graphs. Similarly, the numbers of shared partners for edges have wider ranges in Figures 9 and 10,
and the overall trends are well captured by the decoder. For all three scenarios, the slight discrepancy in the
alignment may be due to the decoder being shared across the time points, balancing the structural variation
over time. In summary, the overall trends of the corresponding distributions for the generated graphs align
with those for the simulated graphs, suggesting the generated graphs are similar to the ground truth and
the learned decoders have captured the underlying graph structures.

5.3 Real Data Experiments

In this section, we apply the proposed method to two real data, and we align the detected change points
with significant events for interpretation. In practice, the number and location of change points for real data
are typically unknown, so there is no widely accepted ground truth for either the change points or their
corresponding events in this unsupervised learning problem. Besides validating the detected change points
with significant events as in the literature, we attempt a heuristic approach to compare the results across

14

Published in Transactions on Machine Learning Research (04/2025)

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt
t = 10

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 20

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 30

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 40

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 50

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 60

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 70

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 80

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 90

0

5

10

15

20

0 10 20 30
Degree

C
ou

nt

t = 100

Figure 5: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from STERGM.

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 10

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 20

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 30

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 40

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 50

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 60

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 70

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 80

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 90

0

5

10

15

20

0 10 20 30 40 50 60
Degree

C
ou

nt

t = 100

Figure 6: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from SBM.

different detection methods as a supplementary evaluation. Specifically, we fit Degree-Corrected Stochastic
Block Models (DCSBM) (Karrer & Newman, 2011; Zhao et al., 2012) to the networks between consecutive
detected change points, and we evaluate the log-likelihood of out-of-sample networks that were excluded
during model fitting. We choose DCSBM, a generalization of Stochastic Block Model (SBM), because SBM
is a well known approximation of graphons, which are among the most general network model in the literature

15

Published in Transactions on Machine Learning Research (04/2025)

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt
t = 10

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 20

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 30

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 40

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 50

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 60

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 70

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 80

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 90

0

5

10

15

20

0 10 20 30 40 50 60 70 80
Degree

C
ou

nt

t = 100

Figure 7: Degree distributions for the generated graphs predicted from decoder at different time points for
the number of nodes n = 100 and sample size s = 200. The red lines correspond to the degree distributions
of graphs simulated from RNNs.

0

100

200

300

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 10

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 20

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 30

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 40

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 50

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 60

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 70

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 80

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 90

0

200

400

1 2 3 4 5 6 7 8 9 10
Edge−wise Shared Partners

C
ou

nt

t = 100

Figure 8: Edge-wise shared partner distributions for the generated graphs predicted from decoder at different
time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to the
edge-wise shared partner distributions of graphs simulated from STERGM.

(Airoldi et al., 2013; Olhede & Wolfe, 2014; Gao et al., 2015). Moreover, DCSBM does not favor either the
proposed or competitor methods in terms of fitting the model. Intuitively, a higher log-likelihood suggests
that the detected change points segment the time series in a way that better capture the unchanged patterns
within each interval. Additional details on this evaluation procedure are provided in Appendix 7.6.

16

Published in Transactions on Machine Learning Research (04/2025)

0

100

200

300

400

500

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt
t = 10

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 20

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 30

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 40

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 50

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 60

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 70

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 80

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 90

0

100

200

300

400

0 4 8 12 16 20 24
Edge−wise Shared Partners

C
ou

nt

t = 100

Figure 9: Edge-wise shared partner distributions for the generated graphs predicted from decoder at different
time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to the
edge-wise shared partner distributions of graphs simulated from SBM.

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 10

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 20

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 30

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 40

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 50

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 60

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 70

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 80

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 90

0

200

400

0 10 20 30 40 50
Edge−wise Shared Partners

C
ou

nt

t = 100

Figure 10: Edge-wise shared partner distributions for the generated graphs predicted from decoder at dif-
ferent time points for the number of nodes n = 100 and sample size s = 200. The red lines correspond to
the edge-wise shared partner distributions of graphs simulated from RNNs.

5.3.1 MIT Cellphone Data

The Massachusetts Institute of Technology (MIT) cellphone data (Eagle & Pentland, 2006) depicts human
interactions via phone call activities among n = 96 participants spanning T = 232 days. In the constructed
undirected networks, an edge yt

ij = 1 indicates that participant i and participant j had made phone calls on

17

Published in Transactions on Machine Learning Research (04/2025)

day t, and yt
ij = 0 otherwise. The data ranges from 2004-09-15 to 2005-05-04, covering the winter break in

the MIT academic calendar.

We apply our proposed method to detect change points using the data-driven threshold, and we use network
statistics as input data to the gSeg, kerSeg, and CPDstergm methods. Specifically, we use the number of
edges, isolates, and triangles to capture the frequency of connections, the sparsity of social interaction, and
the transitive association among participants, respectively. Moreover, the CPDrdpg and CPDnbs methods
directly utilize networks as input data. Figure 11 displays the magnitude of Equation (14) and the change
points detected by the proposed and competitor methods. Table 4 provides a list of potential events, aligning
with the detected change points from our method. In general, the magnitude in Figure 11 reflects the scale
of structural changes from the observed networks.

2004−10−23 2004−12−17 2005−01−18 2005−02−22 2005−04−02

Detected Change Points

M
ag

ni
tu

de

0

2

4

6

8

CPDnbs

CPDrdpg

CPDstergm

kerSeg

gSeg

Figure 11: Detected change points from the proposed and competitor (blue) methods on the MIT Cellphone
Data. The threshold (red horizontal line) is calculated by (15) with Z0.9. The dates of the detected change
points for the competitor methods are displayed in Appendix 7.6.

Without specifying the structural patterns in advance to search for change points, our method can punc-
tually detect the beginning of the winter break, which is the major event that alters the interaction among
participants. As the largest spike in our results of Figure 11, the beginning of the winter break is also de-
tected by the competitor methods effectively. Moreover, our method detects a change point on 2004-10-23,
corresponding to the annual sponsor meeting that occurred on 2004-10-21. More than two-thirds of the
participants have attended the meeting, focusing on achieving project goals throughout the week (Eagle &
Pentland, 2006). However, the CPDstergm and CPDrdpg methods struggle to detect this change point.
Furthermore, the proposed and competitor methods detect change points related to the spring break, while
our method detects two additional change points associated to federal holidays.

