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Abstract

Growing popularity of streaming media plat-001
forms for music search and recommendations002
has led to a need for novel methods for in-003
terpreting music that take into account both004
lyrics and audio. However, many previous005
works focus on refining individual components006
of encoder-decoder architecture that maps mu-007
sic to caption tokens, ignoring the potential008
benefits of correspondence between audio and009
lyrics. In this paper, we propose to explicitly010
learn the multimodal alignment through con-011
trastive learning. By learning audio-lyrics cor-012
respondence, the model is guided to learn bet-013
ter cross-modal consistency, thus generating014
high-quality captions. We provide both theo-015
retical and empirical results demonstrating the016
advantage of the proposed method, and achieve017
new state-of-the-art on two music captioning018
datasets.019

1 Introduction020

Learning to interpret music based on audio and021

lyrics has become an increasingly attractive re-022

search area for researchers in both music and023

natural language processing (Manco et al., 2021;024

Zhang et al., 2022b). The insights gained from this025

research into multimodal representation learning026

have a wide range of applications such as streaming027

media discovery (Salha-Galvan et al., 2021) and028

music recommendation with detailed and human-029

like descriptions (Andjelkovic et al., 2019), making030

the dynamics of search and recommendation en-031

gines more explainable. However, captioning mu-032

sic is a challenging task, as the multimodal inputs033

contain ambiguous and repetitive lyrics, as well as034

complex audio signals mixed with various tracks035

of information.036

Previous works on music captioning have primar-037

ily focused on improving individual components038

of the encoder-decoder architecture, such as de-039

veloping a music encoder, implementing attention040

mechanisms, and using beam search. However, lit- 041

tle effort has been directed towards leveraging the 042

correspondence between audio and lyrics, which 043

could potentially provide useful information for 044

generating high-quality captions. Some works like 045

(Zhang et al., 2022b) leverage the multimodal infor- 046

mation from both lyrics and music through a cross- 047

modal attention module, but the two modalities are 048

not aligned before fusion. In reality, audio and 049

lyrics are loosely aligned, making them imperfect 050

sources of data for existing multimodal learning 051

methods that do not have multimodal alignment 052

mechanisms (Nichols et al., 2009; Zhang et al., 053

2022a). For example, it is common for composers 054

and lyricists to work separately in the music in- 055

dustry, resulting in different lyrics fitting the same 056

melody. Additionally, the same words with differ- 057

ent song patterns and styles can express diametri- 058

cally opposite emotions. Therefore, it is believed 059

that accurate and comprehensive music interpre- 060

tation should leverage the subtle connections be- 061

tween music and lyrics. 062

In response to these challenges, we propose to im- 063

prove music understanding by aligning audio and 064

lyrics pairs with contrastive learning before modal- 065

ity fusion. The idea is that within the same in- 066

put batch, the paired audio and lyrics should be 067

brought close together in the latent space, while 068

non-paired ones should be pulled apart. By adding 069

a contrastive loss, the multimodal input pairs are 070

forced to be more aligned, which in turn guides 071

the model to achieve stronger cross-modal consis- 072

tency for a more meaningful fused latent space. To 073

this end, we propose Alignment Augmented Mu- 074

sic Captioner (ALCAP), which is an extension of 075

BART-fusion (Zhang et al., 2022b) with an align- 076

ment augmentation module. We provide a theo- 077

retical explanation of why the proposed alignment 078

module results in improved generalization from 079

an information bottleneck perspective. We con- 080
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duct extensive experiments on the Song Interpreta-081

