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Abstract
Neural networks can identify low-dimensional relevant structures within high-dimensional noisy
data, yet our mathematical understanding of how they do so remains scarce. Here, we investigate
the training dynamics of two-layer shallow neural networks trained with gradient-based algorithms,
and discuss how they learn pertinent features in multi-index models, that is target functions with
low-dimensional relevant directions. In the high-dimensional regime, where the input dimension d
diverges, we show that a simple modification of the idealized single-pass gradient descent training
scenario, where data can now be repeated or iterated upon twice, drastically improves its com-
putational efficiency. In particular, it surpasses the limitations previously believed to be dictated
by the Information and Leap exponents associated with the target function to be learned. Our re-
sults highlight the ability of networks to learn relevant structures from data alone without any pre-
processing. More precisely, we show that (almost) all directions are learned with at mostO(d log d)
steps. Among the exceptions is a set of hard functions that includes sparse parities. In the presence
of coupling between directions, however, these can be learned sequentially through a hierarchical
mechanism that generalizes the notion of staircase functions. Our results are proven by a rigorous
study of the evolution of the relevant statistics for high-dimensional dynamics.

1. Introduction

Gradient Descent-based algorithms such as Stochastic Gradient Descent (SGD) and its variations,
are a fundamental tool in training neural networks, and are therefore the subject of intense theoretical
scrutiny. Recent years have witnessed significant advancements in understanding their dynamics
and the learning mechanisms of neural nets. Significant progress has been made, in particular, in
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the case of two-layer networks thanks, in part, to the so-called mean-field analysis [16, 30, 36, 38]).
A large part of the theoretical approach focused on one-pass optimization algorithms, where each
iteration involves a new fresh batch of data. In particular, in the mathematically solvable case
of high-dimensional synthetic Gaussian data, and a low dimensional a multi-index target function
model, the class of functions efficiently learned by these one-pass methods has been thoroughly
analyzed in a series of recent works, and have been shown to be limited by the so-called information
exponent [11] and leap exponent [2, 3]. These analyses have sparked many follow-up theoretical
works over the last few months, see, e.g. [8, 13, 17, 19, 20, 32, 33, 40], leading to a picture where
SGD dynamics is governed by the information exponent, that is, the order of the first non-zero
Hermite coefficient of the target.

A common point between all these works, however, is that they considered the idealized situa-
tion where one process data one sample at a time, all of them independently identically distributed,
without any repetition. This is, however, not a realistic situation in practice. Indeed, most datasets
contains similar data-points, so that repetition occurs (see e.g. for repetition and duplicate in CIFAR
[10]) Additionally, it is common in machine learning to repeatedly go through the same mini-batch
of data multiple time over epoch. Finally, many gradient algorithms, often used in machine learn-
ing in Lookahead optimizers [39], Extragradient methods [26], or Sharpness Aware Minimization
(SAM) [23], are explicitly few gradient steps over the exact same data-point. It is thus natural to
wonder if using such extra-gradient algorithms, or simply reusing many time some data, would
change the picture with respect to the current consensus.

There are good reason to believe this to be the case. Indeed, it has been observed very recently
[21] that iterating twice over large (O(d)) datasets was enough to alter the picture reached in [2,
3, 11]. Indeed [21] showed that their exist functions that can be learned over few (just two) batch
repetition, while they require a much larger (i.e. polynomial in d) number of steps otherwise. While
the set of function considered in this work was limited, the conclusion is indeed surprising, thus
motivating the following question:

Can data repetition increase the efficiency of SGD when learning any multi-index functions?

We establish a positive answer to the above question by the analysis of more realistic optimiza-
tion schemes with respect to the standard One-Pass SGD. Indeed, the hardness exponents developed
in the seminal works [1, 11] are substantially bound to the idealized training scenario that consid-
ers i.i.d data. Slight modifications to this training scenario toward a more realistic setting starkly
change the global picture. Such slight modifications include: a) non-vanishing correlations between
different data points, that is a natural requirement for real datasets; b) processing the same data point
multiple times in the optimization routine, i.e., a standard step in any algorithmic procedure when
looping over different epochs.

We consider an analytically tractable a single-pass training scheme to model these changes: we
process one Gaussian sample at a time, but the gradient step is repeated twice! This simple adjust-
ment to the idealized SGD optimization scheme, which is actually often used in machine learning
in Lookahead optimizers [39], Extragradient methods [26], or in the context of Sharpness Aware
Minimization (SAM) [23], will be seen to make single-pass algorithms drastically more efficient,
and, as we will see, as efficient than our best algorithms in most cases.

We show in particular that most multi-index function are learned with total sample complexity
either O(d) or O(d log d) if they are related to the presence of a symmetry, without any need for
preprocessing of the data that is performed in various works (See e.g., [15, 28, 29, 31]). Our results
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thus demonstrate that shallow neural networks turns out to be significantly more powerful than
previously believed [2–4, 11] in identifying relevant feature in the data. In fact, they are shown in
many (but not all) cases to saturate the bounds predicted by statistical queries (SQ) [18] (rather than
the more limited correlation statistical queries (CSQ) bounds that were characteristic of the former
consensus [3, 11]). Our conclusions follow from the rigorous analysis of the overlaps between the
trained weight vectors with the low-dimensional relevant subspace that draws inspiration from the
pivotal works of [11, 37].

2. Setting and Main Contributions

Given a dataset of N labeled examples {zν , yν}ν∈[N ] in d dimensions, we analyze the learning
properties of fully connected two-layer networks with first layer weights W = {wj}j∈[p], second
layer a ∈ Rp, and activation function σ : R → R

f(z;W,a) =
1

p

p∑
j=1

ajσ (⟨z,wj⟩) (1)

We consider target functions that are dependent only on few orthogonal relevant directions k =
Od(1) encoded in the target’s weight matrix W ⋆ = {w⋆

r}r∈[k] ∈ Rk×d:

yν = f⋆(zν) = h⋆(W ⋆zν) (2)

This model for structured data is usually referred to as a multi-index model. Our main objective will
be to analyze how efficiently two-layer nets adapt to this low-dimensional structure during training.

Training algorithm – Our goal is to minimize the following objective:

R(W,a) = Ez,y [L(f(z,W,a), y)] (3)

where L : R× R → R is a loss function, and the expectation is over the data distribution.
This objective is non-convex, and we do not have direct access to the expectation over the data.

A central question in Machine Learning is therefore to quantify the properties of the weights attained
at convergence by different algorithms. In this manuscript we consider a specific class of one-pass
training routines to minimize the empirical risk. First, we partition the dataset in disjoint mini-
batches of size nb, i.e. D = ∪t∈[T ]{xν , yν}ν∈[tnb,(t+1)nb] where T is the total number of iterations
considered. For each algorithmic step, we update the hidden layer neurons W = {wj}j∈[p] with the
program A : (wj,t, γ, ρ, nb) ∈ Rd+3 → wt+1,j ∈ Rd.

