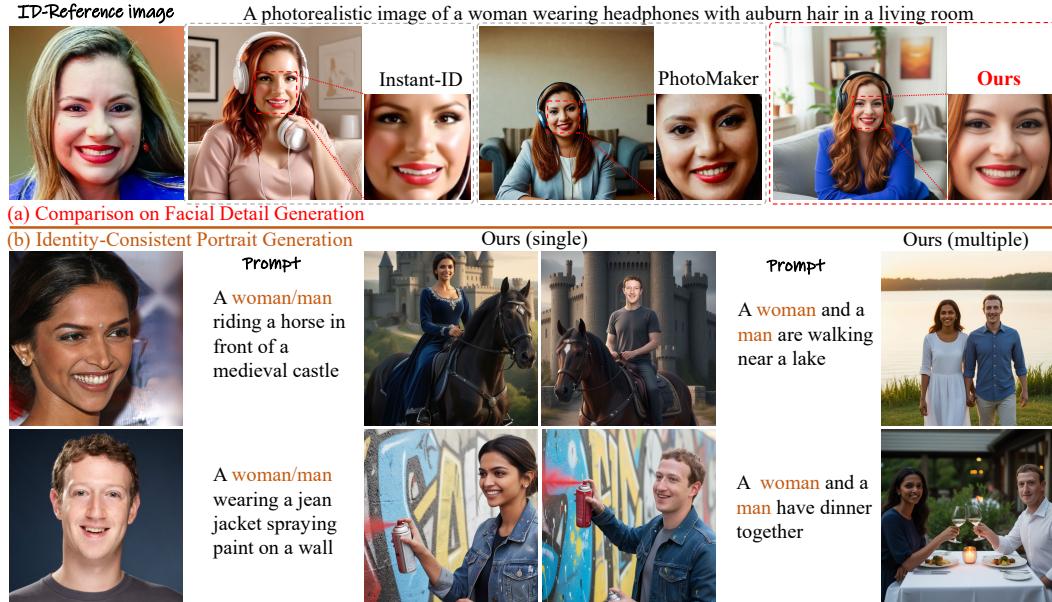


000 OMNIPORTRAIT: FINE-GRAINED PERSONALIZED 001 PORTRAIT SYNTHESIS VIA PIVOTAL OPTIMIZATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006



042 Figure 1: We demonstrate (a) the challenges faced by existing methods in customizing fine-grained
043 facial features, and (b) that *OmniPortrait* is able to generate images with exceptional identity simi-
044 larity, strong text-image alignment and can be extended to multi-identity customization.

045 ABSTRACT

046 Image identity customization aims to synthesize realistic and diverse portraits of
047 a specified identity, given a reference image and a text prompt. This task presents
048 two key challenges: (1) generating realistic portraits that preserve fine-grained fa-
049 cial details of the reference identity, and (2) maintaining identity consistency while
050 achieving strong alignment with the text prompt. Our findings suggest that exist-
051 ing single-stream methods fail to capture and guide fine-grained identity details.
052 To address these challenges, we introduce *OmniPortrait*, a novel diffusion-based
053 framework for fine-grained identity fidelity and high editability in portrait syn-
thesis. Our core idea is pivotal optimization, which leverages dual-stream iden-
tity guidance in a coarse-to-fine manner. First, a Pivot ID Encoder is proposed
and trained with a face localization loss while avoiding the degradation of ed-
itability typically caused by fine-tuning the denoiser. Although this encoder pri-
marily guides coarse-level identity synthesis, it provides a good initialization that
serves as the identity pivot for optimization during inference. Second, we propose
Reference-Based Guidance, which performs on-the-fly feature matching and opti-
mization over diffusion intermediate features conditioned on the identity pivot. In
addition, our approach is able to generalize naturally to multi-identity customized
image generation scenarios. Extensive experiments demonstrate significant im-
provements in both identity preservation and text alignment, establishing a new
benchmark for image identity customization.

054 **1 INTRODUCTION**

055

056 Recent text-to-image generation models Xu et al. (2018); Dhariwal & Nichol (2021); Rombach et al.
 057 (2022); Nichol et al. (2022); Saharia et al. (2022), especially diffusion models Ho et al. (2020); Song
 058 et al. (2021); Chen et al. (2023a); Esser et al. (2024), have made significant developments. Stemming
 059 from T2I diffusion models, personalized portrait synthesis task is achieved by injecting identity
 060 conditions into the conditional space of the base model, enabling the synthesis of realistic and diverse
 061 portraits for a specified identity. Recent advances in customized generation have explored two main
 062 directions: test-time fine-tuning Ruiz et al. (2023); Gal et al. (2022); Kumari et al. (2023), and
 063 design an additional encoders in the conditional space of diffusion models Gal et al. (2023); Wei
 064 et al. (2023); Arar et al. (2023); Valevski et al. (2023); Chen et al. (2023b); Ma et al. (2023a).

065 Despite significant advancements in customized generation, two major challenges remain for syn-
 066 thesizing identity-personalized portraits: (1) generating realistic portraits that faithfully preserve the
 067 fine-grained facial details of the reference identity, and (2) maintaining strong identity consistency
 068 while ensuring precise alignment with the text prompt. As illustrated in Fig. 1 (a), existing state-of-
 069 the-art methods Wang et al. (2024); Li et al. (2024) struggle to faithfully preserve the facial details
 070 of the reference identity image. The loss of critical facial details, such as beauty marks, may give the
 071 impression of an overly retouched or even fake photograph, thereby hindering their practical appli-
 072 cability. Recent works, such as FastComposer Xiao et al. (2023), attempt to enforce the presence of
 073 the reference portrait by full fine-tuning. However, it damages the rich priors of pretrained diffusion
 074 models and often leads to imbalanced visual fidelity and editing flexibility, as illustrated in Fig. 2.

075 Inspired by PTI Roich et al. (2022), our core idea differs from existing single-stream conditioning
 076 methods by introducing pivotal optimization, which leverages dual-stream identity guidance in a
 077 coarse-to-fine manner. We start by introducing a Pivot ID Encoder, a vision encoder that takes
 078 the reference identity image as input and injects identity features into the conditional space of the
 079 denoising network, thereby establishing a pivot for portrait generation. To train the Pivot ID Encoder,
 080 we design a face localization loss that encourages the identity embedding of the reference image to
 081 focus on the facial region. This not only enhances identity similarity but also enables more accurate
 082 localization face during inference. Throughout training, the parameters of the base model remain
 083 frozen to ensure text alignment capability is preserved without degradation.

084 Although the Pivot ID Encoder alone provides only coarse-grained identity consistency, it estab-
 085 lishes a strong initialization that serves as the identity pivot for optimization. Building on this, we
 086 introduce Reference-Based Guidance (RB-Guidance), which performs feature-space matching be-
 087 tween the diffusion intermediate features of the reference identity image and those of the generated
 088 image, thereby enabling pivotal optimization guided by identity features. Thanks to the Pivot ID En-
 089 coder design, the rich priors and text alignment capabilities of the base model are preserved, while
 090 identity and facial details from the reference image are guaranteed through RB-Guidance. More-
 091 over, OmniPortrait is plug-and-play and is readily compatible with many other methods or plugins,
 092 while naturally extending to multi-identity customization scenarios, as shown in Fig. 1 (b).

093 Equipped with these techniques, as shown in Fig. 1, OmniPortrait demonstrates extraordinary cus-
 094 tomization capabilities with just a single reference image and achieves state-of-the-art results, show-
 095 ing a significant quality advantage over prior works in similar settings. In summary, our contribu-
 096 tions are as follows:

- 097 • We propose OmniPortrait, a pivotal optimization based framework for detail-preserving
 098 identity-customized portrait synthesis. It incorporates Pivot ID Encoder and Reference-
 099 Based Guidance to enable coarse-to-fine personalized portrait generation, enhancing iden-
 100 tity similarity with minimal impact on generative capability.
- 101 • We design Reference-Based Guidance (RB-Guidance), a novel test-time optimization
 102 framework based on local diffusion feature matching, which enables training-free preser-
 103 vation of fine-grained identity details.
- 104 • We construct a large-scale human face dataset with detailed annotations, containing 1 mil-
 105 lion data pairs, which can facilitate training for identity-customized image generation tasks.
- 106 • Extensive experiments demonstrate the excellent performance of our framework particu-
 107 larly in preserving fine-grained facial details. Results show that our method achieves su-
 108 perior identity fidelity without compromising editability.

Figure 2: The trade-off between identity fidelity and text editability in FastComposer Xiao et al. (2023) controlled by its delay condition parameter α .