The primary discrepancies between the results in Figure 11 are the two federal holidays on 2005-01-17 and
2005-02-21, which are overlooked by some of the competitor methods. In particular, the gSeg, kerSeg, and
CPDrdpg methods identify change points slightly earlier than 2005-01-18, while the CPDstergm method
does not detect a change point around that period. These discrepancies may be affected by the overlap
between the winter break and other holidays around the end of 2004. The detected change points in January
2005 by the competitor methods also suggest that the Martin Luther King day detected by our method is
a reasonable change point after the winter break. Moreover, the CPDstergm method detects a clustering
of change points during the sponsor meeting around 2004-10-23, which is an indication of overfitting. The
result may absorb the excessive noise during that period, such that a clear and single change point cannot
be determined. In summary, our result overlaps with the combined results from the competitors, validating
the effectiveness of the proposed methods.

18

Published in Transactions on Machine Learning Research (04/2025)

Table 4: Potential nearby events aligned with the detected change points from our proposed method on the
MIT cellphone data.

Detected change points Potential nearby events

2004-10-23 2004-10-21 Sponsor meeting
2004-12-17 2004-12-18 to 2005-01-02 Winter break
2005-01-18 2005-01-17 Martin Luther King Day
2005-02-22 2005-02-21 Presidents Day
2005-04-02 2005-03-21 to 2005-03-25 Spring break

Finally, Table 5 presents a comparison of the log-likelihood values for out-of-sample graphs evaluated using
the fitted DCSBM. Although this evaluation procedure is heuristic, the log-likelihood can potentially indicate
how well the detected change points capture the unchanged patterns within each segmented interval. To
assess robustness and sensitivity, we also compare the results by selectively removing graphs at different
time gaps, specifically ∆t = {15, 20, 25, 30} for T = 232. The higher log-likelihood values associated with
change points detected by our method suggest that it identifies more meaningful segmentation compared to
competitor methods.

Table 5: Log-likelihood values of the out-of-sample graphs evaluated using the fitted DCSBM corresponding
to their respective intervals in the MIT cellphone data.

∆t CPDlatent CPDnbs CPDrdpg CPDstergm kerSeg gSeg

15 −3593.38 −3595.74 −3968.61 −3718.24 −4026.17 −3891.61
20 −2441.86 −2617.12 −2612.46 −2760.73 −2592.96 −2604.36
25 −1903.14 −2056.03 −2067.39 −2172.59 −2005.87 −2123.85
30 −1869.47 −1901.00 −1956.27 −1906.28 −1991.85 −1914.86

5.3.2 Enron Email Data

The Enron email data, analyzed by Priebe et al. (2005), Park et al. (2012), and Peel & Clauset (2015),
portrays the communication patterns among employees before the collapse of a giant energy company. The
data of our focus consists of T = 100 weekly undirected networks, ranging from 2000-06-05 to 2002-05-06
for n = 100 employees. We use the same configuration as described in Section 5.3.1 for the proposed and
competitor methods to detect change points. Figure 12 displays the magnitude of Equation (14) and the
detected change points from the proposed and competitor methods. Furthermore, Table 6 provides a list of
potential events, aligning with the detected change points from our method. In general, the magnitude in
Figure 12 reflects the scale of structural changes from the observed networks.

Table 6: Potential nearby events aligned with the detected change points from our proposed method on the
Enron email data.

Detected change points Potential nearby events

2000-10-16 2000-11-01 FERC exonerated Enron
2001-06-11 2001-06-21 CEO publicly confronted
2001-09-24 2001-09-26 Internal employee meeting
2001-12-03 2001-12-02 Enron filed for bankruptcy

In 2001, Enron underwent a multitude of major and overlapping incidents, making it difficult to associate
the detected change points with specific real events. Despite the turmoil, our method detects four signifi-

19

Published in Transactions on Machine Learning Research (04/2025)

2000−10−16 2001−06−11 2001−09−24 2001−12−03

Detected Change Points

M
ag

ni
tu

de

0

2

4

6

CPDnbs

CPDrdpg

CPDstergm

kerSeg

gSeg

Figure 12: Detected change points from the proposed and competitor (blue) methods on the Enron email
data. The threshold (red horizontal line) is calculated by (15) with Z0.9. The dates of the detected change
points for the competitor methods are displayed in Appendix 7.6.

cant change points that closely align with pivotal moments in Enron’s timeline. Throughout 2000, Enron
orchestrated rolling blackouts, causing staggering surges in electricity prices that peaked at twenty times
the standard rate. Thence, the first change point, detected on 2000-10-16 by our method, aligns with the
Federal Energy Regulatory Commission (FERC) exonerating Enron of wrongdoing on 2000-11-01. As a
major event with chain reaction throughout 2000, this change point is also detected by the gSeg, kerSeg,
CPDrdpg, and CPDnbs methods. Subsequently, a second change point, detected on 2001-06-11, aligns with
the CEO confronted by an activist on 2001-06-21 in protesting against Enron’s role in the energy crisis.
This public incident is also detected by the kerSeg, CPDrdpg, and CPDnbs methods while overlooked by
the other competitor methods.

The next two change points are associated with more pronounced shifts in network patterns, indicated by
the two substantially large spikes in Figure 12. Specifically, the third change point, detected on 2001-09-24,
coincides with an internal employee meeting on 2001-09-26, during which the CEO reassured employees that
Enron’s stock was a good buy and the company’s accounting methods were legal and appropriate. Following
this meeting, Enron’s stock saw a final surge before continuing its sharp decline. Finally, our method detects
a change point on 2001-12-03, aligning with Enron filing for bankruptcy on 2001-12-02, marking the collapse
of the largest energy company in the U.S.

Based on the results in Figure 12, the primary discrepancies between the proposed and competitor methods
are observed at the endpoint of the time span. In particular, four competitor methods have detected change
points in February 2002, corresponding to events after Enron filed for bankruptcy in December 2001. While
the magnitude exhibits two small spikes on the right in Figure 12, they do not exceed the threshold in red
to be declared as change points by our method. The scale of changes in communication patterns among
employees is smaller for the events in February 2002, comparing to the scale of changes in communication
patterns during bankruptcy.

