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Abstract001

Large language models (LLMs) have shown002
great potential in domain-specific machine003
translation (MT). However, one major issue is004
that LLMs trained on general corpus might not005
generalize well to specific domains due to the006
lack of domain-specific knowledge. To address007
this issue, this paper focuses on enhancing the008
domain-specific MT capability of LLMs, by009
providing high-quality training datasets and010
proposing a novel fine-tuning framework de-011
noted by DragFT. DragFT augments LLMs012
via three techniques: (i) Dictionary-enhanced013
prompting improves domain-specific terminol-014
ogy translation; (ii) RAG-based few-shot ex-015
ample selection provides high-quality exam-016
ples that simulate both the domain and style017
characteristics; (iii) Fine-tuning with few-shot018
examples further boosts fine-tuning with in-019
domain examples. We deploy DragFT on three020
well-known LLM backbones to validate its021
effectiveness. The results on three domain-022
specific datasets show that DragFT achieves a023
significant performance boost and shows supe-024
rior performance compared to strong baselines025
such as GPT-3.5 and GPT-4o. The drastic per-026
formance improvement of DragFT over exist-027
ing LLMs can be attributed to the incorporation028
of relevant knowledge while mitigating noise.029
Our three well-constructed datasets can accel-030
erate future research in domain-specific MT: a031
benchmark dataset designed for MT within the032
IT domain, and two datasets constructed from033
publicly available datasets respectively in law034
and medicine.035

1 Introduction036

Although Large language models (LLMs) have037

demonstrated remarkable performance in MT, they038

often fall short of the performance achieved by039

domain-specific models. To improve the domain-040

specific machine translation (MT) capability of041

LLMs, existing works fall into two groups. The042

first group employs in-context learning (ICL) by043

feeding LLMs with in-domain translation examples 044

as a demonstration without further fine-tuning (Ay- 045

cock and Bawden, 2024; Vilar et al., 2023; Moslem 046

et al., 2023a; Zhang et al., 2023a). ICL provides in- 047

context examples that help the model quickly adapt 048

to specific domains and styles. However, its perfor- 049

mance depends heavily on the quality and relevance 050

of examples. Another group fine-tunes LLMs 051

with translation instructions to improve the domain- 052

specific MT capability (Wei et al., 2022; Moslem 053

et al., 2023b). However, it often requires high com- 054

putational costs for extra training on specific do- 055

mains and may weaken the general MT capabilities 056

in LLMs due to over-specialization (Alves et al., 057

2023). Therefore, improving the domain-specific 058

MT capability of general-purpose LLMs remains a 059

challenge. First, current systems still struggle with 060

terminology translation. Even domain-adapted 061

models have difficulty with accurately translating 062

domain-specific terminology (Sato et al., 2020). 063

Second, high-quality in-domain parallel datasets 064

are often required for fine-tuning LLMs. 065

This paper addresses the above challenges by 066

boosting fine-tuning with few-shot examples to 067

leverage both ICL and fine-tuning benefits. We 068

propose a novel fine-tuning framework, denoted 069

as DragFT (Dictionary and retrieval augmented 070

Fine-Tuning), to augment the performance of 071

LLMs in domain-specific MT. DragFT contains 072

three components: dictionary-enhanced prompt- 073

ing, RAG-based few-shot example selection, and 074

fine-tuning with few-shot examples. We propose 075

Dict-rephrasing, a dictionary-enhanced algorithm, 076

that rephrases the source sentence by replacing ter- 077

minology with domain-specific terms in the target 078

language. It can augment fine-tuning performance 079

by improving domain-specific terminology trans- 080

lation. A RAG-based few-shot example selection 081

mechanism is developed to boost fine-tuning with 082

high-quality examples in instructions. We use extra 083

corpora (self-constructed domain-specific corpora) 084
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to build a vector database and retrieve relevant ex-085