2 RELATED WORK

Text-to-Image Diffusion Models In recent years, diffusion models Ho et al. (2020); Nichol & Dhariwal (2021) have rapidly advanced in image generation, with models like Stable Diffusion Rombach et al. (2022), DALL-E2, and Imagen Rombach et al. (2022); Saharia et al. (2022) producing high-quality images. More recent models Peebles & Xie (2023); Chen et al. (2023a); Esser et al. (2024) adopt Transformer-based denoising networks and leverage larger training datasets, resulting in stronger generalization and enhanced image generation capabilities.

Few-shot Finetuning Customized Generation Subject-driven image generation enables models to create images with personalized content. Some methods Ruiz et al. (2023); Gal et al. (2022); Kumari et al. (2023) fine-tune models on multiple reference images to capture a specific subject or face. However, these approaches are constrained by the requirement for several images of the same subject and the high computational costs Jo et al. (2025).

Encoder-Based Customized Generation Recent works Gal et al. (2023); Wei et al. (2023); Ma et al. (2023b); Shi et al. (2023); Arar et al. (2023); Ye et al. (2023); Xiao et al. (2023); Guo et al. (2024); Qian et al. (2025); Mou et al. (2025); Jiang et al. (2025); Huang et al. (2024) use visual encoders for efficient image synthesis but struggle with balancing fidelity and editing flexibility. Building on reference image injection paradigm, subsequent studies have explored enhancements in multiple directions, including improved preservation of facial identity Li et al. (2024) and extended support for multiple reference subjects Gu et al. (2023); Kwon & Ye (2024). InstantID Wang et al. (2024) enhances identity-consistent generation through a dedicated face encoder and identity network.

Training-free Consistent Generation Training-free approaches have recently attracted significant attention owing to their computational efficiency. For instance, MasaCtrl Cao et al. (2023) proposed mutual self-attention, in which the keys and values of self-attention are substituted with those derived from the reference image. Similarly, ConsiStory Tewel et al. (2024) introduced subject driven self-attention, allowing each frame to reference multiple subjects from different images in a batch. They further incorporated DIFT Tang et al. (2023) for feature injection in self-attention to improve detail consistency. Despite these advances, existing methods still struggle to preserve the fine facial details of reference images, which remains a challenging problem worthy of further investigation.

3 METHOD

Given an identity reference image x_{ref} and a target prompt P_t that specifies the desired scene, the objective is to generate an image aligned with the target prompt while preserving the fine-grained identity details of the reference face. Ideally, customized portrait generation should achieve high fidelity in identity preservation while simultaneously maintaining satisfactory alignment with the target prompt P_t . To this end, OmniPortrait is introduced, which is built upon latent diffusion model and extended from energy-based diffusion guidance. Through Pivot ID Encoder and RB-Guidance, customized portraits are generated in a coarse-to-fine manner, the overview is shown in Fig. 3.

3.1 PRELIMINARIES

Latent Diffusion Model Sampling with Classifier-free Guidance The latent diffusion model is a type of generative model that reduces images to a low-dimensional latent representation using an autoencoder Kingma & Welling (2013) and then iteratively denoise in the latent space. DDIM sampling is a deterministic and non-Markovian process that generates image latents by progressively denoising in the latent space. Formally, the DDIM sampling procedure can be divided into two components: a denoising step based on Tweedie’s formula and a subsequent re-noising step. Given

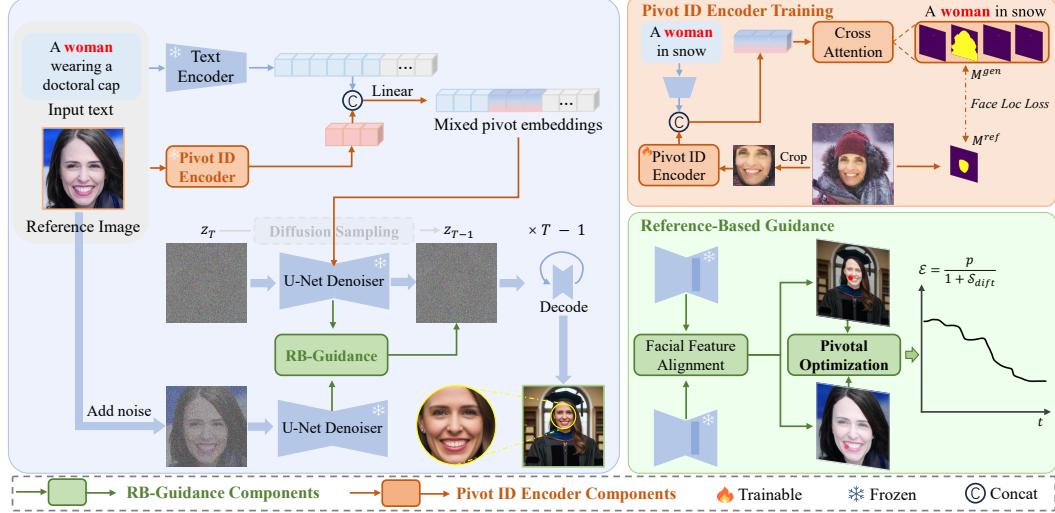


Figure 3: **Overviews of the proposed *OmniPortrait*, Pivot ID Encoder training pipeline and Reference-Based Guidance.** We train the proposed Pivot ID Encoder with a face localization loss. During inference, the Pivot ID Encoder is kept frozen and injects identity information from the reference image into the denoiser to obtain the identity pivot. In addition, RB-Guidance is introduced to optimize an energy function, thereby enhancing the preservation of facial identity features.

a noisy latent $z_t \in \mathbb{R}^{h \times w \times c}$ and a text condition y , the update rule of DDIM can be expressed as:

$$z_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \hat{z} [\epsilon_\theta(z_t, t, y)] + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_\theta(z_t, t, y), \quad (1)$$

$$\hat{z} [\epsilon_\theta(z_t, t, y)] := (z_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(z_t, t, y)) / \sqrt{\bar{\alpha}_t}, \quad (2)$$

where a denoiser is used to predict noise $\epsilon_\theta(z_t, t, y)$ from the noisy latent z_t at a specified time step t , given text condition y , where α_t and σ_t are predefined functions of t that determine the diffusion process. In addition, $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$ in which $\beta_t \in (0, 1)$ is a variance schedule.

Classifier-free guidance is employed to enhance the controllability of diffusion models. Accordingly, during training, the model is required to randomly drop the condition y in $\epsilon_\theta(z_t, t, y)$ with a certain probability. During inference, the predicted noise are formulated as follows:

$$\hat{\epsilon}_y(z_t) = \epsilon_\theta(z_t, t, \emptyset) + w (\epsilon_\theta(z_t, t, y) - \epsilon_\theta(z_t, t, \emptyset)), \quad (3)$$

where $w > 1$ denotes the guidance scale, and $\epsilon_\theta(z_t, t, \emptyset)$ is the unconditional prediction.

Energy Diffusion Guidance From the continuous perspective of score-based diffusion, condition y can be combined by a score function $\nabla_{z_t} \log p(z_t | y)$ and can be further decomposed as:

$$\nabla_{z_t} \log q(z_t | y) = \log \left(\frac{q(y | z_t) q(z_t)}{q(y)} \right) \propto \nabla_{z_t} \log q(z_t) + \nabla_{z_t} \log q(y | z_t), \quad (4)$$

where $\nabla_{z_t} \log q(z_t)$ corresponding to $\epsilon_\theta(z_t, t, \emptyset)$ and $q(y | z_t) \propto \mathcal{E}(z_t; t, y)$. \mathcal{E} is an energy function and it usually requires an additional model to estimate the conditional probability between the noisy latent z_t and the condition y .

3.2 PERSONALIZED IDENTITY PIVOT

Pivot ID Encoder As shown in Figure 3, Our goal is to associate the identity contained in the reference image with a specific text token, such as *woman* or *man*, that most effectively represents the desired identity concept. To achieve this, A Pivot ID Encoder is deployed to extract visual features e_{ref} from the reference image x_{ref} . To bridge the gap between visual embedding e_{ref} and text embedding e_{txt} , a linear projection layer is adopted as a feature alignment network. Specifically, we concatenate e_{ref} and text embedding e_{txt} before feeding them into the linear projection layer, and then we get e_{mix} as mixed pivot embeddings.

Training with Face Localization Loss Previous practices have attempted to achieve high-fidelity face preservation by fine-tuning the denoising network. However, our observations indicate that

such training compromises the priors embedded in the pre-trained model, which in turn leads to abnormal scene composition and poor editability, as illustrated in Fig. 2. Therefore, in this work, only the Pivot ID Encoder and a linear projection layer are trained, which not only enables efficient fine-tuning but also makes the Pivot ID Encoder plug-and-play.

Specifically, we employ an LLM Bai et al. (2023) to extract person-related nouns from the image captions. A face detection model and a face parsing model are used to obtain cropped face images and corresponding face masks M . These elements are then combined to construct triplets consisting of a caption noun, a cropped face image and a face mask. More details are presented in Section 4.1.

