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Abstract

We propose a method for extracting and combining

small-scale and large-scale illumination insensitive fea-

tures for face recognition that can work even in the pres-

ence of cast shadows. Although several methods have

been proposed to extract such features, they are not de-

signed to handle severe lighting variation on a face and

thus fail to work if cast shadows are present. In this pa-

per, we extend quotient image-based illumination nor-

malization by explicitly taking cast shadows into ac-

count so that illumination insensitive large-scale fea-

tures can be obtained. The experimental results show

that the proposed method achieves favorable normal-

ization results under difficult illuminations with cast

shadows.

1. Introduction

Illumination variation is one of the most important

remaining problems in face recognition. While the il-

lumination subspace approach [1, 2] models the ap-

pearance of a face under varying illumination condi-

tions from a set of images, the illumination normal-

ization approach [3, 4, 5, 6, 7] extracts illumination-

invariant/insensitive features from a single image and

as a result is useful for a wide range of applications [8].

Hence, we focus on the latter approach in this paper.

Images of many objects including human faces are

well approximated as a product of reflectance and shad-

ing components. The former is an intrinsic property of

the object surface, and the latter depends on the object

shape as well as on the illumination condition.

Shadings such as diffuse reflection components and

attached shadows are low-frequency components of im-

ages [2]. Therefore, the existing techniques for il-

lumination normalization use high-frequency compo-

nents, i.e. small-scale features extracted from a sin-

gle image for recognition, and discard its low-frequency

components, i.e. large-scale features. For instance,

SQI [3] normalizes an input image by dividing it by

its smoothed version, and DCT [4] discards the low-

frequency components of an input image. Recently, Xie

et al. [9] reported that the method based on both small-

scale and large-scale features works better than those

based only on small-scale features. This result demon-

strates that the large-scale features also contain useful

information about identity of a person.

Shadows cast by facial parts such as a nose under

harsh lighting or other objects such as a hat cause high-

frequency components like shadow boundaries. It is re-

ported that the variational image decomposition [5] can

decompose an image into large-scale and small-scale

features in which the shadow boundaries are well put

into large-scale features even in the presence of cast

shadows. In this way, we can obtain the small-scale

feature that is less contaminated by cast shadows. How-

ever, the effects of cast shadows remain in the large-

scale feature and it is difficult to normalize such features

by existing methods.

To cope with this problem, our proposed method

removes errors in the large-scale feature caused by

cast shadows via quotient image-based normalization

[3, 10]. More specifically, illumination-dependent com-

ponents of the large-scale feature are approximately

represented by a linear combination of basis functions.

Our method uses error bases that can represent cast

shadows in addition to illumination bases learned from

bootstrap images. Then, the large-scale feature is nor-

malized by removing the illumination-dependent com-

ponents that take cast shadows into account. The use of

such error bases is inspired by the dense error correction

via L1 minimization [12], that is used in face recogni-

tion framework using sparse representation [13]. While

their method requires multiple images under various il-

luminations for each gallery, our method requires only

a single image.

2 Normalization using Large- and Small-

Scale Features

A pixel intensity I(x, y) is represented as a product

of reflectance ρ(x, y) and shading S(x, y):

I(x, y) = ρ(x, y)S(x, y), (1)
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Figure 1. Block diagram of the proposed

method.

where (x, y) is the coordinate of the image plane. Tak-

ing the logarithm in Eq.(1), we can convert the produc-

tive form into the additive form:

f(x, y) = v(x, y) + u(x, y), (2)

where f(x, y) = log I(x, y), v(x, y) = log ρ(x, y), and

u(x, y) = logS(x, y). We call v a small-scale feature

and u a large-scale feature1. In this paper, this decom-

position is obtained by LTV [5].

The illumination normalization framework based on

small-scale and large-scale features (S&L) [9] normal-

izes the illumination variation mainly on the large-scale

features u and recognition is done using both normal-

ized large-scale features u′ and small-scale features v.

As shown in Fig.1, we propose an illumination normal-

ization method that can work on this framework.

From next section, for the sake of simplicity, we

raster scan pixel intensities of v(x, y), u(x, y) and rep-

resent them as column vectors v and u.

3 Shadow Insensitive Normalization

3.1 Quotient Image with Error Term

In this section, we describe the normalization

method of large-scale feature u in the presence of cast

shadows.