amples to construct translation instructions, which086

are then fed into LLMs for fine-tuning. We con-087

struct three domain-specific translation instruction-088

following datasets and enhance the data quality by089

using LLM-based evaluation and human annotation090

to mitigate noise. In the component of fine-tuning091

with few-shot examples, we apply the Low-Rank092

Adaptation (LoRA) strategy to reduce the computa-093

tional cost. Our main contributions are summarized094

as follows:095

• We propose DragFT, a novel fine-tuning096

framework that enhances domain-specific MT097

by incorporating dictionary-enhanced prompt-098

ing for improving terminology translation,099

and RAG-based selection mechanism for in-100

corporating high-quality examples.101

• We construct three bilingual translation cor-102

pora in specific domains and improve data103

quality through LLM-based evaluation and104

manual annotation, tackling the challenge of105

limited high-quality training data for fine-106

tuning in domain-specific MT.107

• We conduct comprehensive experiments by108

adapting three well-known 13B backbone109

models over three datasets in different do-110

mains. The results show that DragFT can111

achieve significant improvements on existing112

LLMs in domain-specific MT. It also shows113

superior performance compared with strong114

baselines.115

2 Related Works116

2.1 ICL in Machine Translation117

ICL feeds LLMs with extra translation examples118

within the prompts to improve the MT capabilities,119

without fine-tuning (Brown et al., 2020). Several120

works focused on improving the MT capabilities of121

LLMs via ICL. (Zhang et al., 2023a) revealed that122

prompt example effectiveness in MT depends on123

features like sequence length and semantic similar-124

ity, with back-translation being especially robust.125

(Agrawal et al., 2023) showed that optimizing in-126

context examples and prompts, especially using127

n-gram overlap and re-ranking, significantly im-128

proves the MT quality. Other works investigated129

prompting strategies for identifying appropriate ex-130

amples. (Vilar et al., 2023) evaluated the MT per-131

formance of PaLM (Chowdhery et al., 2023) with132

different prompting strategies. (Garcia and Fi- 133

rat, 2022) used natural language-described prompts 134

to control and improve multilingual MT, enabling 135

translation into specific dialects and unseen lan- 136

guages. (Jiao et al., 2023b) demonstrated that effec- 137

tive prompts and example utilization can enhance 138

ChatGPT 1 multilingual translation, with a pivot 139

prompting strategy improving performance for dis- 140

tant languages. 141

Although moderate progress has been made, ICL 142

is highly sensitive to the quality of provided exam- 143

ples. Poor examples may lead to sub-optimal LLM 144

translation performance. 145

2.2 Instruction tuning in Machine Translation 146

Instruction tuning is a technique for fine-tuning lan- 147

guage models to improve their abilities to follow 148

specific instructions, enhancing their adaptability 149

and performance across diverse downstream tasks. 150

Given labeled domain-specific data, instruction tun- 151

ing can be an alternative to improve the MT capabil- 152

ities of LLMs. Instruction tuning is reported to out- 153

perform in-context learning in MT performance (Li 154

et al., 2023). Several works enhanced the MT per- 155

formance of LLMs by fine-tuning them with trans- 156

lation instructions on large amounts of parallel data 157

(Wei et al., 2022; Yang et al., 2023b; Zhang et al., 158

2023c; Chen et al., 2023b). (Jiao et al., 2023a) in- 159

corporated hint fields and three instruction types 160

to enhance chat translations. (Xu et al., 2024) re- 161

vealed that large parallel datasets are unnecessary 162

for high MT performance in LLMs, achieving sig- 163

nificant improvements with a novel two-stage fine- 164

tuning method involving monolingual fine-tuning 165

and lightweight parallel fine-tuning. 166

2.3 Domain-specific Machine Translation 167

Even though trained on large amounts of data, these 168

two groups of methods can struggle to translate 169

inputs with rare words in domain transfer scenar- 170

ios (Ghazvininejad et al., 2023). Therefore, sev- 171

eral works focused on using the domain-specific 172

vocabulary to supply translations in low-resource 173

settings (Lu et al., 2023; Ghazvininejad et al., 2023; 174

Moslem et al., 2023c). For instance, (Ghazvinine- 175

jad et al., 2023) incorporated the additional dictio- 176

naries into zero-shot examples without training. 177

Our work takes full advantage of ICL and in- 178

struction tuning, incorporating high-quality and rel- 179

evant translation examples during the fine-tuning 180

1https://chat.openai.com

2

https://chat.openai.com


Figure 1: The framework of DragFT, including three techniques: (i) Dictionary-enhanced prompting, (ii) RAG-
based few-shot example selection, and (iii) Fine-tuning with few-shot examples.