Besides lowering the threshold to include these change points, the discrepancy suggests a potential extension
to improve the proposed framework. Perhaps we could specify the priors for the graph-level representations
as zt ∼ N (µt, Σt) and incorporate both the mean µt and covariance Σt into the penalty term of the
objective function. For example, to adaptively adjust the changes at different scales, the inverse of the
covariance Σt ∈ Rd×d may serve as a scaling factor for the difference µt+1−µt ∈ Rd, thereby enhancing the
magnitudes. By learning the covariances of the graph-level representations and monitoring their consecutive

20

Published in Transactions on Machine Learning Research (04/2025)

shifts over time, the latent space regularized in this way could potentially capture more subtle variations in
the data space. Furthermore, the ADMM procedure would require an update for Σt, and the quadratic form
for the localization method would need to be modified as (zt−zt−1)⊤(Σt + Σt−1)−1(zt−zt−1) ∼ χ2

d where
the inverse of the covariance is also used for standardization. As there are different ways to incorporate the
covariances into the regularization term and learning the positive semi-definite covariance via neural network
is challenging, we consider this improvement as a potential direction for future development.

The result for gSeg and kerSeg methods can be affected by the choices of network statistics, which may not
be representative enough to capture the structural changes. For CPDstergm, the absence of change points
in 2000 and the clustering of four change points in late 2001 indicate the detection is sensitive to the noise
where network structures shift rapidly during bankruptcy, rendering the detected change points unreliable
as the model is overfitted. In summary, the overlap between the proposed and competitor methods validates
the effectiveness of the proposed methods.

Finally, Table 7 compares the log-likelihood with the fitted DCSBM across different methods. Although this
is a heuristic evaluation approach, the log-likelihood values provide information into how well the detected
change points maintain structural coherence within each interval. To assess robustness and sensitivity, we
examine the results by selectively removing graphs at varying time gaps, specifically ∆t = {3, 6, 9, 12} for
T = 100. The log-likelihood values based on the change points detected by our method are higher most
of the time, suggesting that our approach identifies more reasonable change points compared to competitor
methods heuristically.

Table 7: Log-likelihood values of the out-of-sample graphs evaluated using the fitted DCSBM corresponding
to their respective intervals in the Enron email data.

∆t CPDlatent CPDnbs CPDrdgp CPDstergm kerSeg gSeg

3 −9863.13 −10340.97 −10485.42 −11681.16 −9936.28 −11697.72
6 −5068.16 −4944.41 −4821.88 −5558.92 −5025.10 −4967.78
9 −2994.83 −3315.66 −3238.66 −3190.70 −3217.85 −3274.96
12 −2482.73 −2507.28 −2570.34 −2518.89 −2540.31 −2592.20

6 Discussion

This paper proposes to detect change points in time series of graphs using a decoder-only latent space
model. Intrinsically, dynamic network structures can be complex due to dyadic and temporal dependencies,
making inference for dynamic graphs a challenging task. Learning low-dimensional graph representations can
extract useful features to facilitate change point detection in time series of graphs. Specifically, we assume
each observed network is generated from a latent variable through a graph decoder. We also impose prior
distributions to the graph-level representations, and the priors are learned from the data as empirical Bayes.
The optimization problem with Group Fused Lasso penalty on the prior parameters is solved via ADMM,
and experiment results demonstrate that generative model is useful for change point detection.

Several extensions to our proposed framework are possible for future development. Besides binary networks,
relations by nature have degree of strength, which are denoted by generic values. Moreover, nodal and dyadic
attributes are important components in network data. Hence, models that can generate weighted edges, as
well as nodal and dyadic attributes, can capture more information about the network dynamics (Fellows &
Handcock, 2012; Krivitsky, 2012; Kei et al., 2023a). Furthermore, the number of nodes and their attributes
are subjected to change over time. Extending the framework to allow varying network size and to detect
node-level anomalies can provide granular insights of network changes (Simonovsky & Komodakis, 2018;
Shen et al., 2023). Also, improving the scalability and computational efficiency for representation learning is
crucial (Killick et al., 2012; Gallagher et al., 2021), especially for handling large and weighted graphs. While
our framework demonstrates the ability in change point detection, the development of more sophisticated

21

Published in Transactions on Machine Learning Research (04/2025)

neural network architectures can enhance the model’s capacity on other meaningful tasks (Handcock et al.,
2007; Kolar et al., 2010; Yu et al., 2021; Madrid Padilla et al., 2023).

Code Availability

The codes are available at https://github.com/allenkei/CPD_generative.

Acknowledgments

We thank Mark Handcock and Ying Nian Wu for helpful comments on this work. Also, we are extremely
grateful for the constructive comments provided by the anonymous reviewers and Action Editors.

References
Edo M Airoldi, Thiago B Costa, and Stanley H Chan. Stochastic blockmodel approximation of a graphon:

Theory and consistent estimation. Advances in Neural Information Processing Systems, 26, 2013.

Carlos M Alaíz, Alvaro Barbero, and José R Dorronsoro. Group fused lasso. In Artificial Neural Networks
and Machine Learning–ICANN 2013: 23rd International Conference on Artificial Neural Networks Sofia,
Bulgaria, September 10-13, 2013. Proceedings 23, pp. 66–73. Springer, 2013.

Arash A. Amini, Aiyou Chen, Peter J. Bickel, and Elizaveta Levina. Pseudo-likelihood methods for commu-
nity detection in large sparse networks. The Annals of Statistics, 41(4):2097 – 2122, 2013.

Avanti Athreya, Zachary Lubberts, Youngser Park, and Carey Priebe. Euclidean mirrors and dynamics in
network time series. Journal of the American Statistical Association, pp. 1–41, 2024.

Avanti Athreya, Zachary Lubberts, Youngser Park, and Carey Priebe. Euclidean mirrors and dynamics in
network time series. Journal of the American Statistical Association, pp. 1–12, 2025.

Apratim Bhattacharyya, Bernt Schiele, and Mario Fritz. Accurate and diverse sampling of sequences based
on a “best of many” sample objective. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8485–8493, 2018.

Kevin Bleakley and Jean-Philippe Vert. The group fused lasso for multiple change-point detection. arXiv
preprint arXiv:1106.4199, 2011.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in
Machine Learning, 3(1):1–122, 2011.

