
The Past Mistake is the Future Wisdom: Error-driven Contrastive
Probability Optimization for Chinese Spell Checking

Anonymous ACL submission

Abstract

Chinese Spell Checking (CSC) aims to de-001
tect and correct Chinese spelling errors, which002
are mainly caused by the phonological or vi-003
sual similarity. Recently, pre-trained language004
models (PLMs) promote the progress of CSC005
task. However, there exists a gap between the006
learned knowledge of PLMs and the goal of007
CSC task. PLMs focus on the semantics in008
text and tend to correct the erroneous char-009
acters to semantically proper or commonly010
used ones, but these aren’t the ground-truth011
corrections. To address this issue, we pro-012
pose an Error-driven COntrastive Probability013
Optimization (ECOPO) framework for CSC014
task. ECOPO refines the knowledge represen-015
tations of PLMs, and guides the model to avoid016
predicting these common characters through017
an error-driven way. Particularly, ECOPO is018
model-agnostic and it can be combined with019
existing CSC methods to achieve better per-020
formance. Extensive experiments1 and de-021
tailed analyses on SIGHAN datasets demon-022
strate that ECOPO is simple yet effective.023

1 Introduction024

Chinese Spell Checking (CSC) aims to detect and025

correct spelling errors in Chinese texts (Wu et al.,026

2013a). It is a crucial research field for various NLP027

downstream applications, such as Optical Character028

Recognition (Afli et al., 2016), search query cor-029

rection (Gao et al., 2010) and essay scoring (Dong030

and Zhang, 2016). However, CSC is also very031

challenging because it mainly suffers from confus-032

ing characters, such as phonologically and visually033

similar characters (Liu et al., 2010; Zhang et al.,034

2020). As illustrated in Figure 1, “素(sù, plain)”035

and “诉(sù, sue)” are confusing characters for each036

other due to the shared pronunciation “sù”.037

Recently, pre-trained language models (PLMs)038

such as BERT (Devlin et al., 2019) have been uti-039

lized in the CSC task and became mainstream so-040

1The source code will be available for reproducibility.

Phono-

logical

83%

Input 希望您帮我素 (plain) 取公平。
s ù

Correct 希望您帮我诉 (sue) 取公平。
s ù

Candidate 1 希望您帮我争 (fight) 取公平。
zhēng

Candidate 2 希望您帮我谋 (plan) 取公平。
móu

Candidate 3 希望您帮我获 (acquire) 取公平。
h u ò

Translation Hope you help me to sue and get justice.

Visual

48%


Input 我们为这个目标努力不解 (understand) 。 
j i ě

Correct 我们为这个目标努力不懈 (slack) 。 
x i è

Candidate 1 我们为这个目标努力不休 (rest) 。
x i ū

Candidate 2 我们为这个目标努力不断 (break) 。
duàn

Candidate 3 我们为这个目标努力不停 (stop) 。
t í n g

Translation We fight for this goal without slack.

Figure 1: Examples of Chinese spelling errors. Pre-
vious research (Liu et al., 2021) shows that 83%
of errors belong to phonological error and 48% be-
long to visual error. We give the characters with
their pronunciation and translation. We mark the in-
put confusing/golden/common candidate characters in
red/blue/orange. The characters in “Candidate” sen-
tences are all predicted by fine-tuned BERT.

lutions (Zhang et al., 2020; Cheng et al., 2020). 041

However, there exists a significant gap between the 042

learned knowledge of PLMs and the goal of CSC 043

task. PLMs provide informative representations 044

from the perspective of semantics, but if only con- 045

sidering the semantics in CSC, there are multiple 046

appropriate characters as the correction. Without 047

the constraints of phonological and visual similar- 048

ities, PLMs easily predict semantically proper or 049

common characters due to the masking strategy in 050

the pre-training procedure. 051

Figure 1 presents two predictions of BERT to bet- 052

ter understand the gap mentioned before. The first 053

example is caused by the misuse of “素(sù, plain)” 054

and “诉(sù, sue)”. An ideal CSC model should 055

pay attention to the pronunciation information “sù” 056

and output the golden character “诉(sue)” as a cor- 057

rection for the input confusing character. How- 058

ever, as pre-trained on general corpora, BERT tend 059
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to predict semantically proper characters, such as060