stage. We introduce a RAG-based method for pro-181

viding high-quality in-domain examples, ensuring182

the selected examples are semantically similar and183

contextually relevant to the training data. Addition-184

ally, we propose a novel dictionary augmentation185

method to address the challenge of translating ter-186

minology in specific domains.187

3 DragFT188

As shown in Figure 1, our DragFT enhances the189

domain-specific MT capabilities of LLMs through190

three techniques: (i) Dictionary-enhanced prompt-191

ing is a dictionary augmented technique for improv-192

ing domain-specific terminology translation; (ii)193

RAG-based few-shot example selection provides194

selected examples that closely match the source195

sentence in both translation style and vocabulary;196

(iii) Fine-tuning with few-shot examples incorpo-197

rates in-domain examples into fine-tuning by taking198

advantages of both ICL and fine-tuning.199

3.1 Machine Translation Task200

Fine-tuning LLM for adaptation to domain-specific201

MT requires the guidance of translation instruc-202

tions. Given a bilingual training dataset of C,203

which contains pairs of parallel bilingual training204

data denoted as (x,y), the optimization function L205

for the MT task is defined as follows:206

L =
∑

(x,y)∈C

− log p(y|x, T ; θ), (1) 207

where x = {x1, ..., xn} is the source sentence, 208

y = {y1, ..., ym} is its corresponding target transla- 209

tion, T is the translation instruction template, and θ 210

represents the training parameters. The probability 211

of a target sentence given the source sentence is: 212

p(y|x, T ; θ) =
m∏
t=1

p (yt|y<t,x, T ; θ) , (2) 213

where yt is the t-th generated token, y<t is the 214

privious tokens. 215

3.2 Dictionary-enhanced Prompting 216

The main obstacle in domain-specific MT lies in the 217

domain-specific terminology that is not commonly 218

used in general domains, which results in inaccu- 219

rate translations. To tackle this challenge, incor- 220

porating domain-specific terminology dictionaries 221

into translation prompts is crucial. One straight- 222

forward method combines dictionary data along 223

with the parallel corpus data to create a transla- 224

tion instruction format, called by Dict-instruction. 225

Inspired by (Zhang et al., 2023b), another ap- 226

proach appends the dictionary translation after the 227

sentence translation in a chained manner, named 228
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Figure 2: An illustration of three dictionary enhancement prompts, including Dict-instruction, Dict-chain, and
Dict-rephrasing.

as Dict-chain. However, the Dict-instruction in-229

creases the amount of fine-tuning data, while the230

Dict-chain extends the length of prompts, resulting231

in higher consumption of training resources and232

longer training time.233

In this paper, we introduce a novel dictionary en-234

hancement algorithm, denoted as Dict-rephrasing.235

It directly replaces the domain-specific terminol-236

ogy in source sentences with their corresponding237

terms in the target language from the in-domain238

dictionary, as illustrated in Algorithm 1. Figure 2239

shows examples of the three dictionary-enhanced240

prompting methods. Using the Dict-rephrasing,241

the terminology of “挂耳板” and “连接器” in242

the source sentence of “左挂耳板到主板的左挂243

耳连接器(J6081)的低速信号线缆” are directly244

rephrased to “mounting ear plate” and “connec-245

tor”, respectively. Therefore, the source sentence246

is rephrased as “左mounting ear plate到主板的左247

挂耳 connector(J6081)的低速信号线缆”.248

Dict-rephrasing helps LLMs better understand249

the terminology in context, effectively reducing250

the volume of training data compared to Dict-251

instruction and shortening the length of prompts252

compared to the Dict-chain. Our experiments in253

section 6.3 will further explore the effects of these254

methods.255

3.3 RAG-based Few-shot Example Selection256

The main idea of Retrieval-Augmented Generation257

(RAG) (Lewis et al., 2020) is integrating informa-258

tion from external data sources to supplement the259

input query or enhance the output. To ensure the260

quality of few-shot examples, we apply the idea261

Algorithm 1 Dict-rephrasing
Input: domain-specific dictionary D, domain-
specific parallel corpus C
Output: dictionary-enhanced parallel corpus C′

