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Abstract

Deep Metric Learning (DML) stands as a powerful technique utilized for training mod-
els to capture semantic similarities between data points across various domains, includ-
ing computer vision, natural language processing, and recommendation systems. Current
approaches in DML often prioritize the development of novel network structures or loss
functions while overlooking metric properties and the intricate relationship between classi-
fication and metric learning. This oversight results in significant time overhead, particularly
when the number of categories increases. To address this challenge, we propose extending
the loss function used in classification to function as a metric, thereby imposing constraints
on the distances between training samples based on the triangle inequality. This approach
is akin to proxy-based methods and aims to enhance the efficiency of DML. Drawing in-
spiration from metrically convex metrics, we introduce the concept of a ”weak-metric” to
overcome the limitations associated with certain loss functions that cannot be straight-
forwardly extended to full metrics. This ensures the effectiveness of DML under various
circumstances. Furthermore, we extend the Cross Entropy loss function to function as a
weak-metric and introduce a novel metric loss derived from Cross Entropy for experimental
comparisons with other methods. The results underscore the credibility and reliability of
our proposal, showcasing its superiority over state-of-the-art techniques. Notably, our ap-
proach also exhibits significantly faster training times as the number of categories increases,
making it a compelling choice for large-scale datasets.
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1. Introduction

Deep Metric Learning (DML) attempts to embed given samples into a metric space to
capture their semantic similarities, which has been applied in tasks such as zero-shot, few-
shot, and self-supervised learning. Most existing work aims to design a good loss function
from two fundamental models: siamese network Chopra et al. (2005); Hadsell et al. (2006)
and triplet network Hoffer and Ailon (2015), both of which directly use the loss function
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domain in the semantic vector to control the distance of two samples with identical label.
However, triplet samples suffer from high time complexity in the training process, and the
performance of the siamese network is proven worse than the triplet network Gonzalez-
Zapata et al. (2022). Baseline DML methods take the metric into the design of the loss
function, which is actually a composition of the metric and continuous function instead of
the metric itself, such as triplet loss Hoffer and Ailon (2015) and margin loss Liu et al.
(2016). These loss functions are introduced to directly decrease the distance of samples
with identical labels and increase the distance for a wide margin of samples with distinct
labels, in which the distance is defined by the metric of semantic vector mapped by the
network, which needs at least two networks to obtain loss.

While proxy-based methods, proposed firstly in Movshovitz-Attias et al. (2017), aim to
solve this problem, and in which metric losses (e.g., margin loss, triplet loss) are bounded
in proxy-based methods, and the following work based on proxy improves the performance
of DML. Which is similar to classification and classification is a typical baseline for proxy-
based methods Zhai and Wu (2018).

In this article, we consider an indirect method by the property of metric without a
tedious structure of network. We extend the loss function to a metric such that one network
for classification is enough to embed all samples into a metric space by its properties. A
metric is a function on a given set that satisfies three conditions: non-negativity, symmetry,
and triangle inequality. We find that non-negativity is the same as loss, that when the label
is equal to the semantic vector of a sample, the value of the loss is zero; symmetry is naive
for distance; triangle inequality provides an upper bound of the distance between any two
samples. The upper bound is actually the loss between semantic vectors and labels, which
is small after training.

DML (Deep Metric Learning) typically conducts training and testing using classification
datasets, such as Cars-196 Wang et al. (2019), Stanford Online Products (SOP) Oh Song
et al. (2016), and CIFAR-10 Krizhevsky et al. (2009). It’s important to note that both metric
learning and classification utilize these classification datasets, albeit with distinct objectives.
Metric learning is primarily focused on clustering data within a metric space, often involving
techniques like K-nearest neighbors (KNN) for measurement, while classification primarily
aims to predict the class label of samples, emphasizing precision.

Our proposal is inspired by the intriguing relationship between classification and metric
learning. Specifically, we treat the labels in the classification task as proxies within the
embedded metric space. This approach ensures that any two samples sharing identical
labels are inherently close, a property derived from the triangle inequality of the metric.

