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Abstract

We propose an imperceptible multi-bit text
watermark embedded by paraphrasing with
LLMs. We fine-tune a pair of LLM paraphrasers
that are designed to behave differently so that
their paraphrasing difference reflected in the
text semantics can be identified by a trained
decoder. To embed our multi-bit watermark, we
use two paraphrasers alternatively to encode the
pre-defined binary code at the sentence level.
Then we use a text classifier as the decoder to
decode each bit of the watermark. Through
extensive experiments, we show that our wa-
termarks can achieve over 99.99% detection
AUC with small (1.1B) text paraphrasers while
keeping the semantic information of the original
sentence. More importantly, our pipeline is
robust under word substitution and sentence
paraphrasing perturbations and generalizes well
to out-of-distributional data. We also show
the stealthiness of our watermark with LLM-
based evaluation. We open-source the code:
https://github.com/xiaojunxu/
multi-bit-text-watermark.

1. Introduction

Text watermark aims to encode some imperceptible signal
into a piece of text so that people are able to decode the sig-
nal from the text (Liu et al., 2024). It can be useful in var-
ious applications such as copyright protection and hidden
message communication. With the development of Large
Language Models (LLMs), there is also a growing need
to track misinformation spread by LLMs using text water-
mark injected to model outputs (Kirchenbauer et al., 2023).
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We study the methodology of injecting a multi-bit water-
mark message into a piece of text by paraphrasing. The wa-
termarked text will keep the semantic meaning of the orig-
inal text after paraphrasing. Another paired decoder will
be used to decode the message from the watermarked text.
Unlike lexical-based watermarks which inject watermarks
by synonym substitutions, the paraphrasing-based method
has a larger action space for watermark injection and also
is more robust under perturbations. However, there are also
challenges in designing paraphrasing-based watermarks, as
it is unclear on how to properly inject imperceptible but
detectable watermark signal while keeping the text quality
and original semantic meaning.

In this work, we propose a paraphrasing-based watermark
by simultaneously fine-tuning an LLM-based paraphraser
as the encoder and train a LM-based text classifier as the
decoder. The pipeline is shown in Figure 1. In the encoding
stage, we will paraphrase the input text conditioned on a
user-chosen key to generate the watermarked text. In the
decoding stage, we will extract the code from the input text
with the decoder and compare with the previously chosen
key to see if it is watermarked by the user.

The key to produce a high-quality text watermark in our
method is to train a good encoder-decoder pair. For the de-
coder, we can train it with standard classification loss so
that it can better classify between “bit-0 texts” and “bit-1
texts”. For the encoder, we would like to fine-tune it so
that its generated text can be better classified by the de-
coder. Inspired by (Xu et al., 2024), we show that we can
use the decoder as a reward model to evaluate how well the
paraphrased text generated by the encoder can be correctly
classified. Thus, we can use PPO-based RL techniques to
finetune the encoder so that the injected watermark can be
better decoded. We adopt a co-training framework so that
the encoder and decoder are alternatively updated during
the training process.

Through experiments, we show that our experiments can
achieve a very high watermark detection performance
while maintaining the paraphrasing fidelity. We achieve
over 95% bit accuracy and over 0.99 detection AUC, both
outperforming existing methods significantly. In addition,
we can apply a simple repetition-based strategy and im-
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prove the detection AUC to over 0.9999. In addition, our
method also shows a good robustness under word substi-
tution and sentence paraphrasing perturbations. We also
evaluate our methods over out-of-distributional (OOD) data
and observe that our model can achieve over 0.99 AUC for
most of the OOD tasks. All these results show the effec-
tiveness and robustness of our watermark.

The rest of the paper is organized as follows. We will first
introduce the preliminary knowledge of the work in Sec-
tion 2. Then we introduce our paraphrasing-based water-
mark methodology in Section 3. We will show the exper-
iment results in Section 4. Finally, we discuss the related
work in Section 5 and conclude the work in Section 6.

2. Preliminary

2.1. Goal of Multi-bit Text Watermark

The goal of the work is to inject a multi-bit watermark mes-
sage into a piece of text by paraphrasing. Formally speak-
ing, in the watermark injection stage, we are given an orig-
inal text xo and a watermark message M ∈ {0, 1}∞. We
will inject watermark by generating a new watermarked
text with a encoder xw = E(xo,M). To extract the wa-
termark, we will use a watermark decoder M ′ = D(xw)
to decode the injected watermark. We hope that the de-
coded bits should match the prefix of the designed water-
mark message, i.e., M ′ = M [: len(M ′)]. Note that this
is a vary-length watermark, where the length of watermark
message is dependent on the length of text - the longer the
text is, the more information we can encode in the water-
marked text. This is contrary to the fix-length text water-
mark (e.g. (Zhang et al., 2024b)), where the watermark
code is a fixed length for any given input text. The length
of M ′ depend on different watermark designs, and we will
introduce them in Section 3.1.

We have the following requirements on the paraphrased
text:

• Fidelity: The watermarked text should not change
the meaning of the original text. The similarity
sim(xo, xw) should be high.

• Accuracy: The watermark decoder should accurately
decode the watermark message. The error rate |M ′ −
M [: len(M ′)]|0 should be low.

• Robustness: The watermark message should still ex-
ist after the watermarked text undergoes some pertur-
bation. Let M ′

pert = D(pert(xw)) denote decoded
message from perturbed watermarked text. We hope

that the error rate after perturbation |M ′
pert − M [:

len(M ′
pert)]|0 should be low.

