
Proceedings of Machine Learning Research – Under Review:1–15, 2022 Full Paper – MIDL 2022

A Flexible Meta Learning Model for Image Registration

Frederic Kanter frederic.kanter@mic.uni-luebeck.de

Jan Lellmann jan.lellmann@mic.uni-luebeck.de

Institute of Mathematics and Image Computing

Editors: Under Review for MIDL 2022

Abstract

We propose a trainable architecture for affine image registration to produce robust start-
ing points for conventional image registration methods. Learning-based methods for image
registration often require networks with many parameters and heavily engineered cost func-
tions and thus are complex and computationally expensive. Despite their success in recent
years, these methods often lack the accuracy of classical iterative image registration and
struggle with large deformations. On the other hand, iterative methods depend on good
initial estimates and tuned hyperparameters. We tackle this problem by combining ef-
fective shallow networks and classical optimization algorithms using strategies from the
field of meta-learning. The architecture presented in this work incorporates only first-
order gradient information of the given registration problems, making it highly flexible and
particularly well-suited as an initialization step for classical image registration.

Keywords: Image Registration, Meta-Learning, Numerical Optimization

1. Introduction

Finding spatial correspondences between images is a core task in computer vision and ma-
chine learning, and medical image analysis in particular. Image registration is the process of
finding these correspondences and aligning images for comparison. Given a two-dimensional
reference image R : R2 → R and a template image T : R2 → R, the goal is to find a dense
deformation field φx : ΩR → R2, parametrized by some vector x ∈ Rn, that maps points
from the reference to the template image domain such that the deformed template image
T ◦φx is similar to the reference image. Finding a suitable deformation function is classically
formulated as an optimization problem,

min
x∈Rn

f(φx), f(φ) := D(R, T ◦ φ) + γS(φ), (1)

with a similarity measure D, a regularizer S, and weight γ > 0. Conventional registration
algorithms for obtaining dense deformation maps are commonly based on iterative optimiza-
tion methods (Oliveira and Tavares, 2014; Sotiras et al., 2013) and PDE-based models such
as Large Displacement Diffeomorphic Metric Mapping (LDDMM) (Beg et al., 2005), mak-
ing them computationally expensive. Moreover, they typically employ local optimization
methods that can get stuck in local minimizers. In this work, we propose an architecture
that combines iterative methods with a trainable component in order to construct a class
of both robust and accurate image registration methods.
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Related work The success of neural networks and deep learning in various machine
learning tasks (He et al., 2016; Vaswani et al., 2017) has also motivated their use in image
registration. Neural networks have been used to predict the initial momentum of LDDMM
(Yang et al., 2017), combining conventional and learning based algorithms. Typically net-
works in an end-to-end fashion are proposed. The design of the models can differ vastly,
but most focus on learning the mapping from on image to another directly. The Voxel-
Morph architecture (Balakrishnan et al., 2019) uses a convolutional neural network to map
image pairs to an aligned deformation field followed by a spatial transformer. In (Hering
et al., 2019) strategies from conventional image registration, such as multi-level scaling of
deformation fields, are included to deal with large deformations. While these strategies
use well-known conventional methods to improve the network’s performance, we focus on
using a rough network-based estimate to guide conventional methods. Instead of learning
the deformation directly from data, the authors of (Niethammer et al., 2019) propose to
use neural networks as a regularization tool in a conventional registration model. However,
existing end-to-end models typically struggle to predict large deformations, often have net-
work architectures that are focused on the particular application, and have a large number
of parameters (Heinrich, 2019). Our approach is motivated by meta-learning, i.e., improv-
ing the efficiency of existing optimization methods using training data: Hochreiter et al.
(Hochreiter et al., 2001) proved that Recurrent Neural Networks can be used to construct
efficiently trainable optimization methods that can adapt to the problem class. In 2016,
Andrychowicz et al. (Andrychowicz et al., 2016) showed that learned optimizers can outper-
form optimizers with hand-designed update rules, including Stochastic Gradient Descent,
RMSprop, ADAM, and Nesterov’s Accelerated Gradient Descent, in terms of the achieved
loss. Finn et al. (Finn et al., 2017) showed that meta-learning networks can be adapted
to most common computer vision tasks due to their generalization properties. A more
general concept is discussed in (Adler and Öktem, 2017), where an updating operator is
learned. The operator calculates gradient-like information from the given objective and is
embedded in a classical gradient descent optimization, yielding excellent results for image
reconstruction from projections of simulated CT images.

