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ABSTRACT

Converting pretrained attention modules such as grouped-query attention (GQA)
into multi-head latent attention (MLA) can improve expressivity without increasing
KV-cache cost, making it attractive for efficient inference. However, existing
conversion methods typically apply naïve singular value decomposition (SVD).
They focus on minimizing the difference between weight matrices rather than
on how those weights affect input activations, ignore the covariance structure
of activations, and enforce uniform rank across layers—causing activation drift
and degraded attention fidelity. To address these issues, we propose CARE, a
Covariance-Aware, Rank-Enhanced MLA conversion pipeline under a fixed KV
width. CARE introduces three key steps: (i) activation-preserving factorization,
which aligns the approximation with the actual input activations rather than just
the weights; (ii) adjusted-rank allocation, which spreads a fixed KV budget across
layers by giving more capacity to layers that need it most; and (iii) KV-parity
mapping, which reparameterizes the converted K and V to fit the MLA format
while keeping the KV-cache size unchanged. Under a matched KV-cache budget,
our method consistently outperforms a uniform-rank SVD baseline on Llama-3-8B,
delivering up to 331% relative gains in one-shot evaluation (higher accuracy, lower
perplexity). With a brief post-SVD “healing” fine-tune, we fully recover original
model’s accuracy.

1 INTRODUCTION

Large Language Models (LLMs) deliver impressive capabilities but at high inference cost, with
the key–value (KV) cache in self-attention emerging as a primary memory and bandwidth bot-
tleneck (Vaswani et al., 2017; Kwon et al., 2023). In the standard multi-head attention (MHA)
formulation, each head materializes and caches its own keys and values at every decoding step,
causing the KV footprint to grow linearly with sequence length and head count. To alleviate this, ar-
chitecture variants such as multi-query attention (MQA), which shares a single K,V across all heads,
and grouped-query attention (GQA), which shares K,V within head groups, have been adopted
at scale to shrink KV cache size (Shazeer, 2019; Ainslie et al., 2023; Touvron et al., 2023; Jiang
et al., 2023; Chowdhery et al., 2022; Shoeybi et al., 2019). While effective, these variants reduce the
number of distinct key/value projections, which can limit attention expressivity and introduce quality
regressions when compression is pushed aggressively.

A more recent line of work reframes the KV-cache problem as one of learned low-rank representa-
tion (Wang et al., 2020; Xiong et al., 2021). Multi-Head Latent Attention (MLA) compresses keys
and values into low-dimensional latent vectors, caches only these latents, and restores expressivity
with lightweight up-down projections at compute time (DeepSeek-AI Team, 2024). In practice,
MLA can dramatically reduce KV size while preserving or even improving task accuracy by trading
memory and communication for modest extra floating-point-operations (FLOPs) in the projections
(DeepSeek-AI Team, 2024; Guo et al., 2025; Liu et al., 2024a; Geens & Verhelst, 2025). Despite
these advantages, the ecosystem is dominated by pretrained MHA/GQA checkpoints (Touvron et al.,
2023; Jiang et al., 2023; Yang et al., 2024). Retraining large models from scratch under MLA is
expensive, so a natural question arises:
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Figure 1: (a) Naïve (joint) SVD: directly factorizes concatenated W
(g)
K ,W

(g)
V and truncates to

a uniform per-layer rank, optimizing parameter error ∥W − Ŵ∥F and neglecting layer-wise
anisotropy—often yielding activation drift. (b) CARE: for each layer, estimate input covariance C,
compute a covariance-weighted SVD on CW (equivalently, SVD on the whitened operator CW ),
then unwhiten via C−1 to initialize (DownKV ,UpKV ); use the eigen/singular spectrum of CW
to construct an energy curve and select rank r by constrained energy maximization. A global rank
scheduler enforces KV parity (r = ghdh) and the total KV-cache budget, after which MLA factors
(W a,W b) are fine-tuned (“healing”) to close residual gaps—preserving activation geometry while
improving one-shot accuracy/perplexity over uniform SVD.

Can we convert strong, pretrained MHA/GQA models into MLA post-hoc, without increasing the
KV budget and without incurring large performance loss?

Recent work has explored converting traditional attention (MHA/GQA) into multi-head latent atten-
tion (MLA) under fixed KV width. TransMLA (Meng et al., 2025) demonstrates that every GQA layer
admits an equivalent MLA parameterization and proposes a practical post-training mapping followed
by light finetuning. MHA2MLA (Ji et al., 2025) generalizes to MHA→MLA by addressing positional
encoding mismatches (e.g., partial RoPE adjustments) and initializing WK ,WV with low-rank joint
SVD before efficient recovery (Su et al., 2021b). Together, these works establish MLA as a promising
post-hoc target and highlight low-rank factorization as central to preserving pretrained knowledge
under KV-constrained reparameterizations (Hu et al., 2022; Denil et al., 2013; Denton et al., 2014;
Sainath et al., 2013; Eckart & Young, 1936).

However, direct SVD initialization has two key shortcomings. First, it minimizes error in weight
space (∥W − Ŵ∥) rather than activation space (∥XW −XŴ∥), ignoring how the projection actually
operates during decoding (Hassibi et al., 1993; Wang et al., 2024; Yuan et al., 2023). This mismatch
induces attention-logit drift even when the weight approximation is accurate. Second, it enforces
a uniform rank across layers, neglecting differences in spectral structure. Layers with fast spectral
decay are over-compressed, while those with slower decay are under-compressed, leading to fidelity
loss and heavier reliance on post-conversion finetuning.

To address the above two shortcomings, we propose CARE, a Covariance-Aware, Rank-Enhanced
conversion pipeline, as shown in Fig. 1. First, CARE makes the decomposition activation-aware:
rather than applying vanilla SVD to W , we solve a whitened approximation problem by applying
SVD to CW and then unwhitening to obtain Ŵ , where C summarizes input activation covariance
estimated from a modest calibration set. This ensures that dominant activation directions are preserved
and substantially reduces attention-logit error before any finetuning. Second, CARE is rank-adaptive:
it distributes a fixed KV budget across layers and heads based on their singular spectra, allocating
higher rank to spectrally complex matrices and lower rank to intrinsically low-rank ones, akin in
spirit to budgeted, importance-aware adapter methods (Zhang et al., 2023; Valipour et al., 2023; Hu
et al., 2022; Wang et al., 2025a). This budgeted, importance-aware scheduling maintains fidelity
under the KV constraint while reducing reliance on post-conversion finetuning.