• Stealthiness: The watermark should not be easily de-
tected by human eyes. We evaluate it with the crite-
ria that human cannot easily detect the watermarks in
the text. Formally speaking, let M ′

h = Dhuman(x
w)

be the human guess on the watermark code. We hope
that |M ′

h−M [: len(M ′
h)]|0 should be high, i.e. human

guess on the watermark code has a high error rate.

2.2. Background: PPO

Proximal Policy Optimization (PPO) (Schulman et al.,
2017) is a standard way to optimize a language model to-
wards a high reward calculated by some pre-defined reward
functions r(x) ∈ R, where x is the input text (i.e. a se-
quence of tokens). Let π(xt|x<t) denote the probability
of generating token xt given the context, and π(·|x<t) de-
note the overall probability vector. We use πθ to denote the
model to train and πref to denote a reference model. Peo-
ple will first estimate an “advantage” at each step At(x)
given the final reward r(x), which approximates how each
token contributes to the final reward. There are different
choices of how to estimate the advantage. We use the Gen-
eralized Advantage Estimation (GAE) (Jaques et al., 2019;
Zheng et al., 2023) with critic models, which we omit the
details here. Having the advantage At(x) at each step, the
PPO algorithm will optimize the input x by minimizing the
following loss:

ℓPPO(θ;x) =
∑
t

(
− Et

[ πθ(xt|x<t)

πref (xt|x<t)
At(x)

]
+ λkKL(πθ(·|x<t), πref (·|x<t))

)
(1)

where the first term is to maximize the expected advan-
tage on each token, and the second term is to regularize the
model to not drastically change from the reference model.

3. Methodology

3.1. Overview

We illustrate the high-level pipeline of our watermark in
Figure 1. Our core idea is to inject the watermark into a
piece of text by paraphrasing the text to include the im-
perceptible watermark signal, which can be later decoded
by a text classifier. To encode a watermark message into a
piece of text, we will apply a LLM-based paraphraser con-
ditioned on one watermark bit (0 or 1). The watermark bit
is initialized as the first bit of the watermark message, and
updated to later bits during the token-by-token generation
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We propose a pipeline to inject multi-bit text 
watermark. We encode the watermark by 
paraphrasing a piece of text using special 
paraphrasers. Then the watermark can be 
detected by our trained decoder.

We propose a method for multi-bit text 
watermark injection. The watermark is 
encoded into a piece of text with special 
paraphrasers. We then detect the 
watermark using our trained decoder.

We propose a method for multi-bit text 
watermark injection. The watermark is 
encoded into a piece of text with special 
paraphrasers. We then detect the 
watermark using our trained decoder.
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Figure 1. The overview of our watermark pipeline. During encoding, we use an encoder to parapharse the input text given a user-chosen
key. During decoding, we extract the bits from the text using the decoder.

process. Different segments in the generated text will cor-
respond to different bits in the message code. To decode the
watermark message from a piece of watermarked text, we
will divide the text into multiple segments, and then apply
the LM-based classifier to determine the watermark bit for
each segment. The concatenated message is the decoded
watermark message.

Text Segmentor Note that both processes require a
mechanism to divide a text into segments, so that we can
assign one bit to each segment of the text to inject multi-bit
watermark code. We use a “text segmentor” S to do the
segmentation, which will operate in two different modes
during encoding and decoding. During encoding, it will
take the current generated text and output a boolean value
S(x|mode=E) ∈ {0, 1} to determine whether the next to-
ken will belong to a new segment. During decoding, it will
take a piece of text x as input and segment it into a list of
segments S(x|mode=D) = [x̃1, x̃2, . . .]. In this work, we
choose to do the segmentation on the sentence-level, i.e.
every sentence in the text is a segment.We view it as a sim-
ple yet robust choice, as word-level injection/deletion will
not change the segmentation, and paraphrasing will also
keep the sentence order in most cases.

3.2. Encoder: LLM-based Paraphraser

The encoder E aims to paraphrase the input text based on
a given watermark code and get xw = E(xo,M) based

on LLMs. Our design of the encoder is to have two LLM-
based paraphrasers (θ0, θ1) and use them alternatively in
the token-by-token generation process, which is based on
the current watermark code determined by the sentence
segmentor. Formally speaking, let xw

t = f(xo, xw
<t; θi)

denote the process of generating the next token when para-
phrasing the input xo parametrized by θi. The encoding
algorithm is shown in Alg. 1. We track the current water-
mark bit, and the next token is generated with the corre-
sponding paraphraser θbit. After each generation step, we
check whether the next token will be in a new segment by
calculating S(xw;mode=E). If the new segment starts, we
will update bit to be the next bit in the watermark message.

3.3. Decoder: LLM-based Text Classifier

The decoder D will decode the watermark code from a
piece of text and get M ′ = D(xw) ∈ {0, 1}∗. We use
g(x; θd) ∈ {0, 1} to denote a binary classifier on a text
with parameters θd, and use gp(x; θd) ∈ (0, 1) to denote the
predicted probability of class-1. The decoding algorithm is
shown in Alg. 2. We will segment the input text into mul-
tiple segments S(x;mode=D), then apply the classifier to
each segment to calculate the decoded watermark.