“争(zhēng, fight)”, “谋(móu, plan)” and “获(huò,061

acquire)”. These characters are also from more062

commonly used phrases. In the second example,063

BERT also overlooks the visual similarity between064

“解(jiě, understand)” and “懈(xiè, slack)”, resulting065

in wrong correction.066

To alleviate this gap, we propose to empower067

the PLMs to avoid predicting the above-mentioned068

common characters by optimizing the knowledge069

representation of PLMs. Intuitively, if we guide the070

model to not make the same mistakes it would071

prone to make before, the model performance072

should be improved. Hence, the mistakes that the073

model has ever made can be utilized as constraints074

on the knowledge representation of the model. In075

other words, we exploit the past mistakes that the076

model may make to further enhance the model077

itself, this is the meaning of our title, “the past078

mistake is the future wisdom”.079

Motivated by the above intuition, we propose the080

Error-driven COntrastive Probability Optimization081

(ECOPO), a simple yet effective training frame-082

work which aims to refine the knowledge represen-083

tation of models for CSC. The ECOPO consists of084

two stages: (1) Negative samples selection. Based085

on the model’s prediction probabilities for different086

characters, we select the common characters with087

high probability as negative samples. The golden088

character is directly regard as the positive sample.089

(2) Contrastive probability optimization. After ob-090

taining the positive and negative samples, we train091

the model by Contrastive Probability Optimization092

(CPO) objective which aims to optimize the predic-093

tion probabilities for different characters. Through094

this optimization process, we can finally narrow the095

gap between the pre-trained knowledge of PLMs096

and the goal of CSC. Additionally, ECOPO has no097

strict restrictions on the model to be optimized, so098

it can further improve the performance of various099

existing CSC models.100

In summary, our contributions are in three folds:101

(1) We firstly observe and focus on the nega-102

tive impact of the gap between the knowledge of103

PLMs and the goal of CSC. (2) We propose model-104

agnostic ECOPO framework, which can teach the105

models to grow and progress with their own past106

mistakes. (3) We conduct extensive experiments107

and detailed analyses on SIGHAN benchmarks and108

achieve state-of-the-art performance.109

2 Related Work 110

2.1 Chinese Spell Checking 111

Early works in CSC mainly focus on design- 112

ing heuristic rules to detect different kinds of er- 113

rors (Chang et al., 2015; Chu and Lin, 2015). Most 114

of these methods rely on solid linguistic knowledge 115

and manually designed features, and thus do not 116

have the generalization performance required for 117

large-scale application. Next, various traditional 118

machine learning algorithms, such as Conditional 119

Random Field (CRF) and Hidden Markov Model 120

(HMM), are applied in CSC (Wang and Liao, 2015; 121

Zhang et al., 2015). Then, deep learning-based 122

models have gradually become the mainstream of 123

CSC in recent years (Wang et al., 2021a; Guo et al., 124

2021; Zhang et al., 2021). 125

Wang et al. (2018) utilize a BiLSTM trained 126

on an automatically generated dataset to convert 127

CSC to sequence labeling problem. Hong et al. 128

(2019) propose to generate and curtail the candidate 129

characters through a BERT-based denoising autoen- 130

coder. The Soft-Masked BERT model (Zhang et al., 131

2020) uses two separate networks for detection and 132

correction. Then SpellGCN (Cheng et al., 2020) 133

uses GCN (Kipf and Welling, 2017) to fuse char- 134

acter embedding with similar pronunciation and 135

shape, explicitly modeling the relationship between 136

characters. PLOME (Liu et al., 2021) is proposed 137

to be a task-specific pre-trained language model for 138

CSC, which designs a confusion set based masking 139

strategy and introduces various external knowledge. 140

Additionally, REALISE (Xu et al., 2021) verifies 141

that the multimodal knowledge can be leveraged to 142

improve CSC performance. 143

2.2 Contrastive Learning 144

The main motivation of contrastive learning is to 145

attract the positive samples and repulse the nega- 146

tive samples in a certain space (Hadsell et al., 2006; 147

Chen et al., 2020; Khosla et al., 2020). Existing 148

contrastive learning models in NLP are mainly fo- 149

cusing on the language representation space (e.g, 150

word/sentence/semantic representations) (Iter et al., 151

2020; Gao et al., 2021; Wang et al., 2021b). Dif- 152

ferent from them, our proposed method directly 153

optimizes the model’s probability space for differ- 154

ent characters through selected positive/negative 155

samples and their original predicted probability. 156
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… 经过磨练才能让自己

更加拙 (clumsy) 壮 …
zhuō

… 

…不经一番寒辙(rut)骨，
z h é

焉得梅花扑鼻香…

Input

… 

Input Sentences with  
Corresponding Correct Characters

茁 
zhuó

(strong) 

… 

Correct

… 

彻 
c h è

(bite) 