Contributions.

• Activation-aware decomposition. We propose a covariance-aware factorization that min-
imizes activation error ∥XW −XŴ∥ (rather than weight error), implemented via SVD
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on a whitened operator and subsequent unwhitening. This preserves attention logits more
faithfully at equal KV budget.

• Rank-adaptive scheduling under fixed KV width. We introduce a singular-value-guided
allocation that distributes rank unevenly across layers/heads and the {K,V } matrices,
matching spectral difficulty and improving zero-shot fidelity compared with uniform ranks.

• KV-parity mapping and practical pipeline. We derive a KV-parity reparameterization
for MLA conversion and integrate the above techniques into a practical conversion pipeline
CARE-converted models exhibit lower activation error and improved task quality over naive
(joint) SVD baselines at equal KV cost, while requiring less data to recover residual gaps.

2 NAÏVE (JOINT) SVD IS NOT ENOUGH FOR MLA TRANSFER

Multi-head latent attention (MLA) transfer is often initialized with singular value decomposition
(SVD), either per matrix or via a joint factorization across related matrices (e.g., WK , WV ). While
convenient, this practice implicitly optimizes weight-space error ∥W − Ŵ∥F and assumes that the
spectrum alone reveals task importance. In this section we show both assumptions break down in
practice and, consequently, naïve (joint) SVD is an unreliable recipe for high-fidelity MLA transfer
under a fixed KV budget.

(a) (b) (c)

Figure 2: (a)(b): Layer-wise robustness to rank reduction. We randomly reduce the rank of each
layer by 50% (ratio-rate = 0.5) in deepseek-v2-lite (Liu et al., 2024a) and plot accuracy on ARC
Challenge (25-shot) and MMLU versus layer index, with dashed lines marking the full-rank baselines
(ARC 54.09%, MMLU 58.16%). The magnitude of accuracy degradation varies markedly across
layers—some layers suffer large drops while others remain near baseline—demonstrating hetero-
geneous sensitivity to rank reduction. (c): Grouped truncation of MLA attention (layers 30–32) of
Llama-3-8B and its effect on Wiki PPL. We partition singular values into 10 magnitude groups sorted
descending, and—for each group—truncate it and average the resulting perplexity across the 3 layers.
The dashed line marks the ideal monotonic trend expected if “smaller” singular-value groups always
had a smaller impact. In practice (bars), groups 8–9, although relatively small in energy, do not yield
the worst PPL increase, while later groups can. This non-monotonic sensitivity suggests that SVD’s
singular value is imperfect proxy for MLA conversion.

Observation 1: Accuracy-preserving rank is not uniform across layers. Fig. 2 (a)(b) exhibits
pronounced layer-wise heterogeneity when we halve the rank of every layer: some layers tolerate ag-
gressive reduction with negligible loss, whereas others incur sharp drops on ARC and MMLU. Hence,
the “safe” rank that preserves accuracy is layer-dependent. A one-size-fits-all policy (uniform pruning
or a fixed ratio per layer) either over-compresses fragile layers—degrading task performance—or
under-compresses robust layers—wasting KV budget. These results call for rank-aware scheduling
that allocates higher rank to sensitive layers while reclaiming capacity from robust ones.

Observation 2: Singular values are poor proxies for accuracy importance. A common heuristic
treats singular values as importance scores, expecting that truncating smaller values should least affect
accuracy. We directly test this with a brute-force ablation: given W = UΣV ⊤, we set the i-th singular
value to zero and reconstruct W̄ (i) = U diag(σ1, . . . , 0, . . . , σr)V

⊤, treating V T as compress of
MLA and U as expand of MLA. As shown in Fig. 2 (c), the link between singular-value magnitude
and downstream accuracy is non-monotonic. We conjecture the root cause is mismatch of objectives
and statistics: vanilla SVD minimizes weight error, not activation-space error ∥XW −XŴ∥ under
the true (anisotropic) input distribution.
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Thus, naïve (joint) SVD isn’t enough: (i) the rank needed to keep accuracy varies by layer, and (ii)
singular values alone don’t reflect accuracy importance.

3 CARE: COVARIANCE-AWARE AND RANK-ENHANCED MLA CONVERSION

We propose CARE, a post-hoc conversion pipeline that maps a pretrained MHA or GQA layer to an
MLA layer at the same KV budget, while explicitly minimizing activation error and adapting ranks
to spectral difficulty. CARE revisits low-rank factorization through the lens of activation statistics
and integrates several components from our prior work (covariance-weighted SVD, non-uniform rank
allocation, and low-rank compensation) into a single, practical procedure compatible with LLaMA
backbones.

Notation. Given a fixed layer with input activations X ∈ RT×D with length T and embedding
dimension D. The multi-head attention in our setup contains nh heads of size dh, where we assume
the output space corresponds with input space, formally nhdh = D. We denote gh to be the number
of GQA groups, where for this layer: Q = XWQ, K = XW

(g)
K ∈ RT×(ghdh), V = XW

(g)
V ∈

RT×(ghdh) with gh < nh, with W
(g)
{·} represents the weight matrix under the GQA setup. By contrast,

an MLA layer with latent rank r uses K = (XW a
K)W b

K , V = (XW a
V )W

b
V , where W a

{·} ∈R
D×r,

W b
{·} ∈ Rr×(nhdh). Only the latent XW a

{·} ∈ RT×r is cached, with W b
{·} ∈ Rr×(nhdh) used to

recover KV matrix.

3.1 RECALL: KV-PARITY MAPPING

Grouped-Query Attention (GQA) reduces KV-cache memory by letting multiple heads share the same
key–value projection. To convert GQA to Multi-Head Latent Attention (MLA) without increasing
the KV budget, we enforce KV parity. Consider a GQA layer with nh heads of size dh with
total multi-head hidden size D = nhdh, we split nh heads split into gh groups, where each group
contains nh

gh
heads. The layer l uses W

(l)
Q ∈ RD×(nhdh) and grouped W

(l)
K ,W

(l)
V ∈ RD×(ghdh).

