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Abstract

Optimal Transport (OT) has fueled machine learning (ML) applications across
various domains. In cases where paired data measurements (µ,ν) are coupled
to a context variable pi, one may aspire to learn a global transportation map,
parameterized through the context to facilitate prediction of target states even
from unseen context. Existing approaches for this task leverage Brenier’s theorem
and utilize Neural OT. Here, we follow a radically different approach inspired
by quantum computing principles to develop a Quantum formulation for learning
transportation plans parameterized by a context variable. This is achieved through
exploiting a natural link between doubly stochastic matrices and unitary operators.
The latter can be directly related to recent results in quantum learning theory
suggesting intrinsic advantages in modelling constrained problems with quantum
methods. We verify our methodology on synthetic data, emulating the task of
predicting single-cell perturbation responses parameterized through drug dosage as
context. Our experimental comparisons to a baseline reveal that our method can
capture dose-induced variations in cell distributions, even to some extent when
extrapolating to dosages outside the interval seen during training. In summary, this
work assesses the feasibility of learning to predict contextualized transportation
plans through a novel quantum computing approach.

1 Introduction

Optimal transport (OT) [1] provides a mathematical framework for finding optimal transportation
plans that minimize the cost of moving resources from a source to a target distribution. The cost is
defined as a distance or a dissimilarity measure between the source and target points, and the optimal
transport plan aims to minimize this cost while satisfying certain constraints. OT theory has found
applications across several fields, including economics, statistics, biology, computer science, and
image processing. In biology, OT has recently gained popularity in single-cell analysis, an area of
research rich in problems of mapping cellular distributions across distinct states, timepoints, or spatial
contexts [2]. Notable biological tasks solved using OT theory include reconstructing trajectories of
cellular evolution [3], predicting cell responses to therapeutic interventions [4, 5], inferring spatial and
signaling relationships between cells [6] and aligning datasets across different omic modalities [7, 8].
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In these applications, the source and target distributions are measurements of biomolecules (e.g.,
mRNA, proteins) at a single-cell level, with or without spatial or temporal resolution [9].

In many recent OT applications, data measurements µi and νi are coupled to a context variable pi

that induced µi to develop into νi. In such cases, one might aspire to learn a global transportation
map T that is parameterized through pi and thus facilitates the prediction of target states ν̂j from
source states µj , even for an unseen context variable pj . This line of work is largely based on
Brenier’s theorem [10], a seminal theorem in OT that postulated the existence of an optimal and
unique OT map T given by the gradient of a convex function under certain conditions, i.e., T = ∇fθ.
As established by Makkuva et al. [11], OT maps between two distributions can be learned through
neural OT solvers by using a minimax optimization where fθ is an input convex neural network [12].
A notable example of such a neural OT approach is CondOT [5], an OT framework that estimates
transportation maps conditioned on a context variable and learned from paired quasi-probability
distributions (µi,νi), each linked to a context variable pj

1. However, one key limitation of neural
OT approaches stems from the fact that Brenier’s theorem only holds when the cost is the squared
Euclidean distance [14], which is not always meaningful, especially for high-dimensional data.

On a separate realm, quantum computers offer a new computing paradigm with the potential to become
practically useful in ML [15, 16, 17, 18, 19, 20] and fuel applications in, e.g., life sciences [21] or
high-energy physics [22, 23]. Here, we propose a quantum contextual OT approach that is inspired
by a previously unreported natural link between OT and unitary operators, a fundamental concept in
quantum computing. This link relates to the structure of the OT maps and allows to turn the analytical
problem of computing OT plans into a parameterizable approach to estimate transportation plans.
In contrast to existing neural OT methods, our quantum formulation does not depend on Brenier’s
theorem and thus does not impose any restriction on the ground cost C. Furthermore, our approach
directly estimates full transportation plans, with the advantage of increased interpretability, e.g.,
methods of homological algebra could be applied to study the topology of predicted maps.

The remainder of this paper commences with describing the contextual OT problem and then proceeds
to lay the theoretical foundations of the quantum formulation, detailing the circuits and the ansatz2

for encoding doubly stochastic matrices (DSMs) and transportation plans. As a proof-of-concept, we
present an application of our methodology on synthetic data that describes the effect of drug dosage
perturbation on the composition of different cellular populations. In our setup, we use drug dosage as
a context variable pi and instantiate µi and νi as distributions over cell types for a population of cells.
As our work describes a fundamentally novel approach to learn OT maps, our objective is to assess
the feasibility of learning to predict contextualized transportation plans through a quantum approach,
and not (yet) to compete with established neural OT approaches for drug perturbation prediction.