Let the bootstrap images consist of a number of sub-

jects under various illumination conditions but do not

contain severe cast shadows such as cast shadows by

other objects. First, we decompose M bootstrap im-

ages by using LTV, and obtain the large-scale features

{um}M
m=1

. Then, we obtain the eigenvector matrix

A = [a1,a2, · · · ,aK ] with the largest K eigenvalues

by applying PCA to the matrix [u1,u2, · · · ,uM ].
After that, we use the bases A to approximate the

large-scale feature u of any image out of bootstrap im-

ages. If u is not contaminated by cast shadows, it

is approximately represented by u = Al. Here, l =
(l1, l2, · · · , lK)T is the coefficients of linear combina-

tion. When severe contaminations such as cast shadows

1The decomposition in Eq.(1) is not unique. For example, Chen

et al. [5] consider high frequency components of reflectance as small-

scale features.

by other objects are present, u is not represented well

by the learned bases from bootstrap images. To remove

such effects, we incorporate an error term e and repre-

sent the large-scale feature as 2

u ∼ Al+ e. (3)

In a similar manner to a quotient image [10, 3], we

can assume that the ratio between the large-scale fea-

ture and its approximation contains discriminative fa-

cial features. Since both large-scale and small-scale fea-

tures are in the logarithmic domain, the ratio becomes

subtraction. Therefore, the quotient image u′ of the

large-scale feature, i.e. the normalized large-scale fea-

ture can be defined by

u′ = u− (Al + e). (4)

As described in the next section, we compute the ap-

proximation (Al + e) on the basis of L1 minimization

algorithm. Once we obtain u′, we use the sum of the

small-scale feature and the normalized large-scale fea-

ture v + u′ for face recognition.

We call this method Non Point Light and Error Quo-

tient Image (NPLE-QI). This is because the PCA illumi-

nation bases of quotient images are shown to be linearly

related to spherical harmonics bases [2, 3] representing

diffuse lighting, i.e., Non Point Light source 3.

3.2 Fitting via L1-Minimization

Next, we address how to estimate the coefficients l

and error term e in NPLE-QI when large-scale feature

u cannot be well represented as Al due to cast shadows.

We represent the error term by using a linear combina-

tion of basis functions:

e = Bb. (5)

Here, B is a set of basis functions and b is their coeffi-

cients.

We assume that pixels contaminated by cast shadows

can arbitrarily distribute according to objects that cast

shadows on a face, and then we set B = ξIe. Here,

the matrix Ie is the identity matrix of P × P , where P

is the number of image pixels. The scalar parameter ξ

controls the contribution of the error term in optimiza-

tion.

By integrating the illumination term Al and error

term e, and allowing the fitting error up to ǫ|u|2, the

coefficients w = (lT , bT )T are given by

min |w|1 subject to |u−Cw|2 ≤ ǫ|u|2, (6)
2The error term is not restricted to negative values. Hence, this

term removes other nuisances for recognition, such as specular high

lights, and can remove fitting errors of Al.
3We performed PCA in logarithmic domain because it produces

more stable results for the quotient image. We confirmed that the

variation of the image under non-points lights can be modeled as low

dimensional subspaces in logarithmic domain.
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Algorithm 1 NPLE-QI for large-scale feature

Input: Large-scale feature u.

1: l̂ = argmin |u−Al|2.

2: if |u−Al̂|2 > ǫ| u |2 then

3: ŵ = arg min |w|1 s. t. |u−Cw|2 ≤ ǫ|u|2.
4: u′ = u - Cŵ.

5: else

6: u′ = u - Al̂.

7: end if

Output: Normalized large-scale feature u′.

Figure 2. Normalization of Large-Scale

Feature using NPLE-QI.

where C = [A,B]. There are many algorithms that

can solve this optimization problem. We use l1qc log-

barrier function [11] of l1-magic. The actual algorithm

of NPLE-QI is described in Algorithm.1.

An example of the results are shown in Fig2. The il-

lumination term (b) and the error term (c) are computed

from the original large-scale feature (a). As shown in

(b), we can see that NPL-QI, which corresponds to the

proposed method without the error term, cannot repre-

sent cast shadows by a hat. In addition, the effects of

cast shadows propagate to non-shadowed pixels. On

the other hand, we can see that the error term of NPLE-

QI captures the cast shadows as shown in (c), and that

the normalized large-scale feature obtained by using our

proposed NPLE-QI is not sensitive to cast shadows as

shown in (d). We use the sum of the quotient image

(normalized large-scale feature) and small-scale feature

(e) for face recognition.