Furthermore, to address the challenge of adapting certain loss functions to a metric
space, we introduce the concept of a ”metrically uniform convex metric,” which offers more
flexibility compared to a conventional metric. We then extend the use of Cross Entropy, a
commonly used loss function in classification, to this weak-metric space (which may not be
easily extended to a full metric).

In our experimental evaluations, we follow the principles of fair comparison, as sug-
gested by Musgrave et al. Musgrave et al. (2020). Notably, our proposed model exhibits
a notably simpler architecture than existing methods, resulting in a faster training pro-
cess, particularly when applied to larger datasets. Our proposal encompasses several key
contributions:
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• Reveal that a task of classification contains a metric space when the loss function of
classification is regarded as a metric.

• Propose a weak-metric that can be used as an extension of more functions including
Cross Entropy with keeping effectiveness.

2. Related Work

2.1. Deep Metric Learning

Deep metric learning plays a pivotal role in classic classification and clustering tasks, encom-
passing domains such as face recognition, image classification, and fine-grained identification
Schroff et al. (2015). The primary objective of deep metric learning is to train a network
capable of transforming sample feature data from the original space into another metric
space. This transformation leads to a reduction in the distance between samples sharing
the same labels while increasing the distance between samples with different labels.

In the realm of deep metric learning, there exist two main categories of methods: pair-
wise methods and proxy-based methods. Notable pair-wise methods include triplet loss
Hoffer and Ailon (2015), circle loss Sun et al. (2020), contrastive loss Hadsell et al. (2006),
binomial deviance loss Yi et al. (2014), lifted structure loss Oh Song et al. (2016), and
multi-similarity loss Wang et al. (2019), among others. Xuan et al. propose a general
framework named GOAL to analyze the step of gradient update in loss functions, and find
a better target for VSE (Visual-Semantic Embedding) problems Xuan and Chen (2023). In
a triplet network, a single image may exist in different triplet units, therefore the number
of triplet increases, and the amount of training increases. To address this problem, Ding
et al. improve the effective scheme to generate triplets and optimize the gradient descent
algorithm, so that the algorithm depends on the number of original images instead of the
triplets Ding et al. (2015). Unlike the triplet network, Annarumma et al. take the global
structure of embed space and overlapping labels into consideration, and distinguish between
normal medical images and abnormal medical images through loss function Annarumma and
Montana (2018).

Furthermore, proxy-based methods essentially resolve training overhead in pair-wise
method, which is firstly proposed in Movshovitz-Attias et al. (2017), and more and more
methods are proposed in the following Kim et al. (2020); Roth et al. (2022); Teh et al. (2020);
Zhai and Wu (2018), while the other kind of version to prompt performance for proxy-based
methods are a variety of sampling strategy in Lin et al. (2018); Lu et al. (2019); Zheng et al.
(2019); Roth et al. (2020).

Hu et al. propose a deep metric learning model that utilizes neural network to per-
form hierarchical nonlinear transformations of faces, with the ability to check the kindred
relationship of two different faces Hu et al. (2014); Lu et al. (2017). With deep metric
learning method, researches on human faces also include facial expression recognition Liu
et al. (2017b), facial age estimation Liu et al. (2017a), etc. Summarize and analyze relevant
research, most deep metric learning tasks are combined with specific classification tasks,
and the appropriate loss function according to the task characteristic.

In recent year, G.Z. proposed a guided method for DML based on knowledge distillation
which has a breakthrough on the performance on CIFAR10 Gonzalez-Zapata et al. (2022).
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However, these methods do not notice the useful nature of metric and is hard to be used
to large-scale dataset due to their splits of labels to anchor and negative samples. A fine-
grained training architecture for DML is proposed Wang et al. (2023).