2 Optimal Transport theory

2.1 Preliminaries

In the Kantorovich relaxation of the Monge problem [14], C ∈ Rn×m is a non-negative matrix where
Ci,j corresponds to the cost of mass displacement from entity i to some other j. Let µ ∈ Rn

++ and
ν ∈ Rm

++ be positive real vectors, representing the quasi-probability discrete distributions for the
source and destination entities. The discrete (regularized) Kantorovich’s OT problem is then defined
as follows

min
Q∈N (µ,ν)

Tr
(
QC⊤)+ γh(Q), (1a)

s.t. N (µ,ν) =
{
Q ∈ Rn×m

+

∣∣Q1m = µ, Q⊤1n = ν
}
, (1b)

where h is a regularization function [24] with its trade-off γ ≥ 0. The set N (µ,ν) is known as the
transportation polytope (convex) [25], and its elements are the transportation maps. Given a map
T ∈ N (µ,ν), we interpret each entry Ti,j as the mass moved from source i to destination j. In this
work a special case of the transportation polytope will often emerge, that is the Birkhoff polytope,
defined as Ωn := N (1n,1n), with its elements called doubly stochastic matrices (DSMs).

1Throughout this work we will use the term "contextual" rather than "conditional" to differentiate from the
OT problem of computing transportation plans between two conditional probabilities [13]

2In the context of quantum computing, an ansatz is a parametric quantum circuit used to approximate a
quantum state related to the problem at hand.
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2.2 The Contextual OT problem

Let Kd := ∆d ∩ Rd
++ denote the subset of the probability simplex with vectors presenting non-

zero components3. We consider a dataset of contextualised measures each represented by a tuple
(pi, (µi,νi)) ∈ X ×K2

d, where pi ∈ X ⊆ Rs defines the context. The initial and final states µi and
νi are assumed from the same simplex Kd. The ground metric matrix C is not required to be constant
across all data samples, and can be interpreted as a materialization of the perturbation. Given an
unobserved perturbation pnew and initial state µnew, the objective is to predict a transportation map
T ⋆ ∈ N (µnew,ν

⋆), which marginalization yields the final states ν⋆. At training time, we can use
classical OT solvers to obtain an OT map for each sample, providing a list of tuples (pi, Ti) where
Ti ∈ N (µi,νi) is the solution to the i-th OT problem.

Herein, we design a quantum circuit for predicting a DSM Q ∈ Ωd given a context pnew (Section 3.1).
Given the unobserved distribution µnew, we extract a structure from the DSM that can be rescaled
with µnew to the predicted transportation map fulfilling the required initial marginal (Section 3.2).

3 Quantum formulation

Our quantum formulation leverages the following fundamental concept. Let (·) denote the complex
conjugate of the argument (i.e. in the case of a matrix argument, the transpose of the adjoint), and
(·) ⊙ (·) the Hadamard product between matrices. If U is a unitary matrix, then U ⊙ U ∈ Ωn is
a DSM and such matrix is called unistochastic. The set of unistochastic matrices is a non-convex
proper subset of the Birkhoff polytope, however the n× n permutations matrices all belong to such
set, consequently its convex hull corresponds to the Birkhoff polytope, that is conv (Sn) = Ωn. The
constraints required for an arbitrary DSM to be unistochastic are still an open problem4.

Hence we can represent (with some approximation) the solution of the assignment problem using
unitary operators. This principle produces DSM independently of the construction of the unitary
U , which offers great freedom in the choice of the ansatz for U supporting both variational and
kernel-based learning strategies [27]. Furthermore, such natural link between transportation maps
and unitary operators may lead to quantum models enjoying better expressivity compared to classical
counterparts. In fact, our problem can directly be related to recent results in quantum learning
theory [28], where a separation between so-called quantum contextual and non-contextual models is
proven under the assumption of specific constraints being present in the label space.

3.1 Quantum circuit for the Birkhoff polytope

We assume that the structures on n qubits have a dimension comparable to the input d = 2n, where
d is the number of entities for the discrete distributions considered in Section 2.2. Let Up be a
parametric unitary operator acting on the bipartite Hilbert space

(
C2

)⊗m ⊗
(
C2

)⊗n
, with m being

a non-negative integer such that the classical simulation of a quantum circuit on m + n qubits is
unfeasible in general. The operator Up depends on the input vector x (perturbation) as well as on the
learning parameters θ. To prove the construction, we consider the Operator-Schmidt decomposition
of Up determined by the quantum mechanical sub-systems A1, B1, consisting of respectively m and
n qubits. So

Up(x,θ) =

d2∑
i=1

λiVi ⊗Wi, (2)

with {Vi} and {Wi} being sets of unitary operators orthonormal w.r.t. the Frobenius inner product.
Through singular value decomposition we have λi ≥ 0, with unitarity implying

∑
i λ

2
i = 1. Notably

the matrix Up depends on the input and the parameters vectors, then the components of Operator-
Schmidt decomposition λi, Vi and Wi are functions of (x,θ). Moreover, to assure the consistency
of the formulation we impose the Schmidt rank of Up (i.e. the number of strictly positive λi) to be

3This is a common requirement in OT, for avoiding degeneracy [14, Remark 2.1].
4For some specific instances, it has been numerically obtained that the unistochastic matrices cover ≈ 75%

of the Birkhoff polytope [26].

