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Abstract— Establishing a physics-based model capturing the
kinetostatic behavior of concentric tube continuum robots is
challenging as elastic interactions between the flexible tubes
constituting the robot result in a highly non-linear problem.
The Goldstandard physics-based model using the Cosserat
theory of elastic rods achieves reasonable approximations with
1.5 − 3 % with respect to the robot’s length, if well-calibrated.
Learning-based models of concentric tube continuum robots
have been shown to outperform the Goldstandard model with
approximation errors below 1 %. Yet, the merits of learning-
based models remain largely unexplored as no common dataset
and benchmark exist.

In this paper, we present a dataset captured from a three-
tube concentric tube continuum robot for use in learning-
based kinematics research. The dataset consists of 100 000
joint configurations and the corresponding four 6 dof sensors
in SE(3) measured with an electromagnetic tracking sys-
tem (github.com/ContinuumRoboticsLab/CRL-Dataset-CTCR-
Pose). With our dataset, we empower the continuum robotics
and machine learning community to advance the field. We share
our insights and lessons learned on joint space representation,
shape representation in task space, and sampling strategies.
Furthermore, we provide benchmark results for learning the
forward kinematics using a simple, shallow feedforward neural
network. The benchmark results for the tip error are 0.74 mm
w.r.t. position (0.4 % of total robot length) and 6.49◦ w.r.t.
orientation.

I. INTRODUCTION

Concentric tube continuum robots (CTCR) are composed
of multiple concentric, pre-curved super-elastic tubes that
are rotated and translated relative to one another [1], [2],
see Fig. 1. Due to the elastic interactions between the
tubes, highly non-linear behavior characterizes the mapping
between task space and joint space of a CTCR. To reflect this
interaction, model-based approaches [3] utilize static models
based on the theory of Cosserat rods and are formulated as
a boundary value problem which is solved numerically. In
favour of computation time, some physical phenomena, e.g.
friction or tube tolerances, are commonly neglected in these
Goldstandard physics-based modeling approaches.

In recent years, alternative approaches have been in-
vestigated to mitigate the modelling effort regarding the
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Fig. 1: Testbed with CTCR and used notation. The CTCR
has three tubes with 6 dof sensors at each distal end measur-
ing the pose by an electromagnetic tracking system called
Aurora. Note that we follow a slightly different convention
regarding the numbering and assignment of the tubes.

complex elastic interactions between the tubes and hard-to-
model physical phenomena [4]. Data-driven techniques based
on neural networks have been applied to approximate the
underlying continuous function. Neural networks have be
applied to learn the forward kinematic (FK) mapping [5],
[6], [7], [8], the inverse kinematic (IK) mapping [5], [6], [9],
and motion generation [10], [11] while implicitly modelling
the kinematics.

The feasibility of learning-based approaches have been
shown in simulation [5], [9], [10], [11] and with data
collected from a physical CTCR prototype [6], [7], [8], [12].
However, those datasets are not publicly available and thus
limiting the advancement of learning-based approaches since
demanding and time-consuming data acquisition depends on
the availability of physical prototypes [13] and additional
hardware such as sensing.

https://github.com/ContinuumRoboticsLab/CRL-Dataset-CTCR-Pose
https://github.com/ContinuumRoboticsLab/CRL-Dataset-CTCR-Pose


In this paper, we present the first public dataset captured
from a three-tube concentric tube continuum robot prototype.
The dataset encompasses 100 000 measurements with full
pose information for the tip of each tube as well as full
joint space, i.e. relative tube translation and rotation. In
addition to the dataset, we provide our insights on suitable
joint space representation, task space representation, and one-
shot sampling methods. We present results in approximating
the forward kinematics using the dataset for different task
space representations to serve as a benchmark for future
research. Lastly, we share our lessons learned on learning-
based approaches for CTCR and discuss open challenges in
this domain as a call to the community.

II. METHODS

In this section, the different representation, performance,
and error metrics are presented. Without loss of generality, in
the following, we consider a typical CTCR with three tubes.