3.4. Co-training Framework

The training framework is inspired by (Xu et al., 2024),
which shows that the text classifier can be viewed as a “re-
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Algorithm 1 Watermark Encoding Algorithm xw =
E(xo,M ;S, θ0, θ1).
Require: Input text xo; Watermark code M ; Text segmen-

tor S; Parameters for two paraphrasers θ0 and θ1.
Ensure: Watermarked text xw

1: xw ← [ ]
2: i ← 0 /* index of current watermark

bit */
3: while xw[−1] ̸= ⟨EOS⟩ do
4: bit←M [i]
5: xw.append(f(xo, xw; θbit))
6: /* Switch to the next bit if the

current segmentation ends. */
7: if S(xw;mode=E) = 1 then
8: i← i+ 1
9: end if

10: end while
11: return xw

Algorithm 2 Watermark Decoding Algorithm M ′ =
D(xw;S, θd).
Require: Input text xw; Text segmentor S; Parameters for

the text classifier θd.
Ensure: Decoded watermark M ′

1: M ′ ← [ ]
2: for x̃i ∈ S(xw;mode=D) do
3: M ′.append(g(x̃i; θd))
4: end for
5: return M ′

ward model” to finetune LLMs with PPO, and that the text
classifier and the LLM can be trained alternatively. In our
work, we will alternate between two goals: optimizing the
decoder (θd) and optimizing the paraphrasers (θ0 and θ1).
The goal of the decoder is to accurately classify each bit of
the original watermark code M . We use the cross entropy
loss to optimize the decoder:

ℓD(θd;x
w,M) =

|D(xw)|∑
i=1

(
M [i] · gs(x̃w

i ; θd)

+ (1−M [i]) · (1− gs(x̃
w
i ; θd))

)
(2)

The goal of the encoder is to generate inputs that can be
better recognized by the decoder, while keeping its normal
utility (i.e. a good paraphrasing performance). To opti-
mize the encoder, we utilize the idea of PPO that a LLM
can be fine-tuned with RL-based techniques with respect
to a reward model. Here, the decoder is used to calculate
the “reward” of how the output of encoder can be success-
fully decoded as the original watermark code. Specifically,

given original text xo, watermark code M and the water-
marked text xw = E(xo,M), the watermark reward rw is
calculated by:

rw(x
w,M) =

len(D(xw))∑
i=1

1{D(xw)[i] = M [i]} (3)

In addition, we will also calculate a similarity reward
rs(x

w, xo) with a text similarity model. The overall reward
is a weighted sum of the two rewards:

r(xw, xo,M) = λw · rw(xw,M) + λs · rs(xw, xo) (4)

Having the reward, we will use the PPO algorithm to up-
date the parameters (θ0, θ1). One change in our PPO loss
is that our xw is generated by two models θ0 and θ1, so
each model only needs to update on the inputs that are gen-
erated by each model. The formal PPO loss for encoder,
assuming we have calculated the advantage At(xw, xo,M)
(which we will abbreviate as At without ambiguity), is as
follows:

ℓE(θ0, θ1) =
∑
t

1{xt ∼ πθ0(·|x<t)} ·
(
− Et

[ πθ0(xt|x<t)

πref (xt|x<t)
At

]
+ λkKL(πθ0(·|x<t), πref (·|x<t))

)
+
∑
t

1{xt ∼ πθ1(·|x<t)} ·
(
− Et

[ πθ1(xt|x<t)

πref (xt|x<t)
At

]
+ λkKL(πθ1(·|x<t), πref (·|x<t))

)
(5)

where the information of whether xt is generated by θ0 or
θ1 is recorded during the generation stage.

The algorithm is shown in Algorithm 3. We will have a
dataset consisting of original texts xo. In each training step,
we randomly sample a watermark key M . Then we cal-
culate the watermarked text xw with the current encoder
(θ0, θ1) and the advantage function with the current de-
coder θd. Finally, we update the encoder and decoder with
the respective losses.

Initialization In practice, we observe that the training
performance heavily depends on the model initialization.
This is expected, as the encoder and decoder rely on each
other to do the update and therefore requires a good ini-
tialization - the update of (θ0, θ1) needs the reward pro-
vided by θd, and the update of θd needs the samples gen-
erated by (θ0, θ1). In our implementation, we will first
initialize (θ0, θ1) with supervised finetuning (SFT) loss
on a paraphrasing dataset DSFT = {(xSFT

o , xSFT
para)}.

We will simultaneously finetune the two models θ0 and
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Algorithm 3 Training Algorithm of the Encoder and the
Decoder.
Require: DatasetD; Initialized parameters θ0, θ1, θd; Text

Segmentor S
1:

Ensure: Trained parameters θ0, θ1, θd
2:
3: for all xo ∈ D do
4: M ∼ {0, 1}∞
5: xw ← E(xo,M ;S, θ0, θ1)
6: Calculate the advantage function At(xw, xo,M)

with the reward function in Equation 4.
7: Update θd with decoder loss ℓD(θd;x

w,M) in
Equation 2.

8: Update θ0, θ1 with the encoder loss ℓE(θ0, θ1;At) in
Equation 5.

9: end for
10: return M ′

θ1 on the paraphrasing dataset and hope that they both
have a small loss, but they also have a difference in
their behaviour (measured by JS divergence), with the
loss ℓinit(θ0, θ1;xSFT

o , xSFT
para) (denoted as ℓinit(θ0, θ1) for

simplicity) as follows:

ℓinit(θ0, θ1; ) = ℓSFT (θ0;x
SFT
o , xSFT

para)

+ℓSFT (θ1;x
SFT
o , xSFT

para)

−λJS · JS(πθ0(x
SFT
para |xSFT

o ), πθ1(x
SFT
para |xSFT

o ))

(6)

After the paraphrasers are finetuned, we will generate
watermarked texts xw with randomly sampled water-
mark code M , and initialize the decoder by optimizing
ℓD(θd;x

w,M) in Equation 2.