A recent related approach is proposed in (Hoopes et al., 2021), where the authors train a
model to perform the – usually very expensive – process of selecting good hyperparameters
for a given registration network. Mok et al. present another approach to deal with this
problem in (Mok and Chung, 2021). Their method is a conditional registration framework
applicable to any CNN-based registration, where the high-dimensional feature maps of the
registration network are “conditioned” on (i.e., depend on) a low-dimensional regularization
parameter. Both methods aim to reduce user interaction for neural network-based regis-
tration by limiting the number of hyperparameters. Our work is partly motivated by the
desire to reduce outliers – which would have to be manually corrected – in conventional
methods by supplying them with a robust starting point.

Contribution In this work, we combine the robustness and speed of network-based meth-
ods with the accuracy of classical image registration. We propose a meta-learning-based
strategy to construct hybrid trainable image registration methods that are rooted in classi-
cal approaches, but can be specialized on a specific class of image registration problems in
a data-driven way to improve robustness.
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Our network architecture combines the iterative update scheme from gradient-based
optimization with a Long Short-Term Memory (LSTM) layer architecture (Hochreiter and
Schmidhuber, 1997). The developed method allows to quickly find a good estimate even for
large deformations, which, when used as a starting point, can greatly improve the robustness
of classical iterative image registration methods.

2. Methods

Conventional solvers make use of an iterative scheme to find an approximate minimizer of
Equation (1), whereas neural networks utilize their expressive capabilities to do so in one
inference step. We combine these two approaches by introducing an iterative scheme to an
LSTM network. A conventional gradient-based solver update step for finding a minimizer
of f in (1) takes the form

xk+1 = xk − αkBk∇f(xk) , (2)

where αk denotes the step length, typically found by a line search procedure, and Bk is
an optional preconditioning matrix that is typically derived from the Hessian ∇f or an
estimate thereof. As in meta-learning approaches (Andrychowicz et al., 2016), we retain
the iterative nature in principal, but employ a neural network Θ for the – now nonlinear –
update:

xk+1 = xk + θk, θk := Θ(∇f(xk)) . (3)

By adapting the weights in Θ, this allows to automatically tune the minimization process
to a specific problem class, rather than having to rely on a generic strategy such as Newton-
or Quasi-Newton approaches.

We focus on the task of affine image registration, where the deformations are of the
form φx(z) := Az + b with A ∈ R2×2 and b ∈ R2. Consequently, the iterates xk consist of
the entries of the unknown parameters A and b.

When constructing classical image registration models of the form in Equation (1), the
choice of the data term D and regularizer S that make up the objective function f is crucial
and directly affects the quality of the obtained deformation. However, since in our case f
only serves as a guide to construct an iterative process of the form Equation (3), which can
then be trained using any loss and is not bound to finding a good minimizer of f , the choice
is less crucial, and we use a simple SSD term D(R, T ) := ∥R− T∥22. We also use S = 0, as
the restriction to affine deformations already provides enough regularization.

By expanding K repetitions of Equation (3), we obtain a stacked network architecture
that is at least as powerful as the iterative method with a corresponding number of iter-
ations, benefits from the non-linear gradient information on f , and adds the potential of
non-linear, trainable steps. Note that in this pure form, the network has no direct access to
the input images R and T ; any information about the problem enters exclusively via the
gradient of the energy function f .

Model The main building block Θ of our network starts with a linear projection layer
Lin in order to expand the dimension by a factor of 4 to allow a larger number of trainable
parameters than affine transformation parameters. For the main step, we slightly depart
from Equation (3) and employ an LSTM cell as proposed in (Hochreiter and Schmidhuber,
1997). The LSTM cell is a successful building block for deep recurrent neural networks,
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in particular for time-series analysis, and features a hidden state that allows to carry over
additional history from previous layers. In our case this makes the update depend not only
on the current iterate xk and gradient ∇f(xk), but also on the hidden state hk that can
incorporate previous gradient and function value information. The LSTM output ok is then
passed to another linear layer Lout.:

(hk+1, ok) = LSTM(hk, Lin(∇f(xk))) ∈ Rdx × Rdh (4)

θk = Lout(ok) ∈ Rdh × Rdx , (5)

xk+1 = xk + θk, (6)

where dx is dimension of transformation parameters, and dh is the size of the LSTM hidden
states. Our complete network is of the form

ΘK = Lout(LSTMk( ... LSTM0(h0, Lin(∇f(x0))))) (7)

This mirrors classical successful methods with gradient history such as (L-)BFGS (Nocedal
and Wright, 2006). Our network only uses gradient information as inputs, which is derived
from the distance function D. The images R and T are not fed into the network directly,
but used to calculate the new distance after each layer update.

The full network consists of K = 5 repetitions of the LSTM update equations (4)–(6)
with individual weights for the LSTM cells and shared weights for the linear layers Lin and
Lout. For training, model weights were initialized to implement an approximate identity
mapping.

Loss We use a supervised learning approach to train the network based on simulated
deformations. As opposed to weakly- or self-supervised approaches (Hering et al., 2019;
Mok and Chung, 2021), we specifically do not use the energy f as the loss, i.e., the network
has the freedom to find the optimal registration in terms of distance to the ground truth
deformation map. This elevates the method above simply constructing a better solver for
minimizing f – which would limit the solution quality to that of iterative methods and
require a careful choice of the distance and regularizer used in f – and allows to better
pursue the underlying primary goal of finding a good registration. Consequently, the loss
directly compares the mean squared error (MSE) of the deformation fields:

L(φxK ) =
1

n

n∑
i=1

∥φxK (zi)− φx̄(zi)∥22 (8)

where {zi|i ∈ {1, . . . , n}} is the image grid, x̄ denotes the ground truth deformation param-
eters, xK is the output of K applications of Θ as outlined above.

Training We trained our model in PyTorch 1.3.1 using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 0.005. Layers were trained in a successive fashion and
hyperparameters were chosen by random search.

3. Experimental Results

All experiments were performed on a 2x6-core Intel Xeon Gold 6128 CPU @ 3.40GHz with
24 logical cores and 3x GeForce RTX 2080 Ti GPUs with 11 GB of memory each.
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Figure 1: Computational graph for constructing the registration network. The main
block Θ predicts the update θk in Equation (3) and new hidden state hk from
the nonlinear gradient information ik−1 := ∇f(xk−1) and the previous hidden
state hk−1. The update θk is then added to the iterate xk. Repeating this pro-
cess K times, the resulting stacked network architecture imitates the structure of
classical iterative optimization methods, while providing the necessary degrees of
freedom to make the process more efficient and robust through training.

Dataset For the supervised training approach, we created an artificial data set by deform-
ing a 128×128 template image, keeping the original image with added noise as reference and
the deformed variants as templates. Deformation parameters were chosen randomly from
a uniform distribution of rotations in [-60°, 60°] and translations of at most a quarter of
the image dimensions. Training samples were created on-the-fly from the given deformation
distribution; validation and test data sets were created once and then fixed.

We evaluated the model on three registration tasks: (1) a simple synthetic example of
registering x-ray images of two different hands (Hands); (2) a brain data set from the kaggle
platform originally designed for tumor detection1, from which registration tasks are created
by applying a random transformation to a randomly selected image and adding Gaussian
noise (Brain); and (3) DICOM brain images (fastMRI) from the NYU fastMRI data set
(Zbontar et al., 2018; Knoll et al., 2020), processed in the same way (Figure 2).

Benchmark Methods As a simple baseline method (plain), we used a limited-memory
BFGS solver with a memory size of l = 5 and Armijo line search for minimizing f directly.
We limited the maximum number of BFGS iterations to K = 30; in our experiments, more
iterations did not increase registration quality. The initial estimate for the Hessian was
set to the identity matrix scaled by 1

∇f as proposed in (Nocedal and Wright, 2006). In
order to obtain a minimal robustness against local minimizer, the solver is embedded into
a coarse-to-fine approach on 4 levels, with image resolutions from 16× 16 to 128× 128.

1. https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection - visited 2021
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Figure 2: Sample image pairs from Hands (left), Brain (center), and fastMRI (right).