tion Dataset (Zhang et al., 2022b) and the NetEase082

Cloud Music Review Dataset. On the Song Inter-083

pretation Dataset, ALCAP improves the state-of-084

the-art from 24.7 to 27.1 on ROUGE-L and from085

22.6 to 27.7 on METEOR, and on the NetEase086

Cloud Music Review Dataset, it achieves a margin087

of 1.7 on ROUGE-L and 0.9 on METEOR over the088

baseline, substantially demonstrating the effective-089

ness of our approach. We also observe performance090

improvement in cross-modal text-music retrieval,091

which is a common application scenario in indus-092

try, providing an indirect perspective to evaluate093

caption quality. Lastly, we explore the effect of094

contrastive loss weights on the model performance095

via grid search and conclude our ablation study by096

showing that our proposed multimodal alignment097

module leads to more concentrated attention on098

language tokens through visualization analysis.099

Our contributions are summarized as follows:100

• To the best of our knowledge, we are the first101

to propose an alignment augmentation mod-102

ule through cross-modal contrastive learning103

between music and lyrics for music caption-104

ing. By learning the interactions between the105

two modalities in an unsupervised manner, the106

model is guided to learn better cross-modal107

attention weights for meaningful fused latent108

space.109

• We provide a theoretical justification for the110

improved generalization of the proposed mul-111

timodal alignment module from an informa-112

tion theory perspective.113

• Extensive experiments on two music caption-114

ing datasets demonstrate the effectiveness of115

our proposed alignment augmentation module,116

and we set the new state-of-the-art on the Song117

Interpretation Dataset. We also conduct sev-118

eral ablation experiments to study the effect119

of different weights of contrastive learning on120

the model performance.121

2 Related Work122

Alignment Aware Representation Learning123

Multimodal representation learning has been in-124

creasingly important as modern intelligent appli-125

cations require a comprehensive understanding of126

vision, language and speech. To learn meaningful127

latent spaces, unsupervised alignment between dif-128

ferent modality inputs has been proven effective as 129

an additional layer of structural information about 130

the data. In the work of pretraining for speech syn- 131

thesis Bai et al. (2022), aligning the acoustic and 132

phoneme inputs makes the model more capable 133

of learning cross-modal attention weights, thereby 134

improving the quality of acoustic signal reconstruc- 135

tion. ALBEF (Li et al., 2021) proposes to align 136

vision and language before the modality fusion, pu- 137

rifying the multimodal input pairs, thus resulting in 138

a more grounded vision and language representa- 139

tion. This approach can be interpreted as maximiz- 140

ing mutual information among different views of 141

the same vision and language pair. µ-VLA (Zhou 142

et al., 2022) introduces image-text level and region- 143

phrase level alignment in vision and language pre- 144

training so as to make the most of unpaired data. 145

(Goyal et al., 2022) propose a retrieval process op- 146

erating on past experiences to provide the agent 147

with contextual relevant information, improving 148

sample efficiency and representation learning of 149

the policy function. It proves the effectiveness of 150

retrieval-augmented module in continuous decision 151

making process which also applies to the sequence 152

of words generation (Ren et al., 2017; Guo et al., 153

2018; Yu et al., 2022; Humphreys et al., 2022). 154

Multimodal Music Captioning Music caption- 155

ing is a challenging task as it requires the model to 156

not only comprehensively understand both music 157

and corresponding lyrics but also to avoid over- 158

fitting on limited music-lyrics pairs due to copy- 159

right restrictions. MusCaps (Manco et al., 2021) 160

firstly addresses the music captioning task from 161

an audio captioning perspective, using a multi- 162

modal input encoder-decoder architecture based 163

on LSTM (Hochreiter and Schmidhuber, 1997). 164

While MusCaps achieves a performance boost in 165

caption generation, its predictive word sequence 166

is limited to 20 tokens, which narrows down the 167

approach’s applicability, or at least not suitable for 168

our long and human-like language composition sce- 169

nario. One of the most relevant works to ours is 170

BART-fusion (Zhang et al., 2022b) which is built 171

on top of BART (Lewis et al., 2020), adding a mu- 172

sic encoder and modality fusion module. However, 173

BART-fusion fails to fully mine the relationship 174

between the music and lyrics input data. Inspired 175

by works from retrieval augmented representation 176

learning, we propose to improve the generalization 177

ability of BART-fusion by introducing music and 178

lyrics alignment before modality fusion. 179
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3 Methodology180

In this section, we introduce the architecture of AL-181

CAP, which is based on BART-fusion (Zhang et al.,182

2022b). We first state the problem definition, then183

go through each module of the architecture. The184

overall framework of ALCAP is shown in Figure185

1.186
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Figure 1: An overview of ALCAP. The encoded rep-
resentations of music and lyrics are first aligned using
contrastive learning, then the aligned representations are
fused using cross-attention, and further decoded through
the text decoder. The architecture is based on BART
(Lewis et al., 2020).