Sort D by length ↓
for each translation pair (x, y) in C do

Initialize x′ ← x
for each word pair (wsrc, wtgt) in D do

if wsrc in x then
Replace wsrc in x′ with wtgt

x′ ← Replace(x′, wsrc, wtgt)
end if

end for
C′ ← C′ ∪ {(x′, y)}

end for

of RAG and design a few-shot example selection 262

mechanism based on it. Specifically, we vector- 263

ize extra corpora using the BGE model (Xiao et al., 264

2023) and store these vectors to construct a domain- 265

specific vector database of V . Given a source sen- 266

tence, we convert it into a vector of s using the 267

BGE model. To retrieve semantically similar and 268

contextually relevant examples from V , we calcu- 269

late the similarity score of ci between s and the 270

vector of vi ∈ V . 271

ci =
s · vi
∥s∥∥vi∥

(3) 272

where · represents the dot product function. 273

We set a similarity score threshold of k and a 274

maximum number of examples n to refine the selec- 275
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tion process. If the similarity score of ci is greater276

than k, vi is selected and added to the relevant ex-277

amples set of R. When |R| is equal to n, we stop278

retrieving to limit the volume of the fine-tuning279

dataset.280

3.4 Fine-tuning with Few-shot Examples281

We utilize the training dataset with few-shot transla-282

tion examples to fine-tune LLMs. It is reported that283

fine-tuning with few-shot examples helps main-284

tain the few-shot learning capabilities of LLMs285

while preserving the benefits of fine-tuning (Alves286

et al., 2023). The prompt example adopted in our287

study is shown in Figure 1. We use “Translating288

the following content into <target-language>” as289

the translation instruction with selected examples290

and sentences to be translated as inputs. To reduce291

training costs, we utilize the LoRA (Hu et al., 2021)292

fine-tuning strategy, which is designed for efficient293

fine-tuning of LLMs. As illustrated in Figure 1,294

the pre-trained weights of W ∈ Rd×d are frozen,295

while two low-rank matrices of WA and WB with296

the rank of r are introduced to capture the param-297

eter updates. This approach allows for efficient298

fine-tuning with reduced computational costs and299

GPU memory requirements.300

4 Experimental Setups301

4.1 Datasets & Evaluation Metrics302

We conduct experiments on DragFT across three303

specific domains: IT, law, and medicine. Towards304

this end, we construct three bilingual instruction-305

following datasets in specific domains for fine-306

tuning LLMs.307

We collect documents within the IT domain308

in both Chinese and English from well-known309

IT companies and segment them into sentences,310

which are aligned to form a parallel corpus. To im-311

prove data quality, we utilize the COMETKiwi (Rei312

et al., 2023), a model-based evaluation method that313

doesn’t require extra translation references. Trans-314

lation pairs with COMETKiwi scores below 80 are315

discarded and the remaining candidates are verified316

with manual annotations by domain experts.317

We also conduct experiments on two datasets318

named Law and Medical, respectively belonging319

to the domain of law and medicine (Aharoni and320

Goldberg, 2020). As the original datasets are in321

English and German, we utilize Google Translate2322

to translate the contents into Chinese. We further323

2http://translate.google.com

improve the data quality by employing the same 324