2.2. Metric Space

Metric is widely considered by mathematicians because of its perfect property in topology.
A linear norm space can induce a metric space Yosida (2012) such as Minkowski Distance,
Euclidean Distance etc, which is accepted in most metric learning. Some metrics cannot
be induced by norms due to the linearity of norms but metric can be linear or non-linear.
Moreover, there are some weaker definitions of metric for studying the necessity of triangle
inequality of metric, such as semi-metricWilson (1931), metrically convex metricSedghi et al.
(2008) etc. We define a new weak metric to better reveal the necessity of a metric for the
motivation of metric learning based on a metrically convex metric. DaiDai and Hang (2021)
proposes a perspective that training with triplet loss is pushing out negative samples and
pulling back positive samples to straighten the manifold of samples. A manifold is actually
a basic topology space with a differential structure. We consider that in DML, smoothness
of space is unnecessary but the metric is more significant.

Definition 1 Metric: A metric is a function d : X ×X → R on a given set X that
satisfies non-negative, symmetry and triangle inequality, that is for any x, y, z ∈ X:

d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y, (1)

d(x, y) = d(y, x), (2)

d(x, z) ≤ d(x, y) + d(z, y). (3)

The metric space is marked as {X, d}.
As an example of Definition 1 which appears later, we introduce a trivial metric——discrete

metric with marks above:

d(x, y) =


k if x ̸= y

0 if x = y
, (4)

in such metric space, pairwise distance is identical for all elements, which will be nonsense
for clustering but still a metric.

3. Theoretical Analysis

In this section, we introduce a straightforward approach to unveil the inherent relationship
between classification and metric learning in the context of deep learning, which facilitates
the generalization of loss functions by considering potential extensions within them. Fur-
thermore, we put forth a definition of a ”weak-metric” that exhibits broad applicability and
subsequently delves into the extension of the Cross Entropy loss function. Our proposal
hinges on two pivotal concepts: the triangle inequality of the metric and the transition from
a loss function to a metric.
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3.1. Classification and DML

Generally, a task of classification is trained for decreasing loss between flattened vectors
and label vectors such that the index of the maximum scalar in the former is equal to the
index of the maximum scalar in the latter, while metric learning is trained for clustering
such that margin of distinct classes increases.

For a network f : X → Rc in which c denotes the number of classes in classification while
denotes the dimension of embedded space in metric learning. Space X is regarded as a linear
norm space representing all kinds of input. In Zhai and Wu (2018), classification is proved
a strong baseline for proxy-based methods, in which the author only utilizes and improves
the loss of classification for proxy-based methods. In this article, we aim to reveal a direct
relationship between classification and DML. We assume loss function in classification as:

3.2. Theoretical Results

In the realm of deep metric learning, researchers commonly strive to embed samples into a
metric space where samples with the same labels are brought closer together, while those
with distinct labels are pushed further apart. Much of the existing work in deep metric
learning involves the construction of loss functions, many of which incorporate a metric
function, such as the Triplet Loss.

We propose a novel perspective: when a loss function used in classification possesses
metric-like characteristics or can be extended to conform to a metric, an effective classifi-
cation task inherently induces a metric learning task. We distinctly show our proposition
as:

Definition 2 Metric-Extendable Loss Function. For the loss function L :
X × Ic → Rc on a given set X,Y, if there exists a metric d : Rc × Rc → R (i.e. satisfies
(1,2,3)) such that:

• d is continuous;

• For any x ∈ X, y ∈ Ic, L(f(x), y) = d(f(x), y),

then L is called the ’Metric-Extendable Loss Function’.
Given the training set as Tr ⊂ X and its label map L : Tr → Ic. If the loss function L

is a ’metric-extendable loss function’, a network is constructed for mapping a sample t ∈ Tr
to a semantic vector f(t) ∈ Rc whose dimension is c. All potential labels are also in the
metric space {Rc, d}. According to this set, the distance of any two vectors f(t1), f(t2) in
semantic space that has the same label can be restricted by triangle inequality:

L(f(t1), f(t2)) ≤ L(f(t1), l) + L(l, f(t2)), (5)

in which l = L (t1) = L (t2), which is embedded to a metric space {Rc, L} from a classifi-
cation directly. In fact, in the training step, the used function is still function L itself.