A. Joint Space Representation

Due to the nested tubes of a CTCR, each translation βi

has to satisfy the inequalities given by

0 ≥ β1 ≥ β2 ≥ β3 and (1)
0 ≤L1 + β1 ≤ L2 + β2 ≤ L3 + β3, (2)

where Li is the total length of the ith tube. The interdepen-
dencies derive from the fact that none of the distal ends of
inner tubes can be pulled inside the respective outer tube.
To circumvent both inequalities (1) and (2), the translations
βi can be transformed, which decorrelates the translational
joint values [7]. The transformation matrix

MB =

−L1 0 0
−L1 L1 − L2 0
−L1 L1 − L2 L2 − L3

 (3)

follows the used convention regarding the numbering of
the tubes, see Fig. 1. By computing M−1

B [β1, β2, β3]
⊤,

transformed values are in the interval [0, 1]. By adding an
additional scaling and shifting to (3), the interval [−1, 1] can
be enforced, which leads to the system of linear equations

β1

β2

β3

1

 =

12MB
1

2
MB · 13×1

01×3 1



β1,U
β2,U
β3,U
1

 , (4)

where βi,U ∈ [−1, 1] is the transformed βi.
The axial rotations αi are independent and can be

transformed be means of trigonometric functions [6], i.e.
[γi,1, γi,2]

⊤
= [cos (αi) , sin (αi)]

⊤. This representation is
a unit vector in the Euclidean space, where the entries are
orthogonal to each other and lie between −1 and 1.

Combining all transformations, the final representation is

q = [γ1,1, γ1,2, β1,U , γ2,1, γ2,2, β2,U , γ3,1, γ3,2, β3,U ]
⊤
, (5)

where all values of (5) are automatically scaled between −1
and 1, unit-less,orthogonal.

B. Shape Representation in Task Space
Position and orientation are used to describe the CTCR

shape in task space. We employ the position of the distal
end of each tube, see Fig. 1. In addition, the orientation of the
innermost tube is used, where quaternions are chosen as they
were found to outperform other alternative representations in
learning the forward kinematics [7].

The shape representation in task space is given by

x = [x1, y1, z1, x2, y2, z2, x3, y3, z3, η, ε1, ε2, ε3]
⊤, (6)

where, [xi, yi, zi]
⊤
= pi are positions and [η, ε1, ε2, ε3]

⊤
=

ξ describes the quaternion of the tip pose with the notion
described in [7]. The representation (6) can be simplified to
tip pose, tip position, or three points along the shape arranged
at every distal end of each tube. This leads to

xpose = [x3, y3, z3, η, ε1, ε2, ε3]
⊤, (7)

xposition = [x3, y3, z3]
⊤, and (8)

xthree-points = [x1, y1, z1, x2, y2, z2, x3, y3, z3]
⊤. (9)

All four representations are considered in this paper.
To measure xpose for a CTCR, a sensor needs to be placed

at the distal end of the most inner tube. To avoid damaging
the sensor, a safety margin is added which may reduce the
task space. Repeating this process for all distal ends of
each tube leads to the placement of sensors along the CTCR
manipulator as shown in Fig. 1. This sensor placement allows
the measuring of all four representations.

C. Approximation Error
For the sake of completeness, we describe translational

and rotational errors for the FK and IK. The hat symbol is
used to denote an approximated value.

1) Cartesian space: Two approximation errors for the FK
can be defined, i.e. translational error and rotational error. For
the ith tube, translational error et,i is given by

et,i =

√
(xi − x̂i)

2
+ (yi − ŷi)

2
+ (z − ẑi)

2
, (10)

whereas the rotational error eϑ is evaluated via

eϑ = min {2 arccos (ηη̂ + ε1ε̂1 + ε2ε̂2 + ε3ε̂3) , (11)
2 arccos (ηη̂ − ε1ε̂1 − ε2ε̂2 − ε3ε̂3) }

respecting the antipodal property of quaternions. For sim-
plicity, the tip position error is denoted by et = et,n with n
being the most inner tube.

2) Joint space: Both errors in the joint space are described
in terms of Euclidean distance. The error

eβ =

√√√√ 3∑
i

e2β,i with eβ,i = |βi − β̂i|. (12)

described the translational error, whereas the rotational error

eα =

√√√√ 3∑
i

e2α,i with eα,i = |αi − α̂i| (13)

is formulated similarly with the retrieved angles αi =
atan2 {γ2,i, γ2,i} and α̂i = atan2 {γ̂2,i, γ̂2,i}.



D. Random Sampling in the Joint Space
In this section, we provide general approaches which

are applicable to restricted joint spaces. Each sample is
generated from an uniform distribution U [−1, 1]. Without
loss of generality, we will state the sampling method for
three tubes. Note that, to efficiently sample and transform
p configurations, the sampling methods can be stacked and
vectorized, which is important for computationally intensive
applications such as machine learning.