We conceptually replicate each group’s W (l)
K and W

(l)
V across its nh

gh
members to form the full-size

W̃
(l)
K , W̃

(l)
V ∈ RD×(nhdh) (no need to materialize in code). This demonstrates that the GQA method

can be reduced to MLA by removing the repeated head blocks (Meng et al., 2025). Therefore, we set
MLA’s latent rank to match GQA’s per-token KV width:

r = gh dh (1)

3.2 PRELIMINARY: COVARAINCE FOR INPUT ACTIVATIONS

Let X(l)
b ∈RTb×D be the bth batch of the domain activations with length Tb at some layer l (note

that the length of tokens remains the same across layers, but can be different across batches). These
batches of domain activations are used to calculate the extent of preserved rank in Sec. 3.3 and
initialize the trainable parameters later in Sec. 3.4.

We then define C(l), the covariance matrix over all the N batches at layer l, as follows:

C(l) = 1
N

N∑
b=1

(X
(l)
b )⊤X

(l)
b .

3.3 ADJUSTED-RANK SCHEDULING ACROSS LAYERS

Due to heterogeneous key / value spectra across different layers, the retained rank of each layer using
MLA are supposed to be different. LetW = {W̃ (l)

K , W̃
(l)
V }Ll=1 represent the pretrained KV weights

from Sec. 3.1, where L represents the number of layers. Note thatW contains 2L weight matrices,
each with dimension D × nhdh (recall D = nhdh).
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Given a total rank budget Rtot, we globally maximize the retained energy:

max
{r(l)K ,r

(l)
V }

L∑
l=1

r
(l)
K∑

m=1

σ
(l)
K,m +

L∑
l=1

r
(l)
V∑

m=1

σ
(l)
V,m s.t.

L∑
l=1

(r
(l)
K + r

(l)
V ) = Rtot, r

(l)
K ≤ R

(l)
K , r

(l)
V ≤ R

(l)
V

(2)
where σ

(l)
K,m (same for V ) represents the mth-largest singular value of matrix C(l)W̃

(l)
K , C(l) is the

covariance matrix calculated in Sec. 3.2, W̃ (l)
K ∈ W is defined above, R(l)

K is the rank of C(l)W̃
(l)
K

and r
(l)
K represents its retained rank with r

(l)
K ≤ R

(l)
K .

The optimal solution can be computed by greedily water-fill: repeatedly increment rank to the matrix
which will increase the most of the sum of singular values. We optionally enforce hardware-friendly
multiples (e.g., 8/16) and apply mild priors (e.g., favor V when ties occur).

One can argue that the solution achieved by water-fill maximizes Eq. 2, as shown in Eq. 3 and proved
in App. F (Eckart & Young, 1936). We start with the largest singular value of all the candidate
matrices, and next time when a selection is made, the value must be smaller than the previous one
since it is either the next rank from other matrices (smaller since we chose the largest one), or the
next rank from the previously chosen matrix (smaller since singular values are sorted in decreasing
order). Therefore, our algorithm selects the Rtot-th largest singular values from all the matrices,
which results in the largest singular value sum under budget Rtot ranks.

3.4 RETHINKING SVD WITH ACTIVATION COVARIANCE

A naive rank lowering attempts to minimize Frobenius error ∥W − Ŵ∥F , where Ŵ represents the
de-ranked matrix for compressing, and the original pretrained weight matrix to compress, W :=

W
(l)
{·} ∈ W , lies in layer l . For inference fidelity, we propose the relevant objective to be minimizing

the empirical activation error. Focusing on compressing the certain weight matrix W , we denote r to
be the target compressed rank calculated in Sec. 3.3. Here {Xb := X

(l)
b ∈ RTb×D}Nb=1 represents

the small domain activation batches to compute the low-rank decomposition at layer l, where N is
the total number of batches, Tb is the length of each batch and C := C(l) is the covariance matrix
defined in Eq. 3.2.

Formally, we try to minimize the following:

min
rank(Ŵ )≤r

1

N

N∑
b=1

∥XbW −XbŴ∥2F . (3)

This optimization formalizes how well Ŵ preserves XbW on relevant inputs Xb. We can tell from
the definition of C: 1

N

∑N
b=1 ∥XbW −XbŴ∥2F = ∥

√
C(W − Ŵ ) ∥2F .

Heuristically, we use ∥C(W − Ŵ ) ∥2F as a proxy for ∥
√
C(W − Ŵ ) ∥2F to amplify the covariance

influence during rank scheduling in 3.3. Formally, this can be argued by letting C = QΛQ⊤ with
Λ = diag(λi), the eigenvalues of C. Then

√
CW = QΛ1/2(Q⊤W ),while CW = QΛ(Q⊤W ).

Both of them are left-multiplied by the same eigenspaces of C; the difference is a re-weighting
of directions changes to λ2

i . Thus CW emphasizes the same directions as
√
CW more strongly.

Therefore, this tends to preserve the ordering of dominant components and hence the top-rank
subspace chosen by truncation.

One can show that the optimal rank-r solution is obtained by truncated SVD of CW , with proof
in App. F (Eckart & Young, 1936). This re-weights weight-space directions by usage in the input
activation, aligning with importance aware compression (LeCun et al., 1989; 1990b; Frantar et al.,
2022).

We therefore compute, for K and V separately,

CW = U ΣV ⊤, then Ŵ = C−1 Ur Σr V
⊤
r , (4)

5
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with Ur,Σr, Vr the top-r components of U,Σ, V . In practice, we use a shrinkage Cλ = (1− α)C +
αλI to ensure C is invertible, with α ∈ (0, 1) and λ > 0.

Then we initialize the trainable parameters W a∈RD×r and W b∈Rr×(nhdh) s.t. W aW b equals the
compressed matrix. We map SVD factors to MLA by

W a ← C−1 Ur Σ
1
2
r , W b ← Σ

1
2
r V ⊤

r , (5)

so that W aW b = Ŵ . The cached latent XW a ∈ RT×r in MLA spans the principal activation
subspace, where X is the actual input at layer l.