A loss like L2 loss is metric-extendable. However, some loss functions (such as Cross
Entropy) cannot directly be extended to a metric, triangle inequality is a little strong
for a function. Semi-metric is a kind of weak metric that satisfies (1,2) but not (3), we
introduce another weak metric based on ’metrically uniform convex metric’ that satisfies
(1,2,6), concisely called weak-metric without causing ambiguity as follows:
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Definition 3 Metrically Uniform Convex Metric (Weak-Metric): a function d :
X ×X → R on a given set X that satisfies(1,2) and: ∃y0 ∈ X, for any x, z ∈ X(notice it’s
not “for any x, z ∈ X, ∃y0 ∈ X” which is the definition of metrically convex metricSedghi
et al. (2008)):

d(x, z) ≤ d(x, y0) + d(y0, z). (6)

Conveniently we marked it as ’weak-metric with uniform point y0’. And if there exists
weak-metric d satisfies as Definition 2 shows, we call the correspondent L a ’weak-metric
extendable loss function’. Our definition is stronger than the metrically convex metric while
weaker than the metric. Such a definition makes loss functions like Cross Entropy can be
extended and meaningful for metric learning.

In the next, we will reveal the properties of the classification task with ’metric extendable
loss function’ and ’weak-metric extendable loss function’ as losses in the metric space, that
is, how much they can obtain a good metric learning result.

Definition 4 Universal Loss Function in Classification: set d : R × I → [0,+∞) a
normal function, x = (x1, x2, ..., xc),y = (y1, y2, ..., yc) ∈ Rc, F ∈ C2[0,+∞) is a second
differentiable function domain in [0,+∞), a universal loss function Lm(x,y) in classification
is:

Lm(x,y) = F (

c∑
i=1

d(xi, yi)), (7)

in which F (0) = 0 and F is strictly increasing. d(x, y) represents a loss for a scalar value,
thus the distance of any two different labels la, lb ∈ Rc is:

Lm(la, lb) = F [d(0, 1) + d(1, 0) + (c− 2)d(0, 0)]. (8)

In a loss function, d(0, 1) is big enough which means the predicted label is complete
not the true label, in loss functions like Cross Entropy the value d(0, 1) = +∞. When d is
semi-metric, we have:

Lemma 1 Set d(0, 1) = M . If d(x, y) is a semi-metric on R that Lm(x,y) is also
semi-metric on Rc and by the way:

Lm(la, lb) = F (2M). (9)

It’s obvious. Then we suppose that after an effective training in classification, loss value
ϵ between a sample a ∈ Rc with its label la is much smaller than Lm(la, lb), formally, we
defined that:

Definition 5 Well-Trained Classification: Set test set Te, its label function L :
Te → Rc and Positive set P = {t ∈ Te |argmaxf(t) = argmaxL (t)} A well-trained
classification network is a function f : Rm×n → Rc after training such that:

supa∈f(P )Lm(a,L (a)) = ϵ ≪ F (2M). (10)

This definition is to show that a well-trained classification contains a metric space with
such samples embedded, and in the following lemma, we take a two-step demonstration
of how a metric or weak-metric loss with the label as its uniform point can make samples
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Figure 1: Base idea of our proposal by training a task of classification. A training of classi-
fication has actually clustered the samples around their labels(i.e. d1, d2 are small
enough), and if the used loss function can be extended to a metric, samples with
the same labels are closed enough.

closed with identical label and far with the distinct. In next, we say samples a ∈ Rc contains
that a ∈ f(P ). However, semi-metric is not enough to induce any useful property, thus we
introduce stronger metrics by order in the defined loss function.

Lemma 2 If F is a non-convex function, that d is a weak-metric on R implies that
Lm(x,y) is a weak-metric on Rc, d is a metric on R implies that Lm(x,y) is a metric on
Rc.