Carter T Butts. A relational event framework for social action. Sociological Methodology, 38(1):155–200,
2008.

Carter T Butts, Alessandro Lomi, Tom AB Snijders, and Christoph Stadtfeld. Relational event models in
network science. Network Science, 11(2):175–183, 2023.

Guodong Chen, Jesús Arroyo, Avanti Athreya, Joshua Cape, Joshua T Vogelstein, Youngser Park, Chris
White, Jonathan Larson, Weiwei Yang, and Carey E Priebe. Multiple network embedding for anomaly
detection in time series of graphs. arXiv preprint arXiv:2008.10055, 2020a.

Hao Chen and Nancy Zhang. Graph-based change-point detection. The Annals of Statistics, 43(1):139–176,
2015.

Tianyi Chen, Zachary Lubberts, Avanti Athreya, Youngser Park, and Carey E Priebe. Euclidean mirrors
and first-order changepoints in network time series. arXiv preprint arXiv:2405.11111, 2024.

22

https://github.com/allenkei/CPD_generative

Published in Transactions on Machine Learning Research (04/2025)

Zhenxing Chen, Bo Liu, Meiqing Wang, Peng Dai, Jun Lv, and Liefeng Bo. Generative adversarial attributed
network anomaly detection. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management, pp. 1989–1992, 2020b.

Lynna Chu and Hao Chen. Asymptotic distribution-free change-point detection for multivariate and non-
euclidean data. The Annals of Statistics, 47(1):382–414, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Andrea Giuseppe Di Francesco, Francesco Caso, Maria Sofia Bucarelli, and Fabrizio Silvestri. Link prediction
under heterophily: A physics-inspired graph neural network approach. arXiv preprint arXiv:2402.14802,
2024.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Nathan Eagle and Alex (Sandy) Pentland. Reality mining: sensing complex social systems. Personal and
Ubiquitous Computing, 10(4):255–268, 2006.

Ian Fellows and Mark S. Handcock. Exponential-family random network models, 2012.

Ian Gallagher, Andrew Jones, and Patrick Rubin-Delanchy. Spectral embedding for dynamic networks with
stability guarantees. Advances in Neural Information Processing Systems, 34:10158–10170, 2021.

Chao Gao, Yu Lu, and Harrison H. Zhou. Rate-optimal graphon estimation. The Annals of Statistics, 43
(6):2624 – 2652, 2015.

Damien Garreau and Sylvain Arlot. Consistent change-point detection with kernels. Electronic Journal of
Statistics, 12(2):4440 – 4486, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Mingqi Han, Eric A Bushong, Mayuko Segawa, Alexandre Tiard, Alex Wong, Morgan R Brady, Milica
Momcilovic, Dane M Wolf, Ralph Zhang, Anton Petcherski, et al. Spatial mapping of mitochondrial
networks and bioenergetics in lung cancer. Nature, 615(7953):712–719, 2023.

Mark S Handcock, Adrian E Raftery, and Jeremy M Tantrum. Model-based clustering for social networks.
Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2):301–354, 2007.

Mark S. Handcock, David R. Hunter, Carter T. Butts, Steven M. Goodreau, Pavel N. Krivitsky, and Martina
Morris. ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project
(https://statnet.org), 2022. URL https://CRAN.R-project.org/package=ergm. R package version
4.3.2.

Steve Hanneke, Wenjie Fu, and Eric P Xing. Discrete temporal models of social networks. Electronic Journal
of Statistics, 4:585–605, 2010.

Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann LeCun, and Xavier Bresson. A generalization
of vit/mlp-mixer to graphs. In International Conference on Machine Learning, pp. 12724–12745. PMLR,
2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Peter D Hoff, Adrian E Raftery, and Mark S Handcock. Latent space approaches to social network analysis.
Journal of the american Statistical association, 97(460):1090–1098, 2002.

23

https://statnet.org
https://CRAN.R-project.org/package=ergm

Published in Transactions on Machine Learning Research (04/2025)

Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change point
detection for dynamic graphs. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 349–358, 2020.

David R Hunter and Mark S Handcock. Inference in curved exponential family models for networks. Journal
of computational and graphical statistics, 15(3):565–583, 2006.

David R Hunter, Steven M Goodreau, and Mark S Handcock. Goodness of fit of social network models.
Journal of the american statistical association, 103(481):248–258, 2008a.

David R. Hunter, Mark S. Handcock, Carter T. Butts, Steven M. Goodreau, and Martina Morris. ergm:
A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical
Software, 24(3):1–29, 2008b.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. Physical
Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(1):016107, 2011.

Yik Lun Kei, Yanzhen Chen, and Oscar Hernan Madrid Padilla. A partially separable model for dynamic
valued networks. Computational Statistics & Data Analysis, 187:107811, 2023a.

Yik Lun Kei, Hangjian Li, Yanzhen Chen, and Oscar Hernan Madrid Padilla. Change point detection on a
separable model for dynamic networks. arXiv preprint arXiv:2303.17642, 2023b.

Rebecca Killick, Paul Fearnhead, and Idris A Eckley. Optimal detection of changepoints with a linear
computational cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

Eric D Kolaczyk and Gábor Csárdi. Statistical analysis of network data with R, volume 65. Springer, 2014.

Mladen Kolar, Le Song, Amr Ahmed, and Eric P Xing. Estimating time-varying networks. The Annals of
Applied Statistics, pp. 94–123, 2010.

Pavel N Krivitsky. Exponential-family random graph models for valued networks. Electronic journal of
statistics, 6:1100, 2012.

Pavel N Krivitsky and Mark S Handcock. A separable model for dynamic networks. Journal of the Royal
Statistical Society. Series B, Statistical Methodology, 76(1):29, 2014.

Federico Larroca, Paola Bermolen, Marcelo Fiori, and Gonzalo Mateos. Change point detection in weighted
and directed random dot product graphs. In 2021 29th European Signal Processing Conference (EU-
SIPCO), pp. 1810–1814. IEEE, 2021.

