
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PSBENCH: EDITING IMAGE VIA GUI AGENTS IN PHO-
TOSHOP

Anonymous authors
Paper under double-blind review

ABSTRACT

Photoshop is a powerful and widely used professional software for image editing,
design, and creative production. Its complex multi-level menu structure, extensive
set of graphical processing tools, and reliance on precise manipulations make
automated operation and agent interaction particularly challenging. Despite recent
progress in GUI agents, existing datasets and methods are primarily designed for
web-based interfaces and short-horizon, low-complexity tasks in operating systems,
falling short in addressing the fine-grained control, multi-step decision-making,
and semantic understanding required in professional graphic software. To this
end, we propose the first benchmark specifically tailored for image editing in
Adobe Photoshop environment, with a particular focus on its core principle of
non-destructive editing through layers. The benchmark consists of 600 human-
annotated tasks, spanning three difficulty levels. Easy and medium tasks are
distilled from official Photoshop tutorials, capturing the most common basics.
Hard tasks are directly collected from the most popular Photoshop tutorials in
Youtube, ensuring both challenge and real-world relevance. Task categories cover
fundamental functionalities such as canvas adjustment, layer manipulation, and
filter application, each accompanied by dedicated fine-grained evaluation metrics.
Through various experiments in PSBench, we find that current leading MLLMs,
like Qwen2.5-VL, GPT-5 and Gemini-2.5-Pro, exhibit generally low task success
rates but can demonstrate remarkable planning ability. Further via a human-in-loop
experiment, we find that MLLMs can serve as highly effective Photoshop assistants,
substantially boosting novice users’ task success rates while dramatically reducing
their operation time.

1 INTRODUCTION

Through simulating human interactions with graphical interfaces, Graphical User Interface (GUI)
agents (Nguyen et al., 2024; Wang et al., 2025a) can automatically execute complex tasks and make
intelligent decisions, thereby significantly enhancing software testing automation, improving user
assistance, and driving the automation and intelligence of diverse workflows. These capabilities
demonstrate great potential in improving efficiency, reducing human errors, and supporting the
execution of complex multi-step tasks (Gur et al., 2024; Furuta et al., 2024).

In this paper, we explore the possibilities and prospects of applying GUI agents to the field of image
editing. The key motivation stems from three core aspects: ➊ Despite the remarkable progress
of diffusion-based image editing methods (Shuai et al., 2024; Huang et al., 2025), they remain
deficient in aspects such as high-resolution fidelity, intricate lighting and shadow modeling, and
background preservation (some cases are shown in Table 9). Yet, in day-to-day industry practice,
skilled photo retouchers effortlessly deliver all these inside Adobe Photoshop 1 via nondestructive
editing. Nondestructive editing, the philosophy of Adobe Photoshop, refers to any workflow that
allows an image to be modified—whether through adjustments, retouching, or compositing—without
permanently altering the original pixel data, thereby preserving the ability to revisit, revise, or remove
every edit at any future point. ➋ However, Photoshop is notoriously tricky for beginners, since
its powerful but intricate interface demands substantial training and domain expertise to navigate
effectively. ➌ Naturally, we expect GUI agents to lower the entry barrier for non-expert users

1https://www.adobe.com/products/photoshop.html

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

engaging in image editing within Photoshop, yet current solutions remain far from satisfying practical
demands. In detail, existing mainstream GUI agent benchmarks (Xie et al., 2023; Ma et al., 2024a;
Furuta et al., 2024; Pahuja et al., 2025) primarily focus on web environments or general-purpose
operating systems, like Webshop (Yao et al., 2023), OSWorld (Xie et al., 2024) and WebArena (Zhou
et al., 2024), where tasks are relatively simple and lack domain expertise. Besides, these GUI agents
often target everyday software accessible to non-experts such as Chrome or Word, with limited and
uniform interaction modes that fail to capture the operational complexity of professional software,
like Photoshop.

Therefore, we propose PSBench, a novel GUI agent benchmark focused on image editing tasks in
Adobe Photoshop. Such a benchmark presents unique challenges for GUI automation: The interface
of Photoshop is not only highly hierarchical and feature-rich but also depends on fine-grained,
multi-step operations. For instance, Photoshop’s core layer system requires agents to understand
and manipulate non-destructive editing workflows, including layer order, masks, and adjustment
layers. Moreover, many tools (e.g., brush, lasso, path) are context-dependent and parameter-sensitive,
producing entirely different effects under different modes or environments. Furthermore, numerous
operations involve pixel-level precision and parameter adjustments, demanding a level of accuracy
far beyond that required by everyday software accessible to non-experts.