3.1 Problem Definition187

Given a song represented as a music-lyrics pair188

xi, with a music track mi and its corresponding189

lyrics ti, we aim to generate the caption (or inter-190

pretation) ŷi of the song, consisting of a sequence191

of word tokens. In a typical setting of captioning,192

the attention-based encoder-decoder architecture is193

adopted to learn the mapping function from mul-194

timodal input to text output fθ : {mi, ti} → ŷi.195

The model parameters θ are optimized to generate196

the caption that is most consistent with the human197

annotated caption yi.198

3.2 Multimodal Encoding199

Music Encoder To obtain the representation of200

the music track, we use a pre-trained music encoder201

that includes a convolutional front-end and Trans-202

former encoder layers, as described in (Won et al.,203

2019). The model was originally trained to classify204

music audio into 50 tags under a multi-class setting205

using the Million Song Dataset (Bertin-Mahieux206

et al., 2011). These tags cover various musical207

characteristics, such as the genre (e.g., Jazz and208

Blues), mode, and the presence of specific instru-209

ments (e.g., piano or guitar). To perform the classi-210

fication, the mel-spectrogram of a music track mi 211

is first passed through a series of CNN layers for 212

local feature aggregation in the time and frequency 213

axis. The intermediate features are then fed into 214

two Transformer encoder layers to model the in- 215

formation along the time axis, taking into account 216

that elements of music can appear at different mo- 217

ments within a music clip. In the original paper, 218

the output embedding series from the Transformer 219

layer is further pooled to perform the classification 220

task. However, in this paper, the embedding series 221

hm
i ∈ Rlm×dm is used directly, where lm is the 222

length of the music sequence and dm is the hidden 223

dimension. 224

Lyrics Encoder The representation of lyrics ti is 225

obtained following standard BART encoder (Lewis 226

et al., 2020), and denoted as ht
i ∈ Rlt×dt , where 227

where lt is the length of the lyrics sequence and dt 228

is the hidden dimension. The encoder consists of 229

six multi-head self-attention layers. 230

3.3 Multimodal Representation Alignment 231

Music and lyrics are not inherently connected, 232

as different lyrics can fit the same melody, and 233

the same lyrics can convey different emotions 234

when paired with dynamic, rhythmic music. To 235

fully represent the interactions between music and 236

lyrics, we propose using contrastive learning be- 237

fore modality fusion to explicitly align the two 238

modalities. This is expected to result in improved 239

performance due to increased interactions between 240

the two modalities, as has been previously shown 241

to be effective in the vision and language domain 242

(Li et al., 2021). 243

To be specific, given a batch of input music- 244

lyrics pairs {(m1, t1), (m2, t2), ...., (mn, tn)}, 245

we first obtain the music representations 246

{hm
1 ,hm

2 , ....,hm
n } by the music encoder, and 247

lyrics representations {ht
1,h

t
2, ....,h

t
n} by the 248

lyrics encoder respectively. As both music and 249

lyrics are sequences, we denote h̄ as the mean 250

aggregation of h along the sequence length 251

dimension. Through a linear transform on h̄, we 252

obtain the latent code z and use the InfoNCE loss 253

(Oord et al., 2018) as the contrastive learning 254

objective in latent space, as 255

Lcontrast = −
n∑

i=1

log
σ(zm

i · zt
i/τ)∑

k σ(z
m
i · zt

k/τ)
, (1) 256

3



where zm
i and zt

i are the latent code of music and257

lyrics respectively, and σ(·) is the exponential func-258

tion. For simplicity, we ignore the symmetric ver-259

sion by switching zm
i and zt

i in Equation 1, which260

is also applicable for the purpose of modality align-261

ment. Note that InfoNCE can be interpreted as262

an estimator of a lower bound of mutual informa-263

