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ABSTRACT

Attention-based models, such as Transformer, excel across various tasks but lack a
comprehensive theoretical understanding, especially regarding token-wise sparsity
and internal linear representations. To address this gap, we introduce the single-
location regression task, where only one token in a sequence determines the output,
and its position is a latent random variable, retrievable via a linear projection
of the input. To solve this task, we propose a dedicated predictor, which turns
out to be a simplified version of a non-linear self-attention layer. We study its
theoretical properties, by showing its asymptotic Bayes optimality and analyzing
its training dynamics. In particular, despite the non-convex nature of the problem,
the predictor effectively learns the underlying structure. This work highlights the
capacity of attention mechanisms to handle sparse token information and internal
linear structures.

1 INTRODUCTION

Attention-based models (Bahdanau et al., 2015), such as Transformer (Vaswani et al., 2017), have
achieved unprecedented performance in various learning tasks, including natural language processing
(NLP), e.g., text generation (Bubeck et al., 2023), translation (Luong et al., 2015), sentiment analysis
(Song et al., 2019; Sun et al., 2019; Xu et al., 2019), and audio/speech analysis (Bahdanau et al.,
2016). These developments have led to many architectural and algorithmic variants of attention-based
models (see the review by Lin et al., 2022). At a high level, the success of attention has been linked
to its ability to manage long-range dependencies in input sequences (Bahdanau et al., 2015; Vaswani
et al., 2017), since it consists in computing pairwise dependence between input tokens according to
their projection in learned directions, independently of their location in the sequence.

On the theoretical front, however, a deeper understanding of attention-based neural networks is
still in its infancy. This limited progress is due both to the complexity of the architectures and
to the disturbing diversity of relevant tasks. A common approach to tackle these challenges is to
introduce a simplified task that models certain features of real-world tasks, followed by demonstrating
a simplified version of the attention mechanism capable of solving the task. Prominent examples
of this pattern include studying in-context learning with linearized attention (Ahn et al., 2023; von
Oswald et al., 2023; Zhang et al., 2024), topic understanding with single-layer attention and alternate
minimization scheme (Li et al., 2023b), learning spatial structure with positional attention (Jelassi
et al., 2022), next-token prediction with latent bigram (Bietti et al., 2023; Tian et al., 2023) or causal
graph (Nichani et al., 2024) structures, and sparse token selection (Wang et al., 2024). We refer
to Appendix F for additional discussion on some of these related works. While these works shed
light on some abilities of Transformer, they do not encompass all the characteristics of tasks where
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Transformer performs well, in particular in NLP. Two features of particular interest, which to our
knowledge have not been addressed in previous theoretical studies on Transformer, are token-wise
sparsity, where relevant information is contained in a limited number of tokens, and internal linear
representations, which are interpretable representations of the input constructed by the model.

Contributions. To understand why attention is a suitable architecture for addressing these features,
we introduce single-location regression, a novel statistical task where attention-based predictors
excel (Section 2). In a nutshell, this task is a regression problem with a sequence of tokens as input.
The key novelty is that only one token determines the prediction, and the location of this token is
a latent random variable that changes based on the input sequence. Consequently, solving the task
requires first identifying the location of the relevant token, which can be done by learning a latent
linear projection, followed by performing regression on that token.

To tackle this problem, we propose a dedicated predictor, which turns out to be a simplified version
of a non-linear self-attention layer. We show that this attention-based predictor is asymptotically
Bayes optimal, whereas more standard linear regressors fail to perform better than the null predictor.
We then analyze the training dynamics of the proposed predictor, when trained to minimize the
theoretical risk by projected gradient descent. Despite the non-convexity of the problem and the
non-linearity of this transformer-based method, we show that the learned predictor successfully
retrieves the underlying structure of the task and thus solves single-location regression.

Organization. Section 2 presents the mathematical framework of single-location regression, fol-
lowed by motivations from language processing. Section 3 is dedicated to defining our predictor
and explaining its connection with attention. We then move on to the mathematical study, from both
statistical (Section 4) and optimization (Section 5) points of view. Section 6 concludes the paper.

2 SINGLE-LOCATION REGRESSION TASK

In this section, we describe our statistical task, and connect it to language processing motivations.

2.1 STATISTICAL SETTING

We consider a regression scenario where the inputs are sequences of L random tokens1 (X1, . . . , XL)
taking values in Rd. The output Y ∈ R is assumed to be given by

Y = X⊤
J0
v⋆ + ξ, (Plearn)

where J0 is a latent discrete random variable on {1, . . . , L} and, conditionally on J0,{
XJ0 ∼ N

(√
d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ̸= J0 .

In the above formulation, N (µ,Σ) denotes the normal distribution with expectation µ and covariance
matrix Σ, and Id is the identity matrix of size d× d. All vectors are considered as column matrices,
and the noise term ξ is assumed to be a centered random variable independent of X and J0, with finite
second-order moment ε2. Conditionally on J0, the tokens (Xj)1⩽j⩽L are assumed to be independent.

The parameters of the regression problem (Plearn) are the unknown vectors k⋆ and v⋆, both assumed
to be on the unit sphere Sd−1 in dimension d, i.e., ∥k⋆∥2 = ∥v⋆∥2 = 1. The output is determined
by a specific token in the sentence, indexed by the discrete random variable J0 on {1, . . . , L}. This
token can be detected via its mean, which is proportional to k⋆, contrarily to the others which have
zero mean. Once XJ0

is identified, the prediction is formed as a linear projection in the direction v⋆.
Therefore, the originality and difficulty of this task lies in the fact that the response Y is linearly
related to a single informative token XJ0

, whose location varies from sequence to sequence—in this
sense, the problem is sparse, but with a random support.

A knee-jerk reaction would be to fit a linear model to the pair (X⊤
1 , . . . , X⊤

L , Y ). One might
also consider tackling the problem with classical statistical approaches dedicated to sparsity, such

1For the sake of simplicity, we interchangeably use the terms “token” and “embedding”, although they have
slightly different meanings in the NLP community.
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as a Lasso estimator or a group-Lasso technique (Hastie et al., 2009). However, as we will see
(in Section 4), all linear predictors fail due to the unknown and changing location of J0. We
note in addition that E[∥Xℓ∥22] = d when ℓ ̸= J0, while E[∥XJ0

∥22] = d/2 + γ2d. Therefore,
choosing γ2 = 1/2 implies that tokens have the same squared norm in expectation, whether they are
discriminatory of not. This shows that any approach based on comparing the magnitude of the tokens
does not yield meaningful results. Ultimately, it is necessary to implement a more sophisticated
approach, capable of taking into account the characteristics of the problem.

2.2 LANGUAGE PROCESSING MOTIVATION

The structure of the task (Plearn) is motivated by natural language processing (NLP), and more
specifically by two features, token-wise sparsity and internal linear representations, as we detail next.

Birds flying high, you know how I feel? 
And, I’m feeling awful.

What have I become my sweetest friend? 
Everyone I know goes ill in the end. 

Birds flying high, you know how I feel? 
And, I’m feeling good.

What have I become my sweetest friend? 
Everyone I know goes well in the end. 

(a) Examples of input-output pairs. The input is a text
containing two sentences (e.g., a question and an an-
swer), and the task is to perform sentiment analysis
only for the second sentence. The Y output is sym-
bolized here by a color code, where green (resp. red)
corresponds to positive (resp. negative) feelings. The
relevant information is sparse, typically concentrated in
a single token: changing the grey token flips the output.
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(b) Accuracy of logistic regression on embeddings of
[CLS] tokens in the hidden layers of a pretrained Trans-
former model. Initial embeddings of [CLS] (at layer
0) are not context-aware, so they have a pure-chance
accuracy of 50%. In hidden layers, the [CLS] token
contains a representation of the sentence that achieves
high scores and is robust to out-of-distribution changes
in token distribution and sentence structure.

Figure 1: A simple sentiment analysis task with synthetic data, which exemplifies (a) token-wise
sparsity and (b) internal linear representations. We refer to Appendix E for details on the experiment.

Token-wise sparsity. In language tasks, the relevant information is often contained in few tokens,
where we recall that tokens correspond to small text units (typically, words or subwords), which
are embedded in Rd using a learned dictionary. This sparsity is revealed by the success of sparse
attention (Martins & Astudillo, 2016; Niculae & Blondel, 2017; Correia et al., 2019; Child et al.,
2019; Jaszczur et al., 2021; Kim et al., 2022; Farina et al., 2024), which is competitive with full
attention while attending to fewer tokens. As an illustration, we consider a simple sentiment analysis
task in Figure 1a, and observe that changing one token flips the output. This is modeled in (Plearn) by
having the output Y depend on a single token J0, whose location furthermore varies with the input.

Internal linear representations. Linear projections of internal representations of Transformer
(a.k.a. linear probing) contain interpretable information (Bolukbasi et al., 2021; Burns et al., 2023; Li
et al., 2023a). Such a linear structure is also present in the learned token embeddings that are fed
as input to language models (Mikolov et al., 2013a;b; Bolukbasi et al., 2016; Nanda et al., 2023;
Wen-Yi & Mimno, 2023). In our task (Plearn), the two directions k⋆ and v⋆ have to be learned by the
model in order to solve the task. Figure 2 gives an example of possible such directions for the toy task
described above. While this illustration relies on initial embeddings, similar structures also appear in
the intermediate representations of Transformer. This is shown in Figure 1b, where we observe that
pretrained Transformer architectures indeed build internal representations that are sufficient to solve
the task with a linear classifier.
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Figure 2: Modeling of an NLP task within our statistical setting (Plearn). The token embeddings
X1, . . . , XL are constructed by adding the embeddings of each word and a positional encoding.
For illustration purposes, we assume that each token corresponds to a word, and that the positional
encoding solely depends on the part of the sentence (before or after the question mark), which differs
from usual practice. Then, let the direction k⋆ encode both the notion of sentiment and the position
in the second part of the sentence. Thus only the last token of the sentence is aligned (positively)
with k⋆, and we have J0 = L. As for v⋆, it encodes whether the word is associated with a positive
or negative sentiment. Note that several tokens are positively or negatively aligned with v⋆, but the
output Y only depends on the token J0. This illustrates the interest of having two latent directions k⋆
and v⋆, one that filters the informative token and one that aligns with the output Y .

We acknowledge that our statistical task presents limitations such as fixed sequence length, indepen-
dent tokens, and output depending only on a single token. More complex models could be considered,
but at significant technical cost. Moreover, as argued above, our problem (Plearn) preserves interesting
aspects of NLP tasks, which makes it relevant for theoretical study of Transformer. Furthermore, it
is an original statistical task requiring the implementation of a customized estimation strategy. It is
precisely in this context that attention models prove their effectiveness, as we show next.

3 AN ATTENTION-BASED PREDICTOR TO SOLVE THE REGRESSION TASK

In this section, we propose a predictor adapted to the problem (Plearn) and discuss its connection with
attention. In order to make our point as clear as possible, the construction is divided into three steps.
We represent the input sequence in a matrix format X ∈ RL×d, where X = (X1|X2| · · · |XL)

⊤.

Step 1: An oracle non-differentiable predictor. If the vectors (k⋆, v⋆) ∈ (Sd−1)2 were known,
then a natural procedure to solve the task (Plearn) would be to predict Y from X via

T (X) = (Xv⋆)j0(X) = X⊤
j0(X)v

⋆ , where j0(X) = argmax
1⩽ℓ⩽L

(Xk⋆)ℓ . (1)

The argmax part detects the location J0 by exploiting the fact that all Xℓ have zero mean except
XJ0 , while the Xv⋆ part exploits the linear relationship Y = X⊤

J0
v⋆ + ξ. In a more compact format,

this ideal predictor can be rewritten as T (X) =
∑L

ℓ=1 1argmax(Xk⋆)=ℓ(Xv⋆)ℓ , which is a linear
regression in the direction v⋆ with non-differentiable weights depending on k⋆.

Step 2: A trainable predictor. In practice, the vectors k⋆ and v⋆ are unknown and must be
estimated from the data. In addition, the non-differentiability of the argmax function poses significant
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optimization challenges. To solve this problem, the most common approach in machine learning
is to replace argmax with a softmax function with inverse temperature λ > 0, i.e., for z =

(z1, . . . , zL) ∈ RL, [softmax(λz)]j = eλzj/
∑L

ℓ=1 e
λzℓ . This leads us to the model

T
(soft,k,v)
λ (X) =

L∑
ℓ=1

[softmax(λXk)]ℓ(Xv)ℓ = softmax
(
λ Xk︸︷︷︸

L×1

)⊤ Xv︸︷︷︸
L×1

, (2)

where k, v ∈ Sd−1, and the superscript ‘soft’ is used to indicate the presence of the softmax function.

Step 3: The final predictor. The softmax nonlinearity, by inducing a coupling between all tokens,
significantly complicates the mathematical analysis. To alleviate this difficulty, we replace it by the
component-wise nonlinear function erf(z) = 2√

π

∫ z

0
e−t2dt, which is differentiable, increasing on R,

and such that erf(−∞) = −1 and erf(∞) = 1. We are therefore led to our operational model

T
(k,v)
λ (X) = erf

(
λXk

)⊤Xv =

L∑
ℓ=1

erf
(
λX⊤

ℓ k
)
X⊤

ℓ v , (3)

where the erf function is applied component-wise. The choice of this activation function enables
closed-form expectations for functions of Gaussian random variables (see, e.g., Lemma 18). Note
that the role of softmax in attention is an open question in the community. Several empirical papers
investigate simplifying softmax into a component-wise nonlinearity (Qin et al., 2022; Shen et al.,
2023; Wortsman et al., 2023; Ramapuram et al., 2024), and have observed a similar performance.
These works emphasize the importance of the normalization λ when replacing softmax, which we
also find out to play an important role (see Corollary 2 and Section 5).