3



greater than one. Using the unitary Up and the interleaved bell states |bn⟩ and |bm⟩ (defined in (11)),
we obtain the following state

|φ⟩ =
(
I⊗m
2 ⊗ Up ⊗ I⊗n

2

)
· (|bm⟩ ⊗ |bn⟩) (3a)

=
(2)

∑
k

λk

(
I⊗m
2 ⊗ Vk

)
|bm⟩ ⊗

(
Wk ⊗ I⊗n

2

)
|bn⟩ (3b)

=
(12a)

∑
k

λk

vecr
(
V ⊤
k

)
√
2m

⊗ vecr (Wk)√
2n

, (3c)

where vecr(·) is the vectorization operator defined in Section A.2. Now, we partition the Hilbert
space on which |φ⟩ lays into two subsystems; the first is denoted as A2 and consists of the first 2m
qubits. The second is denoted as B2 and takes the last 2n qubits. We obtain the mixed state ρ by
applying the partial trace over the system A2, to the pure state |φ⟩ ⟨φ|, that is

ρ =TrA2
(|φ⟩ ⟨φ|) (4a)

=
1

2m+n

∑
i,j

λiλj Tr
(
ViV

†
j

)
vecr (Wi) vecr (Wj)

† (4b)

=
(13)

1

2n

∑
i

λ2
i vecr (Wi) vecr (Wi)

†
. (4c)

Recall that by the Operator-Schmidt decomposition and unitarity of Up we have that
∑

i λ
2
i = 1.

Given that the action of the unitary Up(x,θ) is generally not classically efficiently simulable, the
state ρ has the potential to represent correlations that cannot be captured with classical models. The
recovery of the DSM is completed with the lemma that follows.

Lemma 3.1. Let p(i, j) := 2n Tr(ρ |ij⟩ ⟨ij|) for i, j ∈ [0 . . d− 1]. Then the matrix Q =∑
i,j p(i, j) |i⟩ ⟨j| is doubly stochastic.

In the latter, the outer product |i⟩ ⟨j| defining the entries of the resulting DSM, is to be interpreted as
the rank 1 matrix eie

⊤
j where the tuple (i, j) corresponds to the indexing of the matrix entry. Also,

ei denotes the i-th canonical basis vector for the vector space R2n . The circuit structure resulting
from the formulation is depicted in Figure 1a.

a1 : |0⟩
a2 : |0⟩
a3 : |0⟩ H •

U(x;θ)
a4 : |0⟩ H •
j1 : |0⟩ H • j1

j2 : |0⟩ H • j2

i1 : |0⟩ i1

i2 : |0⟩ i2

(a) Example of circuit structure
for encoding DSMs (Section 3.1).

a1 : |0⟩
a2 : |0⟩
a3 : |0⟩ H •

U(x;θ)
a4 : |0⟩ H •
j1 : |0⟩ H • j1

j2 : |0⟩
i1 : |0⟩ i1

(b) Example of circuit structure
for the case of the embedded
transportation map (Section 3.2).

Figure 1: Circuit structures for the transportation map prediction. The registers {ik} ∪ {jk} represent the bits
for the index (i, j) related to the entry Qi,j of the resulting DSM. The registry {ak} refers to the 2m qubits as
per Section 3.1. We remark that the registry i has been added for construction reasons, however in practice it can
be removed and substituted with a classical uniform sampling over the registry j. Consequently, the number of
required qubits can be reduced (referring left picture) to 2m+ n.

3.2 Embedding of transportation maps

Since in our applications, the initial distribution µ is user-provided at inference time, the problem
is then twofold, namely the embedding of transportation maps into DSM to fit the representation
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presented in Section 3.1, and the prediction of maps which can be rescaled to an arbitrary initial
distribution. Starting from a training set {(pi, Ti)} (i.e., tuples of contexts and transportation maps),
we assume that Ti ∈ N (µi,νi) with µi,νi ∈ Rd

++, that is the margins of the transportation maps
are strictly positive5. Let v ∈ Rd, then we denote Dv = diag(v) the d× d diagonal matrix having
the elements of the vector v as diagonal elements. Now, given Ti as defined above, we define

T̂i := D−1
µi

Ti, (5)

and observe that T̂i1d = D−1
µi

Ti1d = D−1
µi

µi = 1d, that is T̂i ∈ N (1d,ν
′
i) is a right stochastic

matrix6, with ν′
i = T̂⊤

i 1d. At inference, when given a perturbation pi, the model predicts a right
stochastic matrix T̂ ∈ N (1d,ν

′) for some ν′ ∈ Rd
++. The latter, alongside the user-provided initial

distribution µ, determines the final predicted map T = DµT̂ . One can immediately verify that
T1d = DµT̂1d = Dµ1d = µ. In other words, we learn the pattern of the transportations in a
margin-independent fashion and rescale to the required margin at inference time. We note that, when
the context is 0 (null perturbation) then T̂i = Id. Given the user-provided µ we have DµT̂i = Dµ,
hence Dµ1d = D⊤

µ1d = µ = ν, ergo the initial and final distributions agree (consistent with the
notion of null perturbation), inducing a stationarity inductive bias.