tion (Belghazi et al., 2018; Oord et al., 2018; Cheng264

et al., 2020). We will incorporate this to prove the265

effectiveness of out proposed alignment module266

both theoretically and empirically, which is sup-267

posed to be non-trivial. We will revisit this in § 4268

and § 6.269

3.4 Multimodal Representation Fusion and270

Decoding271

Before decoding, the aligned representations of mu-272

sic tracks hm
i and lyrics ht

i are further fused by a273

cross-attention module, where the lyrics represen-274

tations are linearly projected as queries, and the275

music representations are projected as keys and276

values. The process can be described as277

hf
i = T (Q,K,V),278

Q = WQht
i,K = WKhm

i ,V = WV
ℓ h

m
i , (2)279

where hf
i is the final fused representation, WQ ∈280

Rdt×dk , {WK
ℓ ,WV

ℓ } ∈ Rdm×dk are linear trans-281

form parameters, respectively; dk is the projection282

dimension.283

The fused representation contains semantics from284

both the music track and the lyrics, as the alignment285

by contrastive learning ensures sufficient interac-286

tions between them. While the multimodal encoder287

fused the text and music as a whole, the decoding288

process follows a teacher-forcing fashion to pre-289

dict each caption words, i.e., the ground-truth word290

token of the ith sample yi,t are provided at every291

step t during training. We use the BART decoder292

(Lewis et al., 2020) to generate the caption autore-293

gressively and maximize the factorized conditional294

likelihood. The caption loss is defined as295

Lcap = − 1

n

n∑
i=1

T∑
t=1

logP (yi,t|yi,<t,h
f
i ), (3)296

where yi,<t is the ground-truth word token before297

step t and P indicates the probability of the token298

at step t conditioning on previous tokens and fused299

multimodal representation.300

3.5 Overall Learning Objective 301

To this end, we define the final loss to be the 302

weighted sum of the caption loss and the contrastive 303

learning loss as follows: 304

L = Lcap + α ∗ Lcontrast, (4) 305

where α is the weight of the contrastive learning 306

loss, balancing the contribution of captioning and 307

multimodal alignment. 308

4 An Information Theoretical Perspective 309

In this section, we explain the performance im- 310

provement of our alignment module based on con- 311

trastive learning from a mutual information per- 312

spective. 313

Given an input pair xi := {mi, ti}, information 314

bottleneck (IB) (Alemi et al., 2016) encourages the 315

model to find minimal but sufficient information 316

about the input xi with respect to the target cap- 317

tion words yi. In other words, the objective of the 318

training process in IB can be formulated as 319

max
pθ(z|x)

I(y; z)− βI(x; z), (5) 320

where I(y; z) is the mutual information between 321

the output and the latent code, I(x; z) is the mutual 322

information between the input and the latent code, 323

and pθ(z|x) is the conditional distribution of latent 324

code parameterized by the encoder θ. To optimize 325

the IB, an upper bound on I(x; z) is typically taken 326

for generalization ability of a model (Tishby et al., 327

2000; Alemi et al., 2016). From the information 328

perspective, we show the following lower bound 329

on the mutual information of (x, z) in our setting. 330

Proposition 4.1. The mutual information of (x, z) 331

in our setting is upper bounded by 332

I(x; z) ≤ R(z)− I(m; t), 333

where R(z) ≜ Ep((m,t)|z)

[
log

Ep(z)[p((m,t)|z)]
p(m)p(t)

]
334

depends only on z and is independent of x. 335

In light of the fact that contrastive learning tends 336

to maximize mutual information between (m, t) 337

pairs, the above lower bound suggests that it can be 338

considered as an approximate implementation of 339

information bottleneck. Furthermore, if the music- 340

lyrics pairs used in contrastive learning are not well 341

aligned, one can actually prove that the learning 342

will fail. 343
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Proposition 4.2. If the music-lyrics pairing in the344