Connection to attention. It turns out that our estimation method finds a natural interpretation in
terms of attention models. To see this, consider a model consisting of a single attention layer with a
single head (Vaswani et al., 2017)

T
(Q,K,V,O)
λ (X) = softmax

(
λ XQ︸︷︷︸

L×p

K⊤X⊤︸ ︷︷ ︸
p×L

)
XV︸︷︷︸
L×p

O⊤︸︷︷︸
p×o

, (4)

where the dimensions p, o ∈ N∗ are hyperparameters of the model, the softmax function is applied
row by row, Q,K, V ∈ Rd×p and O ∈ Ro×p are the regular query, key, value, and output matrices,
and λ is usually taken to be 1/

√
p. In practice, the attention head is added to X via a skip connection,

which enforces o = d. In a nutshell, K detects which tokens are relevant in the sentence, V encodes
the regression coefficient, and Q encodes where to store the information.

In a supervised context, it is classical in practice to concatenate in first position an additional token
[CLS] to the tokenized sentence X (see, e.g., Devlin et al., 2019). In this context, only the first
coordinate of the output is used for the prediction task. Thus, we focus on the first row of (4),
corresponding to the embedding of [CLS], namely

T
(Q,K,V,O)
λ (X)1 = softmax

(
λ aK⊤X⊤)XV O⊤, (5)

with a = X⊤
[CLS]Q ∈ R1×p, where X[CLS] ∈ Rd denotes the embedding of the [CLS] token.

It is important to note that only considering the first output coordinate is a mathematically valid
simplification for a single attention layer, but not when multiple layers are stacked, as all coordinates
of the attention output contribute. Nevertheless, even in this latter more realistic case, the [CLS]
token—or the similar concepts of attention sinks and registers—has been empirically shown to play a
crucial role (Clark et al., 2019; Darcet et al., 2024; Xiao et al., 2024). This is also confirmed by our
experiment in Figure 1b, where we show that the [CLS] token in pretrained Transformer architectures
stores an internal representation of the sentence that is sufficient to solve simple NLP tasks with a
linear classifier. This further motivates the need to understand how information is stored in this token.

It turns out that there is a direct connection between the model T (soft,k,v)
λ (X) defined in (2) and the

attention model T (Q,K,V,O)
λ (X)1 described in (5). To see this, take o = 1, to adapt the model (5) for

univariate regression, and set p = 1, a reasonable assumption given both empirical and theoretical
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evidence suggesting that Transformer parameter matrices are low-rank (Aghajanyan et al., 2021;
Kajitsuka & Sato, 2024). Then, let Q ∈ Rd×1 be any vector with positive correlation with X[CLS]
(for instance it suffices to take Q = X[CLS]), and O = 1. We then deduce that

T
(Q,K,V,O)
λ (X)1 = T

(soft,K,V )

λX⊤
[CLS]Q

(X) .

In other words, the attention layer (5) matches the considered predictor in (2) with a softmax inverse
temperature proportional to the scalar product between X[CLS] and Q. Thus, our results, in particular
the study of the training dynamics in Section 5, can be seen as a model of how Transformer builds
internal representations of the input during training. This is also supported by numerical experiments
showing that Transformer layers behave similarly to our predictor (see Appendix E).

4 RISK OF THE ORACLE AND OF THE LINEAR PREDICTORS

Now that we have constructed our predictor T (k,v)
λ (see Eq. (3)), a first key question is to assess

its statistical performance. Recall that k, v ∈ Sd−1 are the two parameters of the model, and their
purpose is to approximate their theoretical counterparts k⋆ and v⋆ defined in (1). This begs in
particular the question of the performance of the oracle predictor T (k⋆,v⋆)

λ . To answer these questions,
we introduce the risk of the predictor, which is measured by the mean squared error

Rλ(k, v) = E
[(

Y − T
(k,v)
λ (X)

)2]
. (6)

To proceed with the analysis, we make the following assumption.
Assumption 1. The vectors k⋆, v⋆ ∈ Sd−1 are orthogonal, i.e., k⋆⊤v⋆ = 0.

This assumption is made everywhere in the remainder of the paper, even though it is not reminded
explicitly at each result. It is a relatively mild assumption in a high-dimensional setting where any
two independent vectors uniformly distributed on the sphere are close to being orthogonal.

Oracle predictor. Our first result characterizes the risk of the proposed transformer model (3) with
oracle parameters (k⋆, v⋆). All the proofs of the paper are deferred to the Appendix.
Theorem 1. There exists a function R<

λ : R5 → R such that, for any (k, v) ∈ (Sd−1)2,

Rλ(k, v) = R<
λ (κ, ν, θ, η, ρ) ,

where κ := k⊤k⋆, ν := v⊤v⋆, θ := v⊤k⋆, η := k⊤v⋆, and ρ := k⊤v. A closed-form expression of
R<

λ is given in Appendix C. In particular,

Rλ(k
⋆, v⋆) = R<

λ (1, 1, 0, 0, 0)

= γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+G)

]
, G ∼ N (0, γ2) . (7)

This result is fundamental for the analysis of gradient descent studied in the next section since it
reduces the dimension of the dynamical system defined by the optimization dynamics. Before delving
into the optimization analysis, we study below the statistical optimality of the estimator Rλ(k

⋆, v⋆)
and its comparison with linear regression.

Asymptotic Bayes optimality. Let us start by observing that the Bayes risk associated with problem
(Plearn) is larger than ε2, which follows from elementary properties of the conditional expectation
(Le Gall, 2022, Chapter 11). Indeed, using the Pythagorean theorem, one easily shows that

E[(Y − E[Y |X])2] ⩾ E[(Y − E[Y |X, J0])
2] = E[ξ2] = ε2 . (8)

Then, the following corollary to Theorem 1 shows that the oracle predictor achieves the Bayes-optimal
risk in the asymptotic scaling L ≪ 1/λ2 ≪ d.
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Corollary 2. Assume a joint asymptotic scaling where d → ∞ and L = o(d). Taking λ such that
λ
√
d → ∞ and λ

√
L → 0, we have

Rλ(k
⋆, v⋆) −→ ε2 .

Thus, in this asymptotic regime, the oracle predictor T (k⋆,v⋆)
λ is asymptotically Bayes optimal.

Note that Corollary 2 holds for any finite L ∈ N>0, but L may also tend to infinity, as long as
L = o(d). Let us give an intuition on why this result holds and where the scalings of L and λ
intervene. The oracle predictor can be decomposed as

T
(k⋆,v⋆)
λ (X) = X⊤

J0
v⋆︸ ︷︷ ︸

=E[Y |X,J0]

erf(λX⊤
J0
k⋆︸ ︷︷ ︸

=Θ(λ
√
d)

) +
∑
j ̸=J0

X⊤
j v⋆︸ ︷︷ ︸

=Θ(1)

erf(λX⊤
j k⋆︸ ︷︷ ︸

=Θ(λ)

) (9)

With the scaling λ
√
d → ∞, the argument of the first erf nonlinearity diverges to infinity with d.

Thus it reaches the saturating part of erf , so the first term in (9) converges to E[Y |X, J0]. On the
other hand, the argument of the erf nonlinearities inside the sum are of order λ = o(1). Thus they are
in the linear part of erf . Therefore, the sum consists of L− 1 independent terms, each of magnitude λ.
As a consequence, by the central limit theorem, the whole sum is of order Θ(λ

√
L), and we get

T
(k⋆,v⋆)
λ (X) ≈ E[Y |X, J0] + Θ(λ

√
L) .

Due to the scaling λ
√
L → 0, the second term decays to zero, and the oracle predictor implements

the conditional expectation of Y given X and J0. This is the best that we can hope for: the predictor
succeeds in inferring the latent variable J0, then gives the best possible prediction of Y given X and
J0. We also see the crucial role played by the nonlinearity of erf , whose linear part acts for j ̸= J0
and saturating part for j = J0. In particular, the reasoning would not hold for a linear activation.

Linear model. The asymptotic optimality of our oracle predictor is particularly striking in compari-
son to the risk of the optimal linear predictor. More precisely, let

β⋆ ∈ argmin
β∈RdL

E
[
(Y − (X⊤

1 , . . . , X⊤
L )β)2

]
be the optimal linear predictor for the regression task (Plearn). Its associated risk is R(β⋆) =
E
[
(Y − (X⊤

1 , . . . , X⊤
L )β⋆)2

]
. Both the optimal predictor and its risk can be made explicit as follows.

Proposition 3. Let pj = P(J0 = j) for j ∈ {1, . . . , L}. Then the optimal linear predictor is

parameterized by β⋆ = (b1v
⋆, . . . , bLv

⋆), with bj =
γ2pj

1+pj(γ2−1) , and its risk is

R(β⋆) = ε2 + γ2 − γ4
L∑

j=1

p2j
1 + pj(γ2 − 1)

.

In particular,
R(β⋆) ⩾ ε2 + γ2 − γ2(γ2 + 1) max

j=1,...,L
pj .

This result calls for a few comments. If the number of tokens is L = 1 or if J0 is a constant location
(meaning that one pj is equal to 1 while the others are equal to 0), then the learning problem (Plearn)
corresponds to a standard linear regression. In this case, R(β⋆) = ε2, and the linear predictor
(X1, . . . , XL) 7→ (X⊤

1 , . . . , X⊤
L )β⋆ achieves the Bayes risk. At the other end of the spectrum, in the

case where J0 is uniform over {1, . . . , L}, the formula for the risk of the linear predictor simplifies
to R(β⋆) = ε2 + γ2 − γ4

γ2+L−1 . When L → ∞, this risk tends to ε2 + γ2, that is, the performance
of the null predictor. In other words, the optimal linear predictor performs no better than always
predicting zero. More generally, this conclusion is true in any limit where L → ∞ and max pj → 0.
This can be explained by the fact that the location of the relevant token for prediction is random,
varying from sentence to sentence. Unable to leverage this latent information, the linear regressor
balances all its coefficients, resulting in poor prediction performance. This stands in sharp contrast to
Corollary 2, which shows that the oracle predictor T (k⋆,v⋆)

λ is able to account for the complexity of
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Figure 3: Risk of the oracle predictor (Theorem 1,
solid lines) and of the best linear predictor (Propo-
sition 3, dashed lines), depending on the dimen-
sions d and L. The oracle predictor outperforms
the linear predictor when scaling d. We take
ε2 = 0, γ = 1/

√
2, λ = 1/d0.4, and all pj equal

to 1/L.

the task, at least asymptotically. This is also illustrated by Figure 3, which compares the value of the
risks given by Theorem 1 and Proposition 3.

Naturally, implementing the attention-based oracle predictor T (k⋆,v⋆)
λ requires knowledge of the

parameters k⋆ and v⋆. Our goal in the next section is therefore to show that gradient descent is able
to recover these parameters.

5 GRADIENT DESCENT PROVABLY RECOVERS THE ORACLE PREDICTOR

This section is devoted to the analysis of the optimization dynamics in (k, v) ∈ (Sd−1)2 of the risk

Rλ(k, v) = E
[(

Y − T
(k,v)
λ (X)

)2]
= E

[(
Y − erf

(
λXk

)⊤Xv)2] .
We emphasize that Rλ(k, v) is a theoretical risk, which depends on the distribution of the pair (X, Y )
(defined in Section 2). In practice, an empirical version of this risk is minimized. As we show
experimentally (see Figure 5), the stochastic dynamics induced by the empirical version of the risk
are qualitatively similar to the deterministic dynamics of the theoretical risk. In the remainder of the
article, we focus on the theoretical risk for simplicity, and leave the empirical risk for future research.

Our optimization method is the Projected (Riemannian) Gradient Descent (PGD), described below.
Definition 1 (PGD). Given an initialization (k0, v0) ∈ (Sd−1)2, a step size α > 0, and an inverse
temperature sequence (λt)t⩾0, the sequence (kt, vt)t⩾0 ∈ (Sd−1)2 is recursively defined by

kt+1 = ProjSd−1(kt − α(Id − ktk
⊤
t )∇kRλt

(kt, vt)) ,

vt+1 = ProjSd−1(vt − α(Id − vtv
⊤
t )∇vRλt

(kt, vt)) ,
(10)

where ProjSd−1 : x 7→ x/∥x∥2 denotes the Euclidean projection on the unit sphere of Rd.

The operators (Id − ktk
⊤
t ) and (Id − vtv

⊤
t ) correspond to Riemannian gradient descent (Boumal,

2023, Section 4.3), meaning that we compute the gradient of the risk on the Riemannian manifold
(Sd−1)2. In other words, the gradient step is performed on the tangent space to the sphere at the
current iterate. This is a precaution we are taking because, in the analysis of the dynamics, we rely
on an expression of the risk (6) that is valid only on this manifold. In addition, this ensures that the
subsequent projection on Sd−1 is always well-defined, despite the fact that the sphere is a non-convex
set, because iterates always avoid the pathological cases k = 0 or v = 0.

Experimentally, we observe in Figure 4a that PGD is able to recover the oracle parameters (k⋆, v⋆).
Note that running the PGD iterates (10) involves computing the gradients ∇kRλt(kt, vt) and
∇vRλt

(kt, vt), which is non-trivial a priori. A direct approach using Monte Carlo simulations
would require a large number of sample points to reduce variance, which is computationally in-
tractable in particular in high-dimension, and in any case gives an approximate result. Instead, we
leverage our closed form formula for R<

λ from Theorem 1 to get exact values for the gradients (up
to numerical errors). Interestingly, we also observe in Figure 4a that v aligns with v⋆ much faster
than k aligns with k⋆. This is typical of two-timescale dynamics, which is a common framework in
analysis of non-convex learning dynamics (Heusel et al., 2017; Dagréou et al., 2022; Hong et al.,
2023; Marion & Berthier, 2023; Berthier et al., 2024; Marion et al., 2024).
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(a) From a random initialization on (Sd−1)2.
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(b) From a random initialization on M (see Eq. (11)).