… through the grind to make 
ourselves clumsy (strong) …

… if not for the bone-rutting (biting) 
winter cold ,  

how can the plum blossom and its 
fragrance assail the nostrils? …

N

PLMs such as BERT

Classification layer 强

Prediction 
Probability  

ℒCPO
∂ℒCPO

∂θ
∂ℒCPO

∂θ

Back 
Propagation

ℒORI
∂ℒORI

∂θ
∂ℒORI

∂θ

Back 
Propagation

壮

粗

健

雄

瘦

寒

打

冬

冷

… 

… 
茁

… 
彻

… … 

Neg

Pos

Existing 
Original 

Objective

Contrastive 
Optimization 

Objective

Top   K

Figure 2: Overview of ECOPO framework. We select negative samples according to the original prediction prob-
ability of PLMs (e.g, for the position of “拙”, PLMs predicts the Top 5 characters as “强”, “壮”, “粗”, “健”, and
“雄”.), then optimize the PLMs with the contrastive optimization objective and traditional original objective.

3 Methodology157

In this section, we introduce the proposed ECOPO158

in details, as illustrated in Figure 2. ECOPO aims159

to refine the knowledge representation of PLMs160

to narrow the gap between it and the essential of161

CSC task. As mentioned in Section 1, with the162

model before our optimization process, we select163

the mistakes generated by this model itself to be164

the negative samples. Then through the Contrastive165

Probability Optimization objective, we maximize166

the prediction probabilities of the model for correct167

answers and minimize the prediction probabilities168

of the model for negative samples. In this error-169

driven way, the original prediction probabilities of170

the model are refined, improving the performance171

of the model on the CSC task. Therefore, the model172

will grow and progress after making mistakes again173

and again, just as humans do. Note that the pro-174

posed ECOPO is a model-agnostic framework, we175

can choose different PLMs or CSC models to be176

optimized in practice for better performance.177

3.1 Observation and Intuition178

To present our approach more clearly, we first de-179

scribe our observation, and then give our explana-180

tion of the observation and intuition.181

The key observation that ECOPO builds on is182

that PLMs such as BERT cannot focus well on the183

confusing characters that need to be paid more at-184

tention in the CSC task, as illustrated in Figure 1.185

We think that this gap comes mainly from the gen- 186

eral corpora and the training paradigm used in the 187

pre-training of language models. Taking the BERT 188

as an example, its pre-training corpus is mainly 189

from the text in Wikipedia, which has a very low 190

proportion of contexts containing confusing charac- 191

ters, as verfied in Section 4.6. Additionally, Devlin 192

et al. (2019) randomly choose 15% of tokens in 193

the entire corpus to be masked by a fixed token 194

“[MASK]” and then recover them. This masking- 195

recovering strategy makes the knowledge acquired 196

by PLMs in pre-training process discontinuous in 197

the CSC task (Liu et al., 2021). Because the size 198

of confusing characters will be lower in the 15% of 199

characters that are randomly selected. 200

In fact, there also exists the same challenge when 201

humans correct spelling errors. When only given 202

the context of input sentence without seeing the 203

misspelling, they tend to associate the common 204

character rather than the confusing character with 205

the context. Therefore, humans or models would 206

wrongly predict common characters. Intuitively, if 207

the model can be optimized with common charac- 208

ters through an error-driven way, then the model 209

can certainly be further enhanced, just as humans 210

get progress from the mistakes they have made. 211

3.2 Stage 1: Negative Samples Selection 212

We define the negative samples in CSC as those 213

common characters that be incorrectly assigned 214

high prediction probability by PLMs before our 215
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optimization process. According to our observa-216