This lemma is enough for most of the loss function that F is usually a non-convex
function even just a constant function as 3.3 shows. Then we formally give the properties
of weak-metric and metric for a correspondent loss function used in metric learning.

Lemma 3 If Lm(x,y) is a weak-metric with uniform point l or a metric, a, b ∈ Rc

are two samples with same label l ∈ Rc, that:

Lm(a, b) ≤ Lm(a, l) + Lm(l, b) ≤ 2ϵ.

Lemma 4 If Lm(x,y) is a metric, a, b ∈ Rc are two samples with different labels
la, lb ∈ Rc respectively, that:

Lm(a, b) ≥ F (2M)− 2ϵ.

The two lemma shows that weak-metric can ensure the closed distance in two samples
with the same label while metric can further ensure there’s a margin between two samples
with distinct label. By these two lemmas, when a classification is well-trained, all you need
is extending the function in d to a metric, or at least a weak-metric for obtaining pairwise
distance.
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Theorem If F is non-convex function and d is metric, after well-trained, for any
pairwise samples a, b ∈ Rc:

Lm(a, b) ≥ F (2M)− 2ϵ,L (a) ̸= L (b)

Lm(a, b) ≤ 2ϵ, L (a) = L (b)
, (11)

which denotes a good metric learning result.

Algorithm 1 Metric Loss

Require: a loss function L, a network f : Rm×n → Rc for task of classification
Ensure: L can be extended to a metric or a weak-metric
extends L to a metric L′

training f with L′ as classification
for any two samples img1, img2, the distance of them is L′(f(img1), f(img2))

3.3. Extension of Loss Function

Therefore, a loss function that is also a metric or that can be extended to a metric in
classification is the key. In classification, MSE (Mean Square Error) and CE (Cross-
Entropy) are mainstream loss functions, and CE is usually used with softmax function (i.e.
softmax loss). If softmax is used, the metric space is {L, [0, 1]c}, in the following we suppose
that the softmax function is used, the two functions are defined as:

LMSE(x,y) =
1

c

c∑
i=1

(xi − yi)
2, (12)

LCE(x,y) = −
c∑

i=1

yilog(xi), (13)

in which x is sample and y is label(i.e. x ∈ [0, 1]c,y ∈ {0, 1}c), we hope that these
functions are not only loss functions but also metrics such that even y ∈ [0, 1]c that repre-
sents a semantic vector after mapping by a sample, it is still defined. LMSE is obviously a
metric (see in supplement), but not LCE , and it’s obvious that LCE can not be extended
to a metric (it’s not symmetry), we firstly introduce LCE′ from LCE :

LCE′ (x,y) = −
c∑

i=1

yilog(xi) + (1− yi)log(1− xi). (14)

Then we extend LCE′ to a semi-metric function L1
CE′ :

L1
CE′ (x,y) = −

c∑
i=1

log(1− |xi − yi|), (15)

when y is a label, L1
CE′ = LCE′ . But it’s not enough for our proposal. On the basis of its

semi-metric, we prove that it’s a weak-metric with its label for (5) as a supplement. CE
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Figure 2: Architecture of experiments that ResNet is our backbone and a single MLP is
for embedding to a d-dimension vector space, in classification, d is equal to the
number of categories c, which is for all experiments including ours and other
methods.

cannot be extended to a metric. To construct a metric from L1
CE′ , we set three parameters

for that empirically:

L2
CE′ (x,y) =− 1

p

c∑
i=1

log(a− b|xi − yi|p) +
c

p
loga, (16)

in which a ≥ 0, 0<b ≤ 1, 0<p ≤ 1, L2
CE′ is a metric when a, b, p satisfies (17). They are

demonstrated as such example:

Example L1
CE′ is a weak-metric with label as its uniform point. L2

CE′ is a metric iff.:

2p+1 − 22p ≥ b

a
. (17)

In practical training of classification with softmax loss function, the loss cannot be set
to (13) while a tiny number ϵ was added to xi to avoid undefined calculation. a is non-zero,
we set b = 1, which means only if p is tiny enough that (16) is a metric when a is tiny
enough for just avoiding dividing zero. But an unduly tiny p degenerates metric (15) to a
trivial discrete metric shown in (4), implying that tiny p leads to a collapse of metric space
that the distance between each couple tends to be identical.