4. Experiments

4.1. Setting

Model and Training Settings We use a relatively small
TinyLlama-1.1b model architecture (Zhang et al., 2024a)
for θ0, θ1 and θd, as we observe that small models can al-
ready achieve a good performance in paraphrasing and wa-
termarking. We show the experiments with larger Llama-
2-7b models in Appendix C. The detailed prompt used by
the pararphrasers are shown in Figure 3 in Appendix A.
The encoder and decoder are trained and evaluated on the
C4 RealNewsLike dataset (Raffel et al., 2020), processed
using standard settings in (Kirchenbauer et al., 2023; Xu
et al., 2024; Lau et al., 2024). Without specification, we
will use texts with 128 tokens for training and evaluation.

We fine-tune the model for 10,000 steps with batch size of
4. We use λw = 0.1, λs = 1.0 and λk = 0.02 as the co-
efficients. In the initialization stage, we will generate the
paraphrased data xSFT

para with Pegasus paraphraser (Zhang
et al., 2020), and use λJS = 1.0 for the intialization loss.

Metric We evaluate three types of metrics of a text wa-
termark. The first type is the bit-wise accuracy, which eval-
uates how good the multi-bit watermark code is extracted.
This includes the bit-wise accuracy (Bit Acc) of the de-
coded watermark and the number of total bits injected in
the text (Bit Num). The second type is the text-wise ac-
curacy, which evaluates how well we can tell the water-
marked text apart from other non-watermarked text. We
will evaluate the decoder on both watermarked and non-
watermarked texts, and calculate the area under ROC curve
(AUC) and true positive rate under 1%, 0.01% false positve
(TPR@FPR=1%, TPR@FPR=0.01%). For the fidelity, we
calculate the similarity with the all-mpnet-base-v21

model following the setting in (Lau et al., 2024).

Baselines We evaluate various baseline methods with dif-
ferent design ideas:

• RemarkLLM (Zhang et al., 2024b). The idea is to
use a fixed-length multi-bit watermark key and train
a Transformer-based paraphraser with a watermark
detector. The paraphraser is trained with Gumbel
reparametrization techniques to minimize the decod-
ing error. We use the T5-based paraphraser in their
original setting and evaluate both the 4-bit version and
8-bit version of the watermarking model.

• KGW (Kirchenbauer et al., 2023) and KTH (Kudi-
tipudi et al., 2023). They are LLM-based watermarks
aiming to inject watermark to LLM-generated texts by
altering the token sampling strategy during the gen-
eration stage of a LLM. Note that their methods are
not directly comparable with ours, as they are not de-
signed to watermark non-LLM-generated text. For
comparison, we adapt them to watermark any text
with two variant, zero-bit and multi-bit. In the zero-
bit variant, we directly apply KGW or KTH to a
LLM-based (1.1B) paraphraser, which is then used to
paraphrase the given text to inject watermarks. This
is a zero-bit watermark as the detector can only tell
whether a text is watermarked or not, but no other
information will be carried in the watermark. In the
multi-bit variant, we will apply KGW or KTH to two
LLM-based paraphrasers. Then we use them as θ0 and

1https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Table 1. The performance of our watermark compared with baseline methods. The RemarkLLM method uses the T5 (Raffel et al., 2020)
model following their original settings. Other methods use TinyLlama-1.1B (Zhang et al., 2024a) as the paraphraser. The bit-wise
accuracy is marked as “-” if the method does not support multi-bit watermark code.

Method Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

RemarkLLM (4bit) 0.7663 4.0 0.7861 0.0% 0.0% 0.8096
RemarkLLM (8bit) 0.6953 8.0 0.8023 3.7% 0.0% 0.7793

KGW (zero-bit) - - 0.8652 25.9% 18.1% 0.7745
KGW (multi-bit) 0.6381 4.46 0.8327 22.9% 6.3% 0.8123
KTH (zero-bit) - - 0.8919 61.4% 46.6% 0.8200
KTH (multi-bit) 0.6129 4.26 0.6775 10.9% 2.3% 0.8176

Waterfall(κ = 0.5) - - 0.7787 14.0% 3.8% 0.8499
Waterfall(κ = 1) - - 0.9392 62.4% 35.5% 0.8423

Ours 0.9563 5.57 0.9981 98.0% 78.0% 0.8739

θ1 in our approach and paraphrase one text based on a
watermark code. This allows the multi-bit information
to be carried in the watermark.

• Waterfall (Lau et al., 2024). They prompt a pretrained
Llama model as the paraphraser and will change the
sampling stage in order to inject the watermark sig-
nal. Their extracted watermark code is a permutation,
which does not support bit-wise comparison. We eval-
uate the watermark strength at κ = 0.5 and κ = 1.
Note that in their original paper, they use a strong wa-
termark up to κ = 8. However, in our evaluation, we
observe that even κ = 2 will affect the paraphrasing
performance significantly for the 1.1B small model.
Therefore, we use a relatively small κ in the evalua-
tion.

Note that we did not compare with some well-known text
watermark as they are already covered in previous works.
We did not compare with AWT (Abdelnabi & Fritz, 2021)
as RemarkLLM shows a better performance in their pa-
per. We did not compare with Robust Multi-bit (Yoo et al.,
2023) and NLW (Qiang et al., 2023) as Waterfall shows
a better performance in their paper. There are also many
works (e.g. (Christ et al., 2024; Zhao et al., 2023)) that
focus on LLM watermarks, but we only choose the repre-
sentative ones (KGW and KTH).