1) Rotational Joint Space: Due to the independence of
each αi, sampling in the rotational joint space is straight-
forward, i.e. the jth value can be computed by α

(j)
i =

π U ]−1; 1], where the property of S1 is considered, i.e.
αi = αi + 2πk for k ∈ N. In the case of a symmetrically
restricted joint space, i.e. −αmin = αmax, and αmax < π, i.e.
no consideration of the wrap-around property of unit circle
S1 is needed, α

(j)
1

α
(j)
2

α
(j)
3

 = αmax

U [−1; 1]
U [−1; 1]
U [−1; 1]

 (14)

is the sampling method for the rotational joint space. After-
wards, each jth value can be expressed as γ

(j)
i,1 and γ

(j)
i,2 .

2) Translational Joint Space: The translational parame-
ters βi are interdependent, see (1) and (2). The inverse of
transformation (3) disentangles the inequalities (1) and (2)
as first shown in [7]. Subsequently, when applying (3) to
a value between 0 and 1, a value is generated such that
(1) and (2) hold. In the following, we consider Li as the
maximum tube length in the manipulator. Hence, for the
unrestricted joint space, Li is equal to the absolute value
of the minimum displacement of βi. Note that βi ≤ 0.
The minimum displacement denoted by βi,min can be further
restricted by considering a margin Li,margin, see Fig. 1. In
this case, we can define the minimum displacement as

βi,min = −

(
Li −

n∑
k=i

Lk,margin

)
= −L∗

i , (15)

where the restriction is applied in a recursive manner. By
substituting Li in (3) with the new length L∗

i = Li −∑n
k=i Lk,margin and neglecting the homogeneous extension

of right side of (4), we can state a sampling method for one
sample, which is given byβ

(j)
1

β
(j)
2

β
(j)
3

 =
1

2

[
M∗

B M∗
B · 13×1

] 
U [−1; 1]
U [−1; 1]
U [−1; 1]

1

 , (16)

where the star notation indicates the consideration of L∗
i in

MB leading to M∗
B.

III. DATA ACQUISITION
Here, we provide implementation details on the data

acquisition and a brief overview of the testbed with the used
physical CTCR prototype. Moreover, we describe how we
rearranged p random configurations such that the execution
time on the physical CTCR prototype can be reduced.

A. Experimental Setup

To gather measurements for the dataset, we measure poses
at the distal end of each tube and the base as indicated in
Fig. 1. The constructed testbed is depicted in Fig. 1.

1) Tracking System: By using two 5 dof electromagnetic
tracking coil sensors being rigidly attached to each other, all
6 dof of SE(3) can be measured using an electromagnetic
tracking system (AURORA v2, Northern Digital Inc., ON,
Canada). We found that by using two 5 dof coils instead
of one 6 dof coil, the roll about the tube’s main axis can
be measured straightforwardly. With this electromagnetic
tracking, we can measure position in sub-millimetre (RMS of
0.7mm) and orientation in sub-degree (RMS of 0.20°) range
without the line-of-sight restrictions of a camera system.

2) Concentric Tube Continuum Robot: The CTCR proto-
type is depicted in Fig. 1. It consists of three sliding carriages
and six actuators (DCX 16 L, Maxon Motor AG, OW,
Switzerland). Super-elastic pre-curved tubes (EUROFLEX
GmbH, BW, Germany) made of Nickel-Titanium (Nitinol)
are used. The manufacturer used a proprietary heat shape
setting method to pre-bent the tubes. The geometrical
parameters and mechanical properties of the used tube set
are listed in Table I. Each tube is composed of a straight
and a curved section with constant curvature. Note that the
overall length Li of each tube is not the physical length of the
tube. By reducing the thickness of the carriage and the front
plate of the real robot to an infinitesimal small thickness,
the overall length Li is determined. In our case, the straight
length of the respective tube is shortened. This approach is
similar to the configuration approach in [14] and gives the
advantage that βi ∈ [−Li, 0] subject to both inequalities, i.e.
(1) and (2).

TABLE I: Tube parameters of the CTCR.
Parameter Tubes1

Term Symbol Unit inner middle outer

Length, overall Li mm 210 165 110

Length, curved Li,c mm 41 100 100

Curvature2 κi,x m−1 28 12.4 4.37

Diameter, outer2 di,outer mm 0.5 0.9 1.5

Diameter, inner2 di,inner mm 0.4 0.7 1.2

Young’s Modulus E GPa 50 50 50

Poisson’s ratio ν 1 0.3 0.3 0.3

Margin Li,margin mm 10 10 60

Collet chuck to base3 Li,inner mm 143 51 5

1 The outermost, middle, and innermost tubes are referenced with the
index 1, 2, and 3, respectively. See Fig. 1 for reference.