learning process is random such that the music and345

lyrics are sampled independently, then the mutual346

information between the input x and the represen-347

tation z will be zero, and thus the encoder cannot348

learn anything useful.349

The proof is provided in Appendix A.1. To sum up,350

based on the InfoNCE loss (Gutmann and Hyväri-351

nen, 2010), the proposed alignment module can352

be interpreted as maximizing the mutual informa-353

tion lower bound between the music m and cor-354

responding text t, which translates to minimizing355

the mutual information between the input x and356

the latent code z, and consequently improving the357

generalization ability of the model.358

5 Data359

In this paper, we experiment on two datasets – the360

Song Interpretation Dataset (Zhang et al., 2022b)361

and the NetEase Cloud Music Review Dataset.362

5.1 Song Interpretation Dataset363

We use the Song Interpretation (SI) Dataset intro-364

duced by (Zhang et al., 2022b). The dataset con-365

tains audio excerpts from 27,834 songs from Mu-366

sic4All Dataset (Santana et al., 2020) and 490,000367

user interpretations of the songs. Each song is in 30368

seconds and recorded at 44.1 kHz. Based on user369

votes of the interpretations, Zhang et al. (2022b)370

create three variants of the dataset, as 1) SI Full:371

the full dataset after some preprocessing; 2) SI372

w/voting ≥ 0: the subset with only interpretations373

that received non-negative votes; 3) SI w/voting >374

0: the subset with only interpretations that received375

positive votes. The sizes of the training splits of376

the three datasets are 279,283, 265,360 and 49,736377

respectively. All three datasets share the same test378

split consisting of 800 instances. Please refer to379

(Zhang et al., 2022b) for more details of the dataset.380

5.2 NetEase Cloud Music Review Dataset381

In addition to the Song Interpretation Dataset where382

the interpretations were mostly written by peo-383

ple who grew up under the influence of European384

and American culture, we curate another dataset -385

the NetEase Cloud Music (NCM) Review Dataset,386

where the reviews were written by people from387

China. NCM is a free music streaming service that388

is immensely popular in China. One of its most389

prominent features is that users can create their390

own playlists, write reviews and share the playlists391

with other users. 392

We collect user-created playlists from NCM and 393

keep those consisting of only English songs. Be- 394

cause our model generates captions at an individual 395

song level, for each playlist, we keep one song from 396

it that has the highest popularity, i.e., the song that 397

has been collected to most playlists1. As a result, 398

from each playlist, we have an instance of the song- 399

review pair. For each song, we keep the middle 30 400

seconds excerpt and sample it at 22.05kHz. Since 401

the BART (Lewis et al., 2020) is pretrained in En- 402

glish, we translate the Chinese reviews into English 403

using Google Translate. 404

We collect 22,210 playlists (songs) and their re- 405

views. An example is shown in Figure 2. We 406

randomly split the dataset into train/val/test splits, 407

with sizes of 15,547, 3,331, and 3,332. 408

Title: I Feel Lucky
Artist: Mary Chapin Carpenter
Lyrics: Well I woke up this morning stumbled out of my rack; I
opened up the paper to the page in the back; It only took a
minute for my finger to find; My daily dose of destiny, under
my sign; My eyes just about popped out of my head; It said “the
stars are stacked against you girl, get back in bed”; I feel lucky,
I feel lucky, yeah; No Professor Doom gonna stand in my
way….
Review: As soon as you listen to the style of the song, you will
know that it is the familiar style of the American West and the
South, the taste of country rock. How could such a delicacy be
missing from the music feast? Let's enjoy it together.

Figure 2: An example in NetEase Cloud Music (NCM)
Review Dataset.

6 Experiments 409

6.1 Experimental Setup 410

We resample each song at 16kHz and take a 15s 411

excerpt. The maximum caption length is 512. 412

The model is implemented in PyTorch (Paszke 413

et al., 2019). We use the BART implementation 414

facebook/bart-base from Huggingface (Wolf et al., 415

2019). We use a batch size of 26 and a learning 416

rate of 5e − 5. The weight of contrastive learn- 417

ing α loss is set to 0.02. For better computation 418

efficiency we freeze the parameters in the music 419

encoder and precompute the music representations. 420

1Admittedly this is not the best way to create the song-
review pairs given that the reviews were written at the entire
playlist level. Nevertheless, the main goal of this paper is
NOT to introduce this curated dataset, but to demonstrate the
effectiveness of ALCAP in generating better song captions on
different datasets, and as we will show in § 6, ALCAP still
achieves a satisfactory performance compared to the baseline.
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We train the model for 20 epochs and report the421