Figure 4: Convergence of PGD to the oracle parameters. Left: Excess risk as a function of the number
of steps. Middle left: Alignment |κ| = |k⊤k⋆| and |ν| = |v⊤v⋆| with the oracle parameters. Middle
right: Trajectories of κ and ν in two repetitions of the experiments. Each repetition corresponds
to a color, the trajectory starts in the middle and ends at a corner of the plot. Right: Distance to
the invariant manifold M. In all plots except the middle right ones, the experiment is repeated
30 times with independent random initializations, and 95% percentile intervals are plotted (but are
not visible when the variance is too small). Parameters are d = 400, L = 10, γ =

√
1/2, and (a)

λt = 1/(1 + 10−4t), (b) λt = 0.1. More details are given in Appendix E.

Moving on to the mathematical study, even with the formula for R<
λ , a full analysis of the dynam-

ics (10) is difficult. For instance, the dynamics (10) can be formulated in terms of the five variables
of R<

λ , but then one needs to study a 5-dimensional highly nonlinear dynamical system. In the
following, we consider the case where the parameters are initialized on the submanifold of (Sd−1)2

M = {(k, v) ∈ Sd−1 × Sd−1, k⊤v⋆ = 0, v⊤k⋆ = 0, k⊤v = 0} . (11)

We introduce this manifold on the one hand owing to the observation in Figure 4a (right) that the
dynamics converge to this manifold even when initialized on the sphere, and on the other hand
because this allows to reduce the problem to a lower-dimensional subspace and to simplify the
expression of the risk. Clearly, due to Assumption 1, the oracle parameters (k⋆, v⋆) belong to M. A
first key property of this manifold is invariance under the PGD dynamics.
Lemma 4. The manifold M is invariant under the PGD dynamics (10), in the sense that if (kt, vt) ∈
M, then (kt+1, vt+1) ∈ M.

This lemma shows that, if the initialization is taken on the manifold, then it is enough to understand
the dynamics on the manifold to conclude. Such analysis on the manifold is tractable. This yields
Theorem 5, our main result, which shows that the sequence (kt, vt)t⩾0 converges to the oracle values
(k⋆, v⋆) (up to a sign) as t → ∞, for any small enough step size, and a constant inverse temperature.
Theorem 5. Take a constant inverse temperature λt ≡ λ > 0. Then there exists α > 0 such that, for
any step size α ⩽ α, and for a generic initialization (k0, v0) ∈ M, (kt, vt) −−−→

t→∞
±(k⋆, v⋆).

This result shows that, despite the non-convexity of the risk, the attention layer trained by PGD can
recover the underlying structure of the problem. Convergence to (k⋆, v⋆) or (−k⋆,−v⋆) is not at all
problematic, since T

(k⋆,v⋆)
λ = T

(−k⋆,−v⋆)
λ by symmetry of the erf function. Furthermore, recovery

is guaranteed for a generic initialization on M, in the sense that the pathological pairs (k0, v0) ∈ M
such that PGD fails to recover the oracle parameters are of Lebesgue measure zero. The results of
Theorem 5 are illustrated by Figure 4b. We observe that, due to roundoff errors, the dynamics are not
exactly on the manifold but stay very close to the manifold.
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We emphasize that the manifold M depends on the unknown parameters k⋆ and v⋆, making it
impractical to initialize directly on the manifold. If the initialization is not on M, more diverse
phenomena are possible. As already pointed out in Figure 4a, it is possible to obtain recovery of
(k⋆, v⋆) and convergence to the manifold M from a general initialization on the sphere. This suggests
that our analysis on the manifold is relevant, and completing the analysis for a general initialization is
left for future work. However, we note that using a decreasing inverse temperature sequence λt is
crucial for the recovery of (k⋆, v⋆) when initialized out of M. Indeed, to the best of our experiments,
an iteration-independent choice of λ does not consistently lead to the recovery of k⋆ and v⋆ in this
case (see Appendix E). This contrasts with the dynamics on the manifold proven in Theorem 5.

To investigate these behaviors, a fruitful direction would be to investigate the (local) stability of
the manifold M for the PGD dynamics. If the manifold is indeed stable, one can hope to transfer
the analysis on the manifold to dynamics initialized close to the manifold. Furthermore, recall that,
in high dimension, random vectors on the sphere are close to being orthogonal. Thus, with high
probability, a uniform initialization in (Sd−1)2 falls in the neighborhood of the manifold M, so that
the local analysis should allow to conclude.

The proof of the theorem relies on a detailed analysis of the dynamics of the PGD algorithm on the
invariant manifold M, in particular the properties of its stationary points. These arguments, which lie
at the intersection of dynamical systems and topology, are of independent interest. A key idea is to
reduce the problem to a two-dimensional system depending only on κ = k⊤k⋆ and ν = v⊤v⋆.

Finally, numerical experiments show that a full Transformer layer is able to solve the single-location
regression task. Similarly to our simplified predictor, the weights align with the oracle parameters k⋆
and v⋆. This supports the connection drawn in Section 3 between our predictor and attention layers.
We refer to Appendix E for details and plots, as well as experiments on multiple-location regression,
a variant of single-location regression where the output depends on several tokens.
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Figure 5: Convergence of online stochastic PGD to the oracle parameters from a random initialization
on (Sd−1)2. Left: Excess risk as a function of the number of steps. Middle left: Alignment
|κ| = |k⊤k⋆| and |ν| = |v⊤v⋆| with the oracle parameters. Middle right: Trajectories of κ and
ν in two repetitions of the experiment. Each repetition corresponds to a color, the trajectory starts
in the middle and ends at a corner of the plot. Right: Distance to the invariant manifold M. In
all plots except the middle right one, the experiment is repeated 30 times with independent random
initializations, and 95% percentile intervals are plotted. Parameters are d = 80, L = 10, γ =

√
1/2,

λt = 2/(1 + 10−4t), and a batch size of 5. More details are given in Appendix E.

6 CONCLUSION

This paper introduced single-location regression, a novel statistical task where the relevant information
in the input sequence is supported by a single token. We analyzed the statistical properties and
optimization dynamics of a natural estimator for this task, which can be seen as a basic attention layer.
We hope this work encourages further research into how Transformer architectures address sparsity
and long-range dependencies, while simultaneously constructing internal linear representations of
their input—–an aspect with significant implications for interpretability. Beyond NLP, potential
applications include problems connected to sparse sequential modeling such as anomaly detection
in time series. A natural extension of our framework is when relevant information is spread across
a few input tokens rather than just one, which relates to multi-head attention. Future mathematical
analyses should also consider extensions to general initialization schemes and stochastic dynamics.
Our experiments (Figures 4a, 5, and Appendix E) yield encouraging results in all these directions.
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Appendix
Organization of the Appendix. Section A presents the main steps of Theorem 5. The intermediate
results of this proof, as well as the other statements of the main text, are proven in Section B.
Section C provides an expression of the risk R beyond the manifold M that extends the one provided
in Lemma 6 on M. Section D gives some useful technical lemmas. Experimental details and
additional results are in Section E. Finally, Section F discusses additional related models.

Notation. In the whole Appendix, we consider a constant inverse temperature schedule λt ≡ λ > 0,
as in Theorem 5. For this reason, it is not necessary to make explicit the dependence of Rλ and R<

λ
on λ, and we use the lighter notations R and R< instead.

A OUTLINE OF THE PROOF OF THEOREM 5

This section outlines the essential steps for the proof of Theorem 5. For clarity, the proofs are to be
found in Appendix B, except the proof of Proposition 10.

Step 1: Invariant manifold & reparameterization. We first show that the risk R(k, v) has a
simpler expression when considered on the manifold M.

Lemma 6. The risk R(k, v) restricted to M has the form

R(k, v) = γ2 − 2γ2v⊤v⋆ erf

(
λ

√
d

2(1 + 2λ2γ2)
k⊤k⋆

)
+ γ2ζ

(
λ

√
d

2
k⊤k⋆, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+G)

]
, G ∼ N (0, γ2) .

This expression has two main consequences. First, we use it to prove that the manifold M is invariant
by PGD, according to Lemma 4. Second, we observe that the risk on the manifold depends on the
variables (k, v) ∈ Sd−1 × Sd−1 only through the two scalar quantities

κ = k⊤k⋆ and ν = v⊤v⋆ .

This suggests studying the dynamics in terms of the reduced variables (κ, ν) ∈ [−1, 1]2. More
precisely, in the following, we denote by R< the risk function R reparameterized as a function of
(κ, ν), i.e., we let

R<(κ, ν) = γ2− 2γ2ν erf

(
λ

√
d

2(1 + 2λ2γ2)
κ

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+(L− 1)ζ(0, λ2)+ ε2 .

Note that, with a slight abuse of notation, we use R< to denote both the function of five variables
(κ, ν, θ, ρ, η) (as in Theorem 1) and the function of only the first two variables (κ, ν). There should
be no confusion, as both functions coincide on the manifold M where θ = ρ = η = 0. We also
denote the corresponding PGD iterates using this reparameterization by (κt, νt) := (k⊤t k

⋆, v⊤t v
⋆).

With this notation, the following lemma reformulates the PGD iterations as an autonomous discrete
dynamical system in terms of (κt, νt).

Lemma 7. When initialized on the manifold M, the PGD iterations (10) can be reformulated in
terms of the autonomous discrete dynamical system

(κt+1, νt+1) = g(κt, νt) , (12)

where the mapping g : [−1, 1]2 → [−1, 1]2 is given by

g(κ, ν) =

(
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

,
ν − α(∂νR<(κ, ν))(1− ν2)√
1 + α2(∂νR<(κ, ν))2(1− ν2)

)
. (13)
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Figure 6: Dynamics in (κ, ν) on the manifold M. In (a), the fixed points of the dynamics are
represented; the minimizers, saddle point, and maximizers are respectively depicted in yellow, blue
and red. In (b), the vector field (κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2)) is displayed
(the colormap corresponds to the magnitude of the vector field).

Step 2: Analysis of the stationary points. Regarding the dynamics restricted to the invariant
manifold M, we can characterize the limit points of the PGD iterates as follows.
Proposition 8. For a sufficiently small step size α and for any (k0, v0) ∈ M, the risk R< is
decreasing along the PGD iterates. Furthermore, the distance between successive PGD iterates tends
to zero, and, if (κ, ν) is an accumulation point of the sequence of iterates (κt, νt)t⩾0, then

(1− κ2)∂κR<(κ, ν) = 0 and (1− ν2)∂νR<(κ, ν) = 0 . (14)

We stress that the system (14) of equations corresponds to fixed points of the dynamics (12)–(13).
We next solve this system of equations.
Proposition 9. The points (κ, ν) ∈ [−1, 1]2 satisfying (14) are (κ, ν) = (±1,±1)2 and (κ, ν) =
(0, 0).

The identity (κ, ν) = (±1,±1) corresponds to the situation where the variables (k, v) are aligned
(up to sign) with the targets (k⋆, v⋆). As the next proposition shows, these are the only global minima
of R<.
Proposition 10. The fixed points of the dynamics can be classified as follows:

(i) The points (κ, ν) = (−1, 1) and (1,−1) are global maxima of R< on [−1, 1]2.

(ii) The points (κ, ν) = (1, 1) and (−1,−1) are global minima of R< on [−1, 1]2.

(iii) The point (κ, ν) = (0, 0) is a saddle point of R< on [−1, 1]2.

The fixed points of the dynamics as well as the vector field

(κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2))

are displayed in Figure 6.

Step 3: Convergence to global minima. The convergence of the sequence of iterates (κt, νt)t⩾0

to a global minimum is shown in two stages. First, we show that the iterates converge to one of the
five fixed points described in Proposition 10.

2This notation is used to designate any extreme point of the square [−1, 1]2, i.e., (κ, ν) = (1, 1), (1,−1),
(−1, 1), and (−1,−1).
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Proposition 11. For a sufficiently small step size α, the sequence of iterates (κt, νt)t⩾0 converges to
one of the five fixed points {(±1,±1), (0, 0)}.

Proof. According to Proposition 8, the distance between successive iterates (κt, νt) tends to zero.
Therefore, the set of accumulation points of the sequence (κt, νt)t⩾0 is connected (Lange, 2013,
Proposition 12.4.1). Since there is a finite number of possible accumulation points (by Proposition 9),
we deduce that the sequence has a unique accumulation point. Furthermore, the sequence belongs to
a compact. Thus, it converges, and its limit is one of the five fixed points.

It remains to precisely characterize the limit of the sequence (κt, νt)t⩾0. To this aim, we begin by
showing key properties of the gradient mapping g.
Proposition 12. For a sufficiently small step size α, the mapping g is a local diffeomorphism around
(0, 0), whose Jacobian matrix has one eigenvalue in (0, 1) and one eigenvalue in (1,∞). Furthermore,
it is injective on [−1, 1]2, differentiable, and its Jacobian is non-degenerate.

These properties enable us to apply the Center-Stable Manifold theorem (Shub, 1987, Theorem III.7),
a tool from dynamical systems theory, to deduce the next proposition.
Proposition 13. For a sufficiently small step size α, the set of initializations such that the sequence
(κt, νt)t⩾0 converges to (−1, 1), (1,−1), or (0, 0) has Lebesgue measure zero (with respect to the
Lebesgue measure on the manifold M).

Combining Proposition 11 and Proposition 13, we conclude that, provided the step size α is chosen
small enough, the sequence (κt, νt)t⩾0 almost surely converges to one of the minimizers, (1, 1) or
(−1,−1). This convergence is almost sure with respect to the Lebesgue measure on the manifold M.
Indeed, Proposition 13 ensures that the pathological initializations converging towards a maximizer
or a saddle point are of Lebesgue measure zero. This concludes the proof of Theorem 5.