In fact, a norm in a linear space can induce a metric, but not each metric can be induced
by a norm. MSE belongs to the former and L2

CE′ belongs to the latter. In next, we show
that a metric is better than weak metric when they are trained routinely with the same
model and training setup.
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4. Experiments

In this section, we conduct a comparative analysis between our proposed approach and
existing metric learning methods in the context of classification datasets. To ensure a fair
comparison of performance across each method, we employ an identical model setup and
maintain consistent parameter settings for each experiment. We use a ResNet18 architecture
as our backbone, omitting the use of any pre-trained models.

Our initial findings demonstrate that our proposed method surpasses the state-of-the-art
approaches in terms of performance. Furthermore, as the number of categories increases,
we observe that our method incurs significantly lower time overhead compared to other
existing methods.

4.1. Experimental Results

All the experiments have been implemented using Python 3.7 and Pytorch 1.8 on one
NVIDIA RTX 3090 super 24GB. In addition, neither data augmentation nor post-processing
(besides global normalization) was applied, which was followed by each experiment, and we
used the same model for each experiment (including datasets, backbone, and even each
of Relu and BatchNormlization) and the same parameters setup(including epochs, batch
size, learning rate and its weight decay and so on). In metric learning, the performance of
KNN is a benchmark for measuring, Recall and F-score are direct results for KNN, which
was proved not comprehensive for measuringMusgrave et al. (2020). Thus the mentioned
Normalized Mutual Information (NMI), R-precision, and Mean Average Precision (MAP)
are also considered to our experiments. Notice that in KNN k is a parameter that is related
to Recall and F-score but not the latter, parameter R (the number of trained samples whose
labels are the same to the queried) instead.

All experiments were implemented on CIFAR10 and CIFAR100, Gonzalez-Zapata et al.
(2022) propose a method based on knowledge distillation that much improves the perfor-
mance on CIFAR10, we compare our proposal with the previous on CIFAR10 and extend
the categories to 100 on CIFAR100.

Table 1: Performance on CIFAR10
Model Recall@1 F-score@1 NMI RP MAP@R

Siamese 25.32 25.96 25.17 24.22 11.76
Triplet 41.93 42.12 39.43 36.65 20.03
Margin 55.71 55.86 45.15 40.90 23.73
MultiSim 56.65 57.04 47.51 47.72 36.04

Guided 82.78 82.73 67.88 81.19 78.85

Ours p=1e-2 84.06 83.99 69.11 84.80 84.23

We set several number of p to measure the performance of our proposal, p is best
on around 1e − 2 with the less p is the better the performance is unless p is too tiny.
Results show that our proposal outperforms the previous. Moreover, we compare the time
overhead on the training process in which the previous is exponential order compared with
our constant (the number of samples is regarded as static) due to their loss function with
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Table 2: Performance on CIFAR100 with two backbones
Model Recall@1 F-score@1 NMI RP MAP@R

Guided(Res18) 37.96 39.39 42.83 29.12 26.74
Guided(Res50) 43.58 43.86 46.44 37.35 34.68

Ours (Res18) 56.27 56.07 53.80 55.03 54.02
Ours (Res50) 57.69 57.38 57.34 57.26 56.02

demand of composition between distinct categories. Our time assumption is similar to
Guided in CIFAR10, but when the number of categories incereses to 100 on CIFAR100, it’s
almost five hundred times better than Guided in the training process. The vast distinction
in time overhead is obvious that our model is just a pipeline in classification while extra
networks for anchor, negative, and positive samples are demanded in previous methods. In
addition, we extend the backbone to ResNet50 on CIFAR100 both in ours and Guided.