3.5 HEALING CARE CONVERTED MODELS

Based on our initialization of down-and-up matrices W a, W b and number of T tokens, we attempt
to encode positional information in the attention mechanism. Given layer l, let Qt = XtWQ be the
usual query at step t, and let KC,t = (XtW

a
K)W b

K and VC,t = (XtW
a
V )W

b
V be the MLA generated

keys/values. Following the decoupled RoPE design in (DeepSeek-AI Team, 2024), we add a small
RoPE channel of width dr by concatenation, where we introduce new trainable matrices:

WR
Q ∈ RD×(nhdr), WR

K ∈ Rr×dr ,

where dr ≪ dh. LetRt ∈ R(nhdr)×(nhdr) denote the standard block-diagonal RoPE rotation matrix
transformation for step t (applied head-wise on each 2D pair). We form:

QR,t = (XtW
R
Q )Rt, KR,t = repeat

(
(XtW

a
K)WR

K Rt

)
,

where repeat function replicates the shared RoPE key across all the heads. We then concatenate
the RoPE channels and run standard attention on them:

Q⋆
t =

[
Qt ; QR,t

]
, K⋆

t =
[
KC,t ; KR,t

]
, At = Softmax

(
Q⋆

t (K
⋆
t )

⊤
√
dh + dr

)
, Ot = At VC,t,

where At denotes the weight of each value vector and Ot denotes the layer output. We only cache
latents XtW

a
K and XtW

a
V , along with RoPE latents (XtW

a
K)WR

K Rt and QR,t, preserving cache
efficiency while letting RoPE act directly in attention as in Li et al. (2025b).

We penalize the low-rank decomposition by its cross-entropy classification error and KL-divergence
imitation error, namely the loss functions:

LCE = − 1
T

T∑
t=1

log pS(xt+1 | x≤t), (6)

LKD = 1
T

T∑
t=1

KL
(
softmax(zTt /τ)

∥∥ softmax(zSt /τ)
)
, (7)

L = LCE + β τ2 LKD. (8)

Here pS(xt+1 | x≤t) represents the probability of making the correct prediction of the next token at
the first layer based on our student (compressed) model, where each process in the transformer uses
down and up samples W a and W b instead of the original W . Also, zTt and zSt represent the teacher’s
(original pretrained) and student’s (compressed) last layer outputs used to predict the next token, with
pS(xt+1 | x≤t) = softmax(

zS
t

τ )xt+1
with τ the temperature and β balancing the terms (Hinton et al.,

2015). Note that both LCE and LKD are related to all the W a,W b for ∀W ∈ W , since each input
token goes through all the layers to yield the output of the last layer and predict the next token.

4 EXPERIMENTAL RESULTS

Overview. We assess whether CARE—Covariance-Aware and Rank-Enhanced decomposition—
enables accurate MLA migration under fixed KV budget (KV-parity). We report perplexity, accuracy
on general knowledge suites, long-context robustness, decoding throughput and measured KV
footprint.
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Conversion protocol. MLA reparameterization follows prior recipes with covariance integration.
Post-conversion, we apply brief SFT (same budget across methods). For CARE, we estimate
C = Cov[X] from a small calibration set with shrinkage C ← (1 − λ)C + λI and factor CW .
Adjusted-Rank distributes per-layer ranks via water-filling over layerwise importance derived from
the weighted singular spectra subject to a global KV budget.

4.1 ORIGINAL, BASELINES, CARE VARIANTS AND DATASETS

GQA (source). Unmodified grouped-query attention. TransMLA (uniform). (Meng et al., 2025)
Weight SVD on (WK ,WV ) with uniform per-layer rank. Direct-SVD (energy). Weight SVD with
per-layer ranks chosen by singular-value energy. MHA2MLA (Ji et al., 2025) Joint factorization
of (WK ,WV ) with partial-RoPE during migration. However cause it involve partial-RoPE, it
cannot be applied through zero-shot experiment. CARE(ours)-U(uniform), CARE(ours)-E(energy)
Covariance-aware factorization with/without Adjusted-Rank. We evaluate models using the LM
Harness suite (Gao et al., 2024), conducting both zero-shot and finetune-heal assessments on standard
language-understanding tasks. The benchmark encompasses Wikitext2 (Merity et al., 2016), ARC-
Challenge (ARC) and ARC-Easy (ARE) (Clark et al., 2018), HellaSwag (HS) (Zellers et al., 2019),
MMLU (MM) (Hendrycks et al., 2020), OpenBookQA (OB) (Mihaylov et al., 2018), PIQA (Bisk
et al., 2020), RACE (RA) (Lai et al., 2017), and WinoGrande (WG) (Sakaguchi et al., 2021). All
hyperparameters are shown in App. D.

Table 1: Zero-shot Llama3.1-8B comparison against original, baselines on multiple tasks. Higher is better for
Accuracy (%) (ACC.) (↑) and Lower is better for Perplexity (PPL.) (↓).

Rank KV Save Methods Wiki (↓) ARC (↑) ARE (↑) HellaSwag (↑) PIQA (↑) MMLU (↑) OBQA (↑) RA (↑) WG (↑) AVG (↑)

64 93.75

GQA (Original) 6.82 50.34 80.18 60.15 79.65 48.05 34.80 40.10 72.69 58.24
TransMLA 1943.91 20.31 27.95 14.13 55.98 24.17 12.40 20.96 51.38 28.41

TransMLA (Energy) 1087.57 21.42 27.27 26.34 53.97 23.80 12.60 21.44 52.25 29.89
CARE-U (OURS) 693.82 18.00 31.40 26.38 55.50 23.60 12.80 20.67 50.83 29.90
CARE-E (OURS) 576.21 19.45 32.95 26.35 57.02 23.60 14.00 21.53 50.20 30.64

128 87.50

TransMLA 1486.43 20.48 27.36 16.07 54.19 21.53 14.00 21.34 50.36 28.17
TransMLA (Energy) 992.31 20.22 27.15 26.18 54.79 27.26 11.40 22.97 49.88 29.98

CARE-U (OURS) 304.66 19.28 39.56 26.97 58.98 23.40 14.40 23.54 50.43 32.07
CARE-E (OURS) 214.17 20.90 42.30 28.57 61.70 23.75 14.40 24.31 52.41 33.54

256 75.00

TransMLA 626.93 18.94 30.77 15.54 56.04 23.38 12.40 22.39 49.64 28.64
TransMLA (Energy) 537.39 19.80 30.13 26.95 55.60 23.79 12.40 23.25 49.33 30.16

CARE-U (OURS) 63.23 24.49 55.26 32.89 67.41 30.96 16.20 27.46 55.56 38.78
CARE-E (OURS) 39.57 30.29 60.14 39.05 71.16 34.61 19.80 30.53 61.17 43.34

512 50.00

TransMLA 131.05 23.55 45.45 22.13 61.21 23.59 17.40 26.03 53.04 35.75
TransMLA (Energy) 118.19 29.11 47.05 28.48 59.14 22.87 19.40 29.73 51.54 35.92

CARE-U (OURS) 12.15 41.30 74.03 51.55 76.66 38.50 27.80 39.33 68.67 52.23
CARE-E (OURS) 9.45 42.24 74.16 54.18 77.53 44.33 31.20 38.66 71.03 54.17

1024 0.00

TransMLA 6.82 50.34 80.13 59.22 79.60 47.56 33.14 42.07 71.55 57.95
TransMLA (Energy) 6.82 50.43 80.09 60.17 79.71 48.05 34.80 40.19 72.85 58.28

CARE-U (OURS) 6.82 50.43 80.09 60.18 79.71 48.05 34.80 40.19 72.85 58.29
CARE-E (OURS) 6.82 50.26 80.09 60.17 79.60 47.85 34.60 40.10 72.53 58.15

Tab. 1 summarize performance and efficiency. Across both scales, CARE-U/E deliver lower PPL and
higher accuracy than direct SVD methods. Improvements are most pronounced on PPL, indicating
that covariance-weighted objectives better preserve attention behavior than weight-only SVD.