4.2. Performance

We show the watermark performance in Table 1. We can
observe that our method achieves a better performance than
existing methods on both bit-wise accuracy and text-wise
accuracy. Our method also has high information density,
with approximately one bit per 23 tokens (128/5.57). In

addition, we also observe a higher similarity score com-
pared to baseline methods. This might be surprising at first
glance. We owe it to the reason that we add a similarity
reward during the PPO process, so that the model is fine-
tuned to achieve a good paraphrasing performance.

Multiple run In paraphrasing-based watermark, we can
run the paraphraser multiple times and return the result with
best watermark detection rate. This method is adopted in
previous methods (Zhang et al., 2024b; Lau et al., 2024).
In this section, we evaluate how different methods im-
prove with multiple runs of the paraphraser. The results are
shown in Figure 2. We can observe that our methods can
scale to over 0.99 bit accuracy and 0.9999 detection AUC
with five repeats of the paraphraser. Since we use a 1.1B
small model which can be run in parallel efficiently, we
view it as a good tradeoff to repeat five times and achieve
a better watermark performance. Other methods also get
a performance boost with more repeats, but there is still a
clear performance gap.

Example and Analysis on Stealthiness We show sev-
eral examples of the watermarked text and their original
version in Table 6 in Appendix B. The sentences of class
0 and class 1 are marked with blue and green respectively.
All the sentences are correctly classified by the decoder.
From our observation, it is difficult to tell a significant dif-
ference between the two classes of sentences, confirming
the stealthiness of our watermark.

To further validate the stealthiness of our watermark, we
prompt GPT with in-context learning to see if it can tell the
difference between the two classes of sentences. Specifi-
cally, we provide GPT with ten class-0 and ten class-1 sen-
tences, and ask it to classify which class a new sentence
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Figure 2. The detection performance of our watermark compared with baseline methods with multiple repeats of the paraphraser. Note
that some methods do not support multi-bit watermark code, so they do not have a curve of bit accuracy in the left figure.

Table 2. The performance of our watermark compared with baseline methods under word substitution attack.

Method Substitute ratio 5% Substitute ratio 10% Substitute ratio 20%

bitacc AUC TPR@1% bitacc AUC TPR@1% bitacc AUC TPR@1%

RemarkLLM (4bit) 0.6118 0.6215 0.0% 0.6315 0.6441 0.0% 0.6488 0.6624 0.0
RemarkLLM (8bit) 0.5685 0.6281 0.6% 0.5783 0.6445 1.0% 0.5921 0.6665 0.8%

KGW (zero-bit) - 0.8458 21.4% - 0.8353 16.5% - 0.7779 7.0%
KGW (multi-bit) 0.6208 0.8052 20.9% 0.6134 0.7914 18.9% 0.5840 0.7471 12.8%
KTH (zero-bit) - 0.8718 56.5% - 0.8541 51.8% - 0.8128 41.5%
KTH (multi-bit) 0.6018 0.6574 9.0% 0.5955 0.6504 8.0% 0.5610 0.6120 5.1%

Waterfall(κ = 0.5) - 0.7578 12.5% - 0.7344 9.1% - 0.6893 5.3%
Waterfall(κ = 1) - 0.9250 54.1% - 0.9096 28.9% - 0.8558 25.6%

Ours 0.9382 0.9945 93.5% 0.9193 0.9871 86.4% 0.8605 0.9469 51.6%
Ours(advt) 0.9459 0.9958 94.1% 0.9352 0.9936 91.6% 0.9138 0.9853 78.7%

belongs to. The detailed prompt is shown in Figure 4 in
Appendix A. We evaluate 1,000 class-0 and 1,000 class-1
sentences, and the accuracy is 57.0%, which is close to the
performance of random guess (50.0%). Thus, we conclude
that our watermark is stealthy and it is difficult to tell a dif-
ference between the two classes of sentences.

4.3. Robustness

In this section, we study the robustness of our watermark.
The evaluation pipeline follows the standard protocal - we
first generate a watermarked text, then modify the text with
text-level perturbations, and finally test whether we can still
detect the watermark in the text. We will evaluate word
substitution and sentence paraphrasing, which are two most
popular perturbations on texts. In addition to our benign-
trained model, we also evaluate the adversarially trained
model (denoted as Ours-AdvT), which has the knowledge
of perturbation during training and will use the perturbed
text when training the decoder.

Word Substitution For paraphrasing attack, we will ran-
domly substitute {5%, 10%, 20%} tokens in the text with
another randomly chosen token (uniformly sampled from
the vocabulary). We show the results in Table 2. The
adversarial training model uses 10% of word substitution
during the training process. We can observe that our orig-
inal model can already outperform all the baselines when
perturbed with word substitutions. With the knowledge
of perturbation during the training process, we can further
improve the performance and achieve over 0.99 detection
AUC even when 10% of the tokens are randomly substi-
tuted.

Sentence Paraphrasing For sentence paraphrasing, we
consider three types. Following (Lau et al., 2024), we will
translate the sentence to Spanish and then back to English
with a Llama2-7B model, denoted as “Translate”. We will
also directly prompt a Llama2-7B model to paraphrase the
sentence, denoted as “LlamaPara”. The detailed prompts
used to do the translation and paraphrasing are shown in

7
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Table 3. The performance of our watermark compared with baseline methods under sentence paraphrasing attack.