tion, negative samples that can form common col-217

locations or phrases with the context tend to be218

assigned higher probability than the golden charac-219

ter, leading the model to make wrong corrections.220

Therefore, we use a simple strategy based on the221

prediction probability to select the negative sam-222

ples which we utilize in the next stage.223

Specifically, we use PLMs such as BERT to224

predict the original character for each input token225

based on the output of the last transformer layer.226

The prediction probability of the i-th token xi in a227

sentence X is defined as:228

p (yi = j | X) = softmax (Whi + b) [j], (1)229

where p (yi = j | X) means the conditional prob-230

ability that the i-th token xi is predicted as the231

j-th character in the vocabulary of PLMs, W ∈232

Rvocab×hidden and b ∈ Rvocab are learnable pa-233

rameters, vocab is the size of vocabulary and the234

hidden is the size of hidden state, hi ∈ Rhidden is235

hidden state output of PLMs for the i-th token xi.236

Based on the original prediction probability, if237

the model makes wrong correction for the input238

character, we will select negative samples for the239

input character. The negative samples set Neg is240

selected from the candidate set T as:241

T = {t | t ∈ V and t 6= t+}, (2)242

Neg = argmax
T ′⊂T,|T ′|=K

∑
t−∈T ′

p
(
yi = t− | X

)
, (3)243

where t− and t+ mean the negative and positive244

samples, respectively. The negative samples t− are245

selected from those tokens whose prediction proba-246

bility is in the Top K of the vocabulary V , and the247

best value of K is selected empirically. It is worthy248

noted that the training process is supervised in the249

CSC task, so we can regard the golden character as250

the positive sample t+.251

3.3 Stage 2: Contrastive Probability252

Optimization253

After obtaining the positive/negative samples and254

their corresponding prediction probability, we train255

the model by Contrastive Probability Optimization256

(CPO) objective which is defined as:257

LCPO = − 1

N

N∑
i=1

1

K

K∑
k=1

{p
(
yi = t+ | X

)
−p
(
yi = t−k | X

)
},

(4)258

where N is the batch size, K is the selected nega- 259

tive samples size, t−k is the k-th negative sample in 260

Neg. The CPO objective aims to teach the model 261

to increase the prediction probability for positive 262

sample (i.e., confusing character) and decrease the 263

prediction probabilities for negative samples (i.e., 264

common characters) by the maximum likelihood 265

of the difference between the original probabilities 266

for positive and negative samples. 267

To preserve the generalization performance of 268

the model, we train both the existing original ob- 269

jective LORI and the CPO objective LCPO. The 270

overall objective is defined as: 271

L = λ1LORI + λ2LCPO, (5) 272

where λ1 and λ2 are weighting factors for two ob- 273

jectives. We use cross-entropy loss function as the 274

LORI for BERT in our experiments. The training 275

pseudo-code of ECOPO is shown in Appendix A. 276

As described in Equation 5, we can replace the 277

LORI with other models’ training objectives, so 278

ECOPO is model-agnostic and it can be easily used 279

in other PLMs or previous CSC methods to achieve 280

further improvements. 281

Most previous works use softmax and cross- 282

entropy functions to train CSC models. But why 283

just using softmax is not enough and using CPO 284

is necessary? Theoretically: (1) Their motivations 285

are different, softmax is to normalize the PLMs’ 286

logits into a probability distribution, but CPO aims 287

to refine the knowledge representation of PLMs 288

in the probability space. (2) Their scopes are dif- 289

ferent, softmax relies on all logits output by mod- 290

els for weighted calculation, this global weighting 291

mechanism makes it not have good local atten- 292

tion. However, CPO can pay attention to a part 293

of really difficult samples that models would often 294

make mistakes through the negative samples selec- 295

tion stage. (3) Their results are different, through 296

the softmax operation, we finally obtain a prob- 297

ability distribution that is softer than the original 298

logits. Note that this probability distribution does 299

not change the order of the logits. But the CPO 300

we proposed can eventually change the order of 301

the original prediction probability, directing the 302

model to assign higher probability to positive sam- 303

ple and lower probabilities to negative samples. 304

Empirically, we conducted in-depth analyses in 305

Sections 4.5.1- 4.5.3. 306
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4 Experiments307