To obtain an accurate facial region for subsequent pivotal optimization, it is necessary to ensure that the facial mask of the generated portrait is available at the start of sampling. A straightforward way is to derive this mask from the cross-attention map of e_{mix} . However, our findings suggest that when the Pivot ID Encoder is trained merely with diffusion loss, the cross-attention of e_{mix} tends to spread across the entire person rather than being restricted to the facial region. To address this issue, we propose a face localization loss to constrain the attention region of e_{mix} . Specifically, let $A_t \in [0, 1]^{(h \times w) \times n}$ be the cross-attention map in sampling timestep t , where $A_t[i, j, k]$ denotes the information flow from the k -th conditional token to the (i, j) latent pixel. Let m be the index of e_{mix} , and $A_t(m) = A[:, :, m] \in [0, 1]^{(h \times w)}$ be the cross-attention map of the mixed pivot embeddings. We supervise the cross-attention map A_m to be close to the resized segmentation mask M , and the overall training objective can be formulated as:

$$\begin{aligned} \mathcal{L} &= \mathcal{L}_{diff} + \eta \mathcal{L}_{loc} \\ &= \mathbb{E}_{t \sim \mathcal{U}(1, T), \epsilon_t \sim \mathcal{N}(0, I)} \left[\|\epsilon_t - \epsilon_\theta(z_t, t, C)\|^2 \right] + \frac{\eta}{hw} \sum_{i=1}^h \sum_{j=1}^w (A_t(i, j) - M(i, j))^2, \end{aligned} \quad (5)$$

where $\eta = 2e-3$ is a hyperparameter, and we apply \mathcal{L}_{loc} at $A_t(m) \in [0, 1]^{(16 \times 16)}$.

3.3 REFERENCE BASED GUIDANCE

Regional Mask Extraction By training the Pivot ID Encoder with the proposed facial localization loss, the cross-attention map $A_t^c(m)$ corresponding to e_{mix} can be leveraged during inference to obtain the facial mask of the generated image. However, directly applying a threshold to $A_t^c(m)$ can produce a coarse-grained mask. We choose to incorporate a self-attention map rich in structural information, and design a novel iterative refinement procedure, which can be formally expressed as:

$$\hat{A}_t^c(m) = A_s(m) \cdot \underbrace{\text{norm}(\text{norm}(\dots \text{norm}(A_t^c(m))^\alpha \dots)^\alpha)}_{\gamma \text{ times}}^\alpha. \quad (6)$$

Here, norm refers to the min–max normalization to adjust the map value fall within the range $[0, 1]$. After $\gamma = 3$ iterations with $\alpha = 2$, a threshold $\beta = 0.5$ is then applied to obtain the mask M_{gen} .

Diffusion Feature Correspondence The human face in a portrait contains rich fine-grained details, which serve as the implicit basis for human perception of identity. Therefore, our goal is to devise an energy guidance that explicitly focuses on the fine-grained facial features. Recent works Tang et al. (2023) have shown strong local correspondence between intermediate features in diffusion models, which can be used for dense matching between different images. During the sampling process, the diffusion intermediate feature D_t^{gen} enables the noisy latent code z_t at timestep t to be directly mapped through the denoising network. Similarly, we can extract $D_{t_0}^{ref}$ from the reference image x_{ref} by adding t_0 steps noise, and we set $t_0 = 671$ in practice. Before the sampling process, a face parsing model is employed to extract the facial mask M^{ref} from the reference image x_{ref} . We first identify, within the feature spaces $D_{t_0}^{ref}$ and D_t^{gen} , the set of best-matching points p_{gen} within the mask M^{gen} that correspond to the points p_{ref} located inside the reference mask M^{ref} :

$$p_{gen} = \underset{p \in M^{ref}}{\text{argmin}} \left(D_{t_0}^{ref}[p_{ref}], D_t^{gen}[p] \right), \quad (7)$$

where $d(\cdot, \cdot)$ donates Euclidean distance. We then measuring correspondence by:

$$S_{diff} = \sum_{p_{ref} \in M^{ref}} \frac{\cos(D_t^{gen}[p_{gen}], D_{t_0}^{ref}[p_{ref}]) + 1}{2}. \quad (8)$$

270 **Background Gradient Masking** We aim to make the face details in x_{ref} closely resemble the
 271 one in the generated image. Thus, our optimization objective is to maximize the similarity
 272 $\mathcal{S}_{diff}(z_t, x_{ref}, M^{gen}, M^{ref})$. The gradient has the same dimensionality as z_t , allowing pixel-
 273 wise optimization. Nevertheless, this causes both the foreground and background to be modified
 274 simultaneously, so regions unrelated to the face are also influenced by the gradient, leading to im-
 275 age blurring. To address this issue, we apply mask M^{gen} on Equation. 8 to filter out the gradients
 276 corresponding to the background before performing the guidance step:

$$277 \hat{\mathcal{S}}_{diff} = \sum_{p_{ref} \in M^{ref}} \frac{\cos(D_t^{gen}[p_{gen}], D_{t_0}^{ref}[p_{ref}]) + 1}{2} \odot M^{gen}, \quad (9)$$

281 **On the Fly Pivotal Optimization** During inference, the trained Pivot ID Encoder takes a single
 282 reference image as input. Although it is difficult to fully preserve the fine-grained facial details
 283 of the reference, it provides a strong initialization and accurately localizes the facial region of the
 284 generated portrait. In practice, during the early denoising stages, the generated image only contains
 285 coarse-level concepts. This makes it challenging to establish precise matches between the reference
 286 image and the generated image, which in turn causes the guidance gradients of RB-Guidance to
 287 diverge. To address this issue, pivotal optimization is introduced starting from timestep $\hat{t} = uT$ and
 288 $u = 0.6$, which achieves the best trade-off between guidance effectiveness and stability, as illustrated
 289 in Fig. 7. Accordingly, We further formulate diffusion feature correspondence as an energy function:

$$290 \mathcal{E} = \frac{p}{1 + \hat{\mathcal{S}}_{diff}(z_t, x_{ref}, M^{gen}, M^{ref})}, \quad (10)$$

292 where p denotes the hyperparameter that controls the strength of pivotal optimization and the pivotal
 293 optimization can be formulated as follows:

$$295 \hat{\epsilon}_y(z_t) = \begin{cases} \epsilon_\theta(z_t, t, \emptyset) + w(\epsilon_\theta(z_t, t, y) - \epsilon_\theta(z_t, t, \emptyset)) & \text{if } t > \hat{t} \\ \epsilon_\theta(z_t, t, \emptyset) + w(\epsilon_\theta(z_t, t, y) - \epsilon_\theta(z_t, t, \emptyset)) + \nabla_{z_t} \mathcal{E} & \text{if } t \leq \hat{t} \end{cases} \quad (11)$$

298 4 EXPERIMENT

300 4.1 DATASET CONSTRUCTION

302 Although customized portrait generation has been extensively studied, previous efforts typically re-
 303 lied on private datasets for training Wang et al. (2024); Li et al. (2024). Moreover, most existing
 304 multimodal face datasets only guarantee the existence of human faces within the images, while lack-
 305 ing precise annotations of individual body positions and facial regions. Motivated by these limita-
 306 tions, we construct and release *OmniPortrait-IM*, a large-scale, high-quality multimodal face dataset
 307 with detailed annotations, which can support a variety of personalized portrait generation tasks. We
 308 collect raw data from Pexels, COYO-700M Byeon et al. (2022) and LAION-2B Schuhmann et al.
 309 (2022), and further filtered by resolution and aesthetic scores. To annotate faces, YOLOv7-Face¹
 310 is used to detect all faces, after which images containing no faces or multiple faces are discarded.
 311 In addition, YOLOX Ge et al. (2021) is employed to generate bounding boxes for each person, and
 312 BLIP-2 Li et al. (2023) is used to produce image caption. Details are in the **Appendix**.

313 4.2 EXPERIMENTAL SETUP

315 **Implementation Details** The pretrained backbones utilized in our experiments include SD Rombach
 316 et al. (2022) and SDXL Podell et al. (2023) based community models. For the Pivot ID Encoder,
 317 OpenCLIP-ViT-L/14 Cherti et al. (2023) is adopted. We train of the Pivot ID Encoder and the linear
 318 projection layer using the AdamW optimizer with a learning rate of $2e-5$. SD-based Realistic Vision
 319 is optimized for 80k steps on four NVIDIA A100 80GB GPUs. For SDXL-based RealVisXL, images
 320 are filtered to 1024 resolution, followed by 60k training steps. To enable classifier-free guidance,
 321 we randomly drop the text and ID condition with a 10% probability. During inference, w is set to
 322 7.5 and $T = 1000$ with 50 sampling steps, and the strengths of RB-Guidance p is set to 8.5. We
 323 conduct the subsequent experiments using SDXL.