To complete the structure, we now expand on the link between the d× d right stochastic matrix T̂
and a 2d× 2d doubly stochastic matrix Q. This step is necessary since the formulation in Section 3.1
produces DSM only. First, consider the block decomposition of a DSM that follows

Q =

(
Q1 Q2

Q3 Q4

)
∈ Ω2d, (6)

with Qi ∈ Rd×d
+ . Now, note that (Q1 Q2)12d = 1d implies (Q1 +Q2)1d = 1d. We embed the

right stochastic matrix T̂i into the sum Q1 +Q2 of the top quadrants of a DSM Q ∈ Ω2d. Since this
structure does not consider Q3 and Q4, Section A.3 proposes a more parameter-efficient ansatz.

To obtain the number of required qubits, let m be the number of qubits (as per Section 3.1) that makes
the function space achievable by the ansatz, hard to be computed classically. Also, let d = 2n and
consider d× d transportation maps, then using the reduction introduced in Figure 1b (additionally we
remove registry i), the overall circuit requires (n+ 1) + 2m qubits.

3.3 Training objective

Let f : X → Ω
(r)
d be a function from the set of perturbations X to the set of d× d row-stochastic

matrices, and let F be the function space of such functions related to our model. Then, given the
training set {(pi, Ti)} we define our learning problem as

f⋆ =argmin
f∈F

∑
i

∥Dµi
f(pi)− Ti∥F , (7)

where µi = Ti1d is the initial distribution for the i-th training sample and ∥ · ∥F is the Frobenius
matrix norm. At inference time, given the initial (quasi-)distribution µ ∈ Rd

++ and the perturbation
p ∈ X , the predicted transportation map is obtained as T = Dµf

⋆(p). Note that for applications
where one is interested primarily in the predicted target distribution ν⋆, the objective can easily be
adjusted, e.g., through setting f⋆ = argmin

∑
i ∥Dµi

f(pi)1d − νi∥. In practice, we optimize the
parameters of the ansatz representing the f⋆ through the quasi-Newton algorithm BFGS [29]. Since
it can get expensive in terms of the required number of circuit evaluations to get gradients, one might
use derivative-free alternatives, e.g. COBYLA [30].

Evaluation. To evaluate the accuracy of the transportation plans we use a relative Frobenius norm

F (T̄i, Ti) =
∥T̄i − Ti∥F

∥T̄i∥F
(8)

where T̄i = Dµi
f⋆(pi). We report the relative norm because the absolute norm is unbound and

we thus bypass constraints on the target norm. As secondary evaluation metric we report the first
Wasserstein distance, acronymed W1, on the flattened transportation plans.

5The constraint on the strict positivity of the margins is justified in Section 2.2.
6A non-negative n× n matrix Q is right stochastic when the rows sum to one, that is Q1n = 1n.
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4 Experimental setup

d-dimensions
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Figure 2: QontOT overview. We first employ a synthetic data generation scheme, where we perturb a population
of cells using increasing dosage of a drug, resulting (Xi, Yi,pi) where Xi represents synthetic scRNA-seq
measurements before and Yi ∈ Rn2×l synthetic scRNA-seq measurements after a drug perturbation administered
with dosage pi ∈ [0, 1]. We cluster these measurements to identify all cell types present, and then compute, for
each stage, the distribution of cell types before and after perturbation, i.e., µ and ν. Each pair µ, νi is given as
an input to a classical OT solver that computes a real transportation plan Ti. We feed to our quantum circuit the
cluster distribution before perturbation µ and the dosage pi to infer a predicted transportation plan T̄i and use
the relative Frobenius norm as a loss function to train the QC.

We applied our proposed method on predicting changes in the composition of a population of cells
following a drug perturbation and tested it on synthetic data as visualized in Figure 2. Starting from
a mixed population of cells that belong to different cell types and live in a high-dimensional cell
state space we assume that administering a drug has a direct effect on the composition of the cell
population, by eliminating certain cell types or pushing some other cell types to proliferate. We
denote as µ, νi the cell type distribution of a cell population before and after the drug perturbation
with a context variable pi. We note that in all experiments, pi ∈ [0, 1] is the drug dosage.

4.1 Dosage perturbation data generator

We leverage the established single-cell RNA sequencing generator Splatter [31] to form a three-
stage generator for drug dosage perturbation datasets:

1. First, Splatter samples raw expression counts (X ∈ Rn1×l, with n1 cells and l genes) from
zero-inflated negative binomial distributions (one per gene). Sufficient statistics of all underlying
distributions (Poisson, Gamma, Chi-Square) can be controlled.