In this section, we introduce the details of exper-308

iments and main results we obtained. Then we309

conduct detailed analyses and discussions to verify310

the effectiveness of our method.311

4.1 Datasets312

Training Data We use the same training data by313

following previous works (Zhang et al., 2020; Liu314

et al., 2021; Xu et al., 2021), including the train-315

ing samples from SIGHAN13 (Wu et al., 2013b),316

SIGHAN14 (Yu et al., 2014), SIGHAN15 (Tseng317

et al., 2015) and the pseudo training samples318

(size of 271K, we denote this part of samples as319

Wang271K in our paper) automatically generated320

by OCR-based and ASR-based methods (Wang321

et al., 2018).322

Test Data To ensure the fairness, we use the ex-323

act same test data as the baseline methods, from324

the test datasets of SIGHAN13/14/15. Noted that325

the text of original SIGHAN datasets is in the326

Traditional Chinese, we pre-process these origi-327

nal datasets to the Simplified Chinese using the328

OpenCC2. This data conversion procedure has been329

widely used in previous works (Wang et al., 2019;330

Cheng et al., 2020; Zhang et al., 2020). The de-331

tailed statistic of the training/test data we use in our332

experiments is presented in Appendix B.333

4.2 Baseline Methods334

To evaluate the performance of ECOPO, we se-335

lect several advanced strong baseline methods:336

BERT (Devlin et al., 2019) is directly fine-tuned337

on the training data. Hybrid (Wang et al., 2018)338

casts CSC into sequence labeling problem and im-339

plements BiLSTM model. FASpell (Hong et al.,340

2019) consists of a denoising autoencoder and a341

decoder. Soft-Masked BERT (Zhang et al., 2020)342

consists of a detection network and a correction net-343

work. SpellGCN (Cheng et al., 2020) integrates344

the confusion set to the correction model through345

GCNs. PLOME (Liu et al., 2021) is a task-specific346

PLM which jointly learns how to understand lan-347

guage and correct spelling errors. REALISE (Xu348

et al., 2021) is a multimodel model which cap-349

tures and mixes the semantic, phonetic and graphic350

information to improve CSC performance. RE-351

ALISE is the previous state-of-the-art method on352

SIGHAN13/14/15 datasets.353

2https://github.com/BYVoid/OpenCC

4.3 Experimental Setup 354

In terms of evaluation granularity, there are two 355

levels of metrics, namely character/sentence-level. 356

Obviously, the sentence-level metric is stricter than 357

the character-level metric because there may be 358

multiple wrong characters in a sentence. One sen- 359

tence sample is considered to be correct only when 360

all the wrong characters in it are detected and 361

corrected successfully. Therefore, we report the 362

sentence-level metrics for evaluation, which are 363

widely used in previous works (Li et al., 2021; 364

Huang et al., 2021; Xu et al., 2021). 365

Specifically, the metrics we report include Accu- 366

racy, Precision, Recall and F1 score for detection 367

and correction levels. At the detection level, all 368

locations of wrong characters in a sentence should 369

be identical successfully. At the correction level, 370

the model must not only detect but also correct all 371

the erroneous characters with the gold standard. 372

Other implementation details and hyper- 373

parameters choices are presented in Appendix C. 374

4.4 Experimental Results 375

From Table 1, we can observe that: 376

1. The ECOPO (BERT) performs better than 377

BERT on all test sets and evaluation metrics. 378

Specifically, ECOPO (BERT) achieves signif- 379

icant improvement on SIGHAN15, and out- 380

performs the previous state-of-the-art models 381

with a very thin model, while REALISE and 382

PLOME are two complex models with some 383

auxiliary modules. Note that ECOPO (BERT) 384

only consists of a BERT encoder. 385

2. From the results on the SIGHAN14 test set, 386

we can see that the performance improvement 387

of ECOPO (BERT) based on BERT is not 388

as large as on the other two test sets, but 389

still effective. Additionally, due to the model- 390

agnostic advantage of ECOPO, it can be sim- 391

ply combined with other previous state-of-the- 392

art models such as REALISE and get further 393

enhancement, which are presented in the rows 394

of REALISE and ECOPO (REALISE). 395

3. Considering the impact of external knowledge, 396

several previous works exploit various addi- 397

tional information to improve performance. 398

For example, FASpell and SpellGCN intro- 399

duce character similarity to CSC, REALISE 400

and PLOME propose to leverage multimodal 401
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Dataset Method Detection Level Correction Level
Acc Pre Rec F1 Acc Pre Rec F1

SIGHAN13

Hybrid (Wang et al., 2018) - 54.0 69.3 60.7 - - - 52.1
FASpell (Hong et al., 2019) 63.1 76.2 63.2 69.1 60.5 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.4 77.2 - 78.3 72.7 75.4

BERT (Xu et al., 2021) 77.0 85.0 77.0 80.8 77.4 83.0 75.2 78.9
ECOPO (BERT) 81.7↑ 87.2↑ 81.7↑ 84.4↑ 80.7↑ 86.1↑ 80.6↑ 83.3↑

REALISE (Xu et al., 2021) 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1
ECOPO (REALISE) 83.3↑ 89.3↑ 83.2↑ 86.2↑ 82.1↑ 88.5↑ 82.0↑ 85.1↑

SIGHAN14

Hybrid (Wang et al., 2018) - 51.9 66.2 58.2 - - - 56.1
FASpell (Hong et al., 2019) 70.0 61.0 53.5 57.0 69.3 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3

BERT (Xu et al., 2021) 75.7 64.5 68.6 66.5 74.6 62.4 66.3 64.3
ECOPO (BERT) 76.7↑ 65.8↑ 69.0↑ 67.4↑ 75.7↑ 63.7↑ 66.9↑ 65.3↑

REALISE (Xu et al., 2021) 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1
ECOPO (REALISE) 79.0↑ 68.8↑ 72.1↑ 70.4↑ 78.5↑ 67.5↑ 71.0↑ 69.2↑

SIGHAN15

Hybrid (Wang et al., 2018) - 56.6 69.4 62.3 - - - 57.1
FASpell (Hong et al., 2019) 74.2 67.6 60.0 63.5 73.7 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
PLOME (Liu et al., 2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2