¹<https://github.com/derronqi/yolov7-face>

Figure 4: **Qualitative comparisons.** We compare our method with baseline approaches in terms of text alignment across several aspects, including pose, clothing, background, action, lighting, and style. OmniPortrait achieves the best text editability while effectively preserves the identity.

Evaluation Settings For evaluation, 50 reference images are sampled from the CelebA-HQ Karras et al. (2017) and FFHQ Karras et al. (2019) datasets, and 30 text prompts are constructed for each identity. To comprehensively assess the effectiveness of the proposed OmniPoratrait, three categories of metrics are considered: (1)*Text Editability*. CLIP-T Hessel et al. (2021) and BLIP scores are employed to measure the consistency between the input text prompts and the generated results. (2)*Identity Fidelity*. We report CLIP-I scores between the reference face image and the generated image. In addition, we adopt RetinaFace Deng et al. (2020) as the detection model, SIM represents the ID cosine similarity, with ID embeddings extracted by FaceNet Schroff et al. (2015). (3)*Image Quality*. CLIP-IQA and FID Heusel et al. (2017) are adopted to evaluate perceptual quality.

4.3 QUALITATIVE COMPARISON

We compare with finetuning-based methods, including DreamBooth Ruiz et al. (2023) and Textual Inversion Gal et al. (2022), as well as encoder-based methods, including Fastcomposer Xiao et al. (2023), InstantID Wang et al. (2024), Photomaker Li et al. (2024) and IP-Adapter Ye et al. (2023). Note that we use the IP-Adapter-FaceID-Plus version for a fair comparison. We test each well-prepared model on a set of challenging prompts. Fig. 4 shows the generated samples from our method and the baseline methods. It demonstrates that our OmniPortrait exhibits higher text-image alignment while capturing the face details of the identity in the reference face. IP-Adapter and FastComposer achieve relatively high facial fidelity but at the cost of poor text alignment. Their results often resemble a copy-and-paste of the reference image, as shown in the last row of Fig. 4.



Figure 5: Comparisons on prompt consistency and identity pereservation.

378 Table 1: **Quantitative comparisons.** “Plug and Play” refers to whether the method supports control
 379 conditions beyond text, such as pose keypoints and segmentation maps. Our method achieves opti-
 380 mal performance in both text alignment and identity preservation.

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Method	Plug and Play	Text Editability		Identity Fidelity		Image Quality	
			BLIP↑	CLIP-T↑	CLIP-I↑	SIM↑	IQA↑	FID↓
DreamBooth	✗		78.42	23.32	66.45	60.07	85.88	219.40
Textual Inversion	✗		76.36	23.89	58.32	58.32	71.73	235.57
FastComposer	✗		78.87	22.98	69.83	64.97	82.04	223.94
PhotoMaker	✗		80.51	<u>23.97</u>	67.64	62.68	70.51	236.93
InstantID	✓		78.21	<u>22.26</u>	<u>73.03</u>	<u>68.35</u>	84.17	221.62
IP-Adapter	✓		79.33	23.93	68.23	64.19	88.15	211.15
OmniPortrait (Ours)	✓		80.24	24.25	73.08	69.13	86.80	213.48

4.4 QUANTITATIVE COMPARISON

Metric Evaluation Despite our method requiring only a single reference image, to prevent catastrophic overfitting of our baselines, we provide 5 images for each ID to optimization-based methods like DreamBooth. As shown in Table 1, OmniPortrait outperforms all baselines in both identity preservation and text-alignment metrics, indicating better text control capability while preserving the identity of the reference image. To further compare the performance of our method and the baselines in terms of text alignment and identity fidelity, we conduct five sets of experiments for each method within their tunable parameter ranges, where each set uses the same reference identity image and prompt. As shown in Fig. 5, baseline methods, which rely on fine-tuning or single-stream identity encoding, struggle to strike a balance between prompt consistency and identity preservation. In contrast, OmniPortrait achieves the best overall performance.

User Study We conducted a user study to compare the proposed approach against baseline methods. Thirty participants from diverse backgrounds were recruited to evaluate 20 sets of generated images. Each set consisted of one reference identity image and five textual prompts, with every baseline method producing five corresponding predictions. Participants were asked to select the top-2 best-performing method according to four aspects: text alignment, identity fidelity, facial detail preservation, and the overall naturalness of the generated results. We present the results in the **Appendix**, the proposed OmniPortrait is consistently preferred over the baseline methods across all evaluation criteria. The advantage is particularly pronounced in facial detail preservation, where more than 50% of participants judged the generated portraits to exhibit a closer resemblance to the reference identity image. These results highlight the effectiveness of OmniPortrait in achieving a superior balance between semantic editability and faithful identity preservation.

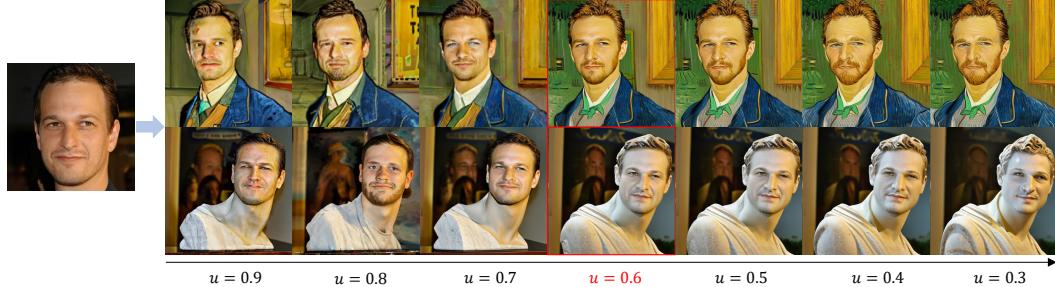
4.5 ABLATION STUDY

Pivot ID Encoder with Face Localization Loss We first perform an ablation study on the face localization loss \mathcal{L}_{loc} used for training the Pivot ID Encoder (PIE). As illustrated in Fig 6, removing the face localization loss results in inaccurate ID inject regions of the mixed pivot embeddings e_{mix} during inference. This misalignment further causes partial mismatches between the diffusion features of the reference face and those of the generated subject, which leads to degraded identity fidelity and corruption of regions unrelated to the face as shown in Tab. 2.

Our core idea is to employ the pivot embeddings obtained by encoding the reference face image through the Pivot ID Encoder, which serve as a reliable initialization for guidance during inference. Without such embeddings, the optimization based on the reference image cannot properly localize the target region or establish feature correspondences. Consequently, the guidance gradients are propagated to non-pivot areas, resulting in no identity enhancement as shown in Fig 6 and Tab. 2.

Figure 6: Qualitative ablation study on OmniPortrait.

432 **Background Gradient Masking** As shown in Fig 6, when the guidance gradients are applied globally across the image, the effect of aligning the matched feature points between the reference and generated faces is weakened, making it challenge to achieve high-fidelity preservation of facial details. We attribute this phenomenon to gradient leakage, where the diffusion features of the reference face become implicitly coupled with the non-facial regions of the generated image.



437
438
439
440
441
442
443
444
445
446
447 Figure 7: Qualitative ablation study on starting time parameter introduced by RB-Guidance.

448 **Pivotal Optimization** An ablation study was first conducted on the starting time parameter $\hat{t} = uT$ introduced by RB-Guidance. As shown in Fig 7, during the early denoising stages, the generated image contains only coarse-level concepts, making it difficult to establish precise correspondences between the diffusion features of the reference image and those of the generated image, which causes the guidance gradients of RB-Guidance to diverge. Conversely, applying the guidance at a later stage reduces its effectiveness. Therefore, $u = 0.6$ was selected in our experiments. As illustrated in Fig 6, in the absence of RB-Guidance, the generation process is conditioned solely on the mixed pivot embeddings encoded by the Pivot ID Encoder, and the resulting portraits exhibit low identity similarity and insufficient preservation of facial details.

457 Table 2: Quantitative ablation study on OmniPortrait.

\mathcal{L}_{loc}	PIE	BGM	RB-Guidance	BLIP \uparrow	CLIP-T \uparrow	CLIP-I \uparrow	SIM \uparrow	IQA \uparrow	FID \downarrow
✗	✓	✓	✓	77.32	22.11	46.54	35.01	68.10	476.22
✓	✗	✓	✓	75.78	23.19	21.83	14.15	63.98	383.17
✓	✓	✗	✓	66.80	19.34	37.30	33.42	52.44	483.93
✓	✓	✓	✗	81.05	24.88	66.10	63.87	85.51	210.45
✓	✓	✓	✓	80.24	24.25	73.08	69.13	86.80	213.48

464 4.6 EXTENDING TO MULTI-IDENTITY PERSONALIZED PORTRAIT SYNTHESIS

465 For multi-identity personalized portrait synthesis, we instantiate a separate Pivot ID Encoder per
466 reference identity to obtain its pivot embedding. Each embedding is concatenated with the corre-
467 sponding person-related text tokens such as woman or man, and RB-Guidance is then applied in
468 the respective face spatial regions. This design naturally extends our pipeline to multi-identity cus-
469 tomized generation, as shown in Fig. 1. More corresponding results are provided in the **Appendix**.