2. We aim to produce a tuple of (Xi, Yi,pi) where Xi holds unperturbed base states of n1 cells and
Yi ∈ Rn2×l holds perturbed states of n2 cells, resulting from a drug perturbation administered
with dosage pi ∈ [0, 1]. To derive the perturbed states Yi, new base states Ȳi are sampled with
the same configuration used to generate Xi, mimicking that cells are being destroyed during
measurement. Subsequently Yi = g(Ȳi,pi) where g is the total effect on the cells, governed by a
combination of noise terms and the immediate effect gp(·) of the perturbation. We assume that
only 15% of the genes alter their expression upon perturbation. In this case, we apply gp to the raw
cell states, scaled by a response amplitude ∼ U(0.3, 1). Moreover, 10% of the cells are generally
unresponsive to the perturbation (gp = 0). We investigate linear and non-linear perturbations, i.e.,
gp1

(x) = ax+ b and a reciprocal root function gp2
(x) = ax−b with a, b > 0, respectively. The

hyperparameters of the experiments can be found in Appendix A.1.

3. We repeat stage 2 for each dosage by varying smoothly the immediate effect gp(·) based on pi,
resulting in a dataset {Xi, Yi,pi}Ni=1 of N tuples. Responsive genes are fixed across samples. The
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base states Xi are identical across all samples of the dataset, mimicking the common experimental
setting where only one control population was measured [32].

4.2 Cell type assignment via clustering

We represent each cell through a single cell type label, which can be easily achieved following any
conventional clustering approach in the original Rl space. Following a cell clustering into d clusters
(roughly corresponding to cell types), we compute µ,ν ∈ Rd as distributions over cluster labels
for the population of cells before and after perturbation. In practice, we use k-Means clustering
to cluster all cells of the training set and set k = d = 16 to adhere with the requirements of the
quantum circuit, i.e., d must be a power of 2 (in the general case, if we pick a different number of
clusters and log2 (k) ̸∈ N, we can pad and set d := 2⌈log2 (k)⌉ and fix the transportation plan to be
diagonal for the padded entries). We then solve Equation 1 and compute the OT map between µ and
ν, using the entropically regularized Sinkhorn solver [24] from the POT library [33]. The cost matrix
C ∈ Rd×d is computed between the clustering centroids using a distance measure of choice, in our
case either a Euclidean (L2) or a cosine distance. Repeating this procedure for all dosages yields a
dataset {Ti,pi}Ni=1 of transportation plan-perturbation tuples, processed as described in Section 3.3.
Note that, even though the perturbation functions gp are simple (linear or inverse root) and only
affect expression of a subset of cells and genes, the induced changes in the cell type distributions are
significant and locally continuous (cf. Figure A1).

An alternative approach to generate cell labels is to perform dimensionality reduction on the training
cells and rasterize the obtained space into equidistant hypercubes. Cells are then assigned to the
hypercube they originate from and the cost matrix is computed using the L1 distance of the centers
of the hypercubes, scaled by dimension weights (e.g., eigenvalues of a PCA). We test this procedure
with a Kernel PCA [34] using a radial basis function kernel and two principal components.

Soft assignment and cell reconstruction To better capture the underlying structure of the data
when generating cell labels, we employed fuzzy C-Means clustering [35] to yield a distribution of
cluster assignments for each cell. Combined with the cluster label distribution ν⋆ obtained from
the predicted T̄i, this allows expression values in the original gene space to be reconstructed: For
each source cell, the mass assigned to each cluster is distributed using the corresponding row of the
predicted transportation plan. These new cluster assignment vectors are summed up across all original
clusters. Last, the expression value of each gene is calculated as an average of all cluster centroids,
weighted by the predicted soft cluster assignment. Note that this procedure can be performed for both
aforementioned cell label generation techniques, clustering and dimensionality reduction.

5 Experimental results

The first set of experiments aims to verify that our method QontOT (for Quantum Contextual Optimal
Transport) can learn to predict transportation maps contextualized through a perturbation variable.
The results are produced using a PyTorch-based custom state vector simulator [36]. We compare
QontOT to a baseline which always predicts the same transportation plan, obtained by solving the
regularized OT problem (Equation 1) on all training samples at once, disregarding the context.

The results in Table 1 show that QontOT outperforms the baseline in all cases by a wide margin.
Unlike related work that leverages Brenier’s theorem [5], our method is not limited to squared
Euclidean cost and works equally when computing the cost through cosine distances of the centroids.
Interestingly, QontOT outperforms the baseline not only in the linear but also in the non-linear
perturbation case, an arguably more realistic and challenging scenario, as gp2

induces strong up-
regulation of genes with low initial expression but very low up-regulation if genes are already highly
expressed. Moreover, we observe a general trend that more layers in the ansatz (cf. Section 3.2)
yield better performance, leaving room for further improvement. Some exemplary real and predicted
transportation plans (cf. Figure 3a) serve as a testimony that QontOT can learn context-dependent
shifts in cell type frequencies, by capturing the change in the distribution of cluster labels induced
by the perturbation. Assessing the relation between dosage and error (cf. Figure 3b) reveals that
predicting the effect of stronger perturbations (higher dosages) is more challenging. This is expected
because in the control condition (pi = 0), the cell ID distribution remains identical, subject only to
stochastic effects in data generation and selection of cells for the batch. The baseline model, however,
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Perturb. Distance Method Layers W1 Frobenius
Linear (gp1