The use of the Center-Stable Manifold theorem is crucial to our proof. Unfortunately, this tool does
not provide quantitative rates of convergence. Obtaining a rate is a challenging task as it would
require quantifying the distance of the iterates to the saddle points of the risk (the dynamics is indeed
slower near saddle points), which in turn requires other tools of analysis and potentially additional
assumptions.

B PROOFS OF THE MAIN RESULTS

B.1 PROOF OF LEMMA 6 AND THEOREM 1

We recall the formula for the risk

R(k, v) = E
[(

Y −
L∑

ℓ=1

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

and the data model

Y = X⊤
J0
v⋆ + ξ,

where

J0 ∈ P({1, . . . , L}) and

{
XJ0

∼ N
(√

d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ̸= J0.

In the above expression for the risk, we can condition on the value of J0. Actually, the conditioned
risk is independent of J0. Thus in this section, we assume without loss of generality that J0 = 1 a.s.:

R(k, v) = E
[(

X⊤
1 v⋆ + ξ − erf(λX⊤

1 k)X⊤
1 v −

L∑
ℓ=2

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

, (15)

where {
X1 ∼ N

(√
d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ⩾ 2.
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We rewrite this quantity in terms of multivariate standard Gaussian random variables. Using Assump-
tion 1, we get

R(k, v) = E
[(

γX̃⊤
1 v⋆ + ξ − erf

(
λ
(√d

2
k⊤∗ k + γX̃⊤

1 k
))(√d

2
k⊤∗ v + γX̃⊤

1 v
)

−
L∑

ℓ=2

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

,

where X̃1, X2, . . . , XL ∼ N (0, Id). This can be formulated in terms of the five scalar quantities
κ = k⊤k⋆, ν = v⊤v⋆, θ = v⊤k⋆, η = k⊤v⋆, and ρ = k⊤v. Indeed, we have

R(k, v) = R<(κ, ν, θ, η, ρ)

:= E
[(

γGv⋆

1 + ξ −
(√d

2
θ + γGv

1

)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ )
)2]

,
(16)

where Gv⋆

1
Gv

1

Gk
1

 , . . . ,

Gv⋆

L
Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν η
ν 1 ρ
η ρ 1

))
. (17)

This last expression only involves the five parameters κ, ν, θ, η, ρ, which play a role either explicitly
in the function or as parameters of the covariance of the random variables. This proves the first
statement of Theorem 1. A computation of a closed-form formula for this expectation is given in
Appendix C.

On the manifold M defined by θ = η = ρ = 0, we can simplify the expressions (16)–(17)

R<(κ, ν, 0, 0, 0) = E
[(

γGv⋆

1 + ξ − γGv
1erf

(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ )
)2]

where
(
Gv⋆

1
Gv

1

)
, . . . ,

(
Gv⋆

L
Gv

L

)
∼

i.i.d.
N
(
0,

(
1 ν
ν 1

))
, Gk

1 , . . . , G
k
L ∼

i.i.d.
N (0, 1), and ξ ∼ N (0, ε2) are

independent.

We first expand in ξ and obtain

R<(κ, ν, 0, 0, 0) = ε2 + E
[(

γGv⋆

1 − γGv
1erf

(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ )
)2]

.

We now expand the square, as follows:

R<(κ, ν, 0, 0, 0) = ε2 + γ2E
[
(Gv⋆

1 )2
]
− 2γ2E

[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
+ γ2E

[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
− 2

L∑
ℓ=2

γE
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))
Gv

ℓ erf(λG
k
ℓ )
]

+

L∑
ℓ,m=2

E[Gv
ℓ erf(λG

k
ℓ )G

v
merf(λGk

m)] .

We address each term in this sum separately.

• Since Gv⋆

1 ∼ N (0, 1), γ2E
[
(Gv⋆

1 )2
]
= γ2.

• Since
(
Gv⋆

1
Gv

1

)
∼ N

(
0,

(
1 ν
ν 1

))
is independent from Gk

1 ∼ N (0, 1), we have

−2γ2E
[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
= −2γ2E

[
Gv⋆

1 Gv
1

]
E
[
erf
(
λ
(√d

2
κ+ γGk

1

))]
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= −2γ2νE
[
erf
(
λ
(√d

2
κ+ γGk

1

))]
.

Finally, using Lemma 18(ii), we obtain

−2γ2E
[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
= −2γ2νerf

(
λ

√
d

2

κ√
1 + 2λ2γ2

)
.

• Since Gv
1, G

k
1 ∼i.i.d. N (0, 1), we have

γ2E
[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
(Gv

1)
2
]
E
[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
.

Using the definition of ζ in Eq. (7), we have

γ2E
[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
(Gv

1)
2
]
E
[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
.

• For ℓ = 2, . . . , L, (Gv⋆

1 , Gv
1, G

k
1), G

v
ℓ , and Gk

ℓ are independent. Thus

E
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))
Gv

ℓ erf(λG
k
ℓ )
]

= E
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))]
E
[
Gv

ℓ

]
E
[
erf(λGk

ℓ )
]
= 0 ,

where in the last step we use E[Gv
ℓ ] = 0.

• Finally, to tackle the last term, we address the cases ℓ ̸= m and ℓ = m separately. If ℓ ̸= m,
as Gv

ℓ , G
k
ℓ , G

v
m, and Gk

m are independent, we have

E[Gv
ℓ erf(λG

k
ℓ )G

v
merf(λGk

m)] = E[Gv
ℓ ]E[erf(λGk

ℓ )]E[Gv
m]E[erf(λGk

m)] = 0 .

If ℓ = m, as Gv
ℓ , G

k
ℓ ∼i.i.d. N (0, 1), we have

E[(Gv
ℓ )

2erf2(λGk
ℓ )] = E[(Gv

ℓ )
2]E[erf2(λGk

ℓ )] = ζ(0, λ2) .

Putting together these computations, we obtain

R<(κ, ν, 0, 0, 0) = ε2 + γ2 − 2γ2νerf
(
λ

√
d

2

κ√
1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) .

This proves Lemma 6. Taking κ = ν = 1 proves Theorem 1.

B.2 PROOF OF COROLLARY 2

Recall that, according to Theorem 1,

Rλ(k
⋆, v⋆) = γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+ γG)

]
, G ∼ N (0, 1) .

We compute the limit of each term separately. First, we have

λ

√
d

2(1 + 2λ2γ2)
∼ λ

√
d√
2

d→∞−−−→ ∞ . (18)
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Therefore, the second term of Rλ(k
⋆, v⋆) tends to −2γ2. To handle the third term, note by Jensen’s

inequality that

1 ⩾ ζ
(
λ

√
d

2
, λ2γ2

)
= E

[
erf2

(
λ

√
d

2
+ λγG

)]
⩾ E

[
erf
(
λ

√
d

2
+ λγG

)]2
.

Thus, by Lemma 18(ii),

1 ⩾ ζ
(
λ

√
d

2
, λ2γ2

)
⩾ erf2

(
λ

√
d

2(1 + 2λ2γ2)

)
→ 1 ,

where we used (18). Thus the third term of Rλ(k
⋆, v⋆) converges to γ2. As for the fourth term,

observe by Lemma 17 that

erf2(u) ⩽
4

π
u2 ,

hence
0 ⩽ ζ(0, λ2) ⩽

4

π
λ2E[G2] =

4

π
λ2 .

Since λ
√
L → 0, we get

(L− 1)ζ(0, λ2) = O(λ2L) = o(1) .

Putting everything together, we obtain

Rλ(k
⋆, v⋆)

d→∞−−−→ γ2 − 2γ2 + γ2 + 0 + ε2 = ε2 .

Since we already know by (8) that the Bayes risk is lower-bounded by ε2, this proves that the Bayes
risk is asymptotically equal to ε2, and that the oracle predictor is asymptotically Bayes optimal.

B.3 PROOF OF PROPOSITION 3

Let us first introduce a useful notation for the proof. If M is a block matrix, we denote by M[ij] its
(i, j)-th block, and likewise, if u is a block vector, we denote by u[j] its j-th block. Next, note that

E[Y 2] = ε2 + E
[
((v⋆)⊤XJ0

)2
]

= ε2 + γ2∥v⋆∥22
= ε2 + γ2,

since ∥v⋆∥22 = 1. Recall that

β⋆ ∈ argmin
β∈RdL

E
[
(Y − (X⊤

1 , . . . , X⊤
L )β)2

]
is the optimal linear predictor. The classical formula for linear regression shows that

β⋆ =

E


X1

...
XL

 (X⊤
1 , . . . , X⊤

L )




−1

E

((v⋆)⊤XJ0
+ ξ)

X1

...
XL


 .

On the one hand, let

M =

X1

...
XL

 (X⊤
1 , . . . , X⊤

L ) .

Then E[M ] = E[E[M |J0]], and E[M |J0] is a block-diagonal matrix, where, for j, j′ ∈ {1, . . . , L},

E[M |J0 = j][j′,j′] = δj ̸=j′Id + δj=j′(γ
2Id +

d

2
k⋆(k⋆)⊤) .

Thus

E[M ][j′,j′] = (1− pj′)Id + pj′(γ
2Id +

d

2
k⋆(k⋆)⊤) = Id + pj′(γ

2 − 1)Id + pj′
d

2
k⋆(k⋆)⊤ .
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On the other hand, let

u = ((v⋆)⊤XJ0 + ξ)

X1

...
XL

 .

Then

E [u] = E


X1

...
XL

X⊤
J0

 v⋆ = E

E

X1

...
XL

X⊤
J0


∣∣∣∣∣∣∣J0
 v⋆

=

p1(γ
2Id + d

2k
⋆(k⋆)⊤)

...
pL(γ

2Id + d
2k

⋆(k⋆)⊤)

 v⋆ = γ2

p1v
⋆

...
pLv

⋆

 ,

since, by Assumption 1, k⋆⊤v⋆ = 0.

Since E[M ] is a block-diagonal matrix and E[u] is a block vector, we get by standard computation
rules for block matrices

β⋆
[j] = (E[M ]−1E[u])[j] = E[M ]−1

[j,j]E[u][j] =
(
Id + pj(γ

2 − 1)Id + pj
d

2
k⋆(k⋆)⊤

)−1

γ2pjv
⋆ .

Recall the Sherman-Morrison formula (Press et al., 2007, Section 2.7.1), which states that for
any vectors u, v ∈ Rd, (Id + uu⊤)−1v =

(
Id − uu⊤/(1 + u⊤u)

)
v. Applying this formula with

orthogonal vectors, we obtain

β⋆
[j] =

(
1 + pj(γ

2 − 1)
)−1

γ2pjv
⋆ =

γ2pj
1 + pj(γ2 − 1)

v⋆ ,

which shows the first formula of the proposition. Finally, the risk associated with the optimal linear
predictor (X⊤

1 , . . . , X⊤
L ) 7→ (X⊤

1 , . . . , X⊤
L )β⋆ is given by

R(β⋆) = E[Y 2]− E[Y (X⊤
1 . . . X⊤

L )β⋆]

= ε2 + γ2 − γ2 ·
(
p1(v

⋆)⊤, . . . , pL(v
⋆)⊤
)β⋆

[1]

...
β⋆
[L]


= ε2 + γ2 − γ4

L∑
j=1

p2j
1 + pj(γ2 − 1)

. (19)

This shows the formula for the risk given in the Proposition. To obtain the last bound, observe that,
if γ2 ⩾ 1, we have 1 + pj(γ

2 − 1) ⩾ 1. If γ2 ⩽ 1, since pj ⩽ 1, we have 1 + pj(γ
2 − 1) ⩾

1 + (γ2 − 1) = γ2. Thus we obtain 1 + pj(γ
2 − 1) ⩾ min(1, γ2). Therefore,

R(β⋆) ⩾ ε2 + γ2 −max(γ4, γ2)

L∑
j=1

p2j

⩾ ε2 + γ2 −max(γ4, γ2)

L∑
j=1

pj · max
j=1,...,L

pj

⩾ ε2 + γ2 − (γ4 + γ2) max
j=1,...,L

pj

⩾ ε2 + γ2 − γ2(γ2 + 1) max
j=1,...,L

pj .

When all pj are equal to 1/L, all terms in the sum are equal, and Eq. (19) simplifies to

R(β⋆) = ε2 + γ2 − Lγ4
1
L2

1 + 1
L (γ

2 − 1)
= ε2 + γ2 − γ4

L+ γ2 − 1
.
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B.4 PROOF OF LEMMA 4

As a first step in the proof, we prove the next lemma, which is the key towards the invariance property
we are aiming at, in that it shows that, for a point on the manifold M (defined by θ = η = ρ = 0),
the gradient of the risk does not “push” the point outside of the manifold. Its proof leverages the
expression of the risk as a function of five parameters derived in the previous section
Lemma 14. At any point (κ, ν, θ, η, ρ) such that θ = η = ρ = 0, we have ∂θR< = ∂ηR< =
∂ρR< = 0.

Proof. We use Eq. (16)–(17) and change signs in the square function:

R<(κ, ν, θ, η, ρ)

= E
[(

γGv⋆

1 + ξ −
(√d

2
θ + γGv

1

)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ )
)2]

= E
[(

γ(−Gv⋆

1 )− ξ −
(√d

2
(−θ) + γ(−Gv

1)
)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

(−Gv
ℓ )erf(λG

k
ℓ )
)2]

,

where Gv⋆

1
Gv

1

Gk
1

 , . . . ,

Gv⋆

L
Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν η
ν 1 ρ
η ρ 1

))
, ξ ∼ N (0, ε2) .

Thus −Gv⋆

1
−Gv

1

Gk
1

 , . . . ,

−Gv⋆

L
−Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν −η
ν 1 −ρ
−η −ρ 1

))
, −ξ ∼ N (0, ε2) .

As a consequence,

R<(κ, ν, θ, η, ρ) = R<(κ, ν,−θ,−η,−ρ) .