4.2 ABLATION STUDIES

We examine how the “energy”—the variance explained along singular directions—concentrates
across layers and heads, how this concentration differs across models, and how it changes once
input-activation covariance is incorporated.

4.2.1 ENERGY DISTRIBUTION VS. COVARIANCE

Using the procedure in Sec.3 to compute covariance-aware energy and the rank required to meet
a fixed energy target per layer/head, we obtain highly consistent rank profiles across calibration
sources C4 (Raffel et al., 2020a), Alpaca (Taori et al., 2023), WikiText2 (Merity et al., 2016), and
PTB (Marcus et al., 1993)). As illustrated in Fig. 3 of Rank 64 & 512, both WK and WV exhibit a
depth-dependent trend: ranks are smallest in early layers, grow steadily through the middle blocks,
and remain elevated thereafter. The growth is markedly stronger for WV . In contrast, WK increases
more moderately, saturating around 550–620 with a mild mid-layer valley and a drop in the final
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(a) Alpaca
(1) 64 (2) 512

(c) Wikitext2
(1) 64 (2) 512 (1) 64

(2) 512
(a) Ptb

(d) C4

(1) 64

(2) 512

Figure 3: Covariance-aware rank profiles across calibration corpora (Alpaca, WikiText2, PTB, C4) at
target ranks 64 and 512. Both WK and WV show a depth-dependent increase—small in early layers,
rising through mid layers—with stronger late-layer growth for WV . The consistency across corpora
suggests a model-intrinsic trend.

block. The persistence of this shape across all corpora indicates that the rank distribution is largely a
model-intrinsic property rather than a peculiarity of any single calibration dataset. This also supports
results will be similar when applying different calibration dataset on Tab. 1.

4.2.2 ACCURACY IMPACT OF COVARIANCE

Table 2: Zero-shot Llama3.1-8B comparison on different covariance. Higher is better for Accuracy (ACC.) (%)
(↑) and Lower is better for Perplexity (PPL.) (↓). All methods are evaluated under the same preprocessing.

Rank Methods Wiki (↓) ARC (↑) ARE (↑) HellaSwag (↑) PIQA (↑) MMLU (↑) OBQA (↑) RA (↑) WG (↑) AVG (↑)

128

CARE-E-ALPACA 214.17 20.90 42.30 28.57 61.70 23.75 14.40 24.31 52.41 33.54
CARE-E-C4 126.94 18.60 38.05 30.05 63.00 23.46 14.80 24.98 52.72 33.21
CARE-E-PTB 145.77 17.06 32.66 27.06 56.09 23.33 13.00 22.97 51.14 30.41
CARE-E-WIKI 40.37 17.92 34.47 27.67 56.86 23.46 14.80 22.87 52.01 31.26

512

CARE-E-ALPACA 9.45 42.24 74.16 54.18 77.53 44.33 31.20 38.66 71.03 54.17
CARE-E-C4 9.09 43.26 75.34 54.69 77.86 40.18 30.40 38.66 71.03 53.93
CARE-E-PTB 9.29 39.85 72.47 52.56 75.95 39.25 27.40 34.26 71.67 51.68
CARE-E-WIKI 7.91 41.81 73.57 52.83 76.50 36.97 29.80 35.12 71.19 52.22

We evaluate how the calibration corpus used to estimate activation covariance (C4, ALPACA, Wiki-
Text2, PTB) affects zero-shot accuracy in Tab. 2. Despite noticeable differences in perplexity, the
accuracy effects are small and consistent: per-task scores vary by roughly 1–10 % points across cor-
pora, while the average over the full suite shifts by only ∼1–2 percentage points. Overall, calibration
choice has a modest impact on final accuracy. We therefore adopt ALPACA as the default calibration
set for subsequent SFT–budget fine-tuning.

4.3 RECOVERY WITH SMALL SFT BUDGETS

Table 3: Healed Llama3.1-8B comparison against orginal, baselines on multiple tasks. Higher is better for
Accuracy (%) (ACC.) (↑) and Lower is better for Perplexity (PPL.) (↓). All methods are evaluated under the
same preprocessing.

Rank Methods Wiki (↓) ARC (↑) ARE (↑) HellaSwag (↑) PIQA (↑) MMLU (↑) OBQA (↑) RA (↑) WG (↑) AVG (↑)
– GQA (original) 6.82 50.34 80.18 60.15 79.65 48.05 34.80 40.10 72.69 58.24

128 TransMLA 53.83 41.76 62.80 46.57 69.33 27.92 20.40 33.6 51.82 44.28
CARE-E (OURS) 11.20 49.42 75.40 61.41 81.14 47.31 36.13 40.97 72.89 58.08

512 TransMLA 10.50 45.90 76.52 56.72 74.00 42.38 31.52 46.43 64.25 54.71
CARE-E (OURS) 7.10 55.14 86.68 61.73 78.89 49.05 39.60 40.29 74.30 60.71

We sweep small-scale SFT budgets to quantify post-conversion recovery and results is shown in
Tab 3. Across budgets, CARE consistently requires fewer optimization steps and less data to close
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the gap to the original model than transMLA, indicating a stronger initialization. Using a TINY
SFT corpus of 2.5B tokens, we recover the pre-conversion accuracy and, on several tasks, achieve
additional gains of 3%−5%.

We provides more supporting results that complement the main paper in App. E. App. E expands our
evaluation to other-series models, other system-level metrics measurement and describe "healing"
details. We also provide optimization objectives, datasets, and hyperparameters in App. D.