Algorithm 1: Optimizer Main Step

for j ∈ [p] do
1st gradient computation – w̃t,j(ρ) = wt,j − ρ∇wt,jL (f(zν ;Wt,a0), y

ν) , ∀ν ∈ [nb]

2nd gradient computation – gν = ∇wt,jL
(
f(zν ; W̃t(ρ),a0), y

ν
)
, ∀ν ∈ [nb]

Agglomerating step – A(wt, γ, ρ, nb) = wt,j − γ
nb

∑
ν∈[nb]

gν

Update Weights – wt+1,j = A(wt, γ, ρ, nb)

end
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This class of algorithms defined by the optimizer step A(· , γ, ρ, nb), in which we consider the
final gradient update after taking a linear combination of the current iterate and its current gradient
(noted as W̃t(ρ) in the above), is broadly used in different contexts. Indeed, routines with positive
ρ parameters correspond to Extragradient methods (EgD) [26], while with negative ρ have been
recently used in the context of Sharpness Aware Minimization (SAM) [23]. For clarity, we present
our theoretical results with the above, easily interpretable, Algorithm 1. However, our theoretical
claims are valid in a more general setting; we refer to Appendices (D, E) for additional results on
more general optimizer steps.

As previously stated, the central object of our analysis is the efficiency of the network to adapt
to the low-dimensional structure identified by W ⋆. Therefore, we focus on the learned represen-
tations by the first layer weights Wt while keeping the second layer weights at = a0 fixed during
training. This assumption is favorable to performing the theoretical analysis and is largely used in
the theoretical community (e.g., [7, 12, 19]).

Weak recovery in high dimensions – The essential object in our analysis is the evolution of the
correlation between the hidden neurons W = {wj}j∈[p] and the target’s weights W ⋆, as a function
of the algorithmic time steps. More precisely, we are interested in the number of algorithmic steps
needed to achieve an order one correlation with the target’s weights W ⋆, known as weak recovery.

Definition 1 (Weak recovery) The target subspace V ⋆ is defined as the span of the rows of the
target weights W ⋆:

V ⋆ = span(w⋆
1, . . . ,w

⋆
k) (4)

We define the following weak recovery stopping time for a parameter η ∈ (0, 1) independent from
d:

t+η = min{t ≥ 0 : ∥WW ⋆⊤∥F≥ η} (5)

From Information Exponents to Generative Exponents – Recent works have sharply theoret-
ically characterized the weak recovery stopping time for a variety of multi-index targets learned
with one-pass Stochastic Gradient Descent. First [11] for the single-index case, then [2] for the
multi-index one have unveiled the presence of an Information Exponent ℓ characterizing the time
complexity needed to weakly recover the target subspace V ⋆, defined in the single-index case as

ℓ = min{k ∈ N : Ex∼N (0,1) [h
⋆(x)Hk(x)] ̸= 0}. (6)

where Hk is the k-th Hermite polynomial [34]. Under this framework, the sample complexity
required to achieve weak recovery when the link function has Information Exponent ℓ is [11]

T (ℓ) =


O(dℓ−1) if ℓ > 2

O(d log d) if ℓ = 2

O(d) if ℓ = 1.

(7)

These bounds have been improved by [17] up to order dℓ/2; the latter matches the so-called Corre-
lated Statistical Query lower bound, which considers queries of the form E [yϕ(z)].
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However, this Information Exponent is not the right measure of complexity for low-dimensional
weak recovery. Indeed, [18] introduce a new Generative Exponent ℓ⋆ (generative exponent) gov-
erning the weak recovery time scaling for algorithms in the Statistical Query (SQ) or Low Degree
Polynomial (LDP) family. This exponent is defined as

ℓ⋆ = min{k ∈ N : Ex∼N (0,1) [f(h
⋆(x))Hk(x)] ̸= 0 for some f : R → R}, (8)

which allows for the application of arbitrary transformations of the labels before performing the
queries. Under this definition, the “hard” problems with ℓ⋆ > 2 are also impossible to learn for the
best first-order algorithm, Approximate Message Passing [9, 14, 28, 29, 31].

We discuss in this work the extension of the generative exponent to the multi-index setting and
investigate the dynamics of specific gradient-based programs (Algorithm 1) as a function of the
freshly defined hardness exponent ℓ∗. These theoretical findings match the recent one of [27] on the
computational efficiency of SGD in learning sparse k−parity (associated with ℓ⋆ = k).

When the optimal transformation f is known, a simple SGD algorithm on (z, f(y)) achieves
the Generative Exponent lower bound. However, one problem remains: does there exist a class of
SGD-like algorithms that can achieve this lower bound agnostically?

Achieving lower bounds with data repetition – Although the performance of single-pass SGD
is limited by the Information Exponent of h⋆, the situation drastically changes when multiple-pass
algorithms are considered. Recently, [21] proved that non-even single-index targets are weakly
recovered in T = O(d) when considering extensive batch sizes with multiple pass. This begs
the question of how good can a “reusing” algorithm be. We answer this question for the class of
polynomial link functions:

Theorem 2 (Informal) There is a choice of hyperparameters such that if h⋆ is a polynomial func-
tion, Algorithm 1 achieves weak recovery in O(d log(d)2) samples.

This shows that a simple gradient-based algorithm, which only requires seeing the data twice, is
optimal for learning any polynomials. The formal results is stated in Appendix B with a concise
proof scheme. The detailed proof can be found in Appendix. D.
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[26] G. M. Korpelevič. An extragradient method for finding saddle points and for other problems.
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Summary of Main Results

• We prove for single-index targets that one-pass gradient-based algorithms are able to surpass
the Correlation Statistical Query (CSQ) limitations established by the Information Exponent
[11].

• We unveil that the dynamics of the family of Algorithm 1 are governed by the generative
exponent introduced in [18] with an additional polynomial restriction on the transformation
of the output.

• We generalize the notion of generative exponent to multi-index targets. Similarly to the
single-index case, one-pass gradient-based algorithms can overcome CSQ performance dic-
tated by the Leap Coefficient [2].

• We prove that all polynomial multi-index functions are learned by Algorithm 1 either with
total sample complexity O(d) or O(d log(d)2) if associated with the presence of a symmetry.

• The implementation of Algorithm 1 does not require pre-processing to initially correlate the
estimation with the ground truth, and learns the meaningful representations from data alone.
This is in contrast numerous findings (e.g., [28, 29, 31] for single index targets or [15] for
multi-index ones).