Taking the partial derivative in θ, we are led to

∂θR<(κ, ν, θ, η, ρ) = −∂θR<(κ, ν,−θ,−η,−ρ) .

At a point such that θ = η = ρ = 0, this gives ∂θR<(κ, ν, 0, 0, 0) = −∂θR<(κ, ν, 0, 0, 0) and thus
∂θR<(κ, ν, 0, 0, 0) = 0. The proof for the other two derivatives ∂ηR, ∂ρR is identical.

We now complete the proof of Lemma 4. By the chain rule for total derivatives applied to R(k, v) =
R<(κ, ν, θ, η, ρ), and then by Lemma 14, on the manifold M, we have

∇kR = (∂κR<)k⋆ + (∂ηR<)v⋆ + (∂ρR<)v = (∂κR<)k⋆ , (20)

and, similarly,

∇vR = (∂νR<)v⋆ + (∂θR<)k⋆ + (∂ρR)k = (∂νR<)v⋆ . (21)

Recall the formulas for the PGD updates

kt+1 = ProjSd−1(kt − α(I − ktk
⊤
t )∇kR(kt, vt)) =

kt − α(I − ktk
⊤
t )∇kR(kt, vt)∥∥kt − α(I − ktk⊤t )∇kR(kt, vt)

∥∥
2

,

vt+1 = ProjSd−1(vt − α(I − vtv
⊤
t )∇vR(kt, vt)) =

vt − α(I − vtv
⊤
t )∇vR(kt, vt)∥∥vt − α(I − vtv⊤t )∇vR(kt, vt)

∥∥
2

.

Let ck =
∥∥kt − α(I − ktk

⊤
t )∇kR(kt, vt)

∥∥
2

and cv =
∥∥vt − α(I − vtv

⊤
t )∇vR(kt, vt)

∥∥
2
. Then, if

(kt, vt) ∈ M,

(v⋆)⊤kt+1 =
(v⋆)⊤kt − α(v⋆)⊤(I − ktk

⊤
t )(∂κR<(κt, νt))k

⋆

ck
= 0,
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(k⋆)⊤vt+1 =
(k⋆)⊤vt − α(k⋆)⊤(I − vtv

⊤
t )(∂νR<(κt, νt))v

⋆

cv
= 0,

and

v⊤t+1kt+1 =
v⊤t kt − α(∂νR<)((I − vtv

⊤
t )v

⋆)⊤kt − α(∂κR<)((I − ktk
⊤
t )k

⋆)⊤vt
cvck

+
α2(∂κR<)(∂νR<)((I − ktk

⊤
t )k

⋆)⊤(I − vtv
⊤
t )v

⋆

cvck
= 0 ,

where we have omitted the dependence of (∂κR<) and (∂νR<) in (κt, νt) in the last expression for
the ease of readability. Note that the last term is equal to zero since

((I − ktk
⊤
t )k

⋆)⊤(I − vtv
⊤
t )v

⋆ = (k⋆ − κtkt)
⊤(v⋆ − νtvt) = 0 .

This shows that (kt+1, vt+1) ∈ M.

B.5 PROOF OF LEMMA 7

By definition of the PGD iterates and by (20)–(21), one has

κt+1 = k⊤t+1k
⋆ =

κt − α∂κR<(κt, νt)(k
⋆)⊤(I − ktk

⊤
t )k

⋆√
1 + α2(∂κR<)2∥(I − ktk⊤t )k

⋆∥22
=

κt − α(∂κR<)(1− κ2
t )√

1 + α2(∂κR<)2(1− κ2
t )
,

νt+1 = v⊤t+1v
⋆ =

νt − α∂νR<(κt, νt)(v
⋆)⊤(I − vtv

⊤
t )v

⋆√
1 + α2(∂νR<)2∥(I − vtv⊤t )v

⋆∥22
=

νt − α(∂νR<)(1− ν2t )√
1 + α2(∂νR<)2(1− ν2t )

,

where we have used the Pythagorean theorem and the idempotent property of projection matrices for
the denominator.

B.6 PROOF OF PROPOSITION 8

In this proof, C denotes a constant that does not depend on the step t nor on the step size α, and
which may vary from line to line. First note that the risk R< is C∞ on the compact set [−1, 1]2. In
particular, it is a Λ-smooth function for some Λ > 0, in the sense that its gradient is Λ-Lipschitz
continuous. Thus

R<(κt+1, νt+1) ⩽ R<(κt, νt) + (∇R<(κt, νt))
⊤
(
κt+1 − κt

νt+1 − νt

)
+

Λ

2

∥∥∥∥(κt+1 − κt

νt+1 − νt

)∥∥∥∥2
2

,

i.e.,

R<(κt+1, νt+1)−R<(κt, νt)

⩽ (∂κR<)(κt+1 − κt) + (∂νR<)(νt+1 − νt) +
Λ

2

[
(κt+1 − κt)

2 + (νt+1 − νt)
2
]
. (22)

Our goal in the following computations is to derive an inequality of the form

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α(∂κR<)2(1− κ2
t )− α(∂νR<)2(1− ν2t )

+ Cα2(∂κR<)2(1− κ2
t ) + Cα2(∂νR<)2(1− ν2t ) ,

which shall give us a descent lemma for α small enough. To this aim, observe that, by definition of
the iterates (κt, νt) given by (12)–(13), one has

κt+1 − κt =

[
1√

1 + α2(∂κR<)2(1− κ2
t )

− 1

]
κt −

α(∂κR<)(1− κ2
t )√

1 + α2(∂κR<)2(1− κ2
t )

(23)

= −α(∂κR<)(1− κ2
t )

+

[
1√

1 + α2(∂κR<)2(1− κ2
t )

− 1

]
(κt − α(∂κR<)(1− κ2

t )) .
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As a consequence,

|κt+1 − κt + α(∂κR<)(1− κ2
t )| ⩽

∣∣∣ 1√
1 + α2(∂κR<)2(1− κ2

t )
− 1
∣∣∣|κt − α(∂κR<)(1− κ2

t )|

⩽ α2(∂κR<)2(1− κ2
t )|κt − α(∂κR<)(1− κ2

t )|
⩽ Cα2(∂κR<)2(1− κ2

t ) , (24)

where the second inequality holds by Lemma 16 and the last bound holds since the function (κ, ν) 7→
|κ− α(∂κR<(κ, ν))(1− κ2)| is uniformly bounded for all α ⩽ 1. This bound has two implications.
First,

(∂κR<)(κt+1 − κt) + α(∂κR<)2(1− κ2
t ) = (∂κR<)((κt+1 − κt) + α(∂κR<)(1− κ2

t ))

⩽ |∂κR<||κt+1 − κt + α(∂κR<)(1− κ2
t )|

⩽ Cα2(∂κR<)2(1− κ2
t ) , (25)

where we use the fact that |∂κR<| is bounded, and the bound (24). Second, since the square function
is Lipschitz on compact sets, we have

|(κt+1 − κt)
2 − (α(∂κR<)(1− κ2

t ))
2| ⩽ Cα2(∂κR<)2(1− κ2

t ) .

Thus

(κt+1 − κt)
2 ⩽ α2(∂κR<)2(1− κ2

t )
2 + Cα2(∂κR<)2(1− κ2

t )

⩽ Cα2(∂κR<)2(1− κ2
t ) . (26)

We also obtain analogous bounds to (25)–(26) for ν, namely

(∂νR<)(νt+1 − νt) + α(∂νR<)(1− ν2t ) ⩽ Cα2(∂νR<)2(1− ν2t ) , (27)

and
(νt+1 − νt)

2 ⩽ Cα2(∂νR<)2(1− ν2t ) . (28)

Plugging the bounds (25)–(28) into Eq. (22), we obtain the desired inequality

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α(∂κR<)2(1− κ2
t )− α(∂νR<)2(1− ν2t )

+ Cα2(∂κR<)2(1− κ2
t ) + Cα2(∂νR<)2(1− ν2t ) .

By choosing the step size α ⩽ 1
2C , this ensures that

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α

2
(∂κR<)2(1− κ2

t )−
α

2
(∂νR<)2(1− ν2t ).

This shows that the risk is decreasing along the PGD iterates. Next, introducing R<
min =

min(κ,ν)∈[0,1]2 R<(κ, ν) and using a telescopic sum, we have, for all T ⩾ 0,

R<(κ0, ν0)−R<
min ⩾ R<(κ0, ν0)−R<(κT , νT )

⩾
α

2

T−1∑
t=0

[
(∂κR<)2(1− κ2

t ) + (∂νR<)2(1− ν2t )
]
.

Since the left-hand side is finite, and the terms of the sum are nonnegative, we conclude that the series
converges as T → ∞. In particular, the generic term (∂κR<)2(1− κ2

t ) + (∂νR<)2(1− ν2t ) of the
series converges to 0 as t → ∞. Therefore, the accumulation points (κ∞, ν∞) satisfy{

∂κR<(κ∞, ν∞) = 0 or κ2
∞ = 1

∂νR<(κ∞, ν∞) = 0 or ν2∞ = 1.

Inspecting identity (23), we observe that the convergence of the general term also implies κt+1−κt →
0. We obtain similarly that νt+1 − νt → 0.

25



Published as a conference paper at ICLR 2025

B.7 PROOF OF PROPOSITION 9

Recall that the risk in terms of (κ, ν) is given by

R<(κ, ν) = γ2 − 2γ2ν erf

(
λ
√

d/2κ√
1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 .

Then the gradients of R< are given by

∂κR<(κ, ν)

= −2γ2λ

√
d

2(1 + 2λ2γ2)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)(
ν − erf

(
λ
√
d/2κ√

(1 + 2λ2γ2)(1 + 4λ2γ2)

))
and

∂νR<(κ, ν) = −2γ2erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
.

Therefore, the solutions of the system (14) satisfy{−ν + erf(c1κ) = 0 or κ = ±1

κ = 0 or ν = ±1 ,

with c1 = λ√
4λ2γ2+1

√
d

2(1+2λ2γ2) . The solutions of this system are

(κ, ν) = (0, 0) or (κ, ν) = (±1,±1) .

B.8 PROOF OF PROPOSITION 10

Since R< is a smooth function, the extrema of this function on [−1, 1]2 are either critical points
(admitting null derivatives) or points on the boundary of the square [−1, 1]2. Starting with critical
points, the only critical point is (0, 0), and it is a saddle point. Indeed, the Hessian of R< at (0,0) is

HR<(0, 0) = − 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

:=M

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2) < 0. Then, as det(M) = −1, the two eigenvalues of

HR<(0, 0) have opposite signs, (0, 0) is thus a saddle point. The extrema of R< must therefore be
on the boundary of the square, which we examine next.

For any (κ, ν) ∈ (−1, 1)2, one has, by inspecting the signs of the gradients given in the proof of
Proposition 9,

R<(1, 1) < R<(κ, 1) < R<(−1, 1) and R<(1, 1) < R<(1, ν) < R<(1,−1) .

This shows that the minimum of R< on {(κ, 1), κ ∈ [−1, 1]} ∪ {(1, ν), ν ∈ [−1, 1]} is reached
at (1, 1), and the maximum is reached both at (1,−1) and (−1, 1), since R< is even. Using again
evenness of R<, we conclude that the extrema of R< on the whole boundary of the square, and
thus on the whole square, are the minimizers (1, 1) and (−1,−1), and the maximizers (1,−1) and
(−1, 1).

B.9 PROOF OF PROPOSITION 12

We prove the statements of the proposition one by one.
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The mapping g is a local diffeomorphism around (0, 0), whose Jacobian matrix has one eigen-
value in (0, 1) and one eigenvalue in (1,∞). Consider the Taylor expansion of the first component
g(κ, ν)1 of g(κ, ν). Since ∂κR<(0, 0) = 0, and R< is smooth, letting x = (κ, ν), we have
(∂κR<(κ, ν))2 = O(∥x∥2). Thus,

g(κ, ν)1 =
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

=
κ− α(∂κR<(κ, ν))(1− κ2)√

1 +O(∥x∥2)
= (κ− α(∂κR<(κ, ν))(1− κ2))

(
1 +O(∥x∥2)

)
= κ− α∂κR<(κ, ν) +O(∥x∥2) .

Proceeding similarly with the second component of g, we obtain that the Jacobian of g at (0, 0) is
given by

Jg(0, 0) = I2 − αHR<(0, 0) = I2 + α · 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

=:M

,

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2) < 0. Since det(M) = −1, one can choose α small enough

so that one eigenvalue of Jg(0, 0) is strictly between 0 and 1 and the other one is strictly larger than 1.
Therefore, Jg(0, 0) is invertible, showing that g is a local diffeomorphism around (0, 0).

The mapping g is differentiable on [−1, 1]2, and its Jacobian is not degenerate. The mapping g
is clearly differentiable as a composition of differentiable function. The more delicate part is to show
that its Jacobian cannot be degenerate. To show this statement, observe first that, for x ∈ [−1, 1]2,
we may write g(x) = x+ αh(x), where the first component of h is given by

h(κ, ν)1 =
1

α
(g(κ, ν)1 − κ)

=
1

α

( κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− κ
)

=
κ

α

( 1√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− 1
)

︸ ︷︷ ︸
=:f

(1)
α (κ,ν)

− (∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)︸ ︷︷ ︸

=:f
(2)
α (κ,ν)

.

Let us prove that the gradient of h(κ, ν)1 is bounded uniformly over α ⩽ 1. The uniform boundedness
is clear for the gradient of f (2)

α , which writes as a composition of functions with uniformly bounded
gradients for α ⩽ 1. Moving on to f

(1)
α and letting

g :

{
[−1, 1]× [0, B] → R
(a, b) 7→ a

α

(
1√

1+α2b
− 1
) , B = sup

(κ,ν)∈[−1,1]2
(∂κR<(κ, ν))2(1− κ2) ,

we observe that f (1)
α is the composition of g with a smooth function independent of α. In particular,

it suffices to show the uniform boundedness of ∇g to deduce the one of ∇f
(1)
α . We further have, by

Lemma 16, and for α ⩽ 1, ∣∣∂ag(a, b)∣∣ = 1

α

∣∣∣ 1√
1 + α2b

− 1
∣∣∣ ⩽ αb ⩽ B

and ∣∣∂bg(a, b)∣∣ = ∣∣∣− αa

2(1 + α2b)3/2

∣∣∣ ⩽ α

2
⩽

1

2
.