) L2 Baseline – 0.0036±0.001 0.80±0.06

Linear (gp1
) L2 QontOT 4 0.0029±0.001 0.70±0.15

Linear (gp1
) L2 QontOT 6 0.0028±0.001 0.67±0.13

Linear (gp1 ) Cosine Baseline – 0.0032±0.000 0.84±0.07

Linear (gp1 ) Cosine QontOT 4 0.0029±0.000 0.72±0.14

Linear (gp1
) Cosine QontOT 6 0.0029±0.000 0.69±0.14

Nonlinear (gp2
) L2 Baseline – 0.0024±0.001 0.75±0.10

Nonlinear (gp2
) L2 QontOT 6 0.0016±0.001 0.48±0.19

Nonlinear (gp2
) L2 QontOT 10 0.0014±0.001 0.43±0.20

Table 1: Transportation plan prediction. Performance in predicting transportation plans for unseen context,
comparing our approach (QontOT) to a baseline model. Each block of three lines denotes one dataset, evaluated
with two QontOT models and the baseline. Different distance metrics were used to derive the cost matrix from
the K-means centroids and both linear and non-linear perturbation effects were recovered. W1 denotes first
Wasserstein distance and Frobenius is the relative Frobenius norm (cf. Equation 8). Layers refers to the number
of layers in the ansatz. Each experiment was performed three times with different random seeds.

Target QondOT

Dosage:
0.02

a

Dosage:
0.41

Dosage:
0.78

b c
Training data Test

0.85
0.93Baseline : 0.84

QondOT  : 0.52

0.44

0.34

0.08

Figure 3: Capturing variation in cell cluster ID distributions via transportation plan prediction. a) Three
predicted transportation plans from the nonlinear perturbation dataset are shown next to their unseen ground
truth. b) Frobenius distance of real and predicted transportation across unseen dosages are shown for QontOT
and the baseline. c) Out-of-distribution scenario. When QontOT is evaluated on dosages outside the training
data scenario, the performance decreases but still remains well above the baseline.

performs relatively well for mediocre dosages but struggles with extreme values. Given the higher
difficulty (i.e., transportation cost) in predicting transportation plans for large dosages, we performed
an extrapolation experiment where dosages pi ∈ [0, 0.9] were used for training and pi ∈ [0.9, 1]
were used for evaluation. The barplot in Figure 3c reveals that the test error is higher than the training
error, however QontOT still clearly outperforms the baseline.

Note that, if cells are assigned unique cluster labels, QontOT predicts distributions over cluster
assignments but this can hardly be mapped back to gene expression values on a single-cell level.
As a remedy, we utilize a soft assignment approach, implemented through soft clustering (e.g.,
fuzzy C-Means [35]) or a dimensionality reduction, followed by a propagation procedure to obtain
predicted single-cell expression values (cf. Section 4.2). In Figure 4a, we verify that when predicting
transportation maps for soft assignments, our results from Figure 3 are confirmed. While the same
general trends can be seen, an interesting observation is the high error of QontOT for low dosages in
the Kernel PCA setting. This error can be attributed to the stationarity inductive bias of the method
(diagonal transportation plans for pi = 0). This is generally a desirable assumption of the method,
but the kernelPCA seems to not always preserve local similarity of cells, inducing distribution shifts
even for control states. Some examples of reconstructed gene expression are displayed in Figure 4b
and c, revealing that QontOT captures the general response of the gene induced by the drug dosage.

6 Discussion

In this work we have first introduced a principled approach to represent transportation maps on
quantum computers. Such representation is justified by the constraints defining the transportation
maps, which can be related to recent work on quantum contextuality and inductive bias in quantum
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a b c

Figure 4: Soft assignment. a) Performance on different approaches of soft assignment of cells to their group. b),
c) Soft assignment facilitates the reconstruction of gene expression data from predicted cell label distributions.
For two exemplary genes, measured and predicted gene expression across unseen dosages are shown. Expressions
were averaged across all genes.

machine learning [28]. We then proposed an ansatz for learning to predict such OT maps conditioned
on a context variable, without requiring access to the cost matrix. We provide empirical evidence
supporting that our methodology can successfully learn to predict contextualized transportation
maps. Exemplified on synthetic data of single-cell drug dosage perturbations, our method is able
to predict transportation plans representing distributional shifts in cell type assignments. While
further validation on more realistic and challenging datasets as well as better classical comparisons
are clearly needed, our work constitutes, to the best of our knowledge, the first approach to bridge
OT and ML on quantum computers. Notably our approach does not impose general constraints on
the dimensionality of the context variable(s), thus more complex perturbations such as continuous
drug representations, combinatorial genetic perturbations or other covariates could be also employed.
Given that, in our described application, the dosage-induced shifts in cluster assignments are also
largely driven by the initial cell states (rather than only the dosage), future work will be devoted to
make our ansatz fully parametric for µi, potentially through co-optimal transport [37, 38].
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A Experimental details