471 5 CONCLUSION

472 We presented OmniPortrait, a diffusion-based framework for identity-preserved portrait synthesis
473 that addresses the core limitations of prior single-stream approaches—namely insufficient fine-
474 grained identity fidelity and degraded text alignment. Central to our design is pivotal optimization:
475 a Pivot ID Encoder, trained with a face-localization loss, establishes a robust identity pivot without
476 fine-tuning the base model, while Reference-Based Guidance (RB-Guidance) performs test-time,
477 coarse-to-fine optimization via local matching of diffusion intermediate features. This dual-stream
478 strategy preserves the rich priors and editability of the pretrained backbone, enabling high-quality,
479 identity-faithful, and prompt-consistent generation. To further facilitate research on personalized
480 portrait synthesis, we will open-source the large-scale human-face dataset constructed in this work.
481 Extensive experiments demonstrate that OmniPortrait achieves state-of-the-art performance on iden-
482 tity similarity and text-image alignment, with clear qualitative gains in fine facial details. The
483 framework is plug-and-play, readily compatible with community models and naturally extensible to
484 multi-identity scenarios, offering practical value to the broader community.

486 REFERENCES
487

488 Moab Arar, Rinon Gal, Yuval Atzmon, Gal Chechik, Daniel Cohen-Or, Ariel Shamir, and Amit H
489 Bermano. Domain-agnostic tuning-encoder for fast personalization of text-to-image models.
490 *arXiv preprint arXiv:2307.06925*, 2023.

491 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
492 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

493 Romain Beaumont. img2dataset: Easily turn large sets of image urls to an image dataset. <https://github.com/rom1504/img2dataset>, 2021.

494 Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun Lee, Woonhyuk Baek, and Saehoon
495 Kim. Coyo-700m: Image-text pair dataset. [https://github.com/kakaobrain/](https://github.com/kakaobrain/coyo-dataset)
496 coyo-dataset, 2022.

497 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng. Mas-
498 actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. In
499 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 22560–22570,
500 2023.

501 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
502 Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
503 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023a.

504 Zhuowei Chen, Shancheng Fang, Wei Liu, Qian He, Mengqi Huang, Yongdong Zhang, and Zhen-
505 dong Mao. Dreamidentity: Improved editability for efficient face-identity preserved image gen-
506 eration. *arXiv preprint arXiv:2307.00300*, 2023b.

507 Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
508 don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
509 contrastive language-image learning. In *Proceedings of the IEEE/CVF Conference on Computer
510 Vision and Pattern Recognition*, pp. 2818–2829, 2023.

511 Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
512 Single-shot multi-level face localisation in the wild. In *Proceedings of the IEEE/CVF conference
513 on computer vision and pattern recognition*, pp. 5203–5212, 2020.

514 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
515 in Neural Information Processing Systems*, 34:8780–8794, 2021.

516 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
517 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
518 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
519 2024.

520 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
521 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
522 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

523 Rinon Gal, Moab Arar, Yuval Atzmon, Amit H Bermano, Gal Chechik, and Daniel Cohen-
524 Or. Designing an encoder for fast personalization of text-to-image models. *arXiv preprint
525 arXiv:2302.12228*, 2023.

526 Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in
527 2021. *arXiv preprint arXiv:2107.08430*, 2021.

528 Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao,
529 Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation for
530 multi-concept customization of diffusion models. *arXiv preprint arXiv:2305.18292*, 2023.

531 Zinan Guo, Yanze Wu, Chen Zhuowei, Peng Zhang, Qian He, et al. Pulid: Pure and lightning id
532 customization via contrastive alignment. *Advances in neural information processing systems*, 37:
533 36777–36804, 2024.

540 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
 541 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
 542

543 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 544 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
 545 neural information processing systems*, 30, 2017.

546 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 547 Neural Information Processing Systems*, 33:6840–6851, 2020.

548 Jiehui Huang, Xiao Dong, Wenhui Song, Hanhui Li, Jun Zhou, Yuhao Cheng, Shutao Liao, Long
 549 Chen, Yiqiang Yan, Shengcai Liao, et al. Consistentid: Portrait generation with multimodal fine-
 550 grained identity preserving. *arXiv preprint arXiv:2404.16771*, 2024.

551 Liming Jiang, Qing Yan, Yumin Jia, Zichuan Liu, Hao Kang, and Xin Lu. Infiniteyou: Flexible
 552 photo recrafting while preserving your identity. *arXiv preprint arXiv:2503.16418*, 2025.

553 Kyungmin Jo, Jooyeol Yun, and Jaegul Choo. Devil is in the detail: Towards injecting fine details
 554 of image prompt in image generation via conflict-free guidance and stratified attention. In *Pro-
 555 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 23595–23603, 2025.

556 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
 557 proved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*, 2017.

558 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 559 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 560 recognition*, pp. 4401–4410, 2019.

561 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
 562 arXiv:1312.6114*, 2013.

563 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 564 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF Conference on Com-
 565 puter Vision and Pattern Recognition*, pp. 1931–1941, 2023.

566 Gihyun Kwon and Jong Chul Ye. Tweediemix: Improving multi-concept fusion for diffusion-based
 567 image/video generation. *arXiv preprint arXiv:2410.05591*, 2024.

568 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

569 Dongxu Li, Junnan Li, and Steven CH Hoi. Blip-diffusion: Pre-trained subject representation for
 570 controllable text-to-image generation and editing. *arXiv preprint arXiv:2305.14720*, 2023.

571 Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Pho-
 572 tomaker: Customizing realistic human photos via stacked id embedding. In *Proceedings of the
 573 IEEE/CVF conference on computer vision and pattern recognition*, pp. 8640–8650, 2024.

574 Jian Ma, Junhao Liang, Chen Chen, and Haonan Lu. Subject-diffusion: Open domain personalized
 575 text-to-image generation without test-time fine-tuning. *arXiv preprint arXiv:2307.11410*, 2023a.

576 Yiyang Ma, Huan Yang, Wenjing Wang, Jianlong Fu, and Jiaying Liu. Unified multi-modal
 577 latent diffusion for joint subject and text conditional image generation. *arXiv preprint
 578 arXiv:2303.09319*, 2023b.

579 Chong Mou, Yanze Wu, Wenzu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei
 580 Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization.
 581 *arXiv preprint arXiv:2504.16915*, 2025.

582 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 583 In *International Conference on Machine Learning*, pp. 8162–8171. PMLR, 2021.

584 Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
 585 McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and
 586 editing with text-guided diffusion models. In *International Conference on Machine Learning*, pp.
 587 16784–16804. PMLR, 2022.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 595 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 596

597 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 598 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 599 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

600 Guocheng Qian, Kuan-Chieh Wang, Or Patashnik, Negin Heravi, Daniil Ostanhev, Sergey Tulyakov,
 601 Daniel Cohen-Or, and Kfir Aberman. Omni-id: Holistic identity representation designed for
 602 generative tasks. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 603 8786–8795, 2025.

604

605 Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal tuning for latent-based
 606 editing of real images. *ACM Transactions on graphics (TOG)*, 42(1):1–13, 2022.

607

608 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 609 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 610 ference on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

611 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 612 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 613 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22500–
 614 22510, 2023.

615

616 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 617 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 618 text-to-image diffusion models with deep language understanding. *Advances in Neural Infor-
 619 mation Processing Systems*, 35:36479–36494, 2022.

620

621 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 622 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern
 623 recognition*, pp. 815–823, 2015.

624

625 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 626 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b:
 627 An open large-scale dataset for training next generation image-text models. *arXiv preprint
 628 arXiv:2210.08402*, 2022.

629

630 Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instantbooth: Personalized text-to-image
 631 generation without test-time finetuning. *arXiv preprint arXiv:2304.03411*, 2023.

632

633 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 634 national Conference on Learning Representations*, 2021.

635

636 Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emer-
 637 gent correspondence from image diffusion. In *Thirty-seventh Conference on Neural Infor-
 638 mation Processing Systems*, 2023. URL <https://openreview.net/forum?id=yp0iXjdfnU>.

639

640 Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
 641 Training-free consistent text-to-image generation. *ACM Transactions on Graphics (TOG)*, 43(4):
 642 1–18, 2024.

643

644 Dani Valevski, Danny Wasserman, Yossi Matias, and Yaniv Leviathan. Face0: Instantaneously
 645 conditioning a text-to-image model on a face. *arXiv preprint arXiv:2306.06638*, 2023.

646

647 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 648 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 649 2024.