method with COMETKiwi and manual annotations 325

and form two new datasets in both English and 326

Chinese for the domains of law and medicine re- 327

spectively. 328

We use two widely used evaluation metrics in 329

MT, including the word-based metric of BLEU 330

(Papineni et al., 2002), and the reference-based 331

metric of COMET (Rei et al., 2022) for model 332

evaluation. 333

To generate domain-specific dictionaries, we de- 334

sign prompts for GPT-3.5 to extract terminologies 335

from the training sets. We then work with experts 336

to manually filter out general words and annotate 337

the translations. Detailed prompts are provided in 338

the appendix. 339

4.2 Baselines 340

To investigate the effectiveness of DragFT, we 341

adapt it to three 13B parameter-scale LLM 342

backbones: Tigerbot-13B (Chen et al., 2023a), 343

Baichuan2-13B (Yang et al., 2023a), and LLama2- 344

13B (Touvron et al., 2023). Due to the baselines’ 345

poor adherence to translation instructions and fre- 346

quent over-generation, we fine-tune these models 347

using 20, 000 random samples from the WMT-193 348

dataset (in general domains) in the Zh⇔En direc- 349

tions. This fine-tuning process helps the baselines 350

better follow translation instructions for model 351

evaluation. We also consider three well-known 352

strong baselines, including NLLB (Costa-jussà 353

et al., 2022) from the NMT domain, GPT-3.54 and 354

GPT-4o from the LLM domain. 355

4.3 Implementation Details 356

We fine-tune the backbone models using a learning 357

rate of 3e-4, a training batch size of 2, a maximum 358

sequence length of 512 tokens, a weight decay of 359

0.00001, and a warmup ratio of 0.01. For efficient 360

training, we employ the Deepspeed5 and Flash- 361

Attention (Dao et al., 2022) acceleration frame- 362

works for fine-tuning with LoRA, with the rank 363

set to 16. In the inference stage, we adopt the 364

vLLM (Kwon et al., 2023) framework to accel- 365

erate inference and reduce memory usage. We 366

use the beam search algorithm with a beam width 367

of 4, a temperature of 0 to minimize diversity in 368

translation output and a length penalty of 1.0. In 369

3https://www.statmt.org/wmt19
4The GPT-3.5 version is gpt-3.5-turbo-1106.
5https://github.com/microsoft/DeepSpeed
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Model
Zh⇒ En En⇒ Zh

IT Law Medical IT Law Medical

BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Advanced Models
NLLB-3.3B 26.37 82.76 46.27 83.87 37.52 81.32 26.96 83.37 42.99 84.46 38.15 80.00

GPT-3.5 29.33 84.58 34.44 84.12 41.51 86.56 34.44 85.58 47.71 86.18 53.77 86.05
GPT-4o 31.23 85.43 38.71 85.60 45.55 87.96 37.16 86.44 54.22 88.31 61.19 88.44

Base Model: Tigerbot-13B
Tigerbot-13B 25.79 82.47 32.30 83.22 37.04 85.11 27.79 82.22 39.85 83.56 44.61 84.66

DragFT 45.49 85.64 45.65 85.32 44.93 86.02 45.31 86.92 58.95 89.26 64.44 89.10

Base Model: Baichuan2-13B
Baichuan2-13B 26.81 82.67 34.56 82.69 40.41 85.96 30.02 82.87 45.69 81.39 55.81 86.26

DragFT 43.24 84.65 44.89 85.73 44.78 86.67 44.56 87.05 60.18 89.28 64.48 89.31

Base Model: Llama2-13B
Llama2-13B 22.21 80.36 31.32 82.28 34.16 83.07 23.31 79.56 24.21 74.53 28.17 75.78

DragFT 45.64 85.55 47.35 85.11 44.85 86.50 45.16 87.07 57.08 88.19 65.43 89.83

Table 1: Translation performance of advanced models and applying DragFT method on three backbone models
(TigerBot-13B, Baichuan2-13B, and Llama2-13B) on IT, Law, and Medical datasets (Zh⇔ En).