• We characterize the class of hard functions not learned in (almost) linear sample complexity.
We show, however, that such functions can be learned through an hierarchical mechanism that
extends the CSQ staircase first developed in [1] to a different, larger set, of functions.

• We validate the formal theoretical claims with detailed numerical illustrations. The code to
reproduce representative figures is available in the anonymized Github Repository.

Appendix A. Further Related Works

The ability of learning relevant features/representations in the data is arguably one of the key prop-
erties of neural networks. However, a considerable attention in the theoretical community has been
devoted to understanding the lazy training of two-layer networks [25] where features are not effec-
tively learned. Indeed, in this regime, shallow networks are equivalent to kernel machines, a class of
fixed feature methods which are not able to adapt efficiently to low-dimensional relevant structure
in the data (see e.g. [24]). Thus, understanding how representations are learned and providing cor-
rections to the kernel regime is a central question in machine learning theory and has been explored
in a variety of works (see e.g., [6, 12, 19, 22, 35]). In this manuscript we provably characterize the
number of iterations needed from Algorithm 1 to learn the relevant features of the data, i.e., attain
weak recovery of the target subspace. Our results provide the scaling of the relevant hyperparame-
ters (γ, ρ) with the diverging input dimension d. The minibatch size will be fixed to nb = 1 in the
main body, and we refer to Appendix E for the extension to larger batch sizes.

Numerous theoretical efforts have been devoted to understanding the sample complexity needed
to learn multi-index targets. However, an important aspect of many algorithmic routines considered
is to exploit a clever warm start to initialize the iterates [15, 28, 29, 31]. We show in this work
that such preprocessing of the data is not needed to learn all polynomial multi-index functions in
T = O(d log d) with the routine in Alg. 1. As a way to show this, we consider the extreme case in
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which the initial iterates W0 lives in the orthogonal subspace of the target’s weights W ⋆, i.e., the
‘coldest’ possible start.

Appendix B. Single-Index Model

We first consider, for simplicity, the class of single-index models, in which k= p=1. This corre-
sponds to a mismatched setting of Generalized Linear Models, in which we want to learn

y = h⋆(⟨w⋆, z⟩), with f(z,w, a) = aσ(⟨w, z⟩).

In this section we rigorously characterize the number of iterations needed for the class of Algo-
rithms 1 to perform weak recovery (as in Definition 1) in the context of single-index targets. We
establish a clear separation between the the learning efficiency of the algorithmic family 1 and One-
Pass SGD, limited by the Information Exponent of the target to be learned [11].

We start by introducing a restriction of the generative information exponent in [18] to polyno-
mial transformations.

Definition 3 (Polynomial Generative Information exponent) We define ℓ⋆p as the smallest inte-
ger k such that there exists a polynomial p : R → R with:

Ex∼N (0,1) [p(h
⋆(x))Hk(x)] ̸= 0, (9)

Our assumptions on the SGD implementation and the target function are as follows:

Assumption 1 Algorithm 1 is run with single-sample steps (nb = 1), and uses the correlation loss

L(y, ŷ) = 1− yŷ.

We also consider a spherical version of Alg. 1, with

wt+1 =
wt − γ∇⊥

wL (f(zν ; w̃t(ρ), a0), y
ν)

∥wt − γ∇⊥
wL (f(zν ; w̃t(ρ), a0), yν)∥

(10)

where ∇⊥f = ∇f − ⟨∇f,w⟩w is the spherical gradient.

Assumption 2 The activation σ is analytic, with bounded first and second derivative. Further, for
all n ≥ 1, we have

E
[
σ(n)(x)σ′(x)n−1

]
̸= 0 and E

[
xσ(n)(x)σ′(x)n−1

]
̸= 0

Assumption 3 The initial value w0 is drawn according to the uniform measure on

Sϵ = {w ∈ Sd−1 : sign(⟨w,w⋆⟩) = ϵ}

where ϵ depends on h⋆ and σ.

We are now ready to state our main result.

Theorem 4 Suppose that Assumptions 1 and 2 hold, and let ρ = ρ0d
−1. Then, for any δ > 0, there

exists constants γ0(δ) and C(δ) such that the following holds:

• If ℓ⋆p = 1, choosing γ = γ0(δ)d
−1, then P(t+η ≤ C(δ) · d) ≥ 1− δ,

• If ℓ⋆p = 2, choosing γ = γ0(δ)[d log(d)]
−1, then P(t+η ≤ C(δ) · d log(d)2) ≥ 1− δ.

The above holds for almost every choice of ρ0 under the Lebesgue measure.

11
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Proof Sketch – We provide here the proof sketch for Theorem 4. For any vector w, under the
correlation loss, we have

∇wL(f(z;w, a0), y) = a0yσ
′(⟨w, z⟩) · z, (11)

so the gradient is aligned with z. As a result, we have

∇wL (f(z; w̃(ρ), a0), y) = a0yσ
′(⟨w, z⟩+ a0ρyσ

′(⟨w, z⟩) · ∥z∥2︸︷︷︸
≈d

)
· z (12)

This expression for the gradient exhibits two important properties:

• Even though ρ ≍ d−1, since the gradient lies along z, the additional dot product with z
amplifies the signal by a factor of d,

• The resulting gradient (12) is a non-linear function of y, as opposed to the linear function of
(11).

The latter property enables us to show that the dynamics driven by equation (12) can implement all
polynomial transformations of the output y, for almost all choices of ρ0. Subsequently, the SGD
algorithm on the transformed input p(y) can be studied with the same techniques as [11], but with
an information exponent equal to ℓ⋆p.

B.1. Discussion

Significance and necessity of the assumptions – Assumption 1 simplifies Alg. 1 to a more
tractable version. In particular, the normalization step allows us to keep track of only one parameter,
the overlap between wt and w⋆. We expect however Thm.4 to hold in the general setting of Alg.1.

Assumption 2 is a regularity assumption, ensuring that some quantities of interest in the proof
are non-zero. The first part is satisfied by virtually every activation function except for ReLU; the
second is more restrictive, but we show that it is satisfied for biased activations:

Lemma 5 Let σ be a non-polynomial analytic function. Then the second part of Assumption 2 is
true for the function x 7→ σ(x+b) for almost every choice of b (according to the Lebesgue measure).

Assumption 3 is similar to the one in [11], and is necessary in case the initialization is a strict
saddle. It is equivalent to conditioning the usual uniform initialization on an event of probability
1/2.

Finally, although we state our result as an almost sure event over ρ0, it can be reformulated into
an event on the second layer weight a0, in which the randomness comes from the initialization step.