4 Experiments

4.1 Setup

Datasets: We used four datasets: Extended Yale B [1],

Multi-PIE [14], CAS-PEAL [15], and our own dataset

termed CAST, which consists of face images with cast

shadows. The Extended Yale B consists of images of

38 subjects taken under 64 different light source direc-

tions. Those images are classified into five subsets in

accordance with the angle between the frontal direction

and the light source direction. The Multi-PIE consists

of images of 337 subjects taken under 21 different light

source directions. The CAS-PEAL consists of images

Table 1. Recognition rates of various

datasets.
Method

Extended Multi- CAS PEAL
CAST

YaleB PIE Light Hat

HE 55.87 57.92 4.37 25.00 18.43

TT [6] 86.67 99.46 18.28 24.73 76.00

DCT [4] 90.15 99.15 19.66 27.68 81.00

NDF [7] 90.57 99.85 21.89 32.50 79.71

LTV [5] 90.34 98.80 21.58 30.54 82.29

NPL-QI [3] 83.69 97.69 23.23 19.46 37.61

NPLE-QI 93.74 99.69 22.60 27.68 67.43

S&L(DCT) [9] 92.26 98.85 21.98 32.05 82.86

S&L(NPL-QI) [9] 90.83 98.62 27.06 21.07 49.71

S&L(NPLE-QI) 94.71 99.31 26.62 33.04 84.57

of 1040 subjects taken under various illumination con-

ditions and with various accessories. We used a light-

ing probe set and chose images of subjects wearing hats

from an accessory set. The CAST consists of images of

14 subjects taken under 50 different imaging conditions,

with four different kinds of occluders such as hats and

under various light source directions. In all datasets,

only images of frontal faces are used.

Recognition Protocol: All face images are cropped in

accordance with the coordinates of eyes, and resized to

100×100 pixels with 256 gray levels. Nearest neighbor

classifier based on normalized cross correlation is used

for face recognition as it has been used in much previ-

ous related researches [5, 7, 9]. For each subject, only

one image taken under an frontal lighting condition is

registered as a reference image.
Bootstrap Images: We used images of 10 subjects

taken under various light source directions as bootstrap

images. The Multi-PIE is used as the bootstrap images

for the Extended Yale B. The Extended Yale B is used

as the bootstrap image for the other datasets.
Parameters: As default parameters, the number of il-

lumination basis is set to 20, the ǫ is set to 0.03, and the

ξ is set to 0.1. These parameters are commonly used for

all datasets.

4.2 Results

We compared our proposed NPLE-QI with NPL-

QI [3, 9]. For reference, middle of Table 1 lists the

recognition rates of both methods not for large-scale

features but for original images (refer as NPLE-QI and

NPL-QI). We can see that NPLE-QI performs better

than NPL-QI in many cases, especially when cast shad-

ows are dominant in images. Below, we investigate the

performance of NPLE-QI that is applied to large-scale

features and combined with small-scale features (refer

as S&L) in detail.

We also show the result images of S&L(NPL-QI)

and S&L(NPLE-QI) in Fig. 3. We can confirm that

S&L(NPLE-QI) has better visual quality.
Parameter ǫ: We investigated the recognition rates

when the parameter ǫ of NPLE-QI changed. The re-

sults are shown in Fig. 4. The up-left figure shows the
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Figure 3. Example of illumination normal-

ization results.

Figure 4. Results in different settings of ǫ.

mean recognition rates and the up-right figure shows

the difference (gain) of the performance of S&L(NPLE-

QI) from S&L(NPL-QI) for each subset of the Ex-

tended Yale B. The performance of S&L(NPLE-QI)

is better than the other combinations (DCT and NPL-

QI) and the original LTV. We can see that our pro-

posed S&L(NPLE-QI) achieves much better results

than S&L(NPL-QI) for subsets 4 and 5, i.e. for im-

ages taken under harsh lighting. Because cast shadows

become dominant in such images and it is difficult to

normalize them by using only the illumination bases

learned from bootstrap images. Such degradation of

NPL-QI is consistent with the result of [9]. In NPLE-

QI, smaller ǫ removes more errors and such parameters

are better when subset 4, 5. Similarly, the optimal pa-

rameter of ǫ in CAS-PEAL Hat is smaller than CAS-

PEAL Light. This is because the bootstrap images (Ex-

tended Yale) contain various lighting conditions, but do

not contain variations caused by hat.
Comparison with Other Methods: We compared our

proposed method with other illumination normaliza-

tion methods; histogram equalization (HE), TT [6] 4,

DCT [4], and NDF [7]. All the methods were imple-

mented by us, and their parameters were carefully tuned

so that the best performance could be obtained. The re-

sults are shown in Table 1. We can see that the recog-

nition rates of our proposed S&L(NPLE-QI) are higher

4In TT, only the illumination normalization stage of the whole

recognition algorithm was used.