Method Translate LlamaPara PegasusPara

bitacc AUC TPR@1% bitacc AUC TPR@1% bitacc AUC TPR@1%

RemarkLLM (4bit) 0.6885 0.7142 0.0% 0.7063 0.7311 0.0% 0.7033 0.7248 0.0%
RemarkLLM (8bit) 0.6124 0.6904 1.4% 0.6023 0.6751 1.5% 0.6018 0.6687 1.2%

KGW (zero-bit) - 0.4872 0.2% - 0.4872 0.2% - 0.4900 0.0%
KGW (multi-bit) 0.4997 0.5829 1.6% 0.4765 0.5383 1.5% 0.4817 0.5654 1.5%
KTH (zero-bit) - 0.8600 30.6% - 0.8559 32.0% - 0.8618 43.7%
KTH (multi-bit) 0.4923 0.4990 0.8% 0.4952 0.4957 1.7% 0.4949 0.5025 1.3%

Waterfall(κ = 0.5) - 0.6041 4.0% - 0.5833 1.9% - 0.5981 5.0%
Waterfall(κ = 1) - 0.7432 11.8% - 0.6519 3.1% - 0.7283 13.2%

Ours 0.8206 0.9310 67.4% 0.7137 0.8649 43.9% 0.7388 0.8616 53.7%
Ours(advt) 0.9003 0.9709 78.1% 0.8487 0.9239 36.8% 0.8648 0.9546 45.7%

Table 4. The performance of our watermark, trained on the C4 dataset, when evaluated on texts collected in other tasks.

Dataset Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

HH 0.9582 5.856 0.9991 97.9% 92.1% 0.8823
PKU 0.9613 5.325 0.9959 96.7% 1.8% 0.8923

Reward 0.9572 5.684 0.9962 96.7% 51.4% 0.8711
UltraF 0.9519 6.234 0.9931 94.5% 55.7% 0.8830

FineWeb 0.9461 6.066 0.9880 93.3% 19.3% 0.8463
Pile 0.9140 6.026 0.9713 83.8% 36.1% 0.8430

Figure 5 and 6 in Appendix A. In addition, following (Xu
et al., 2024), we also paraphrase the sentence with the Pe-
gasus (Zhang et al., 2020) paraphraser, denoted as “Pega-
susPara”.

The results are shown in Table 3. We observe that all these
text watermarking methods suffer from a significant per-
formance drop under paraphrasing attacks. We owe it to
the reason that the text watermarks aim to preserve the
text meaning and inject watermarks with other signals (e.g.
wording choices or stylish changes), while these signals
will be easily broken by another paraphrasing process. As
an extreme example, one may paraphrase the watermarked
text into its original un-watermarked version (because the
watermarking process requires that both texts should have
the same semantic meaning), and it is impossible to detect
the watermark from the text after perturbation (i.e. the orig-
inal text). Nevertheless, it is still possible to preserve part
of the watermark signal under mild paraphrasing, such as
translation. We can observe that our method can outper-
form baselines on all the paraphrasing tasks, and can be
further improved with adversarial training.

4.4. Out-of-Distributional Tasks

As our pipeline relies on a data-driven training process,
we would like to evaluate how it performs on potential
out-of-distribution data. In this section, we will eval-
uate our model, previously trained on the C4 dataset,
on various other datasets, including Anthropic HH-RLHF
(HH) (Bai et al., 2022), Synthetic instruction2(Instruct),
PKU SafeRLHF (PKU) (Ji et al., 2024), Reward3, Ul-
traFeedback(UltraF) (Cui et al., 2024), FineWeb (Penedo
et al., 2024) and Pile uncopyrighted(Pile)4 datasets.
Among the datasets, HH, Instruct, PKU, Reward and Ul-
traF are QA datasets for alignment and we use their an-
swers as the original texts. FineWeb is a dataset consisting
of articles from the Internet. Pile is a dataset consisting of
cleaned texts from different sources.

The performance of our model is shown in Table 4. We
can observe that our model can generally achieve a good

2https://huggingface.co/datasets/Dahoas/synthetic-instruct-
gptj-pairwise

3https://huggingface.co/datasets/yitingxie/rlhf-reward-
datasets

4https://huggingface.co/datasets/monology/pile-
uncopyrighted
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Table 5. Performance of our watermark when varying regulariza-
tion coefficients λs and λk.

Coefficients Bit Acc AUC Similarity

λs = 5.0, λk = 0.02 0.7606 0.9028 0.9728

λs = 2.0, λk = 0.02 0.9525 0.9967 0.8961

λs = 1.0, λk = 0.02 0.9563 0.9981 0.8739

λs = 0.5, λk = 0.02 0.9679 0.9988 0.8515

λs = 0.2, λk = 0.02 0.9722 0.9987 0.8283

λs = 1.0, λk = 0.1 0.9036 0.9739 0.8878

λs = 1.0, λk = 0.05 0.9284 0.9849 0.8840

λs = 1.0, λk = 0.02 0.9563 0.9981 0.8739

λs = 1.0, λk = 0.01 0.9799 0.9991 0.8529

λs = 1.0, λk = 0.005 0.9828 0.9991 0.8489

performance on different datasets, indicating its good gen-
eralization capability. We do observe a relatively weak per-
formance on the Pile task, which we view as a result of
the frequent structural texts (e.g. XML languages) in the
dataset. Nevertheless, we emphasize that we can always
include a new data domain in the training process, so that
they become “in-domain” and can achieve a higher perfor-
mance.