Learning polynomial functions – Although our definition of the Polynomial Generative Infor-
mation exponent is more restrictive than the one in [18], we show that it is enough to allow learning
of a large class of functions, namely polynomials:

Theorem 6 Assume that h⋆ is a polynomial function. Then the Polynomial Generative Information
exponent of h⋆ is always at most 2, and is equal to 1 whenever h⋆ is not even.

This theorem implies that the Extragradient algorithm class allows us to match the sample complex-
ity of the algorithm of [15], without the need for ad hoc preprocessing.
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Figure 1: Learning single-index targets – Evolution of the Cosine Similarity attained by EgD
(crosses) and SGD (dots) as a function of normalized iteration time. The dashed hori-
zontal line 1√

d
is a visual guide to place random performance. For details on the target

functions and parameters used for the simulation, see Section B.2 and App. F.

Beyond Algorithm 1 – A succinct summary of the proof goes as follows: the first time we see
a sample z, we store information about y along the direction of z. The second time we see the
same sample, the component along z in w interact non-linearly with y, which bypasses the CSQ
framework. Importantly, we expect that this behavior also appears in SGD algorithms where we do
not see the data twice in a row, but across multiple epochs! Indeed, upon small enough correlation
between the zν , seeing multiple examples before the repetition of z should not interfere with the
data stored along this direction. We are therefore not claiming that Algorithm 1 is superior to other
classically-used methods; rather, it provides a tractable and realistic setting to study data repetition
in SGD, which was ignored in previous theoretical works on the topic.

B.2. Numerical illustrations

We illustrate in Fig. 1 the stark difference between the weak recovery dynamics of One-Pass SGD
and Algo. 1 for single-index targets. The Cosine Similarity between the learned weight wt and the
ground truth informative direction w⋆ is shown as a function of the time steps t for different target
functions. Two optimization routines are considered to exemplify the learning behaviour: a) Extra-
gradient Descent (EgD), corresponding to the family of Algorithms 1 with positive ρ parameters; b)
One-Pass SGD, corresponding to vanilla SGD, or equivalently Algorithm 1 associated with ρ = 0
hyperparameter. The scaling of (γ, ρ) as a function of the input dimension d and exponent ℓ⋆ are
given in Thm. 4, while the mini-batch size is fixed to nb = 1 (See App. E for extension to larger
nb). For all plots, we take σ to be the relu activation and the implementation details can be found
in Appendix F.

SGD-easy non-symmetric targets (ℓ = ℓ⋆ = 1) – The Left section of Fig. 1 shows h⋆(x) =
relu(x). Here both SGD and Algorithm 1 learn in T = O(d).

SGD-easy symmetric targets (ℓ = ℓ⋆ = 2) – The Center-Left section of Fig. 1 shows h⋆(x) =
He2(x). Here both SGD and Algorithm 1 learn in T = O(d log d).

SGD-hard non-symmetric targets (ℓ > 2, ℓ⋆ = 1) – The Center-Right section of Fig. 1 shows
h⋆(x) = He3(x). Here Algortihm 1 learns in T = O(d) while One Pass SGD suffers from the
limitations detailed in eq. (7), i.e. T = O(dℓ−1) with ℓ = 3 for this case.
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Figure 2: Learning multi-index targets – Evolution of the maximum Cosine Similarities attained
by EgD (crosses) and SGD (dots) as a function of the normalized iteration time. Different
target directions {w⋆

r}r∈[k] are identified by different colors: w⋆
1 (blue), w⋆

2 (orange), w⋆
3

(green). The dashed horizontal line 1√
d

is a visual guide to place random performance.
For details on the target functions and parameters used for the simulation, see Section C.1
and App. F.

SGD-hard symmetric targets (ℓ > 2, ℓ⋆ = 2) – The Right section of Fig. 1 shows h⋆(x) =
He4(x). Here Algortihm 1 learns in T = O(d log d) while One Pass SGD suffers from the time
scaling law detailed in eq. (7) T = O(dℓ−1).

Appendix C. Multi-Index Model

We now investigate the superiority of Algorithm 1 over the idealized One-Pass SGD training scheme
when learning multi-index targets. In this setting, the networks weights can align with only a few se-
lect directions from V ⋆. To quantify this behavior, we define directional versions of the Information
and Generative Exponents:

Definition 7 Let v ∈ V ⋆. The Information Exponent ℓv (resp. Generative exponent ℓ⋆v) of y in the
direction v is the smallest k such that

E [yHk(⟨v, z⟩)] ̸= 0 (resp. E [fv(y)Hk(⟨v, z⟩)] ̸= 0)

for a function fv. We also let ℓ = minv ℓv and ℓ⋆ = minv ℓ
⋆
v.

The identification of the class of hard functions has been subject of intense theoretical scrutiny
[1–3, 13, 20]; and for the problem of initial alignment it was shown to depend on the Information
exponent defined above. Thus, similarly to the single-index scenario, the time complexity needed
for Algorithm 1 to weakly recover the target subspace follows the law in eq. (7) for the multi-index
information exponent ℓ. A natural question is thus to ask whether the class of Algorithm 1 also
allows us to bypass this requirement.

Our simulations enable us to affirmatively answer this question. We illustrate this numerically
by comparing the performance of One-Pass SGD with Algorithm 1 in Figure 2; we show that the
dynamics of the latter algorithm is governed by the multi-index Generative Exponent (Def. 7).

14
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C.1. Numerical investigation

We measure the maximal cosine similarity between the hidden layer neurons and the different rows
of the target’s weight matrixW ⋆ as a function of the iteration time. We set without loss of generality
the target’s directions to the standard basis of Rd to ease the notation. The algorithms considered
are again EgD and vanilla One-Pass SGD. We again refer to Appendix F for the implementation
details.

SGD-easy non-symmetric targets (ℓ= ℓ⋆ =1) – Fig. 2, left, shows h⋆(x1, x2) = x1 + x1x2.
Here both SGD and Alg. 1 learn in T = O(d) the directions (w⋆

1,w
⋆
2).

SGD-easy symmetric targets (ℓ=ℓ⋆=2) – Fig. 2, center left, shows h⋆(x1, x2) = x1x2. Here
both SGD and Alg. 1 learn in T = O(d log d) the directions (w⋆

1,w
⋆
2).

Non-symmetric targets with SGD-easy and hard directions (ℓv > 2, ℓ⋆v = 1) – Fig. 2, center-
right, shows h⋆(x1, x2)=x1+He3(x2). Here both SGD and Alg. 1 learn in T = O(d) the direction
w⋆

1, that satisfies ℓw⋆
1
= ℓ⋆w1

⋆ = 1. However, since ℓw⋆
2
= 3 while ℓ⋆w⋆

2
= 1, One-Pass SGD suffers

from the limitations detailed in eq. (7) and requires Ω(d2) samples to learn the second direction w⋆
2,

. This contrasts with the behaviour of Alg. 1 that learns also w⋆
2 in T = O(d) steps.