5 RELATED WORKS

Conversion from Traditional Attention to MLA. Standard multi-head attention (MHA) underpins
modern LLMs but induces a KV cache that scales linearly with sequence length and head width,
creating a memory and bandwidth bottleneck at inference time (Vaswani et al., 2017; Kwon et al.,
2023). Grouped-Query Attention (GQA) reduces KV heads by sharing keys/values across query
groups, lowering KV memory while sacrificing expressiveness (Ainslie et al., 2023; Shazeer, 2019).
Multi-Head Latent Attention (MLA) addresses KV memory by caching low-dimensional latents
with lightweight up/down projections (DeepSeek-AI Team, 2024). Beyond MLA that trains from
scratch, several post-hoc pathways demonstrate conversion feasibility: TransMLA gives a theory-
based reduction from GQA to MLA at corresponding KV budget (Meng et al., 2025), MHA2MLA
focuses on practical alignment via partial RoPE and joint-SVD initialization (Ji et al., 2025), and
X-EcoMLA explores distillation-based upcycling of pretrained attention into MLA for extreme KV
compression (Li et al., 2025b). Also, Zebra-Llama composes efficient hybrids to improve inference
efficiency and can be paired with MLA-style KV reductions in deployed systems (Yang et al., 2025).

SVD inspirations. Naive SVD truncation minimizes ∥W − Wr∥F and ranks by raw singular
values, which need not correlate with downstream loss (Eckart & Young, 1936; LeCun et al., 1990a;
Hassibi & Stork, 1993; Dong et al., 2019; Frantar et al., 2022; Krzanowski, 2000). Recent works
refine this in LLMs: FWSVD (weighted by Fisher information) (Hua et al., 2022), SVD-LLM
(truncation-aware whitening + sequential low-rank updates) and its V2 variant (improved trunca-
tion/rank selection) (Wang et al., 2024; 2025b). SoCo learns a diagonal reweighting to optimize the
singular spectrum directly for compression rather than trusting singular-value magnitudes (Li et al.,
2025a), while Dobi-SVD introduces a differentiable SVD that targets activation-side truncation and ef-
ficient reconstruction (Wang et al., 2025a). Together with architecture-aware conversions (Meng et al.,
2025; Ji et al., 2025), these SVD-oriented techniques motivate data/curvature-aware orientations and
non-uniform rank allocation as core tools for preserving pretrained knowledge.

SVD for cache compression Apart from MHA/GQA to MLA, some methods compresses the cache
itself. MLA reduces stored state by caching latents instead of per-head keys/values (DeepSeek-AI
Team, 2024). Palu compresses KV-cache with low-rank projection, reconstructing full K,V on the fly;
it adds an efficient rank search and kernels, and is designed to interoperate with quantization (Chang
et al., 2024). More broadly, ReALLM proposes a general compression & fine-tuning framework that
combines low-rank components with vector-quantized latents under a unified recipe (Anonymous,
2025). These methods can be stacked with MLA/GQA conversions or used standalone to lower
KV memory during decoding. For evaluation, standard reasoning and knowledge benchmarks (e.g.,
PIQA) are commonly used to quantify quality impacts under compression (Bisk et al., 2019).

For more related works, please refer to App. B.

6 CONCLUSIONS

We proposed CARE, a Covariance-Aware, Rank-Enhanced procedure for migrating traditional
attention to MLA under a fixed KV-parity. CARE replaces naïve weight-only SVD with a covariance-
weighted factorization and assigns per-layer ranks via an energy-driven, water-filling schedule. Em-
pirically, CARE preserves MLA’s efficiency (identical KV footprint, comparable throughput) while
matching or improving perplexity/accuracy over uniform SVD baselines with less post-conversion tun-
ing. It also yields greater robustness to aggressive rank reduction, suggesting stronger initializations
for brief SFT.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We have read and will comply with the ICLR Code of Ethics. Our study involves no human subjects,
personally identifiable information, or user-generated content. All datasets are standard, publicly
available benchmarks used under their respective licenses; we do not collect or infer demographic
attributes. The work focuses on model architecture/optimization and does not introduce capabilities
intended for surveillance, profiling, or other harmful use. We identify no foreseeable risks related to
privacy, security, fairness, or legal/regulatory compliance, and no IRB/ethics approval was required.
To support transparency, we will release code, configuration files, and clear instructions to reproduce
all results. All findings are reported honestly without fabrication or inappropriate manipulation. The
authors declare no conflicts of interest and no external sponsorship that could bias the work.

8 REPRODUCIBILITY STATEMENT

We provide an anonymized repository (URL in the supplementary material) with full training and
evaluation code for Llama-3-8B. The repo includes exact configuration files for all experiments in
Tables [T1–T3] / Figures [F1, F3], scripts to download and verify datasets, deterministic preprocessing,
fixed random seeds, and environment specifications (Conda with pinned versions). Algorithmic details
appear in Sec.3; Dataset descriptions, licenses, and splits are given in Sec. 4; Hyperparameters are
listed in App. D. Running python parallel_run.py recreates reported metrics and regenerates
plots and logs (including seeds and software versions). Hardware and runtime details are in App. D.
Any deviations from defaults are noted in the README. Upon acceptance, we will release a de-
anonymized public repository under the Apache license 2.0.
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CARE: Covariance-Aware and Rank-Enhanced Decomposition for Enabling Multi-Head
Latent Attention in LLMs

Supplementary Material

A LARGE LANGUAGE MODELS USAGE

We used a large language model - ChatGPT (GPT-5 thinking) solely for grammar and spelling edits to
author-written text. We used Claude Code to assist code writing. The tool did not generate scientific
content, design experiments, analyze data, or select citations, and therefore did not contribute at the
level of a contributing author. All edits were reviewed and approved by the authors, who take full
responsibility for the final manuscript.

B RELATED WORK

KV Management Serving throughput is often bounded by how the KV cache is organized and
moved across memory. PagedAttention (vLLM) treats KV as pageable blocks to avoid internal/ex-
ternal fragmentation and enable sharing across sequences, improving utilization under dynamic
batching (Kwon et al., 2023). Orthogonally, FlashAttention reduces HBM traffic with an IO-aware
tiling of exact attention, and FlashAttention-2 further improves parallelism and work partitioning
for higher FLOPs utilization (Dao et al., 2022; Dao, 2023). These system/kernel directions are
complementary to architectural changes (e.g., GQA/MLA) and to post-hoc reparameterizations, since
better KV layout and IO scheduling directly translate into larger effective batch sizes at a fixed
memory budget.