Soft-Masked BERT (Zhang et al., 2020) 80.9 73.7 73.2 73.5 77.4 66.7 66.2 66.4
ECOPO (Soft-Masked BERT) 81.2↑ 74.0↑ 76.6↑ 75.3↑ 79.1↑ 67.0↑ 72.3↑ 69.6↑

BERT (Xu et al., 2021) 82.4 74.2 78.0 76.1 81.0 71.6 75.3 73.4
ECOPO (BERT) 85.5↑ 78.2↑ 82.3↑ 80.2↑ 84.6↑ 76.6↑ 80.4↑ 78.4↑

REALISE (Xu et al., 2021) 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8
ECOPO (REALISE) 85.0↑ 77.5↑ 82.6↑ 80.0↑ 84.2↑ 76.1↑ 81.2↑ 78.5↑

Table 1: The performance of ECOPO and all baseline methods. Note that all baseline results are directly from
other published paper. ECOPO (model-X) means that we perform ECOPO framework on model-X. We underline
the previous state-of-the-art performance for convenient comparison. “↑” indicates that the corresponding baseline
method receives a further performance improvement after optimization by ECOPO.

knowledge such as phonetic and graphic infor-402

mation. Unlike the aforementioned models,403

ECOPO (BERT) achieves competitive perfor-404

mance without any additional knowledge and405

optimizing only based on the mistakes that the406

original BERT itself has made.407

4. To verify the model-agnostic characteristic of408

ECOPO, we choose two other models includ-409

ing Soft-Masked BERT and REALISE to be410

optimized. Practically, we train the combined411

model with the joint objective, as described in412

Equation 5. From the results of Table 1, we413

can see that ECOPO’s improvement is stable414

and significant over the three models.415

4.5 Analysis and Discussion416

4.5.1 Statistics of Different Characters417

To further empirically explain why the method we418

proposed is effective, we conduct sufficient statis-419

tical experiments, as shown in Table 2. We apply420

different methods to the SIGHAN13/14/15 datasets,421

and carry out statistical analyses on their wrong cor- 422

rection samples. Note that if a character co-occurs 423

with the character before or after the error position 424

more than 1,000 times in wiki2019zh3, we regard 425

it as a common character. 426

From Table 2, we can see that when only 427

softmax is used, most of the failures of the model 428

are because it incorrectly assigns higher predic- 429

tion probabilities to common characters, which re- 430

flects the gap between the pre-trained knowledge of 431

PLMs and the goal of CSC. When we run ECOPO 432

or only CPO, the model does pay more attention 433

to the less common but more confusing characters. 434

Our proposed CPO indeed effectively change the 435

model’s predictions for different types of charac- 436

ters. Thus, CPO refines the knowledge representa- 437

tion of PLMs for CSC and narrow the gap between 438

PLMs and CSC, but softmax does not. 439

3The general pre-training corpus which is from Wikipedia
dump (as of February 7, 2019) and contains one million pages.

6



BERT ECOPO (BERT)

Confusing

Common

Samples

Confusing

Common

Samples

Figure 3: Heat map visualization of probability. The darker the blue, the higher the model’s prediction probability
for a particular character (vertical axis) given the input of samples containing misspelled characters (horizontal
axis). The selected samples are from SIGHAN15, and the original BERT would make wrong corrections for them.

Dataset Method Common Confusing

SIGHAN13

softmax 172 (76%) 54 (24%)

CPO 108 (54%) 92 (46%)

ECOPO 100 (52%) 93 (48%)

SIGHAN14

softmax 208 (77%) 62 (23%)

CPO 159 (61%) 101 (39%)

ECOPO 152 (59%) 106 (41%)

SIGHAN15

softmax 171 (82%) 38 (18%)

CPO 72 (41%) 103 (59%)

ECOPO 68 (40%) 101 (60%)

Table 2: Statistical results on different types of charac-
ters. The statistical samples are the all wrong correc-
tion samples of different methods.