results on the test split using the checkpoint with422

the best evaluation performance. All hyperparame-423

ter tuning is based on grid search. All models are424

trained on a Tesla A100 GPU with 40GB memory.425

The training time for SI-Full, SI w/voting ≥ 0, SI426

w/voting > 0, and NCM Review are 28h, 28h, 5h,427

and 3h respectively.428

We use ROUGE-1,2,L (ROUGE, 2004) and ME-429

TEOR (Banerjee and Lavie, 2005) as evaluation430

metrics. ROUGE measures the overlap of n-grams431

between the referenced text and the generated text.432

On top of ROUGE, METEOR complementarily433

measures the semantic similarity between the two434

pieces of text by taking into account synonyms435

through WordNet. For both metrics, we use the436

implementation with default parameters from Hug-437

gingface Datasets library.438

6.2 Experiments I: Music Captioning439

The results are presented in Table 1. BART is a440

model that utilizes only unimodal textual informa-441

tion from lyrics. The BART-fusion model, on the442

other hand, fuses representations from music and443

lyrics, but the two representations are not aligned444

prior to modality fusion. The results of these two445

baselines are reported in (Zhang et al., 2022b). We446

do not compare with (Manco et al., 2021), which447

focuses on short-length music descriptions with a448

maximum of 22 tokens.449

We have found that ALCAP outperforms both450

BART-fusion and BART on all four datasets, in451

terms of all four metrics, thereby setting a new452

state-of-the-art. Specifically, the improvement on453

METEOR is more pronounced than on ROUGE454

metrics, which demonstrates that ALCAP is capa-455

ble of capturing the semantics of the song for music456

captioning, not just memorizing the syntax. Fur-457

thermore, the results on the NCM Review for both458

models are overall worse than those on SI datasets.459

We believe this is due to the weaker correspondence460

between the music tracks and reviews in the NCM461

Review, as the reviews were originally created at462

the playlist level. Despite this, ALCAP is still able463

to capture such weak correspondence and achieve464

a significant improvement over the baseline.465

6.3 Experiments II: Text-Music Retrieval466

One of the most practical applications of music467

captioning is text-music retrieval, where given a468

piece of music description, the goal is to retrieve469

the most relevant music according to the text. In 470

light of this, in this analysis, we test the retrieval 471

capability of ALCAP and the baseline model. The 472

setting of cross-modal retrieval in this experiment 473

is different from previous works such as (Yu et al., 474

2022), where the retrieval is performed on the two 475

modalities that are directly aligned through con- 476

trastive learning. 477

As proposed in (Zhang et al., 2022b), we randomly 478

select one sentence from the human-generated in- 479

terpretation or review, and use it as a query. The 480

queries are used to retrieve the corresponding songs 481

through their generated captions by our models. 482

Specifically, we compute the representations of 483

the queries and generated captions using Sentence- 484

BERT (Reimers and Gurevych, 2019). Thus, for 485

each query, we obtain a ranked list of retrieved 486

songs through the cosine similarities between the 487

query representation and generated caption rep- 488

resentations. We compare our proposed ALCAP 489

model to the BART-fusion (Zhang et al., 2022b) 490

model and use precision@k and recall@k as the 491

evaluation metrics. The results are shown in Table 492

2. 493

We observe that ALCAP outperforms BART-fusion 494

on most datasets and metrics, indicating the supe- 495

riority of cross-modal alignment between music 496

tracks and lyrics that makes the generated captions 497

more semantically aligned with human-written 498

texts. This is apart from several cases where AL- 499

CAP ties with BART-fusion. 500

Compared to SI datasets, the relatively low perfor- 501

mance on NetEase Review of both models is due to 502

1) the weak correspondence between the song and 503

the review as we mentioned in previous sections, 504

and 2) the retrieval pool is much larger – 3,332 vs. 505

800. Nevertheless, ALCAP still outperforms the 506

baseline in such a challenging scenario. 507

6.4 Case Study I: Visualization of the 508

Attention Weights 509

To better understand the mechanism within the 510

cross-attention module, we plot the attention 511

weights of BART-fusion and ALCAP on five input 512

examples from the training set in Figure 3. Both 513

models are trained on the SI w/voting > 0 dataset. 514

The attention weights from ALCAP appear to be 515

more focused on specific text tokens, in contrast to 516

BART-Fusion, which has a more evenly distributed 517
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Table 1: Results of music captioning on four datasets using BART (baseline), BART-fusion (baseline), and ALCAP
(ours). The best results are highlighted in bold.

Dataset Method R-1 R-2 R-L Meteor
BART 44.1 14.0 24.5 22.5

SI Full BART-fusion 46.1 15.0 25.1 23.0
ALCAP 48.2 15.7 26.4 27.8
BART 44.8 14.9 24.7 22.7

SI w/voting ≥ 0 BART-fusion 46.7 15.6 25.5 23.4
ALCAP 47.2 15.6 26.0 27.7
BART 41.2 13.0 22.8 22.0

SI w/voting > 0 BART-fusion 44.3 14.6 24.7 22.6
ALCAP 49.8 16.0 27.1 27.7

NCM Review
BART-fusion 18.2 1.9 13.6 10.9
ALCAP 20.6 2.6 15.3 11.8

Table 2: Results of text-music retrieval on four datasets using BART-fusion (baseline), and ALCAP (ours). The best
results are highlighted in bold.