Therefore, the gradient of h(κ, ν)1 is bounded uniformly over α ⩽ 1. Proceeding similarly with
the gradient of h(κ, ν)2, we obtain that the Jacobian of h(κ, ν) is uniformly bounded over α ⩽ 1.
Recall now that Jg(κ, ν) = I2 + αJh(κ, ν). Therefore, taking α small enough, we obtain that the
eigenvalues of Jg have to be bounded away from zero.
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The mapping g is injective. The computation above shows that h is β-Lipschitz continuous with β
independent of α (for α small enough). In particular we can choose α such that α < 1/β. Now, let
x ̸= y ∈ [−1, 1]2 be such that g(x) = g(y). Then

∥x− y∥ ⩽ α∥h(x)− h(y)∥ ⩽ αβ∥x− y∥ < ∥x− y∥ .
This is a contradiction, showing that g is injective.

B.10 PROOF OF PROPOSITION 13

Recall that (1,−1) and (−1, 1) are maxima of the risk R< on [−1, 1]2 by Proposition 10, and that
the value of the risk decreases along the iterates of PGD by Proposition 8. Thus the only possible
way to converge to these points is to start the dynamics from them.

The case of the point (0, 0) is more delicate. We apply the Center-Stable Manifold theorem (Shub,
1987, Theorem III.7) to g, which is a local diffeomorphism around (0, 0) by Proposition 12. This
guarantees the existence of a local center-stable manifold W cs

loc, which verifies the following properties.
First, its codimension is equal to the number of eigenvalues of Jg(0, 0) of magnitude larger than 1, that
is, 1, by Proposition 12. Hence it has Lebesgue measure zero. Second, there exists a neighborhood
B of 0 such that

⋂∞
t=0 g

−t(B) ⊂ W cs
loc. Then, let W s be the set of all x which converge to (0, 0)

under the gradient map g, and take x ∈ W s. Then there exists a T such that gt(x) ∈ B for all t ⩾ T .
This means that gT (x) ∈ ⋂∞

s=0 g
−s(B), and thus gT (x) ∈ W cs

loc. So, x ∈ g−T (W cs
loc). We have just

shown that
W s ⊂

⋃
T⩾0

g−T (W cs
loc) .

Finally, we prove that the pre-image of sets of measure zero by gT has measure zero for any T ⩾ 0.
This shall conclude the proof of the result since countable unions of sets of measure zero have
measure zero. To show this, note that g is injective by Proposition 12, and therefore gT is injective
too. This allows to define an inverse g−T of gT defined on the image of gT , and the pre-image
by gT of W cs

loc is exactly the image by g−T of W cs
loc (intersected with the domain of definition of

g−T ). Furthermore, by Proposition 12, the Jacobian of gT is invertible. This guarantees that g−T is
differentiable by the inverse function theorem. The conclusion follows by recalling that differentiable
functions map sets of measure zero to sets of measure zero.

C EXPRESSION OF THE RISK BEYOND THE INVARIANT MANIFOLD

In this appendix, we provide an expression of the risk R beyond the manifold M that extends the one
provided in Lemma 6. This result is not needed to prove Theorem 5, and its proof is more involved
that the one of Lemma 6. However, we provide it since it might be relevant to follow-up works that
would study the dynamics if not initialized on the invariant manifold M. It is also useful for the
numerical simulations (see Appendix E).

Proposition 15. We have the closed-form expression

R<
λ (κ, ν, θ, η, ρ) = ε2 + γ2

− 2γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λγ2

√
d

2
ηθ

1√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λ2γ4ηρ

1 + 2λ2γ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ (

d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
+

4λ2γ4ρ2
√
π
√
1 + 4λ2γ2(1 + 2λ2γ2)

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
1 + 4λ2(1 + 2λ2)

ρ2
]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2
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+
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

))
.

Proof. We first recall the notations for the five scalar products that are used throughout this proof.

ν = v⊤v⋆ , κ = k⊤k⋆ , θ = v⊤k⋆ , η = k⊤v⋆ , ρ = k⊤v .

A first decomposition. We start back from the expression (15) obtained for the risk. By expanding
in ξ, then expanding the square, we obtain

R(k, v) = E
((

X⊤
1 v⋆ −

L∑
ℓ=1

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

+ ε2

= E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)−

L∑
ℓ=2

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

+ ε2

= E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)2)
︸ ︷︷ ︸

=:R1

+

L∑
ℓ=2

E
((

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

︸ ︷︷ ︸
=:R2

+

L∑
ℓ ̸=j⩾2

E
(
X⊤

ℓ v erf(λX⊤
ℓ k)X⊤

j v erf(λX⊤
j k)

)
︸ ︷︷ ︸

=:R3

−2

L∑
ℓ=2

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)
X⊤

ℓ v erf(λX⊤
ℓ k)

)
︸ ︷︷ ︸

=:R4

+ ε2 .

Computation of R1. By expanding the square,

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)2)
= E

((
X⊤

1 v⋆
)2)− 2E

(
X⊤

1 v⋆X⊤
1 v erf(λX⊤

1 k)
)
+ E

((
X⊤

1 v erf(λX⊤
1 k)

)2)
.

These three terms are computed hereafter. First we have

E
((

X⊤
1 v⋆

)2)
=
(
E
(
X⊤

1 v⋆
))2

+ Var
(
X⊤

1 v⋆
)
= (

√
d

2
(k⋆)⊤v⋆)2 + γ2 = γ2 .

Second,

E
(
X⊤

1 v⋆X⊤
1 v erf(λX⊤

1 k)
)

= E

[(√
d

2
(k⋆)⊤v⋆ + Z1

)(√
d

2
(k⋆)⊤v + Z2

)
erf

(
λ

√
d

2
(k⋆)⊤k + λZ3

)]
,

= E

[
Z1

(√
d

2
θ + Z2

)
erf

(
λ

√
d

2
κ+ λZ3

)]
,

with (
Z1

Z2

Z3

)
∼ N

0, γ2

 1 v⊤v⋆ k⊤v⋆

v⊤v⋆ 1 v⊤k
k⊤v⋆ v⊤k 1

 = N
(
0, γ2

(
1 ν η
ν 1 ρ
η ρ 1

))
.

Recall the multivariate version of Stein’s lemma (Stein, 1981), which states that, when Z,G1, . . . , Gp

are centered and jointly Gaussian, and σ : Rp → R,

E [Zσ(G1, . . . , Gp)] =

p∑
i=1

Cov(Z,Gi)E [∂iσ(G1, . . . , Gp)] .
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Therefore,

E
(
X⊤

1 v⋆X⊤
1 verf(λX⊤

1 k)
)

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2ηE

[(√
d

2
θ + Z2

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2

√
d

2
ηθE

[
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+ λ2γ4ηρE

[
erf ′′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

√
d

2

λγ2ηθ√
1 + 2λ2γ2

erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)

+
λ2γ4ηρ

1 + 2γ2λ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
by using Lemma 18(i)− (iii). Finally, using again Stein’s lemma and Lemma 18(iv)− (vi), the
computation of the last term is as follows:

E
[(
X⊤

1 v erf(λX⊤
1 k)

)2]
= E

[(√
d

2
(k⋆)⊤v + Z2

)2

erf

(
λ

√
d

2
k⊤k⋆ + λZ3

)2
]

= E

[
d

2
θ2 erf2

(
λ

√
d

2
κ+ λZ3

)]
+ 2E

[√
d

2
θZ2 erf

2

(
λ

√
d

2
κ+ λZ3

)]

+ E

[
Z2
2 erf

2

(
λ

√
d

2
κ+ λZ3

)]

=
d

2
θ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]
+ γ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 2λγ2ρE

[
Z2 erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]

= (
d

2
θ2 + γ2)E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]

+ 2λ2γ4ρ2

(
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′′

(
λ

√
d

2
κ+ λZ3

)]
+ E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2

(
−2λ

√
d

2
κE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]
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+E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2
E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)]

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)

+
2λ2γ4ρ2

1 + 2λ2γ2

(
2

√
π
√
1 + 4λ2γ2

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

))
by Lemma 18(iv)− (vi).

Computation of R2. We have

R2 =

L∑
ℓ=2

E
((

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

= (L− 1)E
((

X⊤
2 v erf(λX⊤

2 k)
)2)

.

Thus, using previous calculations with γ2 = 1, θ = 0, and κ = 0, we obtain

R2 = (L− 1)

[
ζ(0, λ2) +

4λ2

√
π
√
4λ2 + 1(1 + 2λ2)

ρ2erf ′ (0)

]
= (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
4λ2 + 1(1 + 2λ2)

ρ2
]
.

Computation of R3. Regarding the cross-product terms, by independence of the (Xℓ)’s and Stein’s
lemma, one gets

E
(
X⊤

ℓ v erf(λX⊤
ℓ k)X⊤

j v erf(λX⊤
j k)

)
= E

(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
E
(
X⊤

j v erf(λX⊤
j k)

)
= C2ρ2 ,

with C := λE(erf ′(λX⊤
ℓ k)) = 2λ/

√
(1 + 2λ2)π by Lemma 18(i). This leads to

R3 =
4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2.

Computation of R4. We have, again by independence and Stein’s lemma,

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)
X⊤

ℓ v erf(λX⊤
ℓ k)

)
= E

(
X⊤

1 v⋆ −X⊤
1 v erf(λX⊤

1 k)
)
E
(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
=
(√d

2
(k⋆)⊤v⋆ − E(X⊤

1 v erf(λX⊤
1 k))

)
E
(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
= −E(X⊤

1 v erf(λX⊤
1 k)) · Cρ

= − 2λρ√
(1 + 2λ2)π

E(X⊤
1 v erf(λX⊤

1 k)) .

Note that, still using Stein’s lemma,

−E(X⊤
1 v erf(λX⊤

1 k))
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= −E(
√

d

2
(k⋆)⊤v erf(λX⊤

1 k))− E((X⊤
1 v −

√
d

2
(k⋆)⊤v) erf(λX⊤

1 k))

= −E(
√

d

2
θ erf(λX⊤

1 k))− Cov
(
X⊤

1 v, erf(λX⊤
1 k)

)
= −

√
d

2
θE(erf(λX⊤

1 k))− λCov
(
X⊤

1 v,X⊤
1 k
)
E
(
erf ′(λX⊤

1 k)
)

= −
√

d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− λγ2(k⊤v)

1√
1 + 2γ2λ2

erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
,

where we used that λX⊤
1 k

L
= λ

√
d/2κ + G with G ∼ N (0, λ2γ2), in combination with

Lemma 18(i)− (ii). Thus

R4 =
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

( λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2γ2λ2

erf ′
( λ

√
d/2κ√

1 + 2λ2γ2

))
.

All in all. Putting everything together, we obtain

R(k, v) = ε2

+ γ2 − 2γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λγ2

√
d

2
ηθ

1√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λ2γ4ηρ

1 + 2λ2γ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ (

d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
+

4λ2γ4ρ2
√
π
√
1 + 4λ2γ2(1 + 2λ2γ2)

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
1 + 4λ2(1 + 2λ2)

ρ2
]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2

+
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
.

This concludes the proof.

D TECHNICAL RESULTS

This section gathers formulas that are useful in the proofs, in particular regarding expectation of
functions of Gaussian random variables involving erf .
Lemma 16. For u ⩾ 0, ∣∣∣ 1√

1 + u
− 1
∣∣∣ ⩽ u .

Proof. The argument of the absolute value is non-positive for u ⩾ 0, hence we need to show that

f(u) := 1− 1√
1 + u

− u

is non-positive for u ⩾ 0. Just note that

f(0) = 0 and f ′(u) =
1

(1 + u)3+2
− 1 ⩽ 0 .
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Recall that the erf function is defined on R as

erf(u) =
2√
π

∫ u

0

e−t2dt .

Lemma 17 (Properties of the erf function). We have

erf ′(u) =
2√
π
e−u2

,

erf ′′(u) = − 4√
π
ue−u2

= −2uerf ′(u) ,

|erf(u)| ⩽ 2√
π
|u| .

Proof. The first two statements are clear by usual differentiation rules. Regarding the last statement,
since erf is an odd function, it is sufficient to prove the statement for u ⩾ 0. Moreover, erf is concave
on [0,∞), so we get, for u ⩾ 0,

|erf(u)| = |erf(u)− erf(0)| ⩽ erf ′(0)u =
2√
π
u ,

which concludes the proof.

Lemma 18. Let G ∼ N (0, γ2). For t ∈ R,

(i) E
[
erf ′(t+G)

]
= 1√

1+2γ2
erf ′
(

t√
1+2γ2

)
.

(ii) E [erf(t+G)] = erf
(

t√
1+2γ2

)
.

(iii) E
[
erf ′′(t+G)

]
= 1

1+2γ2 erf
′′
(

t√
1+2γ2

)
.

(iv) E
[
(erf ′)2(t+G)

]
= 2√

π
√

1+4γ2
erf ′
(
−

√
2t√

1+4γ2

)
.

(v) (1+2γ2)E[erf(t+G)erf ′′(t+G)] = −2tE[erf(t+G)erf ′(t+G)]−2γ2E[(erf ′(t+G))2].

(vi) E
[
erf(t+G)erf ′(t+G)

]
= 1√

1+2γ2
erf
(

t√
(1+4γ2)(1+2γ2)

)
erf ′
(

t√
1+2γ2

)
.