2 Values are taken from manufactures’s data sheet.
3 For completeness, Lbase = 16mm, see Fig. 1.

B. Initialization of the CTCR

All joints are adjusted by defining the zero position for
each joint. Each βi value is set to zero for a specific reference
position of the respective carriage on the rail. For αi, we
use the definition and adjustment device for the rotational
zero position described in [6]. Therefore, αi are iteratively
adjusted such that the shape of the tubes lies in the yz



TABLE II: Comparison of the complete and restricted joint
spaces. It is worth noting that the absolute value of the
minimum value of βi is not the overall length of the
respective tube.

complete joint space4 restricted joint space

αi in rad βi in mm αi in rad βi in mm

i min max min max min max min max

1 −π π −110 0 −π/3 π/3 −50 0
2 −π π −165 0 −π/3 π/3 −155 0
3 −π π −210 0 −π/3 π/3 −200 0

4 The rotational joints are mechanically not restricted and could turn
beyond π rad in clockwise and counter-clockwise directions.

plane of the base. One advantage to other iterative dithering
methods based on tip position [15], [16] for initialization is
the consideration of the whole shape being a set of points
along the backbone.

C. Restricted Joint Space

The joint space Q is restricted for four practical reasons:
to limit the influence of the gravitational force of the electro-
magnetic sensors, to avoid damage to the attached sensors,
to avoid interference between two adjacent sets of 5 dof
sensors, and to increase the density of the data points.

Regarding the gravitational force, note that the diameter
and thickness of the each tube are listed in Table I and
the weight of all three sensors attached to the distal end
is around 0.6 g. Further note that the weight of the base
sensor attached to the CTCR actuation unit does not effect
the CTCR manipulator. To avoid damage to the attached
sensor at the distal end of each tube and interference, offsets
Li,margin such that each tube always extends by 10mm are
respected. The deployment of the most outer tube is further
restricted such that the considered margins are L1,margin =
60mm, L2,margin = 10mm, and L3,margin = 10mm. The
complete and restricted joint spaces are listed in Table II.

D. Short Path in Joint Space via Tick-Space T
By arranging the computed p randomized configurations

q(1), q(2), · · · , q(p) ∈ Q, the execution time for data acquisi-
tion can be reduced. An optimal point-to-point path planning
in Q is linked to the problem of the Travelling Salesman
Problem. Here, a suboptimal solution is used, which is
yet effective and efficient to reduce the execution time on
the physical hardware as opposed to simply executing the
unordered, random joint space samples.

All p configurations q(p) are transformed into space T ,
which we denote ticks-space T . For our CTCR prototype,
all actuators and encoders are equal. Only transmission ratio
uα = 177.1 and uβ = 42 497 for αi and βi, respectively, are
different. Therefore, transforming q(p) into ticks-space T is
feasible. For a given minimal angle αi,min = minp α

(p)
i of p

configurations, uα, and uβ , a distance

DT (q) =

n∑
i=1

(wiuα (αi − αi,min)− wn+iuββi) ≥ 0 (17)

can be defined in T for n tubes, where wi and wn+i are semi-
positive weights. Note that (17) it ignores the ”wrap-around”
property of an unrestricted αi. However, for our application,
this is not important due to the restricted joint space for the
data acquisition with a real robot prototype, see Table II.

To show the effectiveness of (17), we measure two du-
rations of real robot movements for 8000 random configu-
rations including the measuring process. First, all random
configurations are computed and, afterwards, executed by
the robot prototype. The duration without applying (17) is
26.1 h. Second, distances between generated random con-
figurations and [α1,min, 0, α2,min, 0, α3,min, 0] are computed
by means of (17) with ω1 = ω2 = ω3 = 0.1 and
ω4 = 2ω5 = 4ω6 = 0.4. Following this, the configurations
are ordered by the distances and executed by the robot.
Applying the strategy reduces the duration of the movements
by 49% to 13.3 h. The reduction is due to the shortening of
the translational movement, which represents the temporal
bottleneck. This can also be seen from transmission ratios,
i.e. the rotation uα = 177.1 motor ticks per degree and the
translation uβ = 42 497 motor ticks per millimetre, as well
as form the sampling range, see Table II.