For the combined (comb) method, we independently trained and used our trained net-
work in order to compute an initial estimate. This initial estimate was then provided as a
starting point to the same algorithm as in plain, with the number of iterations reduced to
K = 15 to further highlight the benefits of improved starting point estimation.

We also compared our our results to the affine image registration implemented in the
freely available FAIR toolbox (Modersitzki, 2009). Again we chose a multi-scale approach
with 4 levels, with no limit on the number of iterations on each level. FAIR uses multiple
strategies in order to increase robustness, including an improved estimate of the initial
Hessian, filtering and regularized interpolation.

Finally, we compared our method to the elastix toolbox (Klein et al., 2010; Shamonin
et al., 2014). We performed an extensive grid search on the test set to select the optimal
distance metric, optimizer and multi-scale scheme. Reported are the results for the the best-
performing L-BFGS solver with the advanced mean squares (MS) as similarity measures,
again using a coarse-to-fine approach on 4 levels.

Performance Metrics Wemeasured performance primarily in terms of the mean squared
error (MSE) between ground truth deformations and predicted deformation field as in Equa-
tion (8). Additionally, absolute errors of the obtained parameters A in the Frobenius norm
∥A−Agt∥F and b in the Euclidean norm ∥b− bgt∥2 are provided in the appendix.

Results As measured by the mean squared errors over the test sets in Table 1, the simple
baseline method (plain) has poor performance, which can be mostly attributed to outliers
caused by suboptimal local minima and failed line search. Similarly, the trained network
alone has difficulties achieving an accurate registration. However, with our strategy of
using the network’s predictions as starting points for the baseline method, the combined
performance becomes comparable to the the highly tuned FAIR and elastix results.

While FAIR and elastix show good results overall, they fail in a significant number
of cases (Figure 3). On the smaller tasks, our combined approach in particular learns to
avoid extreme outliers, and entirely eliminates outliers for the Hands data set. On the
larger fastMRI task, performance is less satisfactory, which we attribute to a much higher
inter-object variance. We further investigated the influence of a multi-level (coarse-to-
fine) network structure, which improves the network performance especially for small data
sets (Table 6). Equally, the showed no loss in performance when considering full affine
deformations including shearing or scaling (Table 5).

The results shows that our network can predict robust starting points even for sim-
ple non-tuned optimizers (plain) and large deformations up to 60 degree of rotation and
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Figure 3: Left: When using only either the trained network (learn) or the simple baseline
method (plain) the performance is not competitive. However, when combined
(comb), the MSE is comparable to or even better than FAIR with fewer outliers
on the Hands and Brain data sets (see orange median bars; outliers are not
shown for clarity). Right: MSE of the predicted deformation fields for all tasks.
On the smaller Brain and in particular Hands data sets, our approach allows
to reduce the number of extreme outliers and yields a performance comparable
to the established methods (see also Table 1). Orange horizontal lines denote
medians, boxes show quartiles, and outliers are marked by + symbols.

translations in the range of a quarter of image dimensions. If the distribution of possible
deformations can be derived from the data, our method enables good registration results in
a few steps without expensive parameter tuning.

Table 1: Mean squared error (MSE) of deformation grids on test sets for Hands, Brain,
and fastMRI tasks. By augmenting a simple L-BFGS method (plain) with our
network (comb), its robustness can be greatly improved, with performance similar
to FAIR and elastix on the specialized tasks (see also Figure 3).
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mean 1.17 0.02 0.19 0.22 1.00 0.28 0.43 0.33 0.69 0.58 0.12 0.12
median 0.30 0.00 0.02 0.00 0.24 0.00 0.02 0.00 0.07 0.03 0.01 0.00
max 8.28 0.23 2.76 3.53 5.43 4.69 7.69 7.13 6.62 6.33 6.60 6.80
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Table 2: MSE of the predicted deformations for the proposed method (comb) when tested
on different data sets than used in training. While training on the same class
of images as used in the test generates fewer outliers as indicated by the lower
mean scores (compare values in Table 1), the network partly generalizes to unseen
image classes as indicated by the low median errors. Training on the large fastMRI
dataset allows to solve the smaller Hands and Brain problems accurately in many
cases.

training set Hands Brain fastMRI

test set Brain fastMRI Hands fastMRI Hands Brain

mean 1.43 0.19 0.83 0.60 0.84 1.09
median 0.22 0.00 0.11 0.05 0.16 0.01
max 17.26 2.28 4.77 5.13 7.02 8.64

Transfer Task In order to test the generalization of our model to unseen classes of images,
we evaluated each model trained on one of the three datasets on the two other data sets
that it did not see during training (Table 2). While performance is generally worse than
when training on the same data as used for testing (compare Table 1), models trained on
the large and most diverse fastMRI dataset lead to considerable improvements over the
baseline (plain). It will be interesting to see whether it is preferable to train once on a very
diverse set, or to re-train for the specific task.