Dataset Method p@5 p@10 p@20 p@30 r@5 r@10 r@20 r@30

SI Full
BART-fusion 3.2% 1.9% 1.2% 0.9% 16.0% 19.0% 24.0% 27.0%
ALCAP 3.6% 2.1% 1.2% 1.0% 18.0% 21.0% 24.0% 31.0%

SI w/voting >= 0
BART-fusion 2.2% 2.0% 1.0% 0.7% 11.0% 17.0% 20.0% 23.0%
ALCAP 4.2% 2.6% 1.5% 1.1% 21.0% 26.0% 30.0% 32.0%

SI w/voting >0
BART-fusion 2.2% 1.2% 0.9% 0.7% 11.0% 12.0% 18.0% 20.0%
ALCAP 3.0% 1.6% 1.0% 0.8% 15.0% 16.0% 20.0% 23.0%

NCM Review
BART-fusion 0.2% 0.1% 0.1% 0.1% 1.0% 1.0% 2.0% 2.0%
ALCAP 0.2% 0.2% 0.1% 0.1% 1.0% 2.0% 3.0% 4.0%

attention across all tokens. This phenomenon sug-518

gests that ALCAP, equipped with the cross-modal519

alignment module, is more effective at learning520

the interactions between the music audio and text521

domains.522

(a) (b) (c) (d) (e)

0.2

0.4

0.6

0.8

Figure 3: Illustration of the cross-modal weights for
five samples (a)∼(e). The first row shows the cross-
modal attention weights output by BART-fusion and the
second row shows the weights by ALCAP. The y-axis
and x-axis in each sub-graph indicates the text tokens
and music segments respectively.

6.5 Case Study II: Examples of Generated 523

Caption 524

In this case study we show a representative example 525

of generated captions from ALCAP and BART- 526

fusion on Child In Time by Deep Purple, as in 527

Figure 4. The song is from the test split of SI, and 528

both models are trained on SI w/voting > 0. 529

From the lyrics and the reference interpretation, 530

we can infer that the song is about war, which is 531

captured by ALCAP. The generated caption con- 532

tains "shot" and "sniper", which indicates that the 533

model has correctly understood the theme of the 534

song. However, BART-fusion fails to interpret the 535

song correctly, instead interpreting it as a love song. 536

We propose that this is due to the song’s 70s Rock 537

music style being too typical, and the lack of cross- 538

modal alignment in BART-fusion. This allows the 539

unimodal information from the sound track to dom- 540

inate and confuse the model. As 70s Rock en- 541

compasses a wide range of topics, including love, 542
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Lyrics: Sweet child in time; You‘ll see the line; The line that’s drawn between; Good and bad; See the blind man; Shooting at the world;
Bullets flying; Oh taking toll; If you‘ve been bad; Oh Lord I bet you have; And you’ve not been hit; Oh by flying lead; You‘d better close
your eyes; Oh bow your head; Wait for the ricochet; I wanna hear you sing; Sweet child in time; You’ll see the line; The line that‘s drawn
between; Good and bad; See the blind man; Shooting at the world ….
Reference: I don‘t think this song is about the Vietnamese war, but rather war in general. The blind man is not just a person, or a country -
it’s mankind. Almost every nation has been in a conflict or war. And yes, some countries are more powerful than others, but in the end -
what has war resolved? Every country has sinned, some more than others. Nobody is innocent. Every action has a reaction - you shoot
bullets blindly for unjustified reasons, and you are bound to have it ricochet back to you. The lyrics alone make this song great, but what
really sends it to one of the all-time best works of genius art is everything else in the song - from the captivating organ intro, to Blackmore's
unreal guitar skills, to Gillain's extraordinary vocals, and the passion that brought it all together. Probably the best song ever.
BART-fusion: I think this song is about a guy who is in the midst of a breakup with his girlfriend. He is trying to figure out what to do with
his life, but he ends up killing himself. He tries to convince himself that he can do it, and he can‘t do it. He wants to be able to show her that
he still loves her, and is willing to do anything to help her, even if it means killing herself. He can’t do it by himself, because he knows she
will never be happy, and will never see him again. He will never give up on her, no matter how hard he tries. He knows that she will always
love him, and it will be a long time before he does, but she is not willing to give up, and she is going to be with him forever.
ALCAP: I think this song is about a man who was shot in the head by a sniper. He was shot by the sniper. The sniper was shot at the end of
the night, and he was killed. He is still alive, but he is in a coma, and the sniper is still there. He has been shot. He‘s dying. It’s a sad song,
but it‘s a beautiful song. I think it’s about a guy who is dying. I’m not sure what this song means, but I think this is a good song.