Namhoon Lee, Wongun Choi, Paul Vernaza, Christopher B Choy, Philip HS Torr, and Manmohan Chan-
draker. Desire: Distant future prediction in dynamic scenes with interacting agents. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 336–345, 2017.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves
Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461, 2019.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural information processing
systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks, models,
theoretical analysis, applications and challenges. arXiv preprint arXiv:2407.09618, 2024.

24

Published in Transactions on Machine Learning Research (04/2025)

Carlos Misael Madrid Padilla, Haotian Xu, Daren Wang, Oscar Hernan Madrid Padilla, and Yi Yu. Change
point detection and inference in multivariable nonparametric models under mixing conditions. arXiv
preprint arXiv:2301.11491, 2023.

Oscar Hernan Madrid Padilla, Yi Yu, Daren Wang, and Alessandro Rinaldo. Optimal nonparametric multi-
variate change point detection and localization. IEEE Transactions on Information Theory, 68(3):1922–
1944, 2021.

Oscar Hernan Madrid Padilla, Yi Yu, and Carey E Priebe. Change point localization in dependent dynamic
nonparametric random dot product graphs. The Journal of Machine Learning Research, 23(1):10661–
10719, 2022.

Bernardo Marenco, Paola Bermolen, Marcelo Fiori, Federico Larroca, and Gonzalo Mateos. Online change
point detection for weighted and directed random dot product graphs. IEEE Transactions on Signal and
Information Processing over Networks, 8:144–159, 2022.

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy of mcmc-based
maximum likelihood learning of energy-based models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5272–5280, 2020.

Sofia C Olhede and Patrick J Wolfe. Network histograms and universality of blockmodel approximation.
Proceedings of the National Academy of Sciences, 111(41):14722–14727, 2014.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially regularized
graph autoencoder for graph embedding. arXiv preprint arXiv:1802.04407, 2018.

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based
prior model. Advances in Neural Information Processing Systems, 33:21994–22008, 2020.

Jong Hee Park and Yunkyu Sohn. Detecting Structural Changes in Longitudinal Network Data. Bayesian
Analysis, 15(1):133 – 157, 2020.

Youngser Park, Carey E Priebe, and Abdou Youssef. Anomaly detection in time series of graphs using fusion
of graph invariants. IEEE journal of selected topics in signal processing, 7(1):67–75, 2012.

Leto Peel and Aaron Clauset. Detecting change points in the large-scale structure of evolving networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Carey E Priebe, John M Conroy, David J Marchette, and Youngser Park. Scan statistics on enron graphs.
Computational & Mathematical Organization Theory, 11:229–247, 2005.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

S Golshid Sharifnia and Abbas Saghaei. A statistical approach for social network change detection: an ergm
based framework. Communications in Statistics-Theory and Methods, 51(7):2259–2280, 2022.

Cencheng Shen, Jonathan Larson, Ha Trinh, Xihan Qin, Youngser Park, and Carey E Priebe. Discover-
ing communication pattern shifts in large-scale labeled networks using encoder embedding and vertex
dynamics. IEEE Transactions on Network Science and Engineering, 2023.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp.
412–422. Springer, 2018.

Tom AB Snijders. The statistical evaluation of social network dynamics. Sociological methodology, 31(1):
361–395, 2001.

25

Published in Transactions on Machine Learning Research (04/2025)

Tom AB Snijders, Gerhard G Van de Bunt, and Christian EG Steglich. Introduction to stochastic actor-based
models for network dynamics. Social networks, 32(1):44–60, 2010.

Hoseung Song and Hao Chen. Asymptotic distribution-free changepoint detection for data with repeated
observations. Biometrika, 109(3):783–798, 2022a.

Hoseung Song and Hao Chen. New kernel-based change-point detection. arXiv preprint arXiv:2206.01853,
2022b.

Deborah Sulem, Henry Kenlay, Mihai Cucuringu, and Xiaowen Dong. Graph similarity learning for change-
point detection in dynamic networks. Machine Learning, pp. 1–44, 2023.

Gerrit JJ van den Burg and Christopher KI Williams. An evaluation of change point detection algorithms.
arXiv preprint arXiv:2003.06222, 2020.

Jean-Philippe Vert and Kevin Bleakley. Fast detection of multiple change-points shared by many signals
using group lars. Advances in Neural Information Processing Systems, 23, 2010.

Daren Wang, Yi Yu, and Alessandro Rinaldo. Optimal change point detection and localization in sparse
dynamic networks. The Annals of Statistics, 49(1):203–232, 2021a.

Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang, Hongjun Fu,
Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for single-cell rna-seq analyses.
Nature communications, 12(1):1882, 2021b.

Y. X. Rachel Wang and Peter J. Bickel. Likelihood-based model selection for stochastic block models. The
Annals of Statistics, 45(2):500 – 528, 2017. doi: 10.1214/16-AOS1457. URL https://doi.org/10.1214/
16-AOS1457.

Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth optimization.
Journal of Scientific Computing, 78:29–63, 2019.

Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu. Synthesizing dynamic patterns by spatial-temporal
generative convnet. In Proceedings of the ieee conference on computer vision and pattern recognition, pp.
7093–7101, 2017.

Jianwen Xie, Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu. Cooperative training of descriptor
and generator networks. IEEE transactions on pattern analysis and machine intelligence, 42(1):27–45,
2018.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure generation through
graph variational generative adversarial nets. Advances in neural information processing systems, 32, 2019.

Yi Yu, Oscar Hernan Madrid Padilla, Daren Wang, and Alessandro Rinaldo. Optimal network online change
point localisation. arXiv preprint arXiv:2101.05477, 2021.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

Xinxun Zhang, Pengfei Jiao, Mengzhou Gao, Tianpeng Li, Yiming Wu, Huaming Wu, and Zhidong Zhao.
Vggm: Variational graph gaussian mixture model for unsupervised change point detection in dynamic
networks. IEEE Transactions on Information Forensics and Security, 2024.

Yunpeng Zhao, Elizaveta Levina, and Ji Zhu. Consistency of community detection in networks under degree-
corrected stochastic block models. The Annals of Statistics, 40(4):2266 – 2292, 2012.

Zifeng Zhao, Li Chen, and Lizhen Lin. Change-point detection in dynamic networks via graphon estimation.
arXiv preprint arXiv:1908.01823, 2019.