than those of the other methods in many cases, espe-

cially when the effects of cast shadows are severe such

as Extended Yale B and CAST.

5 Conclusion

We proposed a method for illumination normaliza-

tion of face images taken under harsh lighting and with

shadows cast by other objects. On the basis of re-

moval of errors including cast shadows, our method en-

ables us to extract discriminative facial features from

large-scale features of images. The experimental results

demonstrated that the proposed method achieves favor-

able normalization results under difficult illuminations

with cast shadows.

References
[1] A.S. Georghiades, P.N. Belhumeur and D.J. Kriegman, From

few to many:Illumination cone models for face recognition un-

der variable lighting and pose, IEEE Trans. on PAMI, vol.23,

no.6, pp.643–660, 2001.
[2] R. Ramamoorthi, Analytic PCA Construction for Theoreti-

cal Analysis of Lighting Variability in Images of Lambertian

Object, IEEE Trans. on PAMI, vol.24, no.10, pp.1322–1333,

2002.
[3] H. Wang, S.Z. Li and Y. Wang, Generalized Quotient Images,

In Proc.CVPR, pp.498–505, 2004.
[4] W. Chen, M.J. Er and S. Wu, Illumination compensation and

normalization for robust face recognition using discrete cosine

transform in logarithm domain, IEEE Trans. on SMC:B, vol.

36,no.2, pp.458–466, 2006.
[5] T. Chen, W. Yin, X.S. Zhou, D. Comaniciu and T.S. Huang,

Total variation models for variable lighting face recognition,

IEEE Trans. on PAMI, vol.28, no.9, pp.1519–1524, 2006.
[6] X. Tan and B. Triggs, Enhanced Local Texture Feature Sets for

Face Recognition Under Difficult Lighting Conditions, IEEE

Trans. on IP, vol.19, no.6, pp.1635–1650, 2010.
[7] L.-H. Chen, Y.-H. Yang, C.-S. Chen and M.-Y. Cheng, Illumi-

nation Invariant Feature Extraction Based on Natural Images

Statistics - Taking Face Images as An Example, In Proc. CVPR,

pp.681–688, 2011.
[8] X. Tan, S. Chen, Z.-H. Zhou and F. Zhang, Face recognition

from a single image per person: A Survey, Pattern Recognition,

vol.39, pp.1725–1745, 2006.
[9] X. Xie, W.-S. Zheng and P.C. Yuen, Normalization of Face

Illumination Based on Large- and Small- Scale Features, IEEE

Trans. on IP, vol.20, no.7, pp.1807–1821, 2011.
[10] A. Shashua and T. Riklin-Raviv, The Quotient Image: Class-

Based Re-Rendering and Recognition with Varying Illumina-

tions, IEEE Trans. on PAMI, vol.23,no.12, pp.129–139,2001.

[11] E. Candes, J. Romberg, l1magic : Recovery of Sparse Signals

via Convex Programming, http://www.acm.caltech.edu/l1mag-

ic/, 2005.
[12] J. Wright and Y,Ma, Dense Error Correction via L1 Mini-

mization, IEEE Trans. on Information Theory, vol.56, no.7,

pp.3540–3560, 2010.
[13] J. Wright, A.Y. Yang, A. Ganesh, S.S. Satr and Y. Ma, Robust

Face Recognition via Sparse Representation, IEEE Trans. on

PAMI, vol.31, no.2, pp.210–227, 2009.
[14] R.Gross, I.Matthews, J.Cohn, T.Kanade, and S.Baker, Multi-

PIE, Image and Vision Computing, vol.28, no.5, pp.807–813,

2010.
[15] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang and

D. Zhao, The CAS-PEAL Large-Scale Chinese Face Database

and Baseline Evaluations, IEEE Trans. on SMC, Part A, vol.38,

no.1, pp.149–161, 2008.

1851