E. Orientation and Position

The electromagnetic tracking system provides quaternions[
η
(j)
i , ε

(j)
i,1 , ε

(j)
i,2 , ε

(j)
i,3

]⊤
as an orientation representation and

position vectors t
(j)
i as a position representation. To reduce

the error due to sensor noise, we record m = 5 poses for each
sample and sensor. Consequently, an appropriate pose must
be determined from m = 5 measurements. This approach
has been previously presented in [6]. Note that four different
poses with index i are measured, see Fig. 1, and, therefore,
this approach is applied to each pose separately.

1) Orientation: Giving that [ηi, εi,1, εi,2, εi,3]
⊤ is the true

value and
[
η
(j)
i , ε

(j)
i,1 , ε

(j)
i,2 , ε

(i)
i,3

]⊤
is measured, both quater-

nions must satisfied the unit length condition given by

1 = ηiη
(j)
i + ϵi,1ϵ

(j)
i,1 + ϵi,2ϵ

(j)
i,2 + ϵi,3ϵ

(j)
i,3 . (18)

Expressing (18) in matrix form with m equations leads to

1m×1 = Qm,i [ηi ϵi,1 ϵi,2 ϵi,3]
⊤
. (19)

By taking advantage of the Gaussian least squares approach
and rearranging the above equation leads to

[ηi ϵi,1 ϵi,2 ϵi,3]
T
=
(
Q⊤

m,iQm,i

)−1

Q⊤
m,i1m×1 (20)

yielding the sought-after quaternion with the smallest
quadratic error, where Qm,i ∈ R5×4 is the design matrix
and 1m×1 = [1, 1, 1, 1, 1]

⊤ with m = 5. Subsequently, the
quaternion is normalized with its Euclidean length.

2) Position: Choosing a similar approach to (20) being
0 = ti − t

(j)
i leads to the mean position. Therefore,

t =
1

m

m∑
i=1

t(j) with m = 5 (21)



TABLE III: Annotation of the dataset in the CSV file. The kth sample consists of six absolute joint values, six relative joint
values, and four poses as quaternion/vector pair, where pose with i = 0 is the base pose. For clarity, Fig. 1 illustrates the
index assignment. Note that q0 has zero values for αi and βi per definition.

ith pose for i = 0, 1, 2, 3

(These columns repeat four times)

Joint configuration qk Joint configuration difference Position t Orientation
αi in rad ∆qk = qk − qk−1 [x, y, z]⊤ [η, ε1, ε2, ε3]

⊤

βi in mm ∆αi in rad and ∆β in mm in mm unit less

α1 β1 α2 β2 α3 β3 ∆α1 ∆β1 ∆α2 ∆β2 ∆α3 ∆β3 xi yi zi ηi ϵi,1 ϵi,2 ϵi,3

is the sought-after position, where t
(j)
i =

[
x
(j)
i , y

(j)
i , z

(j)
i

]T
corresponds to the jth measurement of the ith position pi.

F. Acquired Dataset

Finally, we gathered |S| = 100 000 measured data with
the CTCR prototype and methods introduced in this section.
The dataset has been collected in eight sequences. Each
sequence encompasses 12 500 dataset points. A dataset point
consists all 6 dof of Cartesian space SE(3) described by the
quaternion/vector-pairs for each sensor pose, all 6 dof of joint
space Q, and the difference in joint space configuration to
the previous configuration. The annotation information is
provided in Table III and illustrated in Fig. 1. Note that only
the tip orientation is indicated in Fig. 1. There are 33 columns
and 100 000 rows in the file. From the first to the last column,
the values for α1, β1, α2, β2, α3, β3, ∆α1, ∆β1, ∆α2, ∆β2,
∆α3, ∆β3, x0, y0, z0, η0, ϵ0,1, ϵ0,2, ϵ0,3, x1, y1, z1, η1,
ϵ1,1, ϵ1,2, ϵ1,3, x2, y2, z2, η2, ϵ2,1, ϵ2,2, ϵ2,3, x3, y3, z3, η3,
ϵ3,1, ϵ3,2, and ϵ3,3 are stored. Note that the tip orientation
[η3, ε3,1, ε3,2, ε3,3]

⊤ is [η, ε1, ε2, ε3]
⊤ in (6) for x and (7) for

xpose. Also note that the difference ∆q between the current
configuration q and the previous configuration is provided
too, for instance ∆αk = αk − αk−1 for the kth sample and
∆α1 = α1 for the 1st sample. Position and orientation are
expressed w.r.t. the frame of the electromagnetic tracking
system located in the center of the field generator. The first
pose with i = 0 of each row can be used to transform all
poses into the base frame of the CTCR.