26

https://doi.org/10.1214/16-AOS1457
https://doi.org/10.1214/16-AOS1457

Published in Transactions on Machine Learning Research (04/2025)

Xiaojing Zhu, Cantay Caliskan, Dino P Christenson, Konstantinos Spiliopoulos, Dylan Walker, and Eric D
Kolaczyk. Disentangling positive and negative partisanship in social media interactions using a coevolving
latent space network with attractors model. Journal of the Royal Statistical Society Series A: Statistics
in Society, 186(3):463–480, 2023.

Yunzhang Zhu. An augmented admm algorithm with application to the generalized lasso problem. Journal
of Computational and Graphical Statistics, 26(1):195–204, 2017.

7 Appendix

7.1 Updating µ and ϕ

In this section, we derive the updates for prior parameter µ ∈ RT ×d and graph decoder parameter ϕ. Denote
the objective function in Equation (6) as L(ϕ, µ) and denote the set of parameters {ϕ, µ} as θ. We first
calculate the gradient of log-likelihood l(θ) in L(ϕ, µ) with respect to θ:

∇θ l(θ) = ∇θ

T∑
t=1

log P (yt)

=
T∑

t=1

1
P (yt)∇θP (yt)

=
T∑

t=1

1
P (yt)∇θ

∫
P (yt, zt)dzt

=
T∑

t=1

1
P (yt)

∫
P (yt, zt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (yt, zt)

P (yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1

∫
P (zt|yt)

[
∇θ log P (yt, zt)

]
dzt

=
T∑

t=1
EP (zt|yt)

(
∇θ log

[
P (yt|zt)P (zt)

])
=

T∑
t=1

EP (zt|yt)

(
∇θ log P (yt|zt)

)
+

T∑
t=1

EP (zt|yt)

(
∇θ log P (zt)

)
.

Note that the expectation in the gradient is now with respect to the posterior distribution P (zt|yt) ∝
P (yt|zt) × P (zt). Furthermore, the gradient of L(ϕ, µ) with respect to the prior parameter µt ∈ Rd at a
specific time point t is

∇µt L(ϕ, µ) = −EP (zt|yt)

(
∇µt log P (zt)

)
+ κ(µt − νt + wt)

= −EP (zt|yt)(zt − µt) + κ(µt − νt + wt).

Setting the gradient ∇µt L(ϕ, µ) to zeros and solve for µt, we have

0 = −EP (zt|yt)(zt) + (1 + κ)µt − κ(νt −wt)
(1 + κ)µt = EP (zt|yt)(zt) + κ(νt −wt)

µt = 1
1 + κ

EP (zt|yt)(zt) + κ

1 + κ
(νt −wt).

27

Published in Transactions on Machine Learning Research (04/2025)

Evidently, the gradient of L(ϕ, µ) with respect to the graph decoder parameter ϕ is

∇ϕ L(ϕ, µ) = −
T∑

t=1
EP (zt|yt)

(
∇ϕ log P (yt|zt)

)
.

The parameter ϕ can be updated efficiently through back-propagation.

7.2 Langevin Dynamics

Calculating the solution in (9) and the gradient in (10) requires evaluating the conditional expectations under
the posterior distribution P (zt|yt) ∝ P (yt|zt) × P (zt). In this section, we discuss the Langevin Dynamics
to sample zt ∈ Rd from the posterior distribution P (zt|yt) that is conditional on the observed network
yt ∈ {0, 1}n×n. The Langevin Dynamics, a short run MCMC, is achieved by iterating the following:

zt
τ+1 = zt

τ + δ
[
∇zt log P (zt|yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt) +∇zt log P (zt)−∇zt log P (yt)

]
+
√

2δϵ

= zt
τ + δ

[
∇zt log P (yt|zt)− (zt

τ − µt)
]

+
√

2δϵ

where τ is the time step and δ is the step size of the Langevin Dynamics. The error term ϵ ∼ N (0, Id) serves
as a random perturbation to the sampling process. The gradient of the graph decoder P (yt|zt) with respect
to the latent variable zt can be calculated efficiently through back-propagation. Essentially, we use MCMC
samples to approximate the conditional expectation EP (zt|yt)(·) in the solution (9) and the gradient (10).

7.3 Group Lasso for Updating β

In this section, we present the derivation to update β in Proposition 2, which is equivalent to solving a
Group Lasso problem (Yuan & Lin, 2006). We adapt the derivation from Bleakley & Vert (2011) for our
proposed ADMM algorithm. Denote the objective function in (7) as L(γ, β). When βt,· ̸= 0, the gradient
of L(γ, β) with respect to βt,· is

∇βt,·L(γ, β) = λ
βt,·

∥βt,·∥2
− κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,tβt,· −X·,−tβ−t,·)

where X·,t ∈ RT ×1 is the t-th column of matrix X ∈ RT ×(T −1) and βt,· ∈ R1×d is the t-th row of matrix
β ∈ R(T −1)×d. Moreover, we denote β−t,· ∈ R(T −1)×p as the matrix obtained by replacing the t-th row of
matrix β with a zero vector, and X·,−t ∈ RT ×(T −1) is denoted similarly.

Setting the above gradient to zeros, we have

βt,· =
(

κX⊤
·,tX·,t + λ

∥βt,·∥ 2

)−1
bt (16)

where
bt = κX⊤

·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·) ∈ R1×d.

Calculating the Euclidean norm of (16) on both sides and rearrange the terms, we have

∥βt,·∥2 = (κX⊤
·,tX·,t)−1(∥bt∥2 − λ).

Plugging ∥βt,·∥2 into (16) for substitution, the solution of βt,· is arrived at

βt,· = 1
κX⊤

·,tX·,t

(
1− λ

∥bt∥2

)
bt.

Moreover, when βt,· = 0, the subgradient v of ∥βt,·∥2 needs to satisfy that ∥v∥2 ≤ 1. Because

0 ∈ λv − κX⊤
·,t(µ(a+1) + w(a) − 1T,1γ −X·,−tβ−t,·),

28

Published in Transactions on Machine Learning Research (04/2025)

we obtain the condition that βt,· becomes 0 when ∥bt∥2 ≤ λ. Therefore, we can iteratively apply the
following to update βt,· for each block t = 1, . . . , T − 1:

βt,· ←
1

κX⊤
·,tX·,t

(
1− λ

∥bt∥2

)
+

bt

where (·)+ = max(·, 0).