4.5.2 Visualization of Common/Confusing440

Character Probability441

The key objective of ECOPO is to optimize the442

prediction probability of the PLMs for two differ-443

ent kinds of characters, i.e., common characters444

which original PLMs would be more inclined and445

confusing characters which CSC task should pay446

more attention to. Therefore, we visualize the prob-447

ability optimization effect of ECOPO in this part448

of experiment. Specifically, we apply BERT and449

ECOPO (BERT) to predict the character which450

should appear at the position of the misspelled451

character based on its context. We select the Top-5452

characters co-occurring with the context of the mis-453

spelled character as the common characters, and 5454

confusing characters from the widely used confu-455

sion set (Wu et al., 2013b). Note that we ensure456

that the common and confusing characters selected457

are not duplicated, and the golden character must 458

be in the selected 5 confusing characters. Then 459

we visualize the prediction probabilities of com- 460

mon/confusing characters as a heat map. 461

Figure 3 shows the prediction probability dis- 462

tributions of BERT and ECOPO (BERT) for the 463

common/confusing characters. By comparison, we 464

can see that BERT assigns higher probability to 465

common characters than confusing characters, and 466

ECOPO (BERT) focuses more on confusing charac- 467

ters which are similar to the golden character. This 468

difference in BERT before and after ECOPO’s op- 469

timization is consistent with our study motivation 470

and design objective. We can see that ECOPO does 471

refine the knowledge representation and prediction 472

probability of BERT for different characters. 473

4.5.3 Effects of Weighting Factors λ1,λ2 474

Firstly, from Figure 4, we can see that no matter 475

how the values of λ1,λ2 change, ECOPO (BERT) 476

always has improvement compared to the base- 477

line BERT, which reflects the general effectiveness 478

of our proposed method. We also can find that 479

whether only using LORI (λ1 = 1,λ2 = 0) or 480

LCPO (λ1 = 0,λ2 = 1) for training, there is an 481

improvement compared to the baseline model. Be- 482

sides, only using LCPO has a greater improvement 483

than only using LORI , which illustrates the advan- 484

tage of our proposed CPO over softmax. Further- 485

more, when λ2 is fixed to 1, as λ1 increases, the 486

model performance shows a trend of first decreas- 487

ing and then increasing. From this phenomenon, 488

we suspect that the widely used LORI in previ- 489

ous works has a certain regularization effect on the 490
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Figure 4: The F1 results on SIGHAN15, using
different combinations of λ1,λ2 in Equation 5 in
ECOPO (BERT). When λ1 = 0,λ2 = 0, it is equiva-
lent to the baseline BERT.
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Figure 5: The F1 results on SIGHAN15, using different
values of K in Equation 3 in ECOPO (BERT). The dot-
ted lines represent the baseline BERT’s performance.

probability space of the model. Also for this rea-491

son, only using LORI has improvements compared492

to the baseline. Additionally, the regularization493

effect of LORI is good for the process of LCPO494

optimizing the probability representation, and can495

help model avoid over-fitting. Therefore, in prac-496

tice, we chose the combination that perform best in497

SIGHAN13/14/15, namely λ1 = 1,λ2 = 1.498

4.5.4 Effects of Negative Samples Size K499

As different amounts of negative samples can affect500

ECOPO’s performance, it is essential to study the501

impact of negative samples size K in Equation 3.502

Figure 5 illustrates the performance change from503

the perspective of detection and correction. We find504

that when the value of K reaches a certain value505

(e.g.,K > 5), the overall performance of the model506

(F1 score) does not improve anymore. This is be-507

cause ECOPO optimizes the model based on the508

probability representation, when the value of K509

becomes very large, the predicted probabilities of510

samples become so small that they have almost no511

effect on the probability optimization of the posi-512

tive sample. Therefore, choosing an appropriate K513

value is critical to the performance improvement514

Input: 与其自暴自气 (弃)不如往好处想。
It’s better to think for the good than to
be angry (give up).

BERT: [己(own),大(big),利(benefit)]
ECOPO: [弃(give up),尊(respect),强(strong)]

Input: 我努力打败数不进 (尽)的风雨。
I try to beat the enter (endless) storms.

BERT: [起(raise),上(up),得(get)]
ECOPO: [尽(endless),得(get),完(end)]

Table 3: Examples of spelling errors and cor-
responding output (Top 3 candidates) of original
BERT and ECOPO (BERT). We mark the in-
put confusing/golden/wrong correction characters in
red/blue/orange.