the RAG-based few-shot example selection mech-370

anism, we set the similarity score threshold k to371

0.7, and the maximum number of examples n to 2.372

All experiments were conducted on one NVIDIA373

A100 GPU.374

5 Results375

We show the main results of the domain-specific376

translation for Zh⇔En in Table 1. To ensure con-377

sistency between training and testing, we apply378

the corresponding dictionary-enhanced methods to379

construct the test set during the inference stage.380

Overall, our DragFT significantly improves the381

translation quality of existing LLMs and shows382

superior performance compared with strong base-383

lines. We have the following observations:384

(i) DragFT achieves a significant performance385

boost in three LLM backbones over three domain-386

specific test sets of IT, Law, and Medical. This can387

be attributed to the incorporation of relevant knowl-388

edge while mitigating noise, which also indicates389

the effectiveness of three techniques in DragFT.390

(ii) Among three strong baselines of GPT-3.5,391

GPT-4o, and NLLB-3.3B, GPT-4o achieves the392

best performance. Compared to GPT-4o, DragFT393

significantly outperforms it in most datasets and394

shows comparative performance over the dataset in395

the medical domain (Zh⇒ En).396

(iii) DragFT demonstrates drastic improvement397

in the BLEU metric compared to the COMET398

metric. Since BLEU evaluates translation qual-399

ity at word and phrase levels, our dictionary-400

enhanced prompting can augment LLMs by trans- 401

lating domain-specific terminologies. This also 402

indicates the effectiveness of Dict-rephrasing. 403

6 Analysis 404

6.1 Effect of Instruction Tuning on MT 405

To evaluate the effect of instruction tuning on MT 406

tasks, we conduct a comparative experiment us- 407

ing the Tigerbot-13B. We use the WMT22 test set 408

(Zh⇔En) 6 as the test set, which is formatted into 409

translation instructions. Additionally, we extract 410

20,000 samples from the WMT19 parallel corpus 411

(Zh⇔En) to form the training set. 412

The experiment includes the following settings: 413

Pre-trained: The test set is directly fed into the 414

original model without fine-tuning. 415

Fine-tuned: The model is fine-tuned using train- 416

ing data without translation instruction tuning. 417

Instruction-tuned: The model is fine-tuned us- 418

ing training data formatted with translation instruc- 419

tions. 420

Reference: The referenced translations of the 421

test set. 422

We show the length distribution result of tok- 423

enized outputs when translating the WMT22 test 424

set (Zh⇒En) on different training setups as shown 425

in Figure 3. We observe that the outputs of the pre- 426

trained model are generally too short, indicating a 427

failure to accurately understand the MT task with- 428

out fine-tuning. On the other hand, the fine-tuned 429

6https://www.statmt.org/wmt22
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Figure 3: The length distribution of tokenized outputs
on the WMT22 test set (Zh⇒En).

model produces excessively long outputs, demon-430

strating the over-generation problem. In contrast,431

the instruction-tuned model generates outputs with432

length distribution closer to the reference. This in-433

dicates that instruction tuning effectively guides the434

model to complete the MT task without generating435

redundant information.436

6.2 Effect of Dictionary-enhanced Prompting437

To investigate whether our proposed dictionary-438

enhanced algorithm can improve the performance439

of LLMs in domain-specific MT, we conduct com-440

parative experiments on Tigerbot-13B. We employ441

three different dictionary-enhanced methods intro-442

duced in section 3.3 to construct training data for443

fine-tuning and then evaluate the translation qual-444

ity on a domain-specific test set. We also conduct445

an experiment on fine-tuning without dictionary446

augmentation, denoted as Dict-none. The experi-447

mental results are shown in Figure 4.448

Compared to Dict-none, all three dictionary-449

enhanced methods demonstrate translation per-450

formance improvements, indicating that they can451

effectively improve domain-specific terminology452

translation. Among them, our proposed Dict-453

rephrasing algorithm shows the most significant454

improvement, although it performs slightly worse455

than the Dict-chain in the Medical dataset. This456

strongly validates the effectiveness of our proposed457

Dict-rephrasing, which directly embeds terminol-458

ogy information into the source sentences. This ap-459

proach neither requires additional dictionary data460

for training nor increases the prompt length, allow-461

ing the LLMs to better understand the context of462

terminology during training, and therefore improv-463

ing the translation quality.464

Figure 4: Performance comparison of different
dictionary-enhanced prompting methods on domain-
specific test sets.