7.4 ADMM Procedure

The procedure to solve the problem in (3) via ADMM is presented in Algorithm 1. The steps to transform
between ν and (γ, β) within an ADMM iteration are omitted for succinctness. The complexity of the
proposed algorithm is at least of order O

(
A(Tsld + BTnk + DT)

)
with additional gradient calculation

for neural networks in sub-routines. Specifically, for each of A iterations of ADMM, we update the prior
parameter µt ∈ Rd for all T time points, and each update involves l steps of MCMC for s samples. Then we
calculate the gradients of neural networks for all T time points and run B iterations of Adam optimizer. The
output of neural networks has dimensions n by k. Lastly, we run D iterations of block coordinate descent
for the sequential differences. Essentially, ADMM decomposes a complex optimization problem into smaller
problems, targeting individual component one at a time.

Algorithm 1 Latent Space Group Fused Lasso
1: Input: learning iterations A, B, D, tuning parameter λ, penalty parameter κ, learning rates η, observed

data {yt}T
t=1, initialization {ϕ(1), µ(1), γ(1), β(1), w(1)}

2: for a = 1, · · · , A do
3: for t = 1, · · · , T do
4: draw s samples zt

1, . . . , zt
s from P (zt|yt) according to (11)

5: µt
(a+1) = 1

1+κ (s−1 ∑s
i=1 zt

i) + κ
1+κ (νt −wt)

6: end for
7: for b = 1, . . . , B do
8: ϕ(b+1) = ϕ(b) − η ×∇ϕ L(ϕ, µ)
9: end for

10: Set γ̃(1) = γ(a) and β̃(1) = β(a)
11: for d = 1, . . . , D do
12: Let β̃

(d+1)
t,· be updated according to (12) for t = 1, . . . , T − 1

13: γ̃(d+1) = (1/T)11,T · (µ(a+1) + w(a) −Xβ̃(d+1))
14: end for
15: Set γ(a+1) = γ̃(d+1) and β(a+1) = β̃(d+1)

16: w(a+1) = µ(a+1) − ν(a+1) + w(a)
17: end for
18: µ̂← µ(a+1)
19: Output: learned prior parameters µ̂

7.5 Practical Guidelines

7.5.1 ADMM Implementation

In this section, we provide practical guidelines for the proposed framework and ADMM algorithm. For
Langevin Dynamic sampling, we set δ = 0.5, and we draw s = 200 samples for each time point t. To detect
change points using the data-driven threshold in (15), we let the tuning parameter λ = {10, 20, 50, 100}.
To detect change points using the localizing method with Gamma distribution in (13), we let the tuning
parameter λ = {5, 10, 20, 50}. For each λ, we run A = 50 iterations of ADMM. Within each ADMM
iteration, we run B = 20 iterations of gradient descent with Adam optimizer for the graph decoder and
D = 20 iterations of block coordinate descent for Group Lasso. We run our experiment with Tesla T4
GPU. The running time for the simulated study is about two hours for a scenario with all sequences and

29

Published in Transactions on Machine Learning Research (04/2025)

cross-validation on the tuning parameter λ. The running time for the real data experiment is approximately
twenty to thirty minutes including cross-validation on the tuning parameter λ.

Since the proposed generative model is a probability distribution for the observed network data, in this work
we stop ADMM learning with the following stopping criteria:∣∣∣∣ l(ϕ(a+1), µ(a+1))− l(ϕ(a), µ(a))

l(ϕ(a), µ(a))

∣∣∣∣ ≤ ϵtol. (17)

The log-likelihood l(ϕ, µ) is approximated by sampling from the prior distribution p(zt), as described in
Section 4.2. Hence, we stop the ADMM procedure until the above criteria is satisfied for a′ consecutive
iterations. In Section 5, we set ϵtol = 10−5 and a′ = 5.

Here we also elaborate on the computational aspect of the approximation of the log-likelihood. To calculate
the product of edge probabilities for the conditional distribution P (yt|zt), we have the following:

T∑
t=1

log P (yt) =
T∑

t=1
log

∫
P (yt|zt)P (zt)dzt

=
T∑

t=1
logEP (zt)[

∏
(i,j)∈Y

P (yt
ij |zt)]

≈
T∑

t=1
log

[1
s

s∑
u=1

[
∏

(i,j)∈Y

P (yt
ij |zt

u)]
]

=
T∑

t=1
log

[1
s

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]}
]

=
T∑

t=1

{
− log s + log

[
exp Ct

s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}

=
T∑

t=1

{
Ct + log

[s∑
u=1

exp{
∑

(i,j)∈Y

log[P (yt
ij |zt

u)]− Ct}
]}
− T log s

where Ct ∈ R is the maximum value of
∑

(i,j)∈Y log[P (yt
ij |zt

u)] over m samples but within a time point t.

We also update the penalty parameter κ to improve convergence and to reduce reliance on its initialization.
In particular, after the a-th ADMM iteration, we calculate the respective primal and dual residuals:

r
(a)
primal =

√√√√ 1
T × d

T∑
t=1
∥µt

(a) − νt
(a)∥

2
2 and r

(a)
dual =

√√√√ 1
T × d

T∑
t=1
∥νt

(a) − νt
(a−1)∥

2
2.

Throughout, we initialize the penalty parameter κ = 10. We jointly update the penalty parameter κ and
the scaled dual variable w as in Boyd et al. (2011) with the following conditions:

κ(a+1) = 2κ(a), w(a+1) = 1
2w(a), if r

(a)
primal > 10× r

(a)
dual,

κ(a+1) = 1
2κ(a), w(a+1) = 2w(a), if r

(a)
dual > 10× r

(a)
primal.

7.5.2 Post-Processing

Since neural networks may be over-fitted for a statistical model in change point detection, we track the
following Coefficient of Variation as a signal-to-noise ratio when we learn the model parameter with the full
time series data:

Coefficient of Variation = mean(∆µ̂)
sd(∆µ̂) .

30

Published in Transactions on Machine Learning Research (04/2025)

We choose the learned parameter µ̂ with the largest Coefficient of Variation as final output.