Note that while we did not observe any ’snapping’ phe-
nomena during the execution time, it is likely that the dataset
captures a few ’snapping’ occurrences due to two reasons.
First, the acquisition spanned over several days – the CTCR
prototype ran for nearly 23 h for each sequence. Second, the
path in joint space is optimized according to (17), which
shortens the path without considering the required energy.
Furthermore, other physical phenomena such as effects from
high friction are most likely captured as well. We are
confident that these physical phenomena can be extracted
by investigating the differences in the joint space, i.e. ∆αi

and ∆βi, and the corresponding pose differences.

IV. LEARNING THE FORWARD KINEMATICS

In the following, we present implementation details and
the results of learning the kinematics. We utilize shallow
neural networks and the presented CRL-Dataset-CTCR-Pose.

A. Neural Networks and Implementation Details

To learn the kinematics, fully-connected feedforward net-
works (FFN) are implemented in PYTORCH. For the first and
hidden layers, RELU activation functions are used. Linear
activation functions are used for the output layer. The
number of activation functions in the hidden layer is 200,
whereas the total number of weights and biases, denoted by
C, as well as the input and output definitions depend on the
chosen representations. While (5) has a constant number of
entries, i.e. nine, the shape representation depends on the
used simplification applied to (6). The number of entries for
x, xpose, xposition, and xthree-points is thirteen, seven, three, and
nine, respectively.

The weights of the layer to which the RELU activation
functions are applied are initialized by HE-initialization
[17] also known as KAIMING-initialization. The remaining
weights and all biases are initialized with U [0; 1].

To optimize the trainable parameters, the ADAM optimizer
[18] with mini-batch size of Nbs = 128, learning rate of
0.0005, and mean-squared error loss is used for 1000 epochs.
Note that training on a GEFORCE RTX 2080 Ti has no time
advantage compared to CPU, when using our dataset. There-
fore, all FFNs are solely trained on a computer with Xeon
3.60GHz × 8 running on a 64-bit Linux operating system.
For the FK, the input layer considers a joint description
(5) and the output layer learns one of the selected shape
representations, i.e. (6), (7), (8) or (9). The units depend on
the chosen representations and are millimeter, rad, or one
(unit-less).

The dataset |S| = 100 000 is randomly divided in training
set |Stra| = 80 000, validation set |Sval| = 10 000, and test
set |Stest| = 10 000. Note that no exploration is performed
and, therefore, |Sval| and |Stest| may not be representative.
Further, neither the position values nor the orientation values
are normalized.

B. Results and Discussion

The influence of different shape representations on the
errors et and eθ during the training process is shown in Fig.
2. The errors in tip position, i.e. et, are in sub-millimeter
range between 0.69mm and 0.75mm corresponding to a
relative error of 0.3% and 0.4%, respectively.

Comparing the results for x and xpose, the errors for the
tip pose are similar. However, the convergence of eθ for x
is a bit faster although noisier after 100 epochs, see Fig. 2.
The evaluated et and eθ are 0.7mm and 6.68°, and 0.74mm



Fig. 2: Influence of the shape representation shown by the
development of approximation error on the validation set
over the epochs.

and 6.49°, respectively. Figure 2 shows a steady decline of
eθ indicating higher accuracy can be achieved with more
epochs and better hyper-parameters.

Albeit marginal, the best FK accuracy is achieved using
x, which considers both CTCR positional information along
the backbone and tip orientation. It is expected as more
geometric information from the measurements is utilized.

A comparison with other approaches is listed in Table IV.
Consistent with [6], [7] regarding the tip error, our method
outperforms the physics-based method based on Cosserat rod
theory being the Goldstandard in our research community.
Notably, there is a significant improvement in the position
error over other learning-based methods. However, no im-
provement in the orientation error is achieved compared to
[6], [7]. This might be due to the larger test set and different
used datasets. Note that the dataset in [6] does not use the
sampling method (16) and, therefore, the distributions of the
samples are different.

V. LESSONS LEARNED AND OPEN CHALLENGES

In this section, we share our insights on learning the CTCR
kinematics and discuss open challenges as guidelines to the
community.