4.5. Impact of λs and λk

As discussed in Section 3.4, we use λs to control the simi-
larity reward regularization and λk to control the KL diver-
gence regularization in the process of paraphraser training.
In this subsection, we study how these coefficients impact
the final training performance. Specifically, we vary the co-
efficients from their original choice λs = 1.0, λk = 0.02
and show the resulted detection performance and sentence
similarity in Table 5. We can observe that λs and λk in-
deed control the trade-off between detectability and fidelity
- when we increase the coefficient, fidelity will be improved
but the detectability will be decreased. Nevertheless, the
performance is good for both aspects in most coefficient
selections. We view our choice in the main experiments to
have a moderate tradeoff between fidelity and detectabil-
ity.

5. Related Works

Text Watermarks People have been studying text water-
marks for a long time in order to protect copyrights (Liu
et al., 2024). Early works on text watermarks focus on

synonym substitution or other direct changes in the text.
(Topkara et al., 2006) proposes to add watermarks to a text
by replacing the most ambiguous words with synonyms
in a text. (Xiang et al., 2018) investigated the frequency
of synonym words so that more bits can be injected with
the frequency information. (Munyer et al., 2024) considers
the Word2Vec embedding (Mikolov, 2013) in the synonym
substitution so that more information can be injected. (Yoo
et al., 2023) extracts invariant features from the text to sub-
stitute synonyms so that the watermark can be more robust
under different perturbations. More recently, people have
studied how to directly inject watermark by paraphrasing
the text. (Abdelnabi & Fritz, 2021) proposes a LSTM-
based pipeline to paraphrase a text and inject a fixed num-
ber of watermark bits. (Zhang et al., 2024b) improves the
work by using Transformer-based pipeline and proposing
to use Gumbel softmax for token selection conditioned on
the watermark code. (Lau et al., 2024) proposes to use an
LLM-based paraphraser and inject watermarks in the per-
mutations of n-gram information in the text.

LLM Output Watermarks Besides text watermarking,
there is also a line of research which studies the injec-
tion of watermarks into LLMs, so that the output texts of
a LLM can be later detected. (Kirchenbauer et al., 2023)
first proposes to watermark an LLM. They will increase
the logits of certain random tokens, which are generated
based on n-gram information. They then perform a sta-
tistical test on the text to determine whether the token ap-
pearance frequency is from the watermarked LLM. Follow-
up works (Hou et al., 2023; Liu et al., 2023) will gener-
ate the random tokens based on semantic meaning rather
than n-gram information, which makes the watermark ro-
bust against paraphrasing attacks. (Kuditipudi et al., 2023)
adds perturbation during the sampling phase after the logits
are generated, so that there is no distributional change on
the output text. (Gu et al., 2023) proposes to distill a wa-
termarked model into a new LLM model with changed pa-
rameters, so that no special mechanism is required during
inference. (Xu et al., 2024) proposes a co-training frame-
work on the watermarked LLM and a watermark detector
so that the detector is trained to detect the watermarked text
and the LLM is finetuned to get easily detected. Unlike text
watermarking, this line of work focuses purely on LLM-
generated text.

6. Conclusion
In this work, we propose a multi-bit text watermark by
paraphrasing a piece of text to inject watermark signals.
We show that our pipeline achieves very high detection ac-
curacy with good fidelity and stealthiness. In addition, our
method is robust under different attacks. Our method sheds
new light on the study of text watermarks.
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Impact Statement

This paper proposes a method to inject a binary watermark
code into a piece of text. Our method can help with the
problem of LLM-generated text tracking and human text
copyright protection. However, it may also be applied in
applications such as hidden message convey, where some-
one encrypts the code into a text in a stealthy way.
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A. Prompts Used in the Experiments

We show the detailed prompts used in the experiments as below:

• Figure 3: prompt used in the encoder.

• Figure 4: prompt used to do in-context classification with GPT.

• Figure 5: prompt used to translate a text with Llama-2-7B.

• Figure 6: prompt used to paraphrase a text with Llama-2-7B.

We did not make special efforts to optimize these prompts.

Human: Paraphrase the text below.
{Original Text}
Assistant: Paraphrased Text:

Figure 3. The prompt used to paraphrase the text in the encoder.

I have two classes of text, C1 and C2, which have some intrinsic difference.
I will provide you with lists of texts from bothclasses. Can you help me
classify which class a new text is in? You answer should only contain one word,
[C1] or [C2].

C1 texts:
{Class-0 sentences}

C2 texts:
{Class-1 sentences}

New text:
{The new sentence to classify}

Please answer C1 or C2.

Figure 4. The prompt used to performance in-context classification of our watermarked text with GPT.

[[INST]] <<SYS>> Translate the provided piece of text to {language}. Do not
include any other sentences after the response, such as explanations of the
translation.

<</SYS>>

{text} [/INST]

Here is a translated version of the text:

Figure 5. The prompt used to evaluate the watermark robustness under translation.

B. Examples of Watermarked Texts

We show the watermarked texts generated by our pipeline in Table 6. Blue and green texts correspond to class-0 and class-1
texts respectively. We view it difficult to tell a difference between the two classes of texts from human eyes.