In task design of PSBench, we introduce three difficulty levels: easy and medium tasks are manually
designed based on basic operations (e.g., cropping, flipping), while hard tasks are sourced from
popular YouTube tutorials to ensure both realism and diversity. Ultimately, we construct a high-
quality human-annotated benchmark comprising 600 tasks and more than 300 fine-grained evaluation
functions, covering a wide range of key Photoshop functionalities such as layers, canvas, and filters,
and reflecting diverse real-world use cases. For evaluation in PSBench, in addition to conventional
task success rate metrics, we further propose the Non-Destructive Editing Consistency (NDEC) metric,
designed to assess whether agents adhere to Photoshop’s non-destructive editing philosophy. In such a
metric, based on Adobe’s official definition of non-destructive editing, we design a checklist (Ribeiro
et al., 2020) including six core questions to compare reference operation trajectory provided by
expert annotators and agent trajectory on a per-task basis, thereby enhancing the professionalism and
granularity of benchmark evaluation.

Comprehensive evaluations on PSBench reveal that even today’s top-tier MLLMs still struggle to
translate vision–language prowess into reliable Photoshop execution, with overall success rates
remaining in the modest single-digit to low-teens range. For example, Even the best model, GPT-4o,
the top-performing model in PSBench, attains merely 17.46 % on non-layer tasks and a vanishing
3.80 % on layer-intensive tasks. Yet beneath these numbers lies a striking competence: the generated
action sequences can be complete and professional, and they closely adhered to Photoshop’s non-
destructive editing workflow. Capitalizing on this latent competence, we further conduct a human-
in-the-loop experiment and find that: these MLLMs can an serve as highly effective Photoshop
assistants, substantially driving novice users’ task success rates up while slashing task completion
times. Therefore, we argue that for a feature-rich and complex application like Photoshop, rather than
merely pursuing fully automated GUI agents, adopting a human–AI collaborative mode—combining
MLLMs’ deep understanding of Photoshop with human users’ precise operational skills—may be a
more practical and efficient direction.

2 PSBENCH ENVIRONMENT

This section introduces the formal task definition of autonomous GUI agents, the composition of the
PSBench environment, and its supported observation and action spaces.

2.1 TASK FORMULATION

In PSBench, each task is modeled as a partially observable Markov decision process (POMDP)
(S,O,A,T,R). Here, S denotes the state space, O denotes the observation space (see §2.3), A
denotes the action space (see §2.4), T : S × A → S denotes the state transition function, and
R : S× A → R denotes the reward function.

At each interaction step, the agent generates an executable action at ∈ A based on the current
observation ot ∈ O. The action is executed in the environment to produce a new state st+1 ∈ S and a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Agent

Instruction

Original Image

Launch Photoshop
&

Load Task Assets

Input Pre-processing

action

observe

Save Output Images
&

Interaction Trajectories

Post-processing Evaluation

eval_function

Gold Trajectory

call

compare

Figure 1: The overall framework of PSBench. The left part illustrates the task configuration: for each task,
PSBench provides an instruction, input image resources, corresponding expected output images, and a gold
trajectory. The right part demonstrates the actual interaction process of a GUI agent in the Photoshop environment:
the GUI agent performs tasks by interacting with the environment through mouse and keyboard operations; the
post-processing module saves output images and records interaction trajectories; the evaluation module invokes
task-specific evaluation functions and compares the agent’s trajectory with the gold trajectory.

new partial observation ot+1 ∈ O (e.g., the updated screen screenshot). The state transition function
T determines the dynamics of the environment, while the reward function R provides immediate
feedback depending on the task completion status. This interaction loop continues until the agent
triggers a terminal signal (DONE or FAIL, see §2.4) or reaches the maximum step limit.

2.2 REAL PHOTOSHOP ENVIRONMENT

PSBench operates on a locally installed portable version of Adobe Photoshop CS6 as the interactive
environment. As illustrated on the right side of Figure 1, PSBench implements a complete interaction
pipeline for systematic evaluation of GUI agents. The process begins with the pre-processing stage,
during which task resources are loaded and the Photoshop environment is launched. Subsequently,
the GUI agent observes the interface state, generates mouse and keyboard actions, and interacts with
the real Photoshop environment. Finally, the post-processing module saves the output images and
interaction trajectories, while the evaluation module invokes task-specific evaluation functions to
compare the agent’s actual trajectory against the gold trajectory.