The performance is shown as Tabel 1 on CIFAR10 and Tabel 2 on CIFAR100, Table
1 shows that all of metrics of ours are better than Guided. Table 2 shows that a huge
backbone can increase performance on CIFAR100, which in Guided it’s significant than
ours.

4.2. Ablation Study

In our further investigation, we explored whether our metric loss is essential for improving
sample embeddings. Specifically, we assessed whether it is possible to achieve a well-defined
metric space by using a normal metric (such as the Euclidean distance) in combination with
a well-trained network using the Cross-Entropy loss function. Our results indicate that it
is indeed possible to train a network using Cross-Entropy and the Euclidean metric to
obtain a competent metric space, although superior results are achieved with our extended
Cross-Entropy loss function, especially when an appropriate value of p is employed.

In this linear space, different metrics exhibit a monotonic property: if the value of one
vector is greater than that of another vector in each dimension, this relationship holds true
across various norms. Our experiments revealed that most of the vector differences between
the two samples exhibit this monotonic relation, resulting in minimal differences between
the Mean Squared Error (MSE) metric and our extended Cross Entropy (CE) metric. The
critical factor contributing to the performance of Deep Metric Learning (DML) in this
context is the effective training in the classification task.

Additionally, our ablation study confirmed that our proposal remains effective even
when applied to a network trained solely with Cross Entropy, although our extended CE
loss function exhibits a slight advantage. It’s worth noting that the use of the Euclidean
distance in the loss function is known to yield suboptimal training results.

Furthermore, our findings suggest that our proposal performs optimally when p is slightly
smaller than 1. This implies that when a loss function resembles a metric during the
training process, it may seem somewhat trivial. However, we discovered that attempting to
transform Cross Entropy from a weak-metric to a full metric can enhance the performance
of networks trained with Cross Entropy. When p is approximately equal to 1e − 2, we
observed the best performance.
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Table 3: Ablation study on CIFAR10, in which number followed p means the value of p
and similar to a. CEap1 means a tiny a for a fair program with p = 1. P2 in
‘Metric’ means we use Euclidean distance when testing and others represent ours
with different p.

Model Metric Recall@1 F-score@1 RP MAP@R

CEap1 (NMI = 69.11)

P2 81.73 81.66 84.72 83.95
p=1 81.62 81.55 84.72 84.33
p=0.1 83.37 83.29 84.75 84.46
p=1e-2 84.06 83.99 84.80 84.23
p=1e-5 84.15 84.08 11.48 3.04

CEap0.99 (NMI = 63.67)
P2 81.74 81.73 85.03 84.35
p=1 81.78 81.77 85.04 84.73
p=0.1 83.52 83.44 85.05 84.81
p=1e-2 84.05 83.97 84.95 84.48

CEap0.9 (NMI = 63.44)
P2 80.97 80.89 84.50 83.83
p=1 81.74 81.69 84.51 84.18

CEa3p0.9 (NMI = 64.74)
P2 79.89 79.89 81.22 80.03
p=1 79.91 79.90 81.24 80.56

However, when p is decreased, the performance of the training deteriorates. Our at-
tempts to adjust parameters a and p to satisfy Equation (17) and generate a metric space
during the ablation study led to worse classification training results.

5. Conclusion

The majority of methods in Deep Metric Learning (DML) focus directly on the task of
”training to make samples with the same label close and those with distinct labels far
apart.” What we propose demonstrates that classification can be used to generate a metric
space by extending its loss function into a metric without the need for additional network
constructions. This approach can effectively scale to large-scale datasets, whereas methods
based on triplet structures often suffer from significant time overhead during the training
process.

However, it’s important to acknowledge a limitation of our proposal: the dimension of
the metric space is fixed by the number of categories, and this cannot be easily addressed
through dimension reduction algorithms due to the inherent structure of the metric space.
To achieve a well-defined metric space with a varying dimension, one might consider training
the classification task with preprocessing to embed labels into the desired dimension space.
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