6.3 Ablation Study 465

We conduct an ablation study to analyze the effects 466

of different components of DragFT. Table 2 shows 467

the results on Tigerbot-13B, which highlights the 468

importance of each component in DragFT. 469

Without (w/o) Dict-rephrasing. We remove 470

Dict-rephrasing and use the source sentence. From 471

result IDs of 0 and 1 in Table 2, we observe a signif- 472

icant drop in translation quality without dictionary- 473

enhanced prompting. This indicates its essential 474

role in domain-specific MT. The results of 0, 4, 475

and 5 show that the Dict-rephrasing algorithm 476

achieves superior performance compared to the 477

Dict-instruction and Dict-chain methods, which 478

also validates our findings in section 6.2, indicating 479

the effectiveness of the Dict-rephrasing algorithm 480

for domain-specific MT. 481

Without (w/o) RAG-based selection. We replace 482

the RAG-based example selection mechanism with 483

a strategy that randomly selects two examples for 484

each training data from extra corpora. The results 485

of 0 and 2 in Table 2 reveal a remarkable perfor- 486

mance decline in the LLM without RAG selection, 487

which also indicates the quality and relevance of 488
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ID Method IT Law Medical

BLEU COMET BLEU COMET BLEU COMET

0 DragFT [Dict-rephrasing] 45.49 85.64 45.65 85.32 44.93 86.02
1 w/o Dict-rephrasing 42.25 84.02 42.59 84.84 42.47 83.74
2 w/o RAG-based selection 39.42 80.41 40.25 83.51 40.77 75.48
3 w/o few-shot example 41.47 84.37 40.64 84.76 41.47 83.28
4 DragFT [Dict-instruction] 43.89 84.34 43.27 85.11 43.32 84.98
5 DragFT [Dict-chain] 44.47 84.87 43.44 85.42 44.15 84.78

Table 2: Ablation study. We report the BLEU and COMET scores in Zh⇒En direction with Tigerbot-13B.

examples can affect the performance.489

Without (w/o) few-shot example. We directly490

conduct instruction tuning on the LLM without pro-491

viding any translation examples. From the results492

of 0 and 3, we find a drastic decline in translation493

quality when performing instruction tuning with-494

out few-shot examples. This suggests that simple495

instruction tuning is insufficient to fully leverage496

the ICL capabilities of LLMs.497

Figure 5: Comparison between the UTW before and
after applying DragFT.

6.4 Effects of DragFT498

To analyze the impact of the DragFT method,499

we compare the Unaligned Translation Words500

(UTW) rate between before and after applying501

DragFT on Tigerbot-13B. The alignment is mea-502

sured using the method from (Dou and Neubig,503

2021), also used by (Hendy et al., 2023). The re-504

sults are shown in Figure 5, we can observe that505

after domain adaptation with DragFT, the UTW506

significantly decreased, indicating improved word507

translation precision and overall translation per-508

formance. This validates DragFT’s advantage in509

handling domain-specific terms. 510

7 Conclusion 511

To enhance the domain-specific MT capabilities 512

of LLMs, this paper proposes a novel fine-tuning 513

framework denoted as DragFT. DragFT employs 514

dictionary-enhanced prompting to improve domain- 515

specific terminology translation and RAG-based 516

few-shot example selection to provide high-quality 517

few-shot examples to boost fine-tuning with in- 518

domain examples. We deploy DragFT on three 519

well-known LLM backbones, and the results on 520

three domain-specific datasets show that DragFT 521

can achieve a remarkable performance boost in 522

three backbones and surpass strong baselines. The 523

performance improvement of DragFT over exist- 524

ing LLMs can be attributed to the incorporation of 525

relevant knowledge while mitigating noise. We 526

also construct three domain-specific translation 527

instruction-following datasets to accelerate future 528

research in domain-specific MT. Our current pro- 529

posed framework fine-tunes all instances, irrespec- 530

tive of whether a test instance requires fine-tuning 531

or not, which may lead to the deterioration of trans- 532

lation quality for some sentences. In the future, 533

we plan to identify those sentences that require 534

fine-tuning and adapt only to them. Meanwhile, 535

we perform dictionary-enhanced prompting for all 536

instances, irrespective of whether a terminology re- 537

quires enhancement or not, which may lead to the 538

deterioration of translation quality for some sen- 539

tences. Moving forward, we will focus on identify- 540

ing domain-specific terms that require rephrasing 541

or dictionary chaining and adopt only those. 542
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Limitation543