A.1 Datasets and hyperparameters

For the results shown in Table 1 and Figure 3, we simulate 300 genes and 1000 cells across 50 unique dosages,
equidistantly spaced in [0, 1]. 15% of the genes respond to the perturbation gp(·) but 10% of the cells are set
as unresponsive. The sinkhorn regularization γ = 0.001. For the linear case, fp1(x) = 3x + 1 and for the
non-linear case fp2(x) = 100x−0.2. For each dosage, four batches of 500 cells each were created, summing
to 200 samples which were split randomly with 20% test data. For the extrapolation experiment in Figure 3c,
the 10% of samples with the highest dosage was used as test data. For the (soft) clustering and KernelPCA
in Figure 4, a dataset with 500 genes, 2000 cells, 50 dosages and 500 cells per batch were used (the remaining
parameters were identical). The ansatz has been implemented in Qiskit 0.43.0 [39] and the remaining source
code is written in PyTorch 2.0.1 [36]. For practical reasons, simulations were performed on classical hardware
(CPU).

Figure A1: Exemplary cell type distributions for source and target cell populations. While the distribution of cell
types in the unperturbed tissue is static (see left), the perturbed cells produce highly dissimilar distributions that,
however, exhibit some local continuity for similar dosages. Plot generated with data from linear perturbations
and euclidean cost.

A.2 Linear algebra

Let ∆n denote the simplex in n− 1 dimensions, that is the set

∆n =
{
v ∈ Rn

+

∣∣∣1⊤
nv = 1

}
. (9)

The elements Q ∈ Ωn are doubly stochastic matrices (DSM), also the extreme points of the polytope are
permutation matrices. A DSM Q ∈ Ωn can be decomposed as

Q =

N∑
i=1

λiPi, (10)

for some λ ∈ ∆N , n× n permutation matrices {Pi}, and the number of extreme points N ≤ n2. We note that
the decomposition is not unique.

Fundamental for the quantum formulation is the set Sn of n×n unistochastic matrices. Given any n×n unitary
matrix U , the matrix obtained by substituting each element of U with its absolute value squared, is unistochastic.
In other words, let U ∈ U(n), then U ⊙ U is doubly stochastic, where U =

(
U†)⊤. The latter result is an

implication of unitarity. The set of unistochastic matrices is a non-convex proper subset of the Birkhoff polytope,
however the n× n permutations matrices all belong to such set, consequently its convex hull corresponds to the
Birkhoff polytope, that is conv (Sn) = Ωn. The constraints required for an arbitrary DSM to be unistochastic
are still an open problem.

We denote with Jn the n× n matrix of ones, that is Jn = 1n1
⊤
n .

Let |bn⟩ denote the quantum state consisting of interleaved Bell’s states on
(
C2
)⊗n ⊗

(
C2
)⊗n, so

|bn⟩ =
1√
2n

2n−1∑
i=0

|i⟩ ⊗ |i⟩ . (11)

Note that |bn⟩ corresponds to the vectorization of the identity operator up to a scalar multiple, that is
1√
2n

vecr
(
I⊗n
2

)
= |bn⟩, where vecr denotes the row-major vectorization operator. Moreover, given a n× n
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matrix M in C, we will be using the identities 7

vecr(M) =(M ⊗ In) vecr (In) (12a)

vecr
(
M⊤

)
=(In ⊗M) vecr (In) . (12b)

The following lemma establishes a relation between unitary operators and their vectorization.

Lemma A.1. Let {Ui} be a set of unitary operators Ui ∈ U(n) such that Tr
(
UiU

†
j

)
= nδij , that is the

unitaries are orthogonal w.r.t. the Frobenius inner product. Then the set {vecr(Ui)} ⊂ Cn2

consists of
orthogonal vectors, that is

vecr(Uj)
† vecr(Ui) =Tr

(
UiU

†
j

)
= nδij . (13)

Let σi with i = [1 . . 3] be the Pauli operators [40] commonly denoted with σx, σy and σz , respectively. Also
we define σ0 = I2. The subscript of the σ to determine the Pauli will be indicated interchangeably as symbol or
integer index.

A.3 The checkerboard ansatz

We propose an ansatz construction which is compatible with the structure of the embedding of transportation
maps expanded in Section 3.2. For some positive integer k, we define the subset Gk of unitary operators as

Gk := {U ∈ U (2k) |U = I2 ⊗A+ σx ⊗B} , (14)

where A,B are k × k matrices, not necessarily unitary. In other words, the operators in U ∈ Gk have the
following block matrix form

U =

(
A B
B A

)
, (15)

which is clearly inherited by the corresponding unistochastic U ⊙ U .

The next lemma shows that the set Gk is a subgroup of even degree of the unitary group.

Lemma A.2. The set Gk is non-empty and endowed with a group structure under operator composition, for all
positive integers k.