A. Representation

The key to a successful approximation of the CTCR
kinematics is the choice of appropriate representations. In our
previous work [6], the trigonometric joint representation has
been introduced. Unlike et and eθ using non-transformed αi,
the approximation errors of FFN utilizing transformed αi do
not saturate achieving a four to five times smaller et and eθ
after a short training time. We expanded on this approach in
[7], where βi are transformed by utilizing (3). This simple
and effective transformation is capable of decorrelating βi

and leads to a further reduction of errors, while accelerating

the convergence. For establishing the benchmark presented
in this paper, we extend (3) to (4) such that all entries of (5)
are linearly independent, orthogonal, and lie in the interval
[−1, 1]. Therefore, we hypothesize that the proposed joint
representation (5) is a well-suited feature description for
machine learning applications.

Regarding the task space representation, we found that
advantageous representations are mandatory even for low-
dimensional machine learning applications [7]. Using
quaternions leads to higher accuracy and faster convergence
compared to all different sets of Euler angles. Therefore,
we recommend to use the singularity-free quaternion/vector-
pairs for SE(3) representations, which we follow for data
gathering and representation for the CRL-Dataset-CTCR-
Pose as well as for the input of the FFN for the benchmark.

While a physics-based forward model outputs the full
shape of a CTCR in task space, usually as a spatial curve
g(s) ∈ SE(3) discretized by arclength, learning-based ap-
proaches have been focussed on tip position or tip pose
mostly. Information about the continuum robot shape is yet
relevant information for most applications. Our proposed
representation (6) denoted by x is an expansion of the tip
pose used in [7] as we now include positions along the shape,
namely the tip pose of each tube constituting the CTCR.

The sum of polynomial basis functions has been proposed
as an alternative representation for the shape of a CTCR
[8]. The coefficients of these polynomial basis function
were then learned. Exploring the merit of different curve
representations in task space provides a promising avenue
for future research.

B. Sampling Strategy

To sample joint configurations, we use (14) and (16).
While sampling the revolute joint space of αi is common
practice, sampling the translational joint space of βi via
(16) is novel. The distribution of βi looks different to
the distribution shown in [20] and, therefore, also to the
distribution in the dataset used in [6]. Figure 3 shows the
distributions of each joint as found in the presented dataset.
We hypothesise that our improved sampling strategy caused
the improvements in et over prior results, see Table IV. In-
vestigating the impact of the distribution on the performance
of learning-based models is another promising avenue for
future work. A related open challenge is to find a suitable
distribution to maximise exploration in the task space.

C. Architecture and Loss Function

To learn the FK of a CTCR using the proposed represen-
tations, we implemented a ”vanilla” benchmark as described
in Section IV. This shallow FNN outperforms the physics-
based Goldstandard as indicated in Table IV and we argue
that it is sufficient for FK learning.

We refrain from reporting on our attempt to learn the
IK using the same ”vanilla” approach as it does not yield
satisfactory results. In fact, only a few authors [5], [6], [9]
attempted to address learning-based IK thus far. In [6], we
use a thirteen times higher C to learn the IK, while, in [9],



TABLE IV: Baseline and benchmark for the forward kinematics of three-tube concentric tube continuum robots.

accuracy5 evaluation6

Taskspace Representation et in mm et in % eθ in ° sim real C Reference

Physics-based

discrete spatial curve 2.91 1.5 to 3 – – ✓ – Rucker et al. [3]
discrete spatial curve 4.2± 2.0 (2.1) 8.6± 4.17 – ✓ – Dupont et al. [19]

Benchmark

xposition 0.69± 1.15 0.3 – – ✓ 2603 our
xthree-points 0.75± 1.15 0.4 – – ✓ 3809 our

xpose 0.70± 1.15 0.3 6.68± 3.98 – ✓ 3407 our
x 0.74± 1.15 0.4 6.49± 3.27 – ✓ 4613 our

Prior work

tip pose 0.2 – (0.11) ✓ – – Bergeles et al. [5]
tip pose via LWPR8 (0.989) – 1.11 – ✓ – Fagogenis et al. [12]

tip pose 2.23± 0.25 1 1.04± 0.08 – ✓ 1707 Grassmann et al. [6]
tip pose 1.6 0.79 1.4 – ✓ ≈ 1300 Grassmann & Burgner-Kahrs [7]
tip pose 7.6 – 9.0 ✓ – – Grassmann & Burgner-Kahrs [7]

polynomial basis functions10 3.3 (1.34) – – ✓ – Kuntz et al. [8]
tip position 0.59 (0.33) – ✓ – – Iyengar et al. [10]
tip position 1.379 (0.32) – ✓ – – Iyengar & Stoyanov [11]

5 Based on stated values in the reference, accuracy in parentheses have been applied afterward. For simplicity, the relative tip position error is determined
by et divided by the maximum length of the CTCR manipulator.