of ECOPO, although ECOPO has significant im- 515

provement based on BERT at all values of K. 516

4.6 Case Study for Probability Optimization 517

Table 3 shows the comparisons between the correc- 518

tion results of BERT and ECOPO (BERT). In the 519

first examples, the output of BERT such as “己”, 520

“大” and “利” all can form a correct Chinese phrase 521

with “自”, but they cause a semantic incoherence 522

for the whole sentence. The statistics of the gen- 523

eral pre-training corpus wiki2019zh show that “自 524

己” co-occurs 136,318 times and “自弃” co-occurs 525

119 times, which verifies the intuition about com- 526

mon/confusing characters described in Section 3.1. 527

In the second example as well, the output of BERT 528

can be formed with “数不” as reasonable phrases. 529

From the two examples, we can see that ECOPO 530

does guide the BERT to accurately predict the ideal 531

confusing characters by the highest probability and 532

make the right corrections. Such experimental re- 533

sults are in line with our work’s core motivation. 534

5 Conclusion 535

In this paper, we introduce to promote the CSC 536

task by narrowing the gap between the knowledge 537

of PLMs and the goal of CSC. We propose the 538

ECOPO, a simple yet effective training framework 539

that aims to perform an error-driven optimization 540

for the PLMs based on their original probability 541

representation. Extensive experiments and empir- 542

ical results show the competitive performance of 543

our method. In the future, we will study how to 544

automatically measure the quality of negative sam- 545

ples to further enhance our method. Additionally, 546

applying our core idea and motivation to kinds of 547

other tasks will be an interesting direction. 548
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# vocab_prob : the prediction probability for all characters in vocabulary 
# pos_idx     : the index of positive sample (golden character) in vocabulary 
# K            : the selected negative samples amount 
 
# Negative Samples Selection 
pos_prob = vocab_prob[pos_idx] 
neg_prob = torch.topk(vocab_prob, K)[0] 
neg_idx = torch.topk(vocab_prob, K)[1].tolist() 
 
# Contrastive Probability Optimization Objective 
loss_list = [] 
for x in range(0, K): 
    if neg_idx[x] != pos_idx: 
        loss_list.append(pos_prob - neg_prob[x]) 
loss = - torch.stack(loss_list).mean() 
 

Figure 6: Pseudo-code of our practical implementation.

A Pseudo-code of ECOPO790

Figure 6 shows the Pytorch-style pseudo-code for791

the ECOPO. As described in Section 3, our pro-792

posed ECOPO consists of two stages, namely Nega-793

tive Samples Selection and Contrastive Probability794

Optimization. It is worthy noting that in the pseudo-795

code, we only show the process of calculating the796

loss of one training sample.797

B Datasets Details798

Table 4 shows the detailed statistics of our used799

datasets. We report the number of sentences in800

the datasets (#Sent), the average sentence length801

of the datasets (Avg.Length), and the number of802

misspellings the datasets contains (#Errors).803

Training Data #Sent Avg. Length #Errors
SIGHAN13 700 41.8 343
SIGHAN14 3,437 49.6 5,122
SIGHAN15 2,338 31.3 3,037
Wang271K 271,329 42.6 381,962
Total 277,804 42.6 390464
Test Data #Sent Avg. Length #Errors
SIGHAN13 1,000 74.3 1,224
SIGHAN14 1,062 50.0 771
SIGHAN15 1,100 30.6 703
Total 3,162 50.9 2,698

Table 4: Statistics of the datasets that we use in exper-
iments. All the training data are merged to train the
models in our experiments. The test sets are used sepa-
rately to evaluate performance.

C Implementation Details804

All the source code of our experiments is imple-805

mented using Pytorch (Paszke et al., 2019) based on806

the Huggingface’s implementation of Transformer807

library4 (Wolf et al., 2020). The architecture of808

the BERT encoder we use in the related models809

4https://github.com/huggingface/transformers

is same as the BERTBASE model, which has 12 810

transformers layers with 12 attention heads and its 811

hidden state size is 768. We initialize the BERT 812

encoder with the weights of Chinese BERT-wwm 813

model (Cui et al., 2020). We train ECOPO with the 814

AdamW (Loshchilov and Hutter, 2018) optimizer 815

for 10 epochs. The training batch size N is set to 816

64 and the evaluation batch size is set to 50. The 817

negative samples size K is set to 5 by default. The 818

weighting factors λ1, λ2 are both set to 1. The 819

initial learning rate is set to 5e-5. We set the maxi- 820

mum sentence length to 128. The model is trained 821

with learning rate warming up and linear decay. 822

It is worthy noted that the annotation quality 823

of SIGHAN13 test dataset is relatively poor. As 824

we have observed and mentioned in (Cheng et al., 825

2020; Xu et al., 2021), quite lots of the mixed usage 826

of auxiliary (such as “的”, “地”, and “得”) don’t 827

have correct annotations. Therefore, the evaluation 828

metrics we use may not accurately reflect the real 829

model performance on SIGHAN13. To alleviate 830

this problem, there are two main solutions in previ- 831

ous works. Cheng et al. (2020) propose to continue 832

fine-tuning well-trained models on the SIGHAN13 833

training dataset before testing, which we think will 834

suffer from the over-fitting problem. Therefore, we 835

follow the post-processing method proposed in (Xu 836

et al., 2021) and don’t consider all the detected and 837

corrected mixed auxiliary. This approach does not 838

compromise the fairness of the evaluation process 839

and can better reflect the model performance. 840
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