Proof. It is immediately verifiable that I2k ∈ Gk, that is the set Gk is non-empty and it contains the identity
element w.r.t. matrix multiplication. Also the composition of operators carries the associativity as required.
Finally we verify the closure. Let U1, U2 ∈ Gk such that Ui = I2 ⊗Ai + σx ⊗Bi for i = 1, 2, then

U1U2 =(I2 ⊗A1 + σx ⊗B1) (I2 ⊗A2 + σx ⊗B2) (16a)
=I2 ⊗ (A1A2 +B1B2) + σx ⊗ (A1B2 +B1A2) , (16b)

which corresponds to the pattern in (15). Hence U1U2 ∈ Gk.

The result that follows shows that the structure is preserved under the tensor product.

Lemma A.3. Let U1 ∈ Gk1 and U2 ∈ Gk2 , for some positive integers k1 and k2. Then U1 ⊗ U2 ∈ G2k1k2 .

Proof. Let U1 ∈ Gk1 and U2 ∈ Gk2 such that Ui = I2 ⊗Ai + σx ⊗Bi for i = 1, 2, then

U1 ⊗ U2 =(I2 ⊗A1 + σx ⊗B1)⊗ (I2 ⊗A2 + σx ⊗B2) (17a)
=I2 ⊗A+ σx ⊗B, (17b)

with A = A1 ⊗ (I2 ⊗A2 + σx ⊗B2) and B = B1 ⊗ (I2 ⊗A2 + σx ⊗B2). Hence it follows that U1 ⊗ U2

fulfils the pattern in (15) and since A,B are linear maps in C2k1k2 , then U1 ⊗ U2 ∈ G2k1k2 .

7In the context of quantum information theory the identity in (12a) is known as the Choi-Jamiołkowski
correspondence.
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A.3.1 Ansatz’s two-qubit generator

We obtain a two-qubit circuit Ug ∈ G2, that by Lemma A.2 and A.3 can be used as a generator for the more
general G2k with k ≥ 1. From the definition in (14) we obtain the symmetry U ∈ G2 =⇒ (σx ⊗ I2)U(σx ⊗
I2) = U . Using the latter and the general unitary circuit with 2 CNOTs (highlighted) [41], we solve the following
circuit equation

q0 C Rz(α) A A† Rz(−α) C†

q1 D • Ry(β) • B X B† • Ry(−β) • D† X
= I⊗2

2 , (18)

where A,B,C,D are arbitrary single qubit (special) unitaries and α, β ∈ R. Now, since the operator σz ⊗ I2
commutes with the CNOT gate when the Pauli σz acts on the controlling qubit, we impose on (18) the conditions

B†σxB =σz, (19a)
Ry(−β)σzRy(β) =σz, (19b)

D†σzD =σx. (19c)

Then a solution is B = D = H and β = 0, where H is the Hadamard operator on a single qubit. Hence the
generator circuit takes the following form

q0 C Rz(α) A

q1 H • • H

(20)

where A,C ∈ SU (2) and α ∈ R.

Finally, by using Lemma A.2 and A.3, and the generator block in (20), we construct the ansatz as exemplified in
Figure A2.

q1 :
K(θ1)q2 :

K(θ3)q3 :
K(θ2)q4 :

K(θ4)q5 :

Figure A2: An example of depth and connectivity efficient layer for the Checkerboard ansatz. Here the blocks
K correspond to the 2-qubits circuit in (20) and the vectors θi are seven dimensional vectors parameterizing
gates A,C and Rz of (20).

Proofs

Proof of Lemma A.1. Considering the constraint Tr
(
UiU

†
j

)
= nδij we obtain

vecr(Uj)
† vecr(Ui) =

∑
k

(
⟨k|U†

j ⊗ ⟨k|
)∑

t

(Ui |t⟩ ⊗ |t⟩) (21a)

=
∑
k,t

(
⟨k|U†

jUi |t⟩ ⊗ ⟨k|t⟩
)

(21b)

=
∑
k

(
⟨k|U†

jUi |k⟩
)
= Tr

(
UiU

†
j

)
= nδij . (21c)

Proof of Lemma 3.1. We expand the function p : [0 . . d− 1]× [0 . . d− 1] → [0, 1] defined in . . . , so

p(i, j) :=2n Tr(ρ |ij⟩ ⟨ij|) (22a)

=
∑
k

λ2
k ⟨ij| vecr (Wk) vecr (Wk)

† |ij⟩ (22b)

=
∑
k

λ2
k ⟨i|

(
Wk ⊙Wk

)
|j⟩ . (22c)
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The positivity of the entries of the DSM is clear from the definition of p(i, j). We prove the rows sum constraint
for Q =

∑
i,j p(i, j) |i⟩ ⟨j|, that is

Q1d =
∑
i,j

p(i, j) |i⟩ (23a)

=
∑
i

|i⟩ ·

(∑
k

λ2
k ⟨i|

∑
j

(
Wk ⊙Wk

)
|j⟩

)
, (23b)

where the rightmost sum equals the vector 1m since Wk⊙Wk is unistochastic, also
∑

k λ
2
k = 1 (following from

(2)), hence Q1d = 1d. Similarly the same holds for the columns sum constraint, hence the claim follows.
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