2.3 OBSERVATION SPACE

The observation space O in PSBench is designed to closely reflect the complexity of real hu-
man–computer interaction, and is defined as the union of text and image modalities:

O = OText ∪OImage. (1)

The image modality consists of full desktop screenshots of the Photoshop workspace, including
key UI elements such as the toolbar, layer panel, properties panel, and menu bar, as well as mouse
position and cursor shape (e.g., precision cursor during selection). The screenshots also capture
task-relevant canvas content, such as layer order changes, filter previews, and selection outlines,
which reflect the real-time state and contextual dependencies of Photoshop operations. Compared to
general applications, Photoshop exhibits a denser and more dynamic interface with highly modular
functionality, requiring agents to perform precise UI element localization and stronger semantic
understanding in order to operate effectively in such a complex and frequently changing design
environment.

2.4 ACTION SPACE

The action space A in PSBench encompasses the full spectrum of human–computer interaction
operations in Photoshop. Some action examples are shown in Table 1, including mouse movements,
left/right clicks, multiple clicks, drag-and-drop operations, precise region selections, numerical inputs,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Some examples of the mouse and keyboard actions in PSBench.

Action Name Description
WAIT Pause operations for interface response
FAIL Declare task failure and terminate
DONE Declare task completion and end

click(x, y) Click at specified coordinates (x, y)
dragTo(x, y) Drag from current to target position (x, y)
write(’text’) Input text content in current field
press(’enter’) Press Enter key to confirm
press(’b’) Select brush tool in Photoshop

hotkey(’ctrl’, ’z’) Undo last operation
hotkey(’ctrl’, ’shift’, ’n’) Create a new transparent layer

and composite keyboard shortcuts (e.g., Ctrl+Alt+I to open the image size dialog). These actions
drive Photoshop’s core functional modules, such as menu commands, layer manipulations, tool
switching, and canvas editing.

Following OSWorld (Xie et al., 2024), we further introduce three special actions: WAIT (to wait
for interface loading or filter rendering), FAIL (to declare task failure and terminate early), and
DONE (to declare task completion and submit results). Action execution is implemented using the
general-purpose Python library pyautogui2, enabling accurate reproduction of complex Photoshop
interactions such as dragging to reorder layers, drawing paths, or entering color parameters. This
design ensures cross-platform consistency and requires the agent to output syntactically correct and
executable pyautogui code in order to accomplish specified tasks in Photoshop’s dense, multi-state
UI environment. For more details about the action space, please see Appendix D.1.

3 PSBENCH BENCHMARK

3.1 DATA COLLECTION

Figure 2: Task distribution and human effort of PSBench.

PSBench comprises a total of 600 diverse
image editing tasks, collected and orga-
nized by four annotators proficient in Pho-
toshop. Across the entire data collection
process, four Photoshop-savvy annotators
devoted approximately 270 working hours
in total. The detailed human effort could
be found in Figure 2. The task construction
process includes three main aspects:

Task Collection. Existing benchmarks,
such as ASSISTGUI (Gao et al., 2024), OS-
World (Xie et al., 2024), mainly focus on
relatively simple operations, which fail to
capture the complexity of real-world edit-
ing requirements. Unlike existing benchmarks, PSBench categorizes tasks into three levels of
complexity to enable multi-level evaluation,:

• Easy: Tasks involving only a single category of operations.

• Medium: Tasks combining operations from 2–3 different categories .

• Hard: Tasks involving operations from more than 3 categories, corresponding to complex, real-
world editing workflows.

Easy and medium tasks are manually created by annotators, who carefully examine the official
Photoshop tutorials to identify the most common basic operations and then manually formulated the
corresponding task instructions. Hard tasks are derived from popular YouTube Photoshop tutorials3,

2https://pyautogui.readthedocs.io/en/latest/
3https://www.youtube.com/@WebflippyOfficialPage

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Original image (b) Non-destructive editing result

(c) Restoring the flower by deleting Layer e (d) Changing the color through the layer d

d

e

f

Instruction：Remove the small flower in front of the subject’s chest and change the
dress color to make it stand out more from the background.

Operation DE NDE

Change

color

Paint directly

on the f

Use the

adjustment layer

(d)

Remove

flower

Erase the

flower on

the f

Use a new layer

(e) with Spot

Healing Brush

DE：All edits happen on background (f)

NDE ：Each edit is stored in an independent
layer (de)

Figure 3: Non-destructive Editing in Photoshop: Element Removal and Rapid Recoloring. In this case, Panel
(a) shows the original image, panel (b) illustrates the NDE-compliant workflow and result: A dedicated
Hue/Saturation adjustment layer ① recolors the dress, while a separate healing layer ② —configured with
the “Sample All Layers” spot-healing brush—excises the flower, thereby leaving the original background
layer ③ completely intact. The edge of such a way appears in revision: toggling the healing layer instantly
restores removed content, and double-clicking the adjustment layer re-parameterizes color without new masks or
repainting—operations that DE can only match through slow, error-prone manual rework.

which cover topics like photo manipulation, photo effects, color effects, blend & retouching, text
effects and much more. Annotators transcribe the high-level natural language instructions based on
the video content. More task examples details can be found in Appendix C.3.

Besides, tasks could be further divided into layer-related and non-layer-related. Layer-related tasks
require creating new layers to accomplish complex edits and thus inherently follow a non-destructive
editing workflow. Typical examples include adding adjustment layers to modify color tones or
creating text layers to add text to an image in a non-destructive manner. While, non-layer-related
tasks, on the other hand, refer to operations that do not involve any layer manipulation, for example,
simple actions such as flipping or cropping.

Project File Preparation. To ensure reproducibility of experimental results, PSBench provides
complete project files for all editing tasks, including: ➊ Initial image, the original input image
provided to the agent at the start of each task, serving as the basis for all subsequent edits (highlighted
in blue in Figure 1). ➋ Target image, produced by professional annotators strictly following the
task instructions, serving as reference outputs for evaluation (highlighted in purple in Figure 1).
➌ Gold Trajectory, the complete sequence of Photoshop operations created by annotators under
non-destructive editing principles, used to compare against the agent’s trajectory (highlighted in
orange in Figure 1).

Quality Control. To ensure annotation quality, we adopt a rigorous multi-round cross-validation
process. Specifically, each task—including the task instruction, target image, and gold trajectory—is
independently annotated by two professional annotators in parallel. When the two annotations show
inconsistencies or disagreements, a third annotator is introduced to provide an additional independent
annotation for the same sample. The three annotators then discuss their results and, with reference
to Adobe’s official documentation and professional editing standards, jointly determine the final
annotation. This “three-way adjudication” mechanism effectively ensures the accuracy, consistency,
and professional validity of all annotations in accordance with Photoshop editing standards.

3.2 DATA STATISTICS

Statistics. The PSBench dataset consists of 600 Photoshop editing tasks, evenly distributed across
three difficulty levels—Easy, Medium, and Hard—with 200 tasks in each category to ensure balanced
coverage of complexity. We further categorize tasks into layer-related and non-layer-related. Among
easy tasks, 107 (54%) involve layer operations; this number increases to 168 (84%) for medium tasks,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Comparison with existing GUI agent benchmarks.

Environment #Samples Time Horizon Exec. Env. #Eval. Func. Soft.Spec.Eval. Precise Element

OmniAct (Kapoor et al., 2024) 9,802 – ✗ 0 ✗ ✓
AITW (Rawles et al., 2023) 30k 6.5 ✗ 0 ✗ ✗
MetaGUI (Sun et al., 2022) 1,125 – ✗ 0 ✗ ✗
PixelHelp (Li et al., 2020) 187 4.2 ✗ 0 ✗ ✗
WebLinx (Lù et al., 2024) 2,337 43 ✗ 0 ✗ ✗

Mind2Web (Deng et al., 2023) 2,350 7.3 ✗ 0 ✗ ✗

OSWorld (Xie et al., 2024) 369 15 ✓ 134 ✗ ✓
WorkArena (Drouin et al., 2024) 33 15 ✓ 7 ✗ ✓

WebArena(Zhou et al., 2024) 812 – ✓ 5 ✗ ✗
WebShop (Yao et al., 2023) 12k 11.3 ✓ 1 ✗ ✗

MiniWoB++ (Liu et al., 2018) 125 3.6 ✓ 125 ✗ ✗

PSBench 600 49 ✓ 377 ✓ ✓

and further to 199 (99%) for hard tasks. These statistics reveal a clear trend: as task difficulty rises,
the proportion of layer-related tasks grows substantially. In particular, nearly all hard tasks involve
complex layer-based operations, as shown in Figure 2, underscoring PSBench’s strong emphasis on
evaluating agents’ capabilities in non-destructive, layer-centric editing workflows.

Comparison with Existing Benchmarks. In comparison with existing benchmarks, PSBench
demonstrates distinctive advantages. We conduct comparisons across six core dimensions, including
samples (total number of tasks), time horizon (the number of UI actions per task, reported as the
average operation length for Hard tasks), Exec. Env. (whether a real interactive execution environment
is provided), #Eval. Func. (the number of execution-based evaluation functions), Soft.Spec.Eval.
(software-specific evaluation, such as the NDEC metric uniquely introduced in PSBench,the metric
formally defined in 3.3.2), and Precise Element (whether agents are required to operate via screen
coordinates rather than DOM selectors, which imposes higher demands on spatial understanding and
visual reasoning). As shown in Table 2, PSBench exhibits clear strengths in evaluation dimensions,
and professional relevance. Furthermore, we also compare the proposed PSBench with existing image
editing Benchmarks in Appendix E for a detailed discussion.

3.3 EVALUATION

In PSBench, we adopt traditional task success rates as the evaluation metric. Moreover, we introduce
a novel process-level metric tailored to the characteristics of professional Photoshop (PS) workflows—
Non-Destructive Editing Consistency (NDEC).

3.3.1 TASK SUCCESS RATE

For different task types, we design specialized evaluation functions (highlighted in pink in Figure 1)
based on pixel-level or semantic-level similarity. Details of these evaluation functions can be found
in C.1. The agent’s output is compared against the reference target image, and a task is deemed
successful if the similarity score exceeds a predefined threshold. To account for Photoshop’s wide
variety of operations, PSBench includes more than 300 custom evaluation functions covering layer
editing, masking, color adjustment, and filter application.

3.3.2 NON-DESTRUCTIVE EDITING CONSISTENCY (NDEC)

Non-destructive editing (NDE) is the core philosophy of Adobe Photoshop. As illustrated in Figure 3,
the comparison table in the lower right systematically summarizes the essential differences between
non-destructive editing and destructive editing. By storing each edit instruction in independent layers,
NDE forms a flexible, reversible, and adjustable editing process.

Unlike evaluation methods that solely focus on the correctness of final image outputs, PSBench
leverages NDEC to holistically assess an agent’s performance in Photoshop from both result quality
and process professionalism. For every completed task, PSBench automatically records the final
output image together with the full interaction trajectory (also called agent trajectory), including the
historical states of the layer panel. NDEC measures whether the agent trajectory aligns with common
non-destructive practices followed by professional users.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

However, implementing such a metric is far from trivial. Inspired by prior work (Furuhashi et al.,
2025), NDEC is implemented as a checklist-based evaluation. Based on Adobe’s official documenta-
tion4 of non-destructive editing, we design a checklist including six questions to compare the agent
trajectory with the gold trajectory. The checklist examines whether the editing process makes proper
use of Smart Objects, Masks (including layer and filter masks), Smart Filters, Adjustment Layers,
Duplicate Layers, and blank Layers. Meanwhile, the term “proper use” indicates that the agent applies
these tools in a way that genuinely enhances flexibility and editability. For instance, in a simple
cropping task, adding a layer mask is redundant; however, in complex compositing tasks, applying
a layer mask at object boundaries allows iterative refinements without redoing the segmentation,
thereby significantly improving flexibility.

During evaluation, human evaluators systematically compare the agent trajectory against the gold
trajectory using the aforementioned checklist, assigning binary labels (yes/no) for each of the six
criteria, resulting in a 6-dimensional score vector for each task. The NDEC score for an individual
task is calculated as:

NDECtask =
k

6
× 100% (2)

where k represents the number of checklist criteria satisfied by the agent. The overall NDEC
performance of a model is computed as the arithmetic mean across all N evaluation tasks:

NDECmodel =
1

N

N∑
i=1

NDEC(i)
task (3)

This metric yields scores ranging from 0% to 100%, where higher scores indicate better adherence to
non-destructive editing principles.

NDEC thus provides a quantitative measure of an agent’s operational professionalism and workflow
flexibility, serving as a complementary evaluation alongside success rate metrics to deliver a compre-
hensive assessment of model performance in Photoshop editing scenarios. We also provide several
concrete examples of the NDEC checklist in Appendix C.2 for illustration.

4 EXPERIMENTS

4.1 EVALUATED MLLMS ON PSBENCH

We evaluate seven powerful proprietary MLLMs on PSBench, including GPT (OpenAI, 2024;
2025a), Gemini (Comanici et al., 2025), Claude (Anthropic, 2024), Doubao (Volcengine, 2025), and
Qwen (Bai et al., 2025) series, all of which have shown outstanding performance on the OSWorld
leaderboard5. In all experiments we use unified prompts provided in Appendix D.1. To control the
task duration, we set different maximum time limits for different difficulty levels: 5 minutes for
easy, 10 minutes for medium, and 20 minutes for hard. A GUI agent must complete the assigned
task within the time limit; otherwise, the attempt is counted as a failure. Manual checks confirm that
these limits are sufficient for all tasks. Additional experiments results and analysis are provided in
Appendix D.2

Success rates We compute success rates (SR) for each model under each task difficulty. To further
examine MLLMs’ ability to handle Photoshop’s core feature—layer operations—we divide tasks
into layer-related and non-layer-related categories and report their success rates separately. Table 3
summarizes the results across all models, task difficulties, and task types. Even the best model,
GPT-4o, achieves only 17.46% SR on non-layer-related tasks and 3.80% on layer-related tasks. All
MLLMs perform poorly on layer-related tasks. As task difficulty increases, SR drops sharply; in
particular, among 7 MLLMs evaluated on 600 tasks (4,200 model–task pairs), only Qwen2.5-VL-72B
achieves a 2.01% SR on hard tasks.

In subsequent manual verification, we find that these 2.01% successful cases mainly occur in skin-
retouching tasks. We originally expect the model to use the Mixer Brush Tool to remove blemishes,

4https://helpx.adobe.com/cn/photoshop/using/nondestructive-editing.html
5https://os-world.github.io/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Success rates of MLLMs on PSBench. LR represents layer-related tasks, NLR represents non-layer-
related tasks.

MLLM Easy Success Rate Medium Success Rate Hard Success Rate Overall Success Rate

LR NLR LR NLR LR NLR LR NLR

Claude-4-Sonnet 0.00% 3.23% 0.00% 0.00% 0.00% 0.00% 0.00% 2.38%
Qwen2.5-VL-72B 6.54% 9.68% 0.00% 15.63% 2.01% 0.00% 2.32% 11.11%

Doubao-1.5-Thinking-Vision-Pro 11.21% 13.98% 0.00% 0.00% 0.00% 0.00% 2.53% 10.32%
GPT-5 0.00% 13.98% 0.00% 0.00% 0.00% 0.00% 0.00% 10.32%

Claude-Opus-4 0.00% 3.23% 0.00% 0.00% 0.00% 0.00% 0.00% 2.38%
Gemini-2.5-Pro 0.00% 7.53% 0.00% 0.00% 0.00% 0.00% 0.00% 5.56%

GPT-4o 16.82% 18.28% 0.00% 15.63% 0.00% 0.00% 3.80% 17.46%

but Qwen2.5-VL-72B actually applied a blur filter on a new layer to pass the evaluation function.
Although this approach do not fully match human expectations, it produced an acceptable edit, so we
retain it as a success. This phenomenon further reveals that current MLLMs still underperform on
real-world Photoshop editing tasks. A more detailed failure analysis is provided in Appendix D.3.

Table 4: Performance of MLLMs under the NDECmodel metric
across different difficulty levels.

MLLM NDECmodel (%)
Easy Medium Hard All

Claude-4-Sonnet 80.56% 79.17% 55.56% 71.76%
Qwen2.5-VL 91.67% 73.61% 59.72% 75.00%
Doubao-1.5 95.83% 80.56% 56.94% 77.78%

GPT-5 81.94% 77.78% 54.17% 71.30%
Claude-Opus-4 95.83% 79.17% 61.11% 78.70%
Gemini-2.5-Pro 93.06% 72.22% 58.33% 74.54%

GPT-4o 93.06% 75.00% 66.67% 78.24%

NDEC Table 4 also shows that
mainstream MLLMs demonstrate a
certain degree of professional prac-
tice awareness in Photoshop editing
tasks. All models achieve overall
NDEC scores above 70%, indicating
that their generated action sequences
largely adhere to non-destructive edit-
ing principles.

On easy tasks, model performance is
especially strong, with the best model
reaching a NDEC score of 95.83%,
nearly perfectly reproducing expert-level non-destructive workflows. This suggests that MLLMs
already possess a high degree of