SGD-hard symmetric targets (ℓ > 2, ℓ⋆ = 2) – The right section Fig. 2 shows h⋆(x1, x2, x3) =
x1x2x3. The Information Exponent is ℓ = 3 and hence vanilla SGD is not able to learn any
direction in the target subspace in T = O(d log d) iterations. However, Algorithms 1 learns in
T = O(d log d) steps all the three directions {w⋆

1,w
⋆
2,w

⋆
3} since the Generative Exponents ℓ⋆w⋆

r
are

all equal to two.

C.2. Learning hard functions through a hierarchical mechanism

The investigation of the hierarchical nature of SGD learning has attracted noticeable attention [1–
3, 20]. In this paper, we portray a completely different picture in terms of computational efficiencies
when data repetition is considered in the algorithmic SGD routine. One may wonder if there is a
generalization of such a hierarchical learning mechanism to the present novel setting; we show that
coupling between directions can hierarchically guide the learning process.

The Left panel in Fig. 3 shows an example of the so-called staircase functions [1], i.e. h⋆(x) =
x1 + x1He3(x2). While one-pass SGD needs to learn hierarchically first the direction w⋆

1 in T =
O(d) and then w⋆

2 in T = O(d2), Algorithm 1 easily learns both in linear time. This observation
could lead to infer that hierarchical learning mechanisms are not present when more realistic training
scenarios are considered.

To refute this, we illustrate in the Right panel of Fig. 3 a scenario that precisely exemplifies the
presence of hierarchical mechanisms within Algorithm 1. We run this algorithm on two different tar-
get functions, h⋆sign(x) = sign(x1x2x3) and h⋆stair(x) = He2(x1)+sign(x1x2x3). We show in App.
D that 3−sparse parities of the form sign(x1x2x3) are hard functions even for SGD with data repeti-
tion (Algorithm 1), and indeed they are not learned in (almost) linear time. On the other hand, for the
function h⋆stair, our simulations predict that the first direction w⋆

1 is learned in T = O(d log d) itera-
tions (see the rightmost panel of Fig. 2). However, once the direction w⋆

1 is learned, it can be used to
obtain order-one correlation with {w⋆

2,w
⋆
3} again in T = O(d log d) steps. While the latter example

belongs to the class of “CSQ” staircase function depicted in [1], novel “SQ” hierarchical mecha-
nisms arise in our framework, such as for instance the function h⋆(x) = He4(x1) + sign(x1x2x3).
We refer to Appendix E for additional discussion (Fig. 7) on this interesting phenomenon.
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Figure 3: Hierarchical picture of learning – Left: Evolution of the maximum Cosine Similarities
attained by EgD (crosses) and SGD (dots) as a function of the normalized iteration time.
Right: Evolution of the maximum Cosine Similarities obtained by EgD for the target
function h⋆stair (dots) and h⋆sign (squares). Different target directions {w⋆

r}r∈[k] are iden-
tified by different colors: w⋆

1 (blue), w⋆
2 (orange), w⋆

3 (green), respectively plotted from
left to right. For details on the target functions and parameters used for the simulation,
see Section C.2 and App. F.

Appendix D. Proof of the Main Results

D.1. Proof of Theorem 4

We formalize here the proof sketch of Theorem 4. For simplicity, we assume that a0 = 1. We track
the dynamics of wt through the following sufficient statistic:

mt := ⟨wt,w
⋆⟩. (13)

We assume in the following that m0 > 0, so that ϵ = 1 in Assumption 3. We will discuss the actual
choice of ϵ in the course of the proof.

We define the following quantities:

Φ(z) = ∇wL (f(z; w̃(ρ), a0), y) (14)

Ψ(x, x⋆) = h⋆(x⋆)σ′(x+ ρ0σ
′(x)h⋆(x⋆))x⋆ (15)

ϕ(m) = E[Ψ(x, x⋆)] for
(
x

x⋆

)
∼ N

(
0,

(
1 m
m 1

))
. (16)

Using these definitions, we have for the update equation (10)

wt+1 =
wt − γΦ(zt)

∥wt − γΦ(zt)∥

This places us under the framework of [11], replacing ∇LN by Φ (and noting that all conditions
in their theorems relate to ∇LN instead of LN ). We also define the constant κ(δ) such that

P
(
m0 ≥

κ(δ)√
d

)
≥ 1− δ

2
;

standard considerations on spherical vectors imply that κ(δ) = O(1) for any choice of δ.
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The Lipschitz condition on σ easily implies that Assumption B in [11] is satisfied, and hence
the bounds in Proposition 4.4, as well as the martingale control in Proposition 4.5 thereof, imply the
following:

Lemma 8 There exists a constant c(δ) such that if γ0(δ) ≤ c(δ), m0 > κ(δ)/
√
d and

T ≤ c(δ)γ−2d,

we have

P

(
mt ≥

m0

2
+

1

2

t∑
s=0

E[⟨Φ(zs),w⋆⟩] ∀t ≤ T

)
≥ 1− δ

2

It remains to study the above expectation. By the computations done in the proof sketch, we
have

⟨Φ(zt),w⋆⟩ = h⋆(⟨w⋆, zt⟩)σ′
(
⟨wt, zt⟩+ ρh⋆(⟨w⋆, zt⟩)σ′(⟨wt, zt⟩) · ∥zt∥2

)
⟨w⋆, zt⟩.

We show that this is well approximated by ϕ(mt):

Lemma 9 Deterministically, the following bound holds:

|E [⟨Φ(zt),w⋆⟩]− ϕ(m)| ≤ C√
d

(17)

Proof The distribution of the pair (⟨wt, zt⟩, ⟨w⋆, zt⟩) is the same as the one of (x, x⋆), so the only
difference between both expressions is the replacement of ∥zt∥2 by d. Since σ′′ is bounded, we can
write

E [|⟨Φ(zt),w⋆⟩ − ϕ(m)|] ≤ CρE
[∣∣∣h⋆(⟨w⋆, zt⟩)2σ′(⟨wt, zt⟩)

(
∥zt∥2 − d

)
⟨w⋆, zt⟩

∣∣∣]
≤ C ′ρ

√
E
[(

∥zt∥2 − d
)2]

≤ C ′′
√
d
,

where at the last line we used that ρ = O(d−1).