6 sim and real stand for evaluation in simulation and with a physical prototype, respectively.
7 roll angle error
8 tip pose computed via locally weighted projection regression (LWPR)
9 path tracking error

10 FFN outputs coefficient of the polynomial basis functions

Fig. 3: Distribution of αi and βi in the dataset.

an FFN with C > 600 000 is used, cf. Table IV. To date, it
is unclear which architecture and loss function lead to good
approximations of the IK. Hence, learning an accurate and
feasible IK remains an open challenge.

Investigating neural networks that preserve SE(3) prop-
erties and loss functions customized to joint representation
(5) are interesting future research directions. Ultimately, one
may develop a CTCR specific FFN architecture derived on
first principles based on the physics-based model [3], [19],
which mimics the approaches in [21], [22], [23].

D. Synthesizing Learning- and Physics-based Approaches

The direct learning of CTCR kinematics by using mea-
sured data from a robot prototype can achieve higher accu-
racy than state-of-the-art physics-models [19], [3] as shown
in [6], see Table IV. A learning-based model can capture non-
modeled effects and physical phenomena. Therefore, neither

calibration of a physics-based model nor an accurate physics-
based model have to be applied to achieve computationally
inexpensive and accurate FK. However, transferring and
extracting the captured information remains unsolved.

Physics-based modelling can benefit from utilizing the
insights gained in learning-based approaches. For instance,
in conjunction with a physics-based model, the dataset can
be used to identify and learn physical phenomena, such as
friction and hysteresis. Those physical phenomena are com-
monly not considered in physics-based models. Learning
these missing parts of a physics-based model is an open
research direction. Combining the efforts of the continuum
robotics community and machine learning practitioners could
ultimately lead to the discovery of unknown problem struc-
tures and derivation of novel knowledge related to learning-
based as well as physics-based approaches for continuum
and soft robots.

E. Dataset and Benchmark

All results depend on the utilized dataset, which is dif-
ferent across the literature. Therefore, a direct comparison
of our results with other approaches as listed in Table IV
is not reasonable as the hardware and gathered datasets are
different. This is amplified by a large and growing number of
different existing prototypes as shown in [13], which imposes
a barrier for comparing results.

To allow for reproducible research results in continuum
robotics, we provide a publicly available dataset for the
kinematics of CTCR. Our results on the CTCR FK using
this dataset in Table IV can serve as a benchmark to replicate
and compare future approaches.



Prior work suggests that optimal [24] or equidistant [9]
sensor placements may be advantageous to gather relevant
shape information. Yet, such sensor placement is challenging
to realize on a physical CTCR. For the dataset, we attached
electromagnetic tracking coils to each tube, which allowed
for straightforward integration. In contrast, we are not aware
of a sensing mean which allows for constant, equidistant
measurements along the length, which is changing as the
tubes are translated w.r.t. one another. For example, fiducial
markers along the shape as used in [25] are not suitable
because they are fixed to the respective tube and can dis-
appear inside the outer tubes. Consequently, there exist
simulation results that cannot be transferred to a physical
prototype as of today for the lack of data [9]. Note that
one can argue that pixels are an equidistant discretization
of an image and, therefore, image-based approaches [8], [9]
provide equidistant measurements along the length. However,
the coverage of a CTCR in the image space depends on
the CTCR’s configuration and the camera setup, e.g. camera
position for each view. Although promising, there are open
questions regarding the use of learning-based approaches uti-
lizing multi-view images from CTCR. Furthermore, it should
be noted that fully embedded sensors such as fiber Bragg
grating sensors can only achieve equidistant discretization
if the overall length of the CTCR manipulator is constant,
which limits the length variation. Generating datasets for
different CTCR in terms of tube parameters as well as
datasets with additional sensor information on the shape in
task space remains a challenge.

VI. CONCLUSIONS

By providing the first public dataset for a three-tube
CTCR, we intend to democratize research on learning-
based and physics-based modelling of the kinematics. The
continuum robotics community as well as machine learning
practitioners can utilize the dataset for replication, bench-
marking, and learning physical phenomena, such as fiction
and hysteresis. While future work evolves around the ex-
ploitation of the CRL-Dataset-CTCR-Pose dataset, the long-
term vision is to leverage gained findings and insights to
amplify the improvement in physics-based modelling.
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