Quantization Quantization provides an orthogonal compression path to low-rank methods and
can be combined with MLA/GQA conversions. For weights/activations, SmoothQuant migrates
activation outliers into weights to enable practical W8A8 PTQ on large models (Xiao et al., 2023).
AWQ protects a small set of salient channels via activation-aware scaling, delivering strong 4-bit
weight-only PTQ with hardware-friendly kernels (Lin et al., 2024). QuIP# pushes extreme regimes
(≤4-bit) using randomized Hadamard incoherence and lattice codebooks, with state-of-the-art results
at low bit-rates (Tseng et al., 2024). For the KV cache, KVQuant (NeurIPS’24) introduces pre-RoPE
key quantization, sensitivity-aware non-uniform datatypes, and per-vector dense/sparse schemes to
sustain long-context inference (Hooper et al., 2024), while KIVI shows tuning-free 2-bit asymmetric
KV quantization with favorable throughput/memory trade-offs (Liu et al., 2024b). Together, these
methods form a toolbox that is largely complementary to low-rank latent caching.

RoPE and Positional Encodings Positional design strongly affects length generalization and con-
version stability. RoPE’s complex-valued rotary formulation remains the default in many LLMs (Su
et al., 2021b). Alternatives include relative positions (Shaw et al., 2018), T5’s learned relative bias and
DeBERTa’s disentangled content/position attention (Raffel et al., 2020b; He et al., 2021), and ALiBi’s
linear distance bias for train-short/test-long extrapolation (Press et al., 2021). Within the RoPE family,
window-extension strategies modify scaling or spectra to stabilize extrapolation, such as XPOS’s
multiplicative stabilization, Position Interpolation, YaRN, and very long-window LongRoPE (Sun
et al., 2022; Chen et al., 2023; Peng et al., 2023; Ding et al., 2024). Systematic comparisons further
show that the chosen positional scheme materially impacts length generalization (Kazemnejad et al.,
2023), motivating careful treatment (e.g., partial-RoPE or mixed strategies) during architectural
realignments.

C DISCUSSION

Across two GQA backbones and diverse tasks, CARE—Covariance-Aware and Rank-Enhanced
decomposition—enables MLA migration under KV-parity with accuracy and long-context robustness
on par with (or better than) stronger baselines. CARE preserves the throughput/memory advantages
of MLA while mitigating the activation drift observed with weight-only SVD.
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Rank allocation matters. Uniform or purely energy-based rank policies overlook the weighted
spectral concentration that emerges after covariance/curvature preconditioning. CARE’s Adjusted-
Rank uses a water-filling allocation over weighted singular spectra, honoring a global KV constraint
while allocating capacity to the layers and directions that matter most.

C.1 COMPLEXITY AND PRACTICAL CONSIDERATIONS

The dominant conversion costs are per-layer covariance estimation O(ND2) (with small N ) and
truncated SVD on CW̃ ∈ RD×(nhdh) at O(D (nhdh) r) using randomized SVD. Layers can be
processed sequentially; for each layer, C = 1

N

∑N
b=1 X

⊤
b Xb can all be kept on CPU. At inference,

MLA incurs light extra matvecs by W b while reducing KV-cache width from nhdh (MHA) or
ghdh (GQA) down to r = ghdh (MLA). CARE is orthogonal to quantization and sparsification and
compatible with MLA kernels (DeepSeek-AI Team, 2024).

Compatibility with MLA migration. CARE complements recent MLA conversions (Ji et al.,
2025; Meng et al., 2025) and plays well with partial-RoPE (Su et al., 2021a): removing rota-
tions on least-contributive subspaces further stabilizes long-context behavior when combined with
activation/curvature-aware objectives.

Limitations. (i) Statistics freshness: CARE requires small calibration passes; pronounced domain
shift may need refreshed covariance/curvature. (ii) Diagonal curvature: practicality favors diagonal
proxies; structured approximations (e.g., Kronecker-factored) may yield further gains. (iii) Extreme
compression: at very low ranks, information bottlenecks dominate and further SFT can be necessary.
(iv) Orthogonality to quantization/eviction: CARE does not yet co-optimize KV quantization and
cache eviction policies.

Broader impact and future work. CARE suggests a general recipe for post-training architectural
migrations: align the objective to where errors manifest (activations/logits) and distribute capacity by
curvature-weighted signal. Promising directions include data-free calibration, structured curvature
(block-diagonal/K-FAC), and dynamic rank schedules that adapt latent capacity with context length
while maintaining KV-parity.

Apart from that, our Covariance-weighted SVD initialization minimizes the activation loss at each
layer, but our true goal is to preserve the output of the model, which is next-token predictions. We
may therefore cast low-rank compression as directly minimizing the sequence loss produced by the
compressed (student) model under a fixed KV budget.

D HYPER-PARAMETER SELECTION

All experiments were conducted on servers equipped with NVIDIA H100 80 GB GPUs paired with
dual Intel Xeon Platinum 8462Y+ processors (2 × 32-core sockets, 64 cores total) and approximately
2 TB of RAM.

All hyper-parameters are shown as below:

• Model Configuration: Base model: Meta-Llama-3-8B, Qwen3-1.7B/4B/8B; Precision:
float16, Sequence length: 2048 tokens, Covariance samples: 128.

• MLA Rank Settings: Default rank: 384, Min rank: 64, Max rank: 1024, Uniform allocation:
True, K/V projection ranks: 384 each.

• CARE Parameters: Initialization method: CARE, Damping factor (percdamp): 0.01,
Cholesky decomposition: False, Activation order: False.

• Evaluation Datasets: Multi-task benchmarks including WikiText (perplexity), ARC-
Challenge/Easy (reasoning), HellaSwag (commonsense), PIQA (physical reasoning),
MMLU (knowledge), OpenBookQA, RACE (reading), WinoGrande (coreference).

• Generation Settings: Max new tokens: 50-10240, Temperature: 0.6-0.7, Top-p sampling:
0.9, Sampling strategy: Nucleus sampling with temperature control.
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• System Configuration: GPU memory free threshold (minimal GPU resources to run
experiments) : 2048 MB, Parallel GPUs: 1-8 devices, Batch size: Dynamic adjustment,
Random seed: 42.