Finally, we can obtain the desired difference equation:

Proposition 10 There exists a constant c(δ) such that if γ0(δ) ≤ c(δ), m0 > κ(δ)/
√
d and

T ≤ c(δ)γ−2d−1 =: T̄ ,

we have for large enough d

P

(
mt ≥

m0

4
+

1

2

t∑
s=0

ϕ(m) ∀t ≤ T

)
≥ 1− δ

2
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Proof From Lemmas 8 and 9,

P

(
mt ≥

m0

2
+
γ

2

t∑
s=0

ϕ(m)− CγT√
d

∀t ≤ T

)
≥ 1− δ

2
.

The lemma is therefore proven as soon as

CγT√
d

≤ m0

4
, or T ≤ C ′γ−1

√
dm0.

But since
√
dm0 ≥ κ(δ), and γ ≪ 1, this condition follows from T ≤ c(δ)γ−2d when d is large

enough.

Proving Theorem 4 will therefore ensue from the study of the function ϕ. In particular, the
results of [11] imply the following theorem:

Theorem 11 There exists a choice of η > 0 and ϵ in Assumption 3, depending on ϕ, such that the
following holds:

• If ϕ(0) ̸= 0, then letting γ = γ0(δ)d
−1, with probability 1− δ,

t+η ≤ C(δ)d,

• If ϕ(0) = 0 and ϕ′(0) ̸= 0, then letting γ = γ0(δ)(d log(d))
−1, with probability 1− δ,

t+η ≤ C(δ)d log(d)2

Proof We first treat the case where ϕ(0) ̸= 0. Upon changing the choice of ϵ, we can assume that
ϕ(0) has the same sign as m0, and is therefore positive without loss of generality. Let c = ϕ(0)/2;
we define η to be a small constant such that ϕ(m) > c on [0, η]. Then, by Proposition 10, we have

P
(
m0 ≥

κ(δ)√
d
, mt ≥

m0

4
+
cγ

2
t ∀t ≤ T̄ ∧ t+η

)
≥ 1− δ (18)

As a result, t+η ≤ 2η/cγ as long as the latter bound is lower than T̄ . The above condition is
equivalent to

γ0(δ) ≤
c(δ) · cη

2
,

which can be ensured by decreasing γ0(δ).
The case where ϕ(0) is treated similarly: by the discrete Grönwall inequality,

P
(
m0 ≥

κ(δ)√
d
, mt ≥

m0

4
ecγt ∀t ≤ T̄ ∧ t+η

)
≥ 1− δ, (19)

and thus t+η ≤ C(δ)γ−1 log(d), again under the condition that this bound is lower than T̄ . This
time, the bound is equivalent to

γ0(δ) ≤
c(δ)

C(δ)
,

which can again be easily ensured.
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Analysis of ϕ To prove Theorem 4, it remains to show the following proposition:

Proposition 12 If ℓ⋆p = 1, then for almost every choice of ρ0, we have ϕ(0) ̸= 0. On the other
hand, if ℓ⋆p = 2, then ϕ′(0) ̸= 0 for almost every choice of ρ0.

The main ingredient here is to write ϕ(m) = ϕ(m; ρ0) and differentiate w.r.t ρ0. We show the
following:

Lemma 13 Under Assumption 3, the function ϕ(m; ρ0) is analytic in ρ0. Further, we have

∂kϕ(m; ρ0)

∂ρk0

∣∣∣∣
ρ0=0

= E
[
h⋆(x⋆)(k+1)x⋆σk+1(x)σ′(x)k

]
(20)

where x, x⋆ follow the same distribution as in eq. (16).

Proof The first statement stems from the analyticity of σ, and the fact that it is a property conserved
through integration. For the second, we differentiate inside the expectation, to find

∂ϕ

∂ρ0
= E

[
σ′(x)h⋆(x⋆)2σ′′(x+ ρ0σ

′(x)h⋆(x⋆))x⋆
]
;

the result follows by induction and taking ρ0 = 0 at the end.

We define the following quantities related to Assumption 3:

u
(k)
0 = E

[
σ(k)(x)σ′(x)k−1

]
u
(k)
1 = E

[
xσ(k)(x)σ′(x)k−1

]
v
(k)
0 = E

[
x⋆h⋆(x⋆)k

]
v
(k)
1 = E

[
[(x⋆)2 − 1]h⋆(x⋆)k

]
Then, by Proposition 11.37 from [34], we have

∂kϕ(m; ρ0)

∂ρk0

∣∣∣∣
ρ0=0

= u
(k)
0 v

(k)
0 + u

(k)
1 v

(k)
1 ·m+ o(m)

This allows us to show Proposition 12:
Proof Assume first that ℓ⋆p = 1. Then ϕ(0; ρ0) is an analytic function of ρ0 with

∂kϕ(0; ρ0)

∂ρk0

∣∣∣∣
ρ0=0

= u
(k)
0 v

(k)
0 .

Since ℓ⋆p = 1, there exists a k ∈ N such that v(k)0 ̸= 0, and by Assumption 2 the coefficient u(k)0 is
nonzero for every k. As a result, ϕ(0; ρ0) is an analytic and non-identically zero function of ρ0, so
it is non-zero for almost every choice of ρ0, as requested. The case kp = 2 is done in a similar way,
noting that this time

∂kϕ′(0; ρ0)

∂ρk0

∣∣∣∣
ρ0=0

= u
(k)
1 v

(k)
1 .
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D.2. Proof of Lemma 5

Let σ be an analytic function which is not a polynomial. Then for any k ≥ 0, the function σ(k) is
also analytic and non-identically zero, and hence so is the function fn = σ(k) · (σ′)k. Lemma 5 thus
ensues from the following result:

Lemma 14 Let f be an analytic and non-identically zero function. Then

E [f(x+ b)] ̸= 0 and E [xf(x+ b)] ̸= 0

for almost every b under the Lebesgue measure.

Proof The function ψ(b) = E [f(x+ b)] is analytic in b, and we have

ψ(k)(0) = E
[
f (k)(x)

]
= ckuk(f),

where uk(f) is the k-th Hermite coefficient of f and ck is a nonzero absolute constant. Since f is
nonzero, at least one of its Hermite coefficients is nonzero, and ψ is a non-identically zero analytic
function. As a result, ψ(b) ̸= 0 for almost every choice of b.

The other case is handled as the first one, noting that by Stein’s lemma

E [xf(x+ b)] = E
[
f ′(x+ b)

]
.

The above shows that for fixed n ∈ N, the set

Bn =
{
b ∈ R : E

[
σ(n)(x+ b)σ′(x+ b)n−1

]
= 0 or E

[
xσ(n)(x+ b)σ′(x+ b)n−1

]
= 0
}

has measure 0. Since there is a countable number of such subsets, the set

B =
⋃
n∈N

Bn

also has measure zero, which is equivalent to the statement of Lemma 5.