C. Experiments on Llama-2-7B Models

We show the results of using Llama-2-7B model as the paraphraser in Table 7. Note that the RemarkLLM method does
not support Llama models, so we do not evaluate the method; the Waterfall method on 7B models can support a larger κ,

12



Robust Multi-bit Text Watermark with LLM-based Paraphrasers

Table 6. Examples of watermarked texts. Blue and green texts correspond to class-0 and class-1 texts respectively.

Original Text Watermarked Text Similarity

“When it comes to fantasy sports and betting on
NASCAR races, there’s nothing wrong with it,”
Gaughan said. “I wanted to go all in on gambling
last year,” NASCAR executive Steve O’Donnell said.
“We have so many people that are linked to the cars.
I think the integrity is a big piece to it,” O’Donnell
said. Nevada’s effective monopoly on sports betting
ended last spring, when the Supreme Court ruled the
ban should be

“There’s nothing wrong with fantasy sports and bet-
ting on NASCAR races,” Gaughan said. Steve said I
wanted to go all in on gambling last year. “We have
so many people that are linked to the cars,” O’Donnell
said. The integrity of the car is a big piece to it because
they are linked to it. Nevada’s effective monopoly on
sports betting ended last spring, as the Supreme Court
ruled that the ban should be

0.9177

President Trump’s decision Monday to revive plans to
freeze federal employee pay in 2020 and to institute
a series of cuts to federal employee retirement pro-
grams was met with great consternation from stake-
holder groups, although the ideas stand little chance
of becoming law. Increasing employee contributions
toward federal defined benefit annuity programs by 1
percent per year until those payments reach 50 per-
cent of the total cost. Eliminating cost of living ad-
justments for FERS retirees, and reducing CSRS cost
of living adjustments by 0.5 percent.

President Trump’s decision Monday to resume plans
to freeze federal employee pay and to cut retirement
benefits for federal employees generated consterna-
tion from stakeholder groups, despite having little
hope of becoming law. The employee contributions
to the annuity programs are up by 1 percent a year un-
til they reach five percent of the total cost. There are
cost of living adjustments for FERS retirees and cost
adjustments for COLA, which are reduced by 0.5 per-
cent.

0.8947

Bob ”Bus Bob” Krause, 59, of Waikiki, an Oahu Tran-
sit System bus driver, died at home. He was born in
Bremen, Germany. He is survived by parents Hans
Krause and Sonja Aiwohi, brother Ralph and sisters
Lorraine Kinnamon and Charmaine Moniz. Celebra-
tion of life: 2 p.m. Friday at Outrigger Canoe Club
Waikiki. Additional celebration of life: 4:30 p.m. on
weekend of May 4 and 5 at K

Bob ”Bus Bob” Krause, the head driver of the Oahu
Transit System, died at home. His parents lived in
Germany when he was born. He has surviving rela-
tives, including his mother, sister, and brother. The
celebration of life is on Friday at the outrigger canoe
club. There is a celebration of life on Friday, May 4
and 5 at K

0.8743

Occasional diarrhea is a common occurrence. Most
people will experience an episode of diarrhea at least
once or twice a year that will disappear in a couple
of days. Luckily, there are many foods to eat that
may help a person reduce the symptoms of diarrhea.
There are also some foods to avoid when dealing with
a bout of diarrhea, and some additional home care tips
to consider. Anyone who is experiencing persistent
diarrhea should see a doctor, as a person may become
dehydrated over time.

Occasional diarrhea is a common occurrence. People
will get sick more often than they used to do. There
are many foods to eat that may help a person reduce
the symptoms of diarrhea. A lot of people avoid foods
when they are dealing with a bout of diarrhea and a
few home care ideas to consider are worth checking
out. Anyone who is suffering from persistent diarrhea
should see a doctor, as a person may become dehy-
drated over time.

0.8392
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[[INST]] <<SYS>> Paraphrase the user provided text while preserving semantic
similarity. Do not include any other sentences in the response, such as explanations
of the paraphrasing. Do not summarize.

<</SYS>>

{text} [/INST]

Here is a paraphrased version of the text:

Figure 6. The prompt used to evaluate the watermark robustness under Llama paraphrasing.

Table 7. The performance of our watermark compared with baseline methods with the Llama-2-7B model.

Method Bit-wise Accuracy Text-wise Accuracy Fidelity

Bit Acc Bit Num AUC TPR@FPR=1% TPR@FPR=0.01% Similarity

KGW (zero-bit) - - 0.8625 24.4% 13.7% 0.8842
KGW (multi-bit) 0.6302 5.17 0.8498 15.2% 8.3% 0.8986
KTH (zero-bit) - - 0.8735 26.5% 12.5% 0.9075
KTH (multi-bit) 0.5756 5.075 0.7296 13.3% 2.0% 0.9073
Waterfall(κ = 1) - - 0.7568 13.3% 3.7% 0.8809
Waterfall(κ = 2) - - 0.9213 49.3% 26.9% 0.8743
Waterfall(κ = 4) - - 0.9951 96.3% 89.8% 0.8350

Ours 0.9605 5.874 0.9973 97.6% 77.6% 0.8631

so we included results of κ = 1, 2, 4 in the table. We can observe that our model keeps a high performance with the 7B
models. We do not see an improvement compared with the 1.1B models, which we guess is because that fine-tuned 1.1B
models already have the capability to paraphrase texts, so that a larger model may not help. On the other hand, baseline
methods can have a better fidelity with the larger model. The Waterfall methods are able to use larger κ to inject strong
watermarks, and the strongest κ = 4 case can achieve a comparable performance with our model, though there would be a
drop on the fidelity.
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