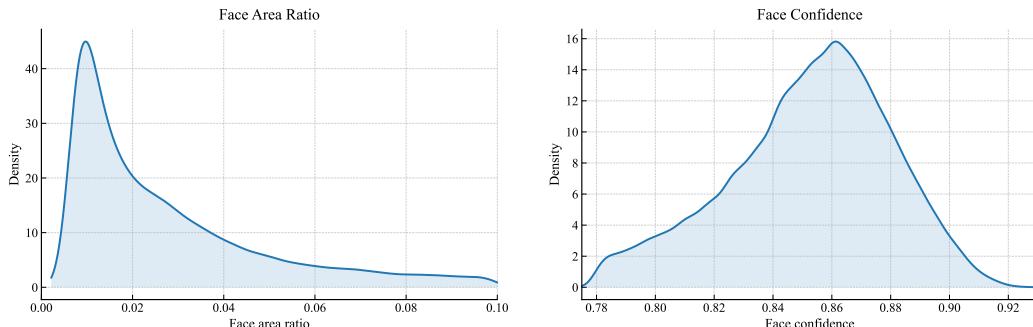
650

651 Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
 652 visual concepts into textual embeddings for customized text-to-image generation. *arXiv preprint
 653 arXiv:2302.13848*, 2023.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcom-
poser: Tuning-free multi-subject image generation with localized attention. *arXiv preprint
arXiv:2305.10431*, 2023.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and Xiaodong
He. AttnGAN: Fine-grained text to image generation with attentional generative adversarial net-
works. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
1316–1324, 2018.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. 2023.

702
703
A APPENDIX704
705
A.1 DETAILS OF OMNIPORTRAIT-1M DATASET706
707
In this section, we describe how the raw images for OmniPortrait-1M are collected and then report
dataset statistics.708
709
710
711
712
713
714
715
Data Selection and Standardization We collected 2.8B public raw images from Pexels, COYO-
700M, and LAION-2B. We first filtered images using the criteria '*aesthetic* > 5 & *pwatemark*
< 0.5 & *width* > 512 & *height* > 512'. In addition, we use YOLOv7-Face to detect faces and
retain only single-face images, discarding those with none or multiple faces. We found that relying
solely on face detection leads to false positives, including portrait-like patterns and animal faces;
therefore, additional safeguards are required. To mitigate false positives, we incorporate YOLOX-
based person detection and keep samples only if a person and a face are simultaneously detected and
the face bounding box is spatially enclosed by the person bounding box.716
717
718
719
The raw image files are renamed using a seven-digit number to avoid duplication. Processing was
carried out with img2dataset Beaumont (2021). The standardized outputs form our raw dataset,
yielding a collection of 1.16M high-quality portrait images.720
721
722
723
Statistics of OmniPortrait-1M We analyze the probability distribution of the face-to-image area
ratio to ensure diversity in face sizes; a higher prevalence of smaller faces promotes learning a more
stable distribution, as shown in the left part of Fig. 8. We also examine the distribution of face
confidence scores, as depicted in the right part of Fig. 8.734
735
Figure 8: Distributions of face-to-image area ratios and face confidence scores in OmniPortrait-1M.
736737
738
A.2 ADDITIONAL COMPARISONS739
740
In this section, we first present the results of our user study to reflect participants' assessments of
our method and the baselines across multiple dimensions. We then provide additional qualitative
comparisons against customization methods built on the FLUX backbone.742
743
744
745
746
747
User Study As discussed in the main paper, a user study was conducted to more comprehensively
assess OmniPortrait and baseline methods. The results are presented in Fig. 9. Our proposed OmniPortrait
is preferred by the largest number of participants across four aspects: text alignment, identity fidelity,
facial details, and naturalness. In particular, for facial details, over 50% of respondents selected our method as the best at preserving fine-grained facial features, demonstrating the
effectiveness of the proposed dual-stream pivotal optimization.748
749
750
751
752
753
754
755
Comparison with FLUX-based Methods Recent works have explored FLUX-based Labs (2024)
customization by injecting identity information into the DiT backbone, either via additional
conditioning encoders or token concatenation. We compare against the strongest FLUX-based
methods to date, including IP-Adapter-FLUX Ye et al. (2023), PuLID-FLUX Guo et al. (2024),
InfiniteYou Jiang et al. (2025), and DreamO Mou et al. (2025) (see Fig. 10). As illustrated, except
for DreamO and our OmniPortrait, the first three methods tend to produce overly smooth faces, losing
substantial high-frequency detail. While DreamO maintains identity fidelity, it relies on facial
parsing of the reference image; this dependency leads to disharmonious blending when background
defocus is applied, as shown in the last row of Fig. 10.

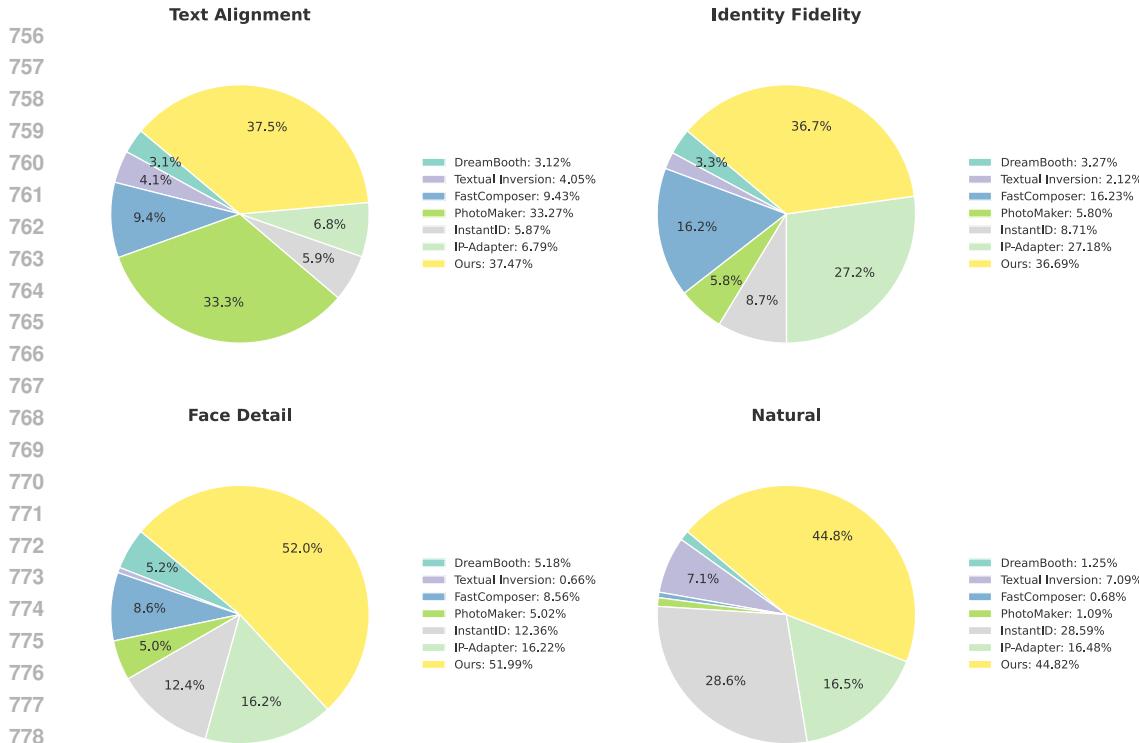


Figure 9: User study results on text alignment, identity fidelity, facial details, and naturalness.