This lemma reveals the importance of choosing the erf function as the component-wise nonlinearity:
there are closed-form formulas for the expectation of erf and its derivatives applied to Gaussian
random variables. Extending the results to any nonlinear, bounded, increasing, equal to 0 at 0, and
differentiable activation function is an interesting next step.

Proof. (i) By Lemma 17,

E
[
erf ′(t+G)

]
=

√
2

πγ

∫
e−(t+g)2e

− g2

2γ2 dg

=

√
2

πγ

∫
e−

g2

c e−2gte−t2dg for c :=
2γ2

1 + 2γ2

=

√
2

πγ

∫
e−

(g+ct)2

c +ct2−t2dg

=

√
2

πγ
e−t2(1−c)

∫
e−

(g+ct)2

c dg︸ ︷︷ ︸
=
√
πc

=
2√

π(1 + 2γ2)
exp

(
−t2

(
1− 2γ2

1 + 2γ2

))
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=
2

√
π
√
1 + 2γ2

exp

(
− t2

1 + 2γ2

)
.

(ii) By (i),

E [erf(t+G)] =

∫ t

−∞
E
[
erf ′(s+G)

]
ds

=

∫ t

−∞

2
√
π
√

1 + 2γ2
exp

(
− s2

1 + 2γ2

)
ds

=

∫ t/
√

1+2γ2

−∞

2√
π
exp

(
−u2

)
ds

= erf
( t√

1 + 2γ2

)
.

(iii) By Lemma 17, and following the same steps as in (i),

E
[
erf ′′(t+G)

]
= − 2

√
2√

πγ

∫
(t+ g)e−(t+g)2e

− g2

2γ2 dg

= −2
√
2

πγ
e−t2(1−c)

∫
(t+ g)e−

(g+ct)2

c dg

= −2
√
2

πγ
e−t2(1−c)

(
t
√
πc+

√
πcE(N (−ct,

c

2
))
)

= −2
√
2c√
πγ

e−t2(1−c)(t− ct)

= − 4√
π(1 + 2γ2)

e−t2(1−c) 1

1 + 2γ2
t

= − 4t√
π(1 + 2γ2)3/2

exp

(
− t2

1 + 2γ2

)
.

(iv) By Lemma 17,

E
[
(erf ′)2(t+G)

]
=

1√
2πγ

∫
(erf ′)2(t+ g)e

− g2

2γ2 dg

=
2
√
2

γπ3/2

∫
e−2(t+g)2e

− g2

2γ2 dg

=
2
√
2

γπ3/2

∫
e−

g2

2Γ2 e−4gte−2t2 dg with Γ2 := γ2/(1 + 4γ2)

=
2
√
2

γπ3/2

∫
e−

(g+4Γ2t)2

2Γ2 e8Γ
2t2e−2t2 dg

=
2
√
2

γπ3/2
e−2t2(1−4Γ2)

∫
e−

(g+4Γ2t)2

2Γ2 dg

=
2
√
2

γπ3/2
e−2t2(1−4Γ2)

√
2πΓ

=
4

π
√
1 + 4γ2

exp

(
− 2t2

1 + 4γ2

)
.

(v) We use Lemma 17 and then Stein’s lemma:

E[erf(t+G)erf ′′(t+G)]

= −2E
[
(t+G)erf(t+G)erf ′(t+G)

]
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= −2tE
[
erf(t+G)erf ′(t+G)

]
− 2E

[
Gerf(t+G)erf ′(t+G)

]
= −2tE

[
erf(t+G)erf ′(t+G)

]
− 2γ2

(
E
[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

])
.

Reordering terms, this gives the desired equation.

(vi) We define the function
f(t) = E

[
erf(t+G)erf ′(t+G)

]
.

Then, using Lemma 18(v), we have
f ′(t) = E

[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

]
= E

[
erf ′(t+G)2

]
− 2t

1 + 2γ2
E
[
erf(t+G)erf ′(t+G)

]
− 2γ2

1 + 2γ2
E
[
(erf ′(t+G))2

]
=

1

1 + 2γ2
E
[
(erf ′(t+G))2

]
− 2t

1 + 2γ2
f(t) .

We solve this differential equation by the method of variation of parameters: we have
d

dt

(
f(t)et

2/(1+2γ2)
)
=

1

1 + 2γ2
E
[
(erf ′(t+G))2

]
et

2/(1+2γ2) .

We use Lemmas 17 and 18(iv):

d

dt

(
f(t)et

2/(1+2γ2)
)
=

2√
π

1

(1 + 2γ2)
√
1 + 4γ2

erf ′

(
−

√
2t√

1 + 4γ2

)
et

2/(1+2γ2)

=
4

π

1

(1 + 2γ2)
√

1 + 4γ2
e−2t2/(1+4γ2)et

2/(1+2γ2)

=
4

π

1

(1 + 2γ2)
√

1 + 4γ2
exp

(
− t2

(1 + 2γ2)(1 + 4γ2)

)

=
2√
π

1

(1 + 2γ2)
√
1 + 4γ2

erf ′

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

As the distribution of G is symmetric and erf is an odd function, we have that f(0) =
E
[
erf(G)erf ′(G)

]
= 0. Thus integrating the above derivative, we obtain

f(t)et
2/(1+2γ2) =

2√
π

1

(1 + 2γ2)
√
1 + 4γ2

∫ t

0

ds erf ′

(
s√

(1 + 2γ2)(1 + 4γ2)

)

=
2√
π

1√
1 + 2γ2

erf

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

Using again Lemma 17, we obtain the claimed result:

f(t) =
1√

1 + 2γ2
erf ′

(
t√

1 + 2γ2

)
erf

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Our code is available at

https://github.com/PierreMarion23/
single-location-regression

We use the Transformers (Wolf et al., 2020) and scikit-learn (Pedregosa et al., 2011) libraries for
the experiment of Section 2, and JAX (Bradbury et al., 2018) for the experiment of Section 5. All
experiments run in a short time (less than one hour) on a standard laptop.
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E.1 EXPERIMENT OF SECTION 2 (NLP MOTIVATIONS)

Data generation. We use synthetically-generated data for this experiment. To create our train set,
we generate sentences according to the patterns

The city is [SENTIMENT ADJ]. [PRONOUN] [COLOR ADJ] [ANIMAL] is
[ADV] [SENTIMENT ADJ].

and

The city is [SENTIMENT ADJ]. [PRONOUN] [SENTIMENT ADJ] [ANIMAL] is
[ADV] [COLOR ADJ].

where ADJ stands for adjective and ADV for adverb. Note that the difference between the two patterns
is that the locations of the sentiment and of the color adjectives are swapped. Each element between
brackets corresponds to a word, which can take a few different values that are chosen manually.
For instance, some possible sentiment adjectives are nice, clean, cute, delightful, mean,
dirty, or nasty. A possible value for some words is ∅, meaning that we remove the word from
the sentence, which creates more variety in sentence length. By doing the Cartesian product over
the possible values of each word in brackets, we generate in this way a large number of examples.
Then, the label associated to each example depends solely on the sentiment adjective appearing in the
second sentence. For instance, the words nice, clean, cute, or delightful are associated to
a label +1, while the words delightful, mean, and dirty are associated to a label −1.

We now explain how the test sets are generated. We generate four test sets in order to assess the
robustness of the model to various out-of-distribution changes. The baseline test set uses the same
sentence patterns and the same sentiment adjectives as in the training set, but other words in the
example (e.g., animals, adverb) are different. In particular, a given sentence cannot appear both in the
train set and in the test set. Then, we generate another test set by using sentiment adjectives that are
not present in the training set. We emphasize that the sentiment adjective fully determines the label,
so using unseen adjectives at test time makes the task significantly harder. The third test set uses the
same adjectives as in the train set, but another sentence pattern, namely

Hello, how are you? Good evening, [PRONOUN] [COLOR ADJ] [ANIMAL]
is [ADV] [SENTIMENT ADJ].

Finally, the fourth test set combines a different sentence pattern and unseen adjectives. The size of
the datasets is given in the table below. All datasets have the same number of +1 and −1 labels.

Name Number of examples
Train set 15552
Test set 4608

Test w. OOD tokens 3072
Test w. OOD structure 144

Test w. OOD structure+tokens 96

Table 1: Size of the generated datasets.

Model. We recall that there exists several families of Transformer architectures, which in particular
are not all best suited for sequence classification. An appropriate family is called encoder-only
Transformer, and a foremost example is BERT (Devlin et al., 2019). We refer to Phuong & Hutter
(2022) for an introductory discussion of Transformer architectures and associated algorithms. Here,
we use a pretrained BERT model from the Hugging Face Transformers library (Wolf et al., 2020),
with the default configuration, namely bert-base-uncased. The model has 110M parameters,
12 layers, the tokens have dimension d = 768, and each attention layer has 12 heads. It was pretrained
by masked language modeling, namely some tokens in the input are hidden, and the model learns
to predict the missing tokens. We refer to Devlin et al. (2019) for details on the architecture and
pretraining procedure. We do not perform any fine-tuning on the model.
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Experiment design. Our experiment consists in performing logistic regression on embeddings of
[CLS] tokens in the hidden layers of the pretrained BERT model, where we recall that the [CLS]
token is a special token added to the beginning of each input sequence. This is a particular case of the
so-called linear probing, which is a common technique in the field of LLMs interpretability. More
precisely, let ℓ denote a layer index between 0 and 12, where the index 0 corresponds to the input
to the model (after tokenization and embedding in Rd). Then, for each value of ℓ ∈ {0, . . . , 12},
we train a logistic regression classifier, where, for each example, the input to the classifier is the
embedding of the [CLS] token at layer ℓ (that is, a d-dimensional vector), and the label is simply the
label of the sentence as described above.

Results. For ℓ = 0 (blue bar in Figure 1b), the embedding of [CLS] is a fixed vector that does not
depend on the rest of the sequence, so the classifier has a pure-chance accuracy of 50%. However,
as soon as ℓ > 0, thanks to the attention mechanism, the [CLS] token contains information about
the sequence. We report in Figure 1b the average accuracy over ℓ ∈ {1, . . . , 12} for the train set (in
orange) and the test sets (in green). We observe that the information contained in the [CLS] token
is actually very rich, since logistic regression achieves a perfect accuracy of 100% in the train set.
In other words, the data fed to the classifier is linearly separable. We emphasize that the size of
the train set is significantly larger than the ambient dimension d, so it is far from trivial that this
procedure would yield a linearly-separable dataset. Therefore, obtaining linearly-separable data
demonstrates that the model constructs a linear representations of the input inside the [CLS] token.
Moving on to the test sets, the accuracy on the baseline test set is very good (95%), which suggests
some generalization abilities of the model. The accuracy on the out-of-distribution test sets degrades
(between 64% and 75%), but remains largely superior to pure-chance performance. This suggests
that the internal representation built by the Transformer model is to some extent universal, in the
sense that it is robust to the specifics of the sentence structure and of the word choice.

E.2 EXPERIMENT OF SECTION 5 (GRADIENT DESCENT RECOVERS THE ORACLE PREDICTOR)

We begin by providing additional results before giving experimental details.

PGD with an initialization on the sphere and constant inverse temperature schedule. As
emphasized in Section 5, the dynamics of PGD with a general initialization on (Sd−1)2 depend on the
choice of the inverse temperature schedule λt. The experiment presented in the main text in Figure 4a
is for a decreasing schedule λt = 1/(1+10−4t). We report in Figure 7 results when taking a constant
inverse temperature. We observe distinct patterns depending on the value of this parameter. With
a large inverse temperature (Figure 7a), we observe that the dynamics in (κ, ν) always escape the
neighborhood of 0. Furthermore, the direction v⋆ is almost perfectly recovered, i.e., ν ≈ 1. However,
the value of k⋆ is only partially recovered: the dynamics stabilize around κ ≈ 0.3. Moreover, the
excess risk plateaus at a high value, while the dynamics stay far away from the manifold M. In the
case of a smaller inverse temperature (Figure 7b), the situation is different. We observe that some
initializations lead to a convergence to the point (κ, ν) = (0, 0), in which case the dynamics stay far
from the manifold M. In other words, there is no recovery of k⋆ and v⋆. Other initializations lead to
perfect recovery of k⋆ and v⋆. In all cases, the final excess risk is low. Theoretical study of these
observations is left for future work.

Implementation details. The implementation of the PGD algorithm (10) requires to compute the
gradient of the risk. To this aim, we use the formula for the risk given by Proposition 15. Note that all
quantities appearing in this expression have explicit derivatives. The only quantity for which this is
not directly clear is the function ζ , which needs to be differentiated with respect to its first variable to
compute the derivative of the risk with respect to κ. However, recall that ζ(t, γ2) := E

[
erf2(t+G)

]
.

Then, by Lemma (18),

∂tζ(t, γ
2) = 2E

[
(erf erf ′)(t+G)

]
=

2√
1 + 2γ2

erf

(
t√

(1 + 4γ2)(1 + 2γ2)

)
erf ′

(
t√

1 + 2γ2

)
.

Evaluating ζ itself (and not its derivative) is not required to simulate the dynamics, but is useful for
reporting the value of the risk. For this, we also use the formula above, and use numerical quadrature
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(a) For λt = 0.9.
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(b) For λt = 0.1.

Figure 7: Dynamics of PGD from a random initialization on (Sd−1)2, for two iteration-independent
values of λt. Left: Excess risk as a function of the number of steps. Middle left: Alignment
|κ| = |k⊤k⋆| and |ν| = |v⊤v⋆| with the oracle parameters. Middle right: Trajectories of κ and ν in
a few repetitions of the experiments. Each repetition corresponds to a color, the end point of each
trajectory is in blue. Right: Distance to the invariant manifold M. In all plots except the middle
right ones, the experiment is repeated 30 times with independent random initializations, and either
95% percentile intervals are plotted or all the curves are plotted. Parameters are d = 400, L = 10,
and γ =

√
1/2.

to compute the value of

ζ(t, γ2) =

∫ t

−∞
∂sζ(s, γ

2)ds .