• Covaraince Computation: Dataset: C4/Ptb/Wikitext/Alpaca instruction-following, Sample
size: 128 sequences, Sequence processing: 2048 token windows,

• Random Seed and Learning Rate All experimental results are average over 20 random
seeds and we choose the best from 3 learning rates.

• Training Framework All experiments were conducted using the axolotl framework for
fine-tuning CARE and Transmla models.

• Learning rate: We choose best learning rate of 2× 10−6 with linear warmup over the first
100 training steps.

• Batch size: Global effective batch size of 64 tokens per update step, accumulated across
devices.

• Precision: bfloat16 mixed precision was enabled to reduce memory footprint and improve
throughput.

• Max sequence length: Input sequences were truncated or padded to a length of 512 tokens.

• Training epochs: Each experiment was trained for 10000 steps

Our anonymized repository: LINK

E SUPPLEMENTARY RESULTS

E.1 HEALING DETAILS

Fig. E.1 shows detailed loss of healing.

E.2 GENERATION EXAMPLES

Fig. E.2 and Fig. E.3 are two generated text examples by 2 different methods.

F PROOF OF MAXIMUM ENERGY SVD TRUNCATION

We have the following proposition: Let A ∈ Rm×n have singular value decomposition (SVD)
A = UΣV ⊤, where Σ = diag(σ1, . . . , σp), p = min{m,n}, and σ1 ≥ · · · ≥ σp ≥ 0. For
1 ≤ r < p, let Σr = diag(σ1, . . . , σr, 0, . . . , 0) and Ar := UΣrV

⊤. Then

∥A−Ar∥2F =

p∑
i=r+1

σ2
i and ∥A−Ar∥F = min

rank(X)≤r
∥A−X∥F ,

with the unique minimizers (when σr > σr+1) given by X = Ar (Eckart & Young, 1936).

Proof. The Frobenius norm is unitarily invariant, so for any X with rank(X) ≤ r,

∥A−X∥F = ∥U⊤(A−X)V ∥F = ∥Σ− Y ∥F , where Y := U⊤XV and rank(Y ) ≤ r.

Expand the square via the Frobenius inner product ⟨M,N⟩ := trace(M⊤N):

∥Σ− Y ∥2F = ∥Σ∥2F + ∥Y ∥2F − 2⟨Σ, Y ⟩.

Let s1(Y ) ≥ · · · ≥ sp(Y ) ≥ 0 be the singular values of Y (so si(Y ) = 0 for i > r). By von
Neumann’s trace inequality,

⟨Σ, Y ⟩ ≤
p∑

i=1

σi si(Y ) =

r∑
i=1

σi si(Y ),
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(a) CARE – 128 (b) TransMLA – 128
(10)

(a) CARE – 512

(10)

(10)

(d) TransMLA – 512
(10)

Figure E.1: Training loss curves for different experimental configurations. Each subplot shows the
raw loss values (blue) and smoothed trend (red) with a moving average window.

and ∥Y ∥2F =
∑p

i=1 si(Y )2 =
∑r

i=1 si(Y )2. Therefore:

∥Σ−Y ∥2F ≥
p∑

i=1

σ2
i +

r∑
i=1

si(Y )2−2
r∑

i=1

σisi(Y ) =

r∑
i=1

(
σi−si(Y )

)2
+

p∑
i=r+1

σ2
i ≥

p∑
i=r+1

σ2
i .

This lower bound is attained by taking Y = Σr, i.e. X = UΣrV
⊤ = Ar, for which:

∥A−Ar∥2F = ∥Σ− Σr∥2F =

p∑
i=r+1

σ2
i .

Thus Ar is a best rank-r approximation in Frobenius norm, and the minimum value is the squared
ℓ2-tail of the singular values. Uniqueness follows when σr > σr+1 since then any other minimizer
must share the top r singular subspaces with A.

Note that the idea and proof of the theorem above follows essentially the same idea as Eckart–Young–
Mirsky in Eckart & Young (1936).
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Question:
What is the capital city of France?
A. Paris B. New York C. London D.

Rome
Zero-shot CARE-Rank256

2. What is the capital city of the United States? A. New
York B. Washington D. New York C. Washington D. New
York 3. What is the What is the capital city of the United

States? A. New York B. Washington D. New York C.
Washington D. New York 4. What is the What is the

capital city of the United States? A. New York B.
Washington D. New York C. Washington D. New York...
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I had a very good (I had just like a city, and a small, and
a small, and a small, and a small, and a small, and a city

of the location, and the 5 3F (I had a very good (I had
just like a city, and a small, and a small, and a small,

and a small, and a small, and a city of the location, and
the 5 3F (had a very good (I had just like a city, and a

small, and a small, and a small, and a small, and a
small, and a city of the location, and the 5 3F...

Figure E.2: Generated Text Example

Question:
What is the capital city of France? Give me some details
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We were in Paris, France.

What famous landmark do you like in France? Why are they so popular?

Eiffel tower in Paris. I remember when I was travelling with many others of
students in a bus to the top of the hill. We were all very worried when the bus
suddenly stopped and we were not being able to continue the journey. Finally we
came to the top of the hill and see the great Eiffel tower. It was very interesting and
I liked the view of the whole city. I have never seen anything like that and it was
really unique.

What are the cultural activities of the French people? What are some of the cultural
traditions that make the country unique?

It is hard to explain because we don’t have one unique culture. Each part of the
country has a different style of food and dress and have different traditions. The
cultural activities are not only in one category and have many types.

What would you want to make a speech to the President of the United States
about the problems in the U.S. and how to solve them?

We have to fix the education problems. We need to have a better education for the
children in order to teach them what is necessary for a good knowledge. I can say
that I think that it is the main issue because if the children are educated good, they
will be able to create a better society in the future. Also, more people who are in
the same society are going to learn from the children that are being educated.

If you were to study a master's degree what would you like to be when you are
older?

I think it is important to have a good job. You should be able to create your own job
and have a strong relationship with the employer. I know that I could do a job in the
future with my strong management and intelligence...
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0j9iPombo00Thej0rg1pv0m0z0pg0pS0ss0a0p0mPint0mh0M0pgzPn2hPint0hy0f7
figRFonw0marchF0nnLynnc0wPnmePentisRie0m0mper0FbmP0Oz0m0mpe1pm
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onF0plmrZ1z0Uof0uzPim0nandPer0rep0p0sL0mgRedOrMar0Aper0prrPnOof
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Figure E.3: Generated Text Example
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