D.3. Proof of Theorem 6

We decompose the polynomial h⋆ as an even and odd part e(x) and o(x), with degrees do and de.
We first assume that o is non-zero, and that the leading coefficient of o is positive. Then, for odd
m ≥ 0, we have

E [xh⋆(x)m] =

m∑
k=0

(
m

k

)
E
[
xe(x)ko(x)m−k

]
Each term in the above sum is zero if k is odd, we focus on the terms where k is even. There exist
constants A, ε > 0 such that if |x| ≥ A,

|e(x)| ≥ ε|x|de and |o(x)| ≥ ε|x|do ,
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and we let
B = sup

x∈[−A,A]
|e(x)| ∨ sup

x∈[−A,A]
|o(x)|

As a result, when k is even, both e(x)k and xo(x)m−k are even polynomials with positive leading
coefficients, so

E
[
xe(x)ko(x)m−k

]
= E

[
xe(x)ko(x)m−k1x∈[−A,A]

]
+ E

[
xe(x)ko(x)m−k1x/∈[−A,A]

]
≥ ε2E

[
xkde+(m−k)do+11x/∈[−A,A]

]
−ABm

Let d(m, k) = kde + (m− k)do + 1. Then,

E
[
xe(x)ko(x)m−k

]
≥ ε2E

[
xd(m,k)

]
−Ad(m,k) −ABm.

Going back to the sum, and with the crude bound
(
m

k

)
≤ 2m,

E [xh⋆(x)m] ≥ ε2E
[
xd(m,0)

]
−

m∑
k=1

2m
(
Ad(m,k) +ABm

)
≥ E

[
xm+1

]
− Cm

Since the Gaussian moments grow faster than any power of m, this last expression is non-zero for a
large enough choice of m.

Finally, if o is the zero polynomial, we can do the same reasoning with e(x)m to get

E
[
(x2 − 1)e(x)m

]
= ε2(E

[
xmde+2

]
− E

[
xmde

]
)− Cm = ε2mdeE

[
xmde

]
− Cm,

and we conclude as before.

D.4. Hardness of sign functions

We show in the appendix the following statement:

Proposition 15 Let m ∈ N, and

h⋆(x) = sign(x1 . . . xm)

Then the function h⋆ has Information and Generative Exponents ℓ = ℓ⋆ = m.

We first show the lower bound. For any vector v ∈ Rm, and k < m, Hk(⟨v,x⟩) is a polynomial
in z of degree k, and therefore each monomial term is missing at least one variable. We show that
this implies the lower bound of Proposition 15 through the following lemma:

Lemma 16 Let f : {−1, 1} → R be an arbitrary function, and g : Rm → R a function which is
independent from xm. Then

E [f(h⋆(x))g(x)] =
f(1) + f(−1)

2
E [g(x)]
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Proof We simply write

E [f(h⋆(x))g(x)] = E [E [f(h⋆(x))g(x) | x1, . . . , xm−1]]

= E [g(x)E [f(h⋆(x)) | x1, . . . , xm−1]]

= E
[
g(x)

f(1) + f(−1)

2

]
=
f(1) + f(−1)

2
E [g(x)] ,

where at the second line we used that g only depends on x1, . . . , xm−1 and at the third line the
addition of xm randomly flips the sign of h⋆.

Using this property on every monomial in Hk(⟨v,x⟩) and summing back, we have for any
function f

E [f(h⋆(x))Hk(⟨v,x⟩)] =
f(1) + f(−1)

2
E [Hk(⟨v,x⟩)] (21)

But the latter is zero when k ≥ 1 by orthogonality of the Hermite polynomials. This shows that
ℓ⋆v ≥ m for all v ∈ Rk, and therefore m ≤ ℓ⋆ ≤ ℓ.

For the upper bound, let v = e1 + · · ·+ em. Then

Hk(⟨v,x⟩) = m!x1 . . . xm +Q(x),

where Q is a polynomial where each monomial has a missing variable. As a result,

E [h⋆(x)Hk(⟨v,x⟩)] = m!E [h⋆(x)x1 . . . xm]

= m!E [|x1 . . . xm|]

= m!

(√
2

π

)m

which is a non-zero value, hence ℓ⋆ ≤ ℓ ≤ m.

Appendix E. Additional Numerical Investigation

In this section, we present further numerical investigation to support our theory and extend it beyond
the mathematical hypotheses used in the formal proof.

E.1. Testing wider range of Algorithm 1

In the main we presented all the numerical simulation using ρ > 0, i.e. ExtraGradient method/descent.
In Figure 4 Left, we repeat one of the experiment of Figure 1 in the case ρ < 0, the Sharpe Aware
Minimization. The two algorithms are based on very different principle, but in our context they
behave in the same way: the reusing of the data makes high information exponent function easily
learnable. The global picture for ρ ̸= 0 is the same regardless of its sign.

Altought Algorithm 1 includes a broad variety of algorithm, it is not the most general domain of
validity of our theory. Simple algorithms such as repeating the gradient step twice on the same data
before discarding it (also known as 2-lookahead optimizer [39]) are not part of Algorithm 1, yet our
considerations are still valid. In fact, the data repetition is sufficient to introduce correlations across
two consecutive steps, whose effect builds up along the dynamics causing the network to learn hard
targets. A simple illustration of this claim is available in Figure 4 Right.
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Figure 4: example of two different algorithm with data repetitions learning an hard single-index
target h⋆(z) = He3(z1), ℓ = 3, ℓ⋆ = 1. Left: SAM, with ρ0 = 0.1, γ0 = 0.01. Right:
2-Lookahed with γ0 = 0.1. See details in App. F.

E.2. Extensive batch size

In this section, we want to present some evidence that our result does not change when the batch
size is 1 < nb ≤ O(d

ℓ⋆

2 ). The formal proof we presented in the paper is valid in the case where the
batch size is nb = 1, but we strongly believe it is the case when training with larger batches.