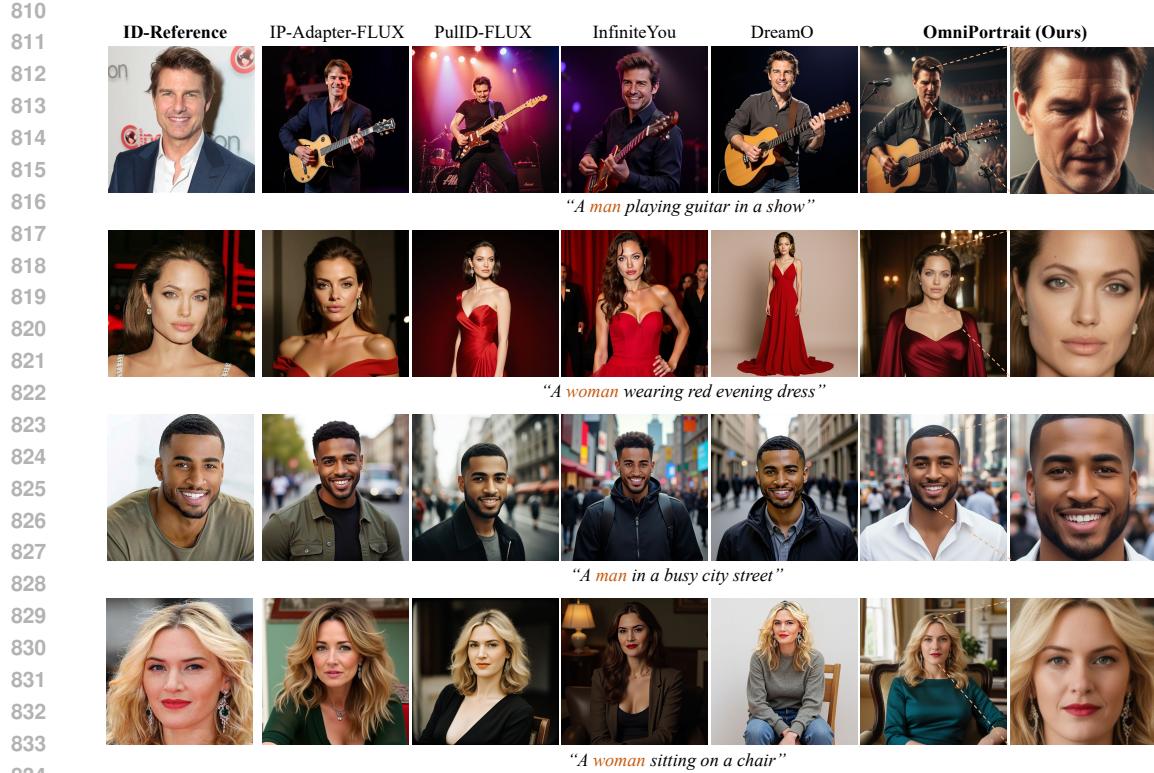
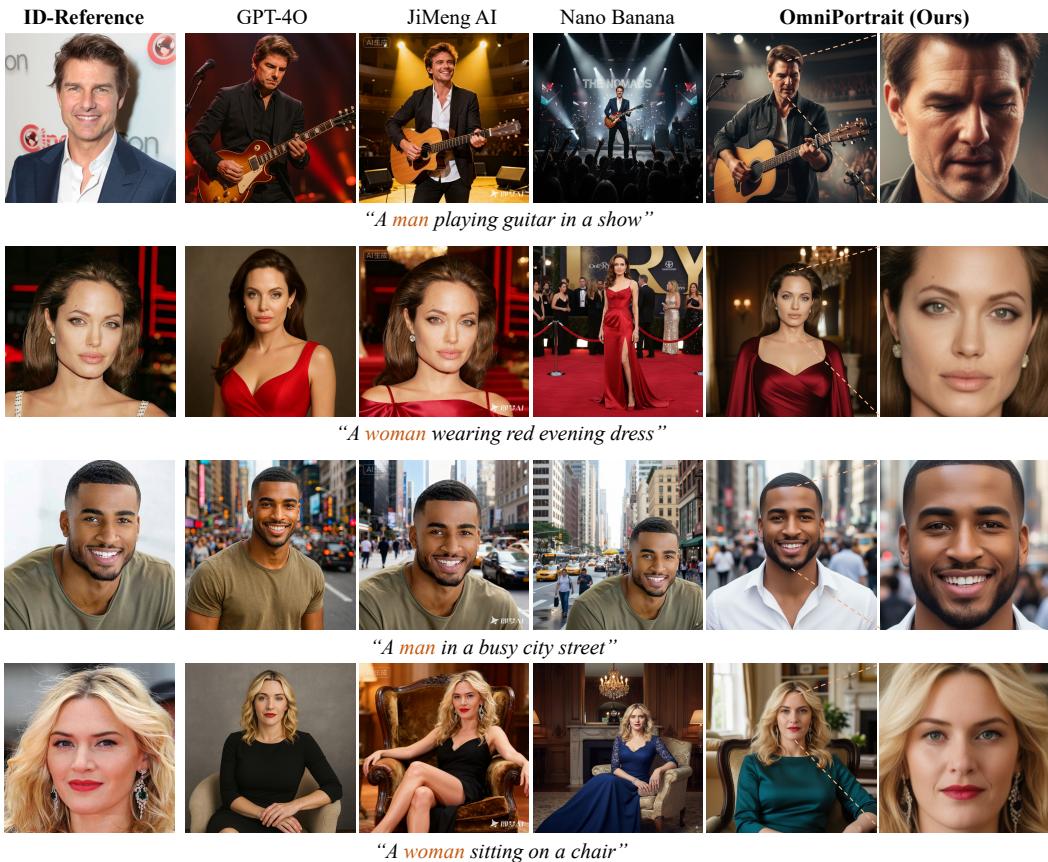
Extended Comparisons with Closed-Source Image Editing Models To enable an apples-to-apples comparison, we extend Fig. 10 to evaluate closed-source image editing models under the same reference image and prompt including GPT-4o, JiMeng AI, and Nano Banana. The results are presented in Fig. 11. GPT-4o exhibits suboptimal identity fidelity; JiMeng-AI tends to copy–paste the reference face during personalization (see the second and third rows of Fig. 11); and Nano Banana often preserves more background content, reflecting a bias toward text alignment. Overall, these observations highlight the challenge of balancing identity fidelity and prompt consistency in closed-source systems.

A.3 MORE APPLICATIONS

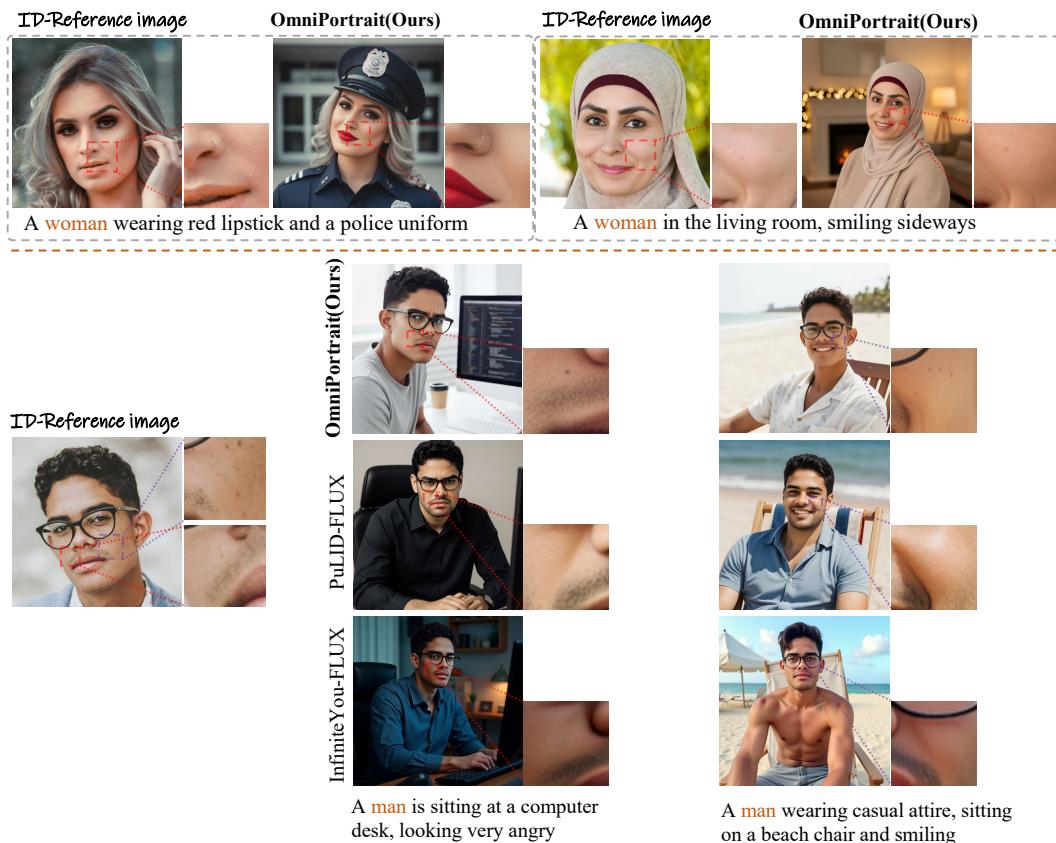
Multi-Identity Personalized Portrait Synthesis In multi-identity personalization, OmniPortrait can be adapted with minimal changes. By performing independent pivotal optimization for each identity, we simultaneously preserve per-identity consistency while applying RB-Guidance within the corresponding facial regions, thereby avoiding identity confusion. As shown in Fig. 12, we evaluate multi-identity generation under diverse text prompts; results indicate that our approach achieves strong text editability while maintaining clear, non-confounding identity consistency across multiple identities.