We report in the figures the value of the excess risk, i.e., the risk Rλ(k, v) − ε2. To compute the
distance to the manifold M, recall that it is defined by

M = {(k, v) ∈ Sd−1 × Sd−1, k⊤v⋆ = 0, v⊤k⋆ = 0, k⊤v = 0} .
For a point (k, v) ∈ Sd−1 × Sd−1, its distance to M is therefore computed as

dM((k, v)) =
√
(k⊤v⋆)2 + (v⊤k⋆)2 + (k⊤v)2 .

Parameter values. The following table summarizes the value of the parameters in our experiments.

Name Figure 4a Figure 4b Figure 5 Figure 7a Figure 7b
d 400 400 80 400 400
L 10 10 10 10 10
γ 1/

√
2 1/

√
2 1/

√
2 1/

√
2 1/

√
2

λt 1/(1 + 10−4t) 0.1 2/(1 + 10−4t) 0.9 0.1
α 4 · 10−3 4 · 10−3 10−3 10−3 4 · 10−3

Number of steps 120k 20k 200k 120k 20k
N. of repetitions 30 30 30 30 30

Batch size - - 5 - -
ε 0 0 0.1 0 0

Table 2: Parameter values for the experiments on recovery of the oracle predictor by gradient descent.
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E.3 ADDITIONAL EXPERIMENTS

Transformer layer. The most general formulation of the Transformer layer we consider writes, for
X ∈ RL×d,

X̃ = concat(r,X)

X̂ = X̃+

H∑
h=1

softmax

(
1√
p
LN(X̃)Qh︸ ︷︷ ︸
(L+1)×p

K⊤
h LN(X̃)⊤︸ ︷︷ ︸
p×(L+1)

)
LN(X̃)Vh︸ ︷︷ ︸
(L+1)×p

O⊤
h︸︷︷︸

p×d

,

T (X) = X̂+ReLU(X̂W⊤
1 + 1b⊤1 )W

⊤
2 + 1b⊤2 ,

(29)

where

• concat(r,X) ∈ R(L+1)×d adds a new token at the beginning of the sequence by concate-
nating r ∈ Rd to X ∈ RL×d. This token corresponds to the [CLS] or register token (see
Section 3 for discussion and references). In all our experiments, r ∈ Rd is a vector with
i.i.d. Gaussian entries of variance 1/d, which is not trained;

• LN denotes layer normalization, softmax denotes row-wise softmax, and 1 ∈ RL+1 is the
vector filled with 1;

• the parameters are Qh,Kh, Vh, Oh ∈ Rd×p, W1 ∈ Rd×m, b1 ∈ Rm, W2 ∈ Rm×d, and
b2 ∈ Rd.

Experiment with single-head Transformer layer on single-location regression. We first consider
the case of single-head attention, where H = 1 and p = d. For ease of notation, we drop the
subscripts h in the parameters of the attention layer. We also set O to be the identity matrix. We aim
at training the Transformer layer on the single-location regression task, to check that our simplified
model is a good description of the Transformer layer. First note that the output of the Transformer
layer (29) is a matrix in R(L+1)×d while the target of single-location regression is a scalar. Thus, we
consider only the first row of T (X), corresponding to the register token, and learn a linear projection
of this row to R. In other words, the Transformer layer should learn to store in the register token
global information about the sequence, as described in Sections 2 and 3. Overall, letting θ ∈ Rd, our
risk writes

R(Q,K, V,W1, b1,W2, b2, θ) = E
[(
Y − T (X)1θ

)2]
,

where (X, Y ) are distributed according to the single-location task as described in Section 2. We train
using single-pass stochastic gradient descent (meaning that fresh samples are used at each step), for
8, 000 steps with a batch size of 128 and a learning rate of 0.01. The experiment is repeated 20 times
with independent random initializations, and 95% percentile intervals are plotted (but are not visible
when the variance is too small). Parameters K, V , W1, W2 are initialized with Gaussian entries of
variance 2/(din + dout). The bias terms are initialized to 0, as well as the query matrix Q, following a
standard recommendation in the literature on signal propagation in Transformer (Yang et al., 2021;
He et al., 2023; He & Hofmann, 2024). The output weights θ are initialized with Gaussian entries
of variance 1/d2, following the mean-field regime (Chizat et al., 2019). Parameters are L = 10,
d = p = 80, m = 200, ε2 = 0.01, γ2 = 0.5.

Results are given in Figure 8. We observe in Figure 8a that the Transformer layer is able to
solve single-layer regression. Furthermore, as shown by Figure 8b, it does so by encoding in its
weights the underlying structure of the problem, namely the oracle parameters k⋆ and v⋆, as in
our simplified model (see Section 5). More precisely, in the case of our model, we showed that
the two parameters k, v ∈ (Rd)2 converge to (k⋆, v⋆). To make appear the equivalent of k and v
in the more complex parametrization (29), we let k be the first left singular vector of K, and
v = V (I + W1W2)θ/∥V (I + W1W2)θ∥. We check numerically that the weight matrix QK⊤ is
nearly rank-one after training3, which validates taking k as the first singular vector of K in the present
experiment. It also validates considering vector-valued parameters in our simplified model. The role
of the vector k is to select the relevant token among all input tokens, while the vector v describes how
successive transformations (the value matrix of the attention layer, the MLP with skip connection,

3The ratio between its first and second singular value is of the order of 106 at the end of training.

39



Published as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Step

10−2

10−1
E

xc
es

s
ri

sk
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(b) Alignment between Transformer parameters and
oracle parameters k⋆ and v⋆. We plot |k⊤k⋆| and
v⊤v⋆ as a function of the number of steps, where
k is the first left singular vector of K, and v :=
V (I +W1W2)θ/∥V (I +W1W2)θ∥.

Figure 8: Training a full Transformer layer on single-location regression. The Transformer layer
solves the task, and encodes the structure of the problem in its weights.

and the final linear projection) map this token to the output of the model. We observe that these two
vectors align perfectly with k⋆ and v⋆. This confirms that our simplified model is a good description
of how the Transformer layer solves single-location regression.

Multiple-location regression. A natural extension of single-location regression is when the output
depends on s > 1 tokens instead of just one. This task, which we name multiple-location regression,
can be written as

Y =

s∑
h=1

X⊤
J(h)v

⋆
h + ξ, (30)

where J(1), . . . , J(s) are latent discrete random variables on {1, . . . , L}, all different, and such that,
conditionally on J(1), . . . , J(s),{

XJ(h) ∼ N
(√

d
2k

⋆
h, γ

2Id

)
Xℓ ∼ N (0, Id) for ℓ /∈ {J(1), . . . , J(s)} .

Experiment with simplified predictor on multiple-location regression. In accordance with the
above, a natural extension of the model presented in the main text is the multi-head predictor

T
(k1,v1,...,kh,vh)
λ (X) =

s∑
h=1

erf
(
λXkh

)⊤Xvh . (31)

The hope is that each head (kh, vh) should align with one of the oracle directions (k⋆h, v
⋆
h). As a first

attempt in investigating this question, we run stochastic PGD in a setup similar to the one presented in
Figure 5. We take s = 2, the pair (J(1), J(2)) takes uniform values among disjoint pairs of indices in
{1, . . . , L}. The directions (k⋆1 , v

⋆
1) and (k⋆2 , v

⋆
2) are sampled independently uniformly on the sphere,

such that (k⋆i )
⊤v⋆i = 0. Parameter values are the same as in Figure 5, except that the number of steps

is set to 105, the number of repetitions is set to 20, and the inverse temperature λt is constant after
2.5 · 104 steps. Results are given in Figure 9. We observe (Figure 9a) that our predictor is able to
solve the task. However, the recovery of oracle parameters is only partial, as shown in Figures 9b
and 9c: each head partially aligns with the oracle parameters, but the alignment is not perfect. In
other words, the model is not well able to separate the signal coming from the different XP (h). This
calls for additional research in understanding how attention heads differentiate from each other in
order to attend to various signals, and why in our setup the heads are not well-separated.
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cle parameters.

Figure 9: Training the multi-head predictor (31) on the multiple-location regression task (30). The
predictor is able to reach a low-risk region. The recovery of oracle parameters by the predictor is
partial. In the middle plot, for each repetition and each oracle parameter k⋆h, we look at the end of
training which head among k1 and k2 is closer to k⋆h, and report the alignment between k⋆h and that
head along training. If the alignment were perfect, this quantity would be close to 1. The same holds
for the right plot.

Experiment with multi-head Transformer layer on multiple-location regression. We train a
multi-head Transformer layer on the multiple-location regression task (30), taking H = s = 2. The
data is generated as in the previous experiment. Parameters are as in the experiment for single-head
Transformer, except the dimension p = d/H = 40, the number of repetitions set to 10, and the
learning rate set to 0.02. Mimicking the single-head experiment, we let kh be the first left singular
vector of Kh, and vh = VhO

⊤
h (I +W1W2)θ/∥VhO

⊤
h (I +W1W2)θ∥. We also check numerically

that all weight matrices QhK
⊤
h are nearly rank-one after training. Results are reported in Figure 10.

The conclusions are similar to the previous experiment: the excess risk is low at the end of training,
but we observe partial recovery of the oracle parameters (although the recovery is somewhat better
than with the simplified predictor, especially for k⋆h). This suggests that our simplified predictor
might be a first good testbed to understand the training dynamics of multi-head Transformer for this
task.

0 2500 5000 7500 10000
Step

10−2

10−1

100

E
xc

es
s

ri
sk

(a) Excess test risk as a function of
the number of steps.

0 2500 5000 7500 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
k
? h

h=1

h=2

(b) Alignment |k⊤k⋆
h| with the ora-

cle parameters.

0 2500 5000 7500 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
v
? h h=1

h=2

(c) Alignment v⊤v⋆h with the oracle
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Figure 10: Training the multi-head Transformer layer (29) on the multiple-location regression
task (30). The predictor is able to reach a low-risk region. The recovery of oracle parameters by
the predictor is partial. For each h ∈ {1, 2}, we let kh be the first left singular vector of Kh, and
vh = VhO

⊤
h (I +W1W2)θ/∥VhO

⊤
h (I +W1W2)θ∥. In the middle plot, for each repetition and each

oracle parameter k⋆h, we look at the end of training which head among k1 and k2 is closer to k⋆h, and
report the alignment between k⋆h and that head along training. If the alignment were perfect, this
quantity would be close to 1. The same holds for the right plot.

F FURTHER DISCUSSION OF RELATED MODELS

We begin by discussing some related works on training dynamics of Transformers (Jelassi et al., 2022;
Nichani et al., 2024; Wang et al., 2024), to illustrate the originality of our task and predictor. Jelassi
et al. (2022) study how (vision) Transformers learn spatial patterns in the data by relying on positional
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encodings. This differs significantly from our task that is invariant by token permutation. Further,
in their model, the argument of softmax (i.e., a matrix A ∈ RL×L) is directly a parameter of the
model. This is a radically different structure from the usual attention, and from our setup, where the
data appear in the nonlinearity σ(X⊤

ℓ k). Next, Nichani et al. (2024) explore a task involving a fixed
latent causal graph over the positions of the tokens. Here again, positional encodings play a critical
role in their analysis, whereas our task is invariant under permutations of the tokens. Moreover, in
Nichani et al. (2024), the output is expressed as a function of the last token, with the previous tokens
providing the necessary context for this computation. In our setup, however, the output depends
on a token whose position varies and must be identified within the context. Closer to our approach
is the recent paper by Wang et al. (2024), which also incorporates a notion of token-wise sparsity:
the output is computed as the average of a small subset of tokens, where the subset is identified by
comparing the positional encodings of each token with that of a reference token. We outline two key
differences with our setting. First, we do not make use of a reference token, but instead learn the
latent direction k⋆ to identify the informative token. Second, in our setting, the tokens also encode
an output projection direction v⋆ on top of k⋆. In other words, our task involves learning a linear
regression in addition to identifying the relevant token, which is not the case in Wang et al. (2024).

Besides, we also note that our task shares similarities with multi-index models (McCullagh & Nelder,
1983) and mixtures of linear regressions (De Veaux, 1989). However, our task (Plearn) has a more
structured nature, involving sequence-valued inputs and incorporating a single-location pattern.

Finally, one could imagine a multi-layer perceptron (MLP) designed specifically for single-location
regression, where the weights have a diagonal structure with respect to the sequence index, namely

MLP(X1, . . . , XL) =

L∑
ℓ=1

W2σ(W1Xℓ + b1) + b2.

In such a setup, the first layer could learn the projections along k∗ and v∗, while the subsequent
layer could learn to map these projections to the ouput Y (in a somewhat similar spirit to multi-index
models). However, this architecture is far from resembling those used in practice. If we do not
assume a diagonal structure and instead use traditional MLPs, the number of parameters must scale
at least linearly with the sequence length, which is highly suboptimal and may lead to very slow
training. This highlights the efficiency of attention layers, which perform single-location regression
with a fixed number of learnable parameters, independent of the input length. We leave a rigorous
study of the learning abilities of MLPs in single-location regression for future work.

42


	Introduction
	Single-location regression task
	Statistical setting
	Language processing motivation

	An attention-based predictor to solve the regression task
	Risk of the oracle and of the linear predictors
	Gradient descent provably recovers the oracle predictor
	Conclusion
	Outline of the proof of Theorem 5
	Proofs of the main results
	Proof of Lemma 6 and Theorem 1
	Proof of Corollary 2
	Proof of Proposition 3
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 12
	Proof of Proposition 13

	Expression of the risk beyond the invariant manifold
	Technical results
	Experimental details and additional results
	Experiment of Section 2 (NLP motivations)
	Experiment of Section 5 (Gradient descent recovers the oracle predictor)
	Additional experiments

	Further discussion of related models