In the context of the information exponent, it has been shown in [5] that the total sample com-
plexity does not change when using batch sizes nb ≤ O

(
d

ℓ
2

)
. The heuristic argument for this

behavior is that using a larger batch size increases the learning rate since the noise of the gradient
is “more” averaged out, ultimately reducing the number of steps. The same argument should pass
from information exponent to generative exponent, allowing the claim (when nb ≤ O

(
d

ℓ⋆

2

)
)

T · nb ∼


O(dℓ−1) if ℓ⋆ > 2

O(d log d) if ℓ⋆ = 2

O(d) if ℓ⋆ = 1

. (22)

Note that this drastically reduces the time steps needed to learn the teacher’s directions, although
the sample complexity does not change. [21] first shows that some high-information exponent
functions, such as He3, can be learned in just a few steps with full-batch gradient descent nb =
O(d). In the same work, they introduce a larger class of hard functions that cannot be recovered in
T = O(1), not providing any information on possible bounds on the number of time steps, nor any
claim suggesting that not all the function in the class have the same sample complexity. Our theory
can provide a full understanding of the phenomena:

• He3 has generative exponent ℓ⋆ = 1, that implies we needO(d) samples to weakly recover the
target; when training with batch size nb = O(d), we have T = O(1) as in [21]; Figure 5 (Left)
is a numerical proof of this fact.
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Figure 5: Single-index recovery for large-batch training. The dashed horizontal line 1√
d

is a visual
guide to place random performance. The plots show σ = relu, γ = 0.01, ρ = 0.1, and
the performance is computed averaging across 10 different runs. Left (ℓ, ℓ⋆) = (3, 1):
h⋆ = He3. Right (ℓ, ℓ⋆) = (4, 2): h⋆ = He4. See details in App. F.

• He4 has generative exponent ℓ⋆ = 2, that implies we need O(d log d) samples to weakly
recover the target; when training with batch size nb = O(d), we have T = O(log d); Fig-
ure 5 (Right) is a numerical proof of this fact.

We can push our claims beyond single-index targets and illustrate the same phenomena for
multi-index functions. In Figure 6 we test Extragradient Descent against two hard multi-index
functions: once again the sample complexity is the same as the case nb = 1, while the number of
steps is reduced by a factor nb = d.

E.3. An example of SQ-Staircase function

As we discussed in the main, the introduction generative exponent for multi-index model unveil a
new type of stair mechanism, playing the same role as the information exponent in [1]. We refer
to the latter as CSQ-staircase targets, while we informally call the new class we are presenting
SQ-staircase functions.

The plot in Figure 3 is showing the staircase mechanism in action for a target that is both SQ-
staircase and CSQ-staircase. Here, we push forward showing the same for the target h⋆(z) =
He4(z1) + 5sign(z1z2z3), in Figure 7. The information exponent of h⋆ is ℓ = 3: the three direction
w⋆
1, w

⋆
2, w

⋆
3 are all equally hard and they are learned all together with O(d2) samples; the present

of the addend He4 does not change the hardness of the target since it has information exponent = 4
if considered alone. On the other end, the generative exponent of h⋆ is 2, so the direction w⋆

1 can
be learned in O(d log d) steps, and then helping learn w⋆

2, w
⋆
3 in another O(d log d) steps. Figure 7

clearly shows that at first only the first direction is learned, and only after that also the other two can
be weakly correlated.
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Figure 6: Multi-index recovery for large-batch training. The dashed horizontal line 1√
d

is a visual
guide to place random performance. The plots show σ = relu. Upper (ℓv, ℓ

⋆
v) = (3, 1):

h⋆(z) = sign(z1z2). Lower (ℓv, ℓ
⋆
v) = (4, 2): h⋆(z) = z1z2z3. See Appendix F for

details.
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Figure 7: learning dynamic of the three hidden direction of the SQ-staircase function h⋆(z) =
He4(z1) + 5sign(z1z2z3), that is not CSQ-staircase. γ0 = 0.01, ρ0 = 0.1, d = 1024,
σ = ReLU. See details in App. F

Appendix F. Implementation Details

In this section. we provide all the implementation details needed to reproduce the Figures of the
paper. The full detailed implementation can be repository linked in the main paper.

Unless explicitly stated, we always run the plain version of Algorithm 1 with squared loss, as
opposed to Assumption 1 which requires correlation loss and spherical gradient. Also, the activation
function we always use is ReLU, which does not satisfy Assumption 2, but is closer to real cases.
Finally, we always run simulations withW 0⊥W ⋆, which does not fall under Assumption 3. Indeed,
our numerical simulations deviate from the theoretical assumptions needed for the formal proofs,
but the aim here is to show that our claims are valid beyond the technical limitations of the theory
and that they can allow us to understand settings closer to what is used in practice.

In the plots with a single-index target we plot the absolute value of the cosine similarity between
the student weight w and the teacher weight w⋆, averaged across N different runs (where we vary
both seen samples and initial conditions). If q in the index for different runs:

yaxis(t) =
1

N

N∑
q=1

∣∣∣CosSim(w
(q)
t ,w⋆(q))

∣∣∣ ,
where

CosSim(w,w⋆) =
w ·w⋆

∥w∥2 ∥w⋆∥2
.

In the plots with a multi-index target, we take the maximum across all the network weights

yaxis(t) =
1

N

N∑
q=1

max
j∈[p]

∣∣∣CosSim(w
(q)
j,t ,w

⋆(q))
∣∣∣ .

F.1. Hyperparameters of the Figures

Here are the hyperparameters used in the figures:

• Figure 1 (all 4): d = 8192, γ0 = 0.01, ρ0 = 0.1, N = 40.
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• Figure 2 (left): p = 8, d = 2048, γ0 = 0.01, ρ0 = 0.1, N = 40, a0j ∼ Rad(1/2).

• Figure 2 (center-left): p = 8, d = 2048, γ0 = 0.01, ρ0 = 0.1, N = 40, a0j ∼ N (0, 1).

• Figure 2 (center-right): p = 8, d = 2048, γ0 = 0.1, ρ0 = 0.1, N = 40, a0j ∼ N (0, 1).

• Figure 2 (right): p = 8, d = 2048, γ0 = 0.1, ρ0 = 0.1, N = 20, a0j ∼ N (0, 1).

• Figure 3 (left): p = 8, d = 2048, γ0 = 0.1, ρ0 = 0.1, N = 40, a0j ∼ N (0, 1).

• Figure 3 (right): p = 4, d = 1024, γ0 = 0.01, ρ0 = 0.1, N = 10, a0j ∼ N (0, 1).

• Figure 4 (left): SAM d = 4096, 8192, γ0 = 0.01, ρ0 = 0.1, N = 40.

• Figure 4 (right): 2-Lookahead d = 4096, 8192, γ0 = 0.01, ρ0 = 0.1, N = 40.

• Figure 5 (all 2): d = 8192, nb = 2d, γ0 = 0.1, N = 40.

• Figure 6 (upper): p = 8, d = 2048, nb = 2d, γ0 = 0.1, ρ0 = 0.1, N = 40, a0j ∼ N (0, 1).

• Figure 6 (lower): p = 8, d = 2048, nb = 2d, γ0 = 0.1, ρ0 = 0.1, N = 20, a0j ∼ N (0, 1).

• Figure 7: p = 4, d = 1024, γ0 = 0.01, ρ0 = 0.1, N = 10, a0j ∼ N (0, 1).
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