A.4 ADDITIONAL ABLATIONS

Hyperparameter Ablations We present the hyperparameter search results in Fig. 14. regarding the face localization loss weight η in Equation. 5, a larger η leads to higher face similarity but compromises text alignment. The parameter p in Equation. 10, which controls the strength of RB-Guidance, and u in Equation. 11, which governs the guidance starting time, exhibit similar properties, and we can identify a sweet spot by balancing text alignment and face similarity. Regarding the timestep t_0 for the reference image, we observe that text alignment is insensitive to this parameter, whereas face similarity peaks when t_0 is approximately 670. A smaller t_0 results in more rigid feature matching, thereby impairing the structural similarity of the face. Conversely, as t_0 increases, the accuracy of feature matching declines rapidly, which is attributed to the intrinsic characteristics of DIFT features.



884 Figure 12: Multi-identity personalization with OmniPortrait: consistent identities and high
885 text–image alignment.



915 Figure 13: Facial attribute editing via text prompts using OmniPortrait, and a qualitative comparison
916 of facial detail fidelity against other methods.

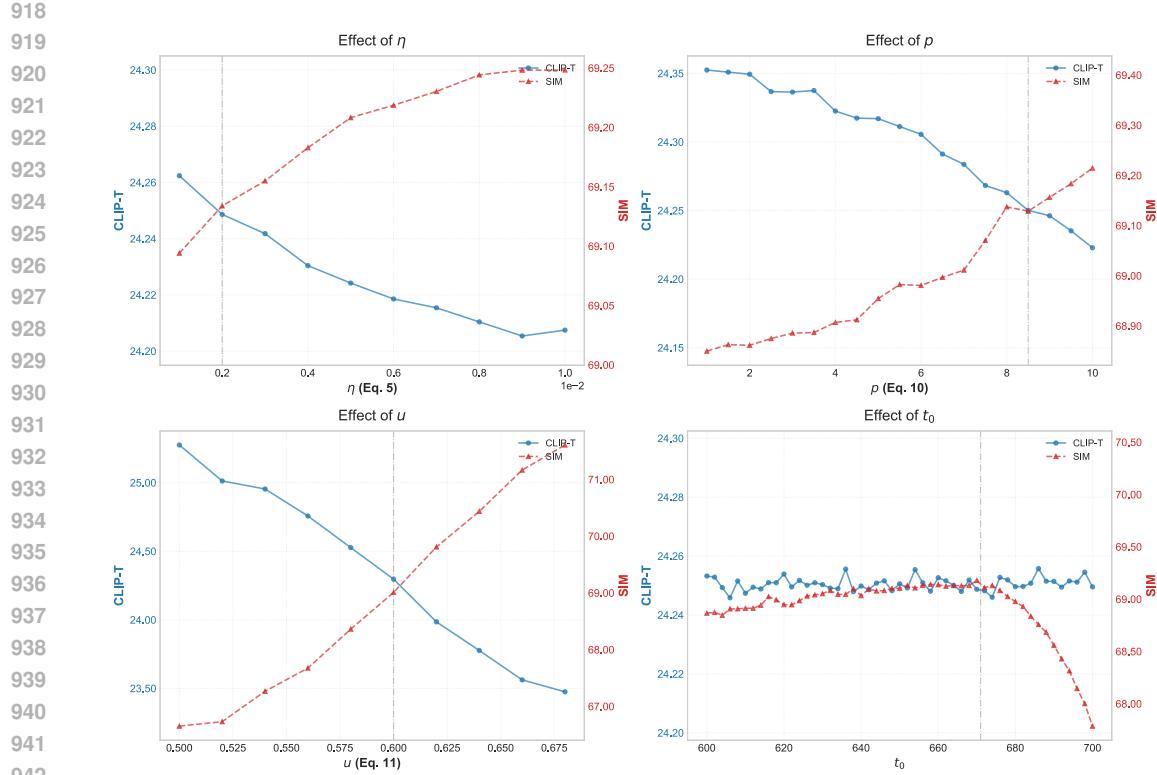


Figure 14: Hyperparameter ablation results. CLIP-T measures text alignment, while SIM measures face similarity.

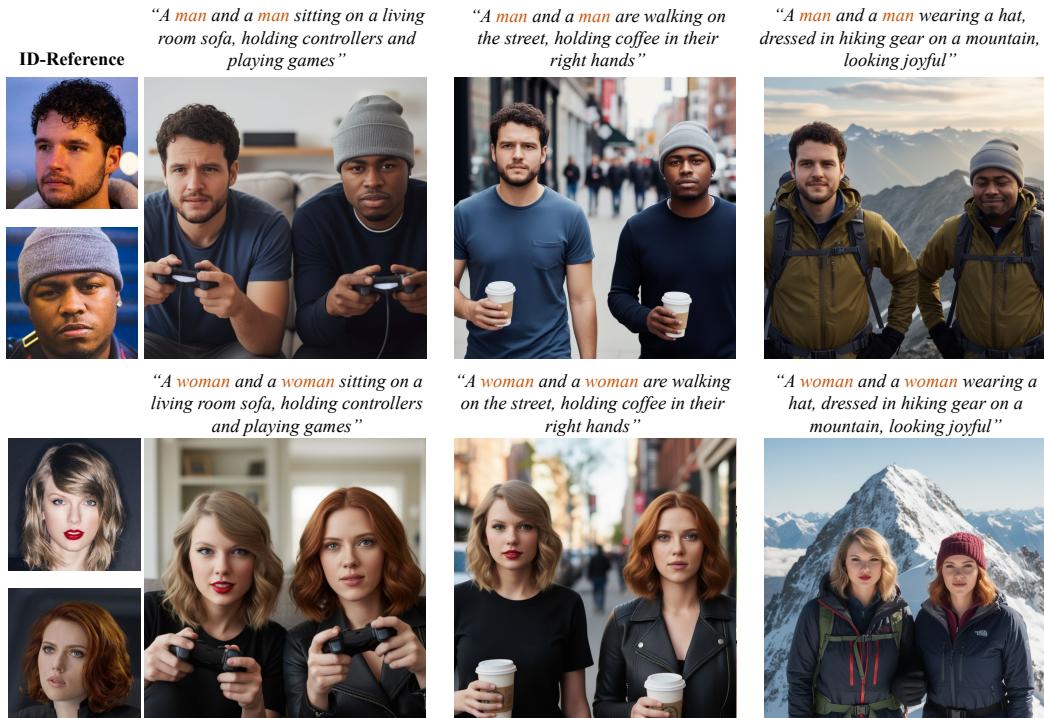


Figure 15: Additional results for multi-identity personalization with OmniPortrait.

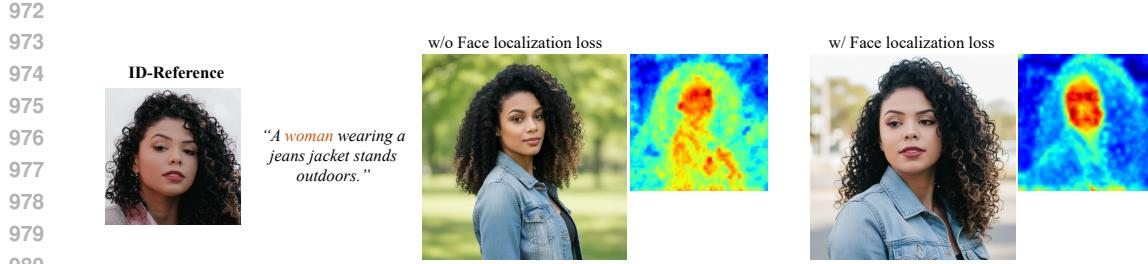


Table 3: Full list of evaluation prompts for subject customization (5 prompts per category).

Category	Prompt
Pose	A woman/man posing like a tourist in front of the Eiffel Tower
	A woman/man performing a yoga tree pose
	A woman/man sitting cross-legged on the floor, smiling
	A woman/man jumping in the air with joy
	A woman/man looking back over their shoulder
Clothing	A woman/man wearing a police uniform
	A woman/man wearing a formal business suit
	A woman/man wearing a traditional kimono
	A woman/man in a superhero costume, crying disappointedly
	A woman/man wearing a chef's white uniform
Background	A woman/man on the beach
	A woman/man standing in a snowy forest, looking very angry
	A woman/man floating in outer space
	A woman/man standing in a crowded city street
	A woman/man inside an ancient library
Action	A woman/man holding a piece of cake
	A woman/man playing an acoustic guitar
	A woman/man riding a bicycle, with sweat on face.
	A woman/man drinking a cup of coffee
	A woman/man taking a selfie with a phone
Lighting	A woman/man wearing a Christmas hat in a bright scene
	A woman/man wearing glasses illuminated by cinematic neon lights
	A woman/man standing in the golden hour sunlight
	A woman/man in a dark room with dramatic shadows
	A woman/man under the moonlight
Style	A painting of a woman/man in the style of Vincent Van Gogh
	An oil painting of a woman/man
	A pencil sketch of a woman/man
	A 3D render of a woman/man in Pixar style
	A pop art style portrait of a woman/man