Figure 4: An example of generated captions from ALCAP and BART-fusion on Child In Time by Deep Purple.

it becomes harder to identify the correct topic of543

war. However, the alignment module in ALCAP544

manages to capture the semantics of the song and545

provide a more accurate interpretation.546

6.6 Ablation Study: Effect of Contrastive547

Learning Weight α548

To further investigate the effect of multimodal549

alignment through contrastive learning, we show550

the performances of using different weights of con-551

trastive learning α on SI w/voting > 0 on music552

captioning (Figure 5) and text-music retrieval (Fig-553

ure 6).554

We observe that in both figures, the scores peak at555

α = 2e − 2, and decrease with higher weights or556

lower weights. When the weight is below 2e− 2,557

the model fails to learn sufficient alignment be-558

tween the two modalities; on the other hand, when559

the weight is greater than 2e− 2, the model suffers560

because the overly large weight of contrastive learn-561

ing loss negatively affects the optimizing of caption562

loss, which is the most prominent at α = 20.563
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Figure 5: Results of music captioning using different
weights of contrastive learning α on SI w/voting.
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Figure 6: Results of text-music retrieval using different
weights of contrastive learning α on SI w/voting.

7 Conclusions and Discussions 564

In this paper, we propose Alignment augmented 565

music Captioner (ALCAP) that is a high quality 566

music captioner leveraging an alignment augmenta- 567

tion module with cross-modal contrastive learning. 568

We provide a theoretical analysis of the improved 569

generalization of our model from an information 570

bottleneck perspective. Experiments on two music 571

captioning datasets demonstrate the effectiveness 572

of ALCAP, and we achieve the new state-of-the-art 573

on both of them. 574

For better computation efficiency, we fixed the pa- 575

rameters of the music encoder in ALCAP. In the 576

future, we will allow the parameters to be trained 577

for more flexible training. In addition, the Song 578

Interpretation dataset, as the only public music cap- 579

tioning dataset, is still small in scale, leaving room 580

for creating a large-scale dataset. Moreover, the 581

user generated song interpretations and reviews 582

are likely to be biased. As a result, how to miti- 583

gate such bias while training the model becomes a 584

promising research direction. 585
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Limitations586

Due to computational limitations, the parameters587

of the music encoder in ALCAP were fixed, and588

the music representations were precomputed, as589

described in (Zhang et al., 2022b). This approach590

may result in a decrease in performance compared591

to a model where the music encoder is fully fine-592

tuned for the music captioning task. Additionally,593

the Song Interpretation dataset, being the only pub-594

licly available music captioning dataset, is limited595

in scope, making it challenging to pretrain a large596

music captioning model that is suitable for vari-597

ous genres and styles of music. Furthermore, user-598

generated song interpretations and reviews may599

contain biases or even hate speech, which could be600

perpetuated during training of the model.601
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A Example Appendix748

A.1 Proofs of Proposition 4.1 and749

Proposition 4.2750

I(x; z) =Ep(x,z)

[
log

p(x, z)

p(x)p(z)

]
751

=Ep(x,z)

[
log

p(x|z)
p(x)

]
= Ep(m,t,z)

[
log

p((m, t)|z)
p(m, t)

]
752

=Ep(m,t,z)

[
log

p((m, t)|z)
p(m)p(t)

]
− I(m; t)753

=Ep((m,t)|z)p(z)

[
log

p((m, t)|z)
p(m)p(t)

]
− I(m; t)754

≤Ep((m,t)|z)

[
log

Ep(z)[p((m, t)|z)]
p(m)p(t)

]
− I(m; t)755

=Ep((m,t)|z)

[
log

p(m, t)

p(m)p(t)

]
− I(m; t) ,756

where the inequality follows by Jensen inequality.757

This completes the proof of Proposition 4.1.758

Based on the above derivcation, if (m, t) pairs are759

sampled randomly, in the probabilistic graphical760

model language (Koller and Friedman, 2009), this761

corresponds to a V -structure between (m, t) and762

z. And a V -structure indicates the marginal inde-763

pendency between m and t (Koller and Friedman,764

2009). Thus, we have765

I(x; z) ≤Ep((m,t)|z)

[
log

p(m, t)

p(m)p(t)

]
− I(m; t)766

=Ep((m,t)|z)

[
log

p(m)p(t)

p(m)p(t)

]
− I(m; t)767

= −I(m; t)768

Since we know that both I(x, z) and I(m; t) must769

be non-negative, we have770

I(x; z) = I(m; t) = 0 .771

Consequently, this leads to the independency of x772

and z, i.e,, z contains zero information of z. This773

completes the proof of Proposition 4.2.774
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