By convention, we also implement two post-processing steps to finalize the detected change points. When
the gap between two consecutive change points is small or Ĉk−Ĉk−1 < ϵspc, we preserve the detected change
point with greater ∆ζ̂ value to prevent clusters of nearby change points. Moreover, as the endpoints of a
time span are usually not of interest, we remove the Ĉk smaller than a threshold ϵend and the Ĉk greater
than T − ϵend. In Section 5, we set ϵspc = 5 and ϵend = 5.

7.6 Real Data Experiments

Besides aligning the detected change points with significant real events for interpretation, we can use the
Degree-Corrected Stochastic Block Models (DCSBM) (Karrer & Newman, 2011; Zhao et al., 2012) to heuris-
tically compare the change points detected by the proposed and competitor methods. Specifically, we first
remove a pre-specified subset of graphs from the time series, and we fit a DCSBM to the remaining graphs
within each interval segmented by two consecutive detected change points. For each removed graph, we com-
pute its log-likelihood value under the fitted DCSBM corresponding to its assigned interval. Heuristically, a
higher log-likelihood indicates that the removed graph is more structurally stable within its interval, thereby
supporting the validity of the detected change points.

To implement this supplementary evaluation procedure, we use the nett package (Amini et al., 2013) in R
to fit the DCSBM. For two consecutive change points, we consider the time series between them and we
exclude the graphs in a pre-specified subset. The remaining graphs in the interval are used to compute the
average adjacency matrix and fitted to the DCSBM. We let the number of community be K = {2, 3, 4, 5}
and we use the lowest BIC score (Wang & Bickel, 2017) to choose the optimal number of community for
that interval. Lastly, we calculate the log-likelihood of the removed graphs with the node labels estimated
by the nett package.

The Degree-Corrected Stochastic Block Model (DCSBM) extends the Stochastic Block Model (SBM) by
incorporating degree heterogeneity. The expected adjacency matrix under the DCSBM is given by E(Aij |c) =
θiθjPci,cj , where θi is the degree parameter for node i, ci ∈ {1, . . . , K} is the community assignment of node
i, and Pci,cj ∈ [0, 1]K×K is the block probability matrix. The nett package fits a DCSBM by maximizing
the following conditional log pseudo-likelihood (Amini et al., 2013):

l(π, Θ; {bi}) =
n∑

i=1
log

(K∑
l=1

πl

K∏
k=1

θbik

lk

)
.

With an initialized label vector e = (e1, . . . , en) for ei ∈ {1, . . . , K}, the expectation–maximization (EM)
algorithm iteratively implements the following updates until convergence:

πil =
πl

∏K
m=1 θbim

lm∑k
k=1 πk

∏K
m=1 θbim

km

, πl = 1
n

n∑
i=1

πil, θlk =
∑

i πilbik∑
i πildi

,

with node degree d1, . . . , dn. The label vector is updated as ei = arg maxl πil, and the block sums are
calculated as bik =

∑
j Aij · 1(ej = k) for node i = 1, . . . , n and block k = 1, . . . , K.

Once the updated node labels e = (e1, . . . , en) are obtained, the nett package in R calculates the block sum
Bkl =

∑
ij Aij · 1(ei = k, ej = l), node parameter θi = di/

∑
j Bei,ej , and the log-likelihood of DCSBM:

l(θ; A) =
∑

ij

Aij log(θiθjBei,ej)− 1
2

(∑
k,l

Bkl +
∑

k

Bkk

(∑
i:ei=k

θ2
i

))
+

∑
k

nk log
(nk

n

)
.

Although this is an heuristic evaluation approach, the log-likelihood values can potentially provide informa-
tion on how well the detected change points have segmented the entire time span into intervals, in which the
network patterns are relatively stable.

In Section 5.3, we apply the evaluation procedure to real data. For the MIT cellphone data with T = 232,
we remove the graphs at time t equals to multiples of ∆t = {15, 20, 25, 30} respectively. For the Enron Email

31

Published in Transactions on Machine Learning Research (04/2025)

data with T = 100, we remove the graphs at time t equals to multiples of ∆t = {3, 6, 9, 12} respectively.
For completeness, Table 8 provides the dates of detected change points from the competitor methods on the
respective MIT cellphone data and Enron email data.

Table 8: Dates of detected change points from the competitor methods.
Data Method Dates of Detected Change Points

MIT
cellphone
data

CPDnbs 2004-10-30, 2004-12-17, 2005-01-18, 2005-02-19, 2005-03-11, 2005-03-31
CPDrdpg 2004-12-17, 2005-01-06, 2005-03-11
CPDstergm 2004-10-13, 2004-10-24, 2004-11-02, 2004-11-16, 2004-12-17, 2005-03-24
kerSeg 2004-10-18, 2004-12-17, 2005-01-05, 2005-04-02
gSeg 2004-11-01, 2004-12-11, 2004-12-18, 2005-01-10, 2005-03-11

Enron
email
data

CPDnbs 2000-09-04, 2001-02-05, 2001-06-11, 2001-09-03, 2001-11-26
CPDrdpg 2000-10-09, 2001-01-08, 2001-05-21, 2001-08-13, 2001-09-17, 2001-12-10, 2002-02-04
CPDstergm 2001-08-20, 2001-10-15, 2001-12-10, 2002-02-04
kerSeg 2000-07-10, 2000-10-23, 2001-05-21, 2002-02-11, 2002-03-25
gSeg 2000-07-10, 2000-10-16, 2001-12-31, 2002-02-11, 2002-03-25

32

	Introduction
	Latent Space Model for Change Point Detection
	Model Specification
	Change Points
	Choice of Graph Decoder

	Learning and Inference
	Learning Priors from Dynamic Graphs
	Parameters Update
	Updating TEXT and TEXT
	Updating TEXT and TEXT

	Change Point Localization and Model Selection
	Change Point Localization
	Model Selection

	Simulated and Real Data Experiments
	Simulation Study
	Degree Distributions and Shared Partner Distributions Comparison
	Real Data Experiments
	MIT Cellphone Data
	Enron Email Data

	Discussion
	Appendix
	Updating TEXT and TEXT
	Langevin Dynamics
	Group Lasso for Updating TEXT
	ADMM Procedure
	Practical Guidelines
	ADMM Implementation
	Post-Processing

	Real Data Experiments