4. Conclusion and Outlook

Our image registration strategy combines affine image registration based on iterative con-
ventional registration methods with a robust trainable step for estimating a good initial
estimate. By training on the desired class of deformations and image pairs, our method is
able to elevate the performance of a simple, accurate, but fragile iterative L-BFGS-based
method to a level comparable to methods from the well-established FAIR and elastix tool-
boxes that have undergone extensive grid-based parameter search and fine-tuning. In the
future, we plan to pursue this promising strategy in particular for non-linear deformations
and investigate the effect of more specialized data terms.
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Appendix A.

Table 3: Distance εA := ∥A−Agt∥F to ground truth of predicted transformation matrix A
for the experiment in Table 1; see also Figure 4–right.
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mean 0.63 0.03 0.08 0.12 0.59 0.21 0.15 0.13 0.47 0.40 0.04 0.06
median 0.40 0.00 0.00 0.00 0.42 0.03 0.00 0.00 0.19 0.13 0.00 0.00
max 1.68 0.33 1.38 1.57 2.01 1.83 2.38 2.30 2.08 2.17 2.21 2.21

Table 4: Distance εb := ∥b− bgt∥2 to ground truth of predicted translation vector b for the
experiment in Table 1; see also Figure 4–left.
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median 0.13 0.00 0.07 0.00 0.03 0.01 0.07 0.00 0.03 0.02 0.06 0.00
max 1.09 0.16 0.25 0.34 0.33 0.41 0.29 0.20 0.46 0.25 0.18 0.27
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Figure 4: Distance to ground truth of matrix A (left) and translation vector b (right) for
the experiment in Figure 3–left; see Table 3 and Table 4.

Figure 5: Distance to ground truth of matrix A (left) and translation vector b (right) for
the experiment in Figure 3–right.
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Figure 6: MSE for models tested on different data sets than used for training (see Table 2).
Character pairs denote the test and training sets, e.g., H-B was trained on Brain
and tested on Hands. The results of the baseline (plain) method improve in
particularly in terms of the median even for the unseen data sets, at the cost of
introducing some additional outliers.

Table 5: Mean squared error (MSE) of deformation grids on test sets for Hands, Brain, and
fastMRI tasks. Displayed are the results for full affine transformations: Transfor-
mations are created by adding a scalar to each rotation matrix entry randomly
picked from a normal distribution (15% of rotation angle). The results confirm
the findings in Table 1 for the purely rigid deformations. The fastMRI dataset
exhibits an extreme outlier, but still the combined (comb) method exceeds baseline
(plain) performance.
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median 0.31 0.01 0.00 0.39 0.04 0.00 0.72 0.29 0.02
max 6.55 0.13 0.23 4.51 1.54 0.56 3.02 4.97 94.30
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Figure 7: Elastix registration results with the worst MSE for the data sets fastMRI (top)
and brain (bottom). Outliers can be mostly attributed to a high level of symmetry
leading to an incorrect initial estimate for the rotation.

Table 6: Mean squared error (MSE) of deformation grids on test sets for Hands, Brain, and
fastMRI tasks. Displayed are the results for a multi-level (coarse-to-fine) model
architecture. The multi-level structure further improves the results, and for small
sets such as Hands enables near perfect results.

Hands Brain fastMRI

MSE

p
la
in

le
ar
n

co
m
b

p
la
in

le
a
rn

co
m
b

p
la
in

le
a
rn

co
m
b

mean 1.17 0.00 0.00 0.98 0.23 0.21 0.69 0.49 0.44
median 0.30 0.00 0.00 0.45 0.01 0.00 0.07 0.07 0.0
max 8.28 0.03 0.00 3.19 4.18 6.43 6.62 7.85 8.97
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