We focus on the Zh⇔En translation directions,544

which may limit the generalizability of our find-545

ings. Due to time and resource constraints, we rely546

on machine translation metrics rather than human547

evaluation to assess translation quality.548

Ethics Statement549

This work relies on large language models which,550

as detailed in (Brown et al., 2020) and (Chowdh-551

ery et al., 2023), can carry inherent risks. Poten-552

tial issues include the presence of toxic content553

due to training on extensive web corpora (Gehman554

et al., 2020), and high energy consumption during555

training (Strubell et al., 2019). In constructing the556

domain-specific dataset, the data were collected557

with respect to individual privacy, and proper con-558

sent was obtained where applicable. Personal or559

sensitive information was anonymized to ensure560

protection. Furthermore, to enhance the quality561

of the dataset, we engage annotators who are duly562

compensated for their time and expertise, ensuring563

fair practices by established standards.564
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Figure 1: An example of extracting specialized medical bilingual dictionaries.

Appendix A775

A1 Domain-specific Dictionary Generation776

We employ a method combining LLM models and777

manual annotation to build domain-specific dictio-778

nary data. The process is outlined as follows:779

1. For three domain-specific datasets (IT, Law,780

Medical), we initially input data into Chat-781

GLM 7 using predefined prompts, as shown782

in Figure 1.783

2. The LLM model extracts domain-specific784

words from the data guided by the prompts.785

3. Domain experts perform manual annotations786

to enhance the accuracy of translating special-787

ized terms.788

This approach integrates automated text process-789

ing capabilities with domain expertise from human790

professionals, enabling the efficient generation of791

high-quality and precise domain-specific dictionary792

data.793

Domain Train Test Vector Database

IT 60000 4920 74699
Law 6000 3950 100000
Medical 6000 3770 87288

Table 1: The data statistics of the datasets we construct
on three domain-specific datasets.

7https://open.bigmodel.cn/

Method IT Law Medical

Dict-chain 1.54M 4.87M 4.10M
Dict-rephrasing 1.24M 2.66M 2.02M

Table 2: Length of token using different dictionary en-
hancement methods.

Method IT Law Medical

Dict-instruction 64k 88k 75k
Dict-rephrasing 60k 60k 60k

Table 3: The number of training data using different
dictionary enhancement methods.

A2 Dataset Statistics 794

After separating the test set, we select 60,000 man- 795

ually screened, high-quality bilingual parallel data 796

for fine-tuning in each of the three domains (IT, 797

Law, and Medical). The remaining data is used to 798

build the vector database. Table 1 shows the stat- 799

ics of the datasets we construct on three specific 800

domains. 801

A3 Benefits of Dict-rephrasing 802

We apply three dictionary enhancement methods 803

and conduct data statistics on three training sets. 804

Table 2 shows the total token length of instructions 805

and inputs, while Table 3 displays the number of 806

training data. It can be observed that compared to 807

the Dict-chain method, the training set enhanced by 808

the Dict-rephrasing has a reduced total token length. 809

In comparison to the Dict-instruction method, Dict- 810

rephrasing significantly reduces the volume of train- 811
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Method
Zh⇒ En En⇒ Zh

WMT22 Flores-200 WMT22 Flores-200

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

WMT22 Winners 33.50 81.0 54.3 86.8 - - - -
NLLB-3.3B 21.07 76.92 32.52 81.56

Tigerbot-13B 15.72 76.62 27.20 86.64 36.34 85.35 39.89 86.94
DragFT 23.23 79.93 27.43 86.64 40.31 86.38 38.91 86.59

Table 4: Translation performance of our DragMT on WMT22 test set and Flores-200 test set with Tigetbot-13B
model.

ing data. Overall, the Dict-rephrasing method ef-812

fectively shortens training time by reducing prompt813

length and data scale, saving time and computa-814

tional resources.815

A4 Translation performance in general816

domain817

To validate the performance of the model fine-tuned818

with DragFT in the general domain, we evaluate819

translation metrics on the WMT22 and Flores-200820

test sets and compare them with advanced mod-821

els. The backbone model is Tigerbot-13B. Table 4822

shows the results in the general domain. It is evi-823

dent that DragFT maintains robust domain-specific824

translation capabilities while demonstrating excel-825

lent translation performance on general domain826

datasets WMT22 and Flores-200 (Costa-jussà et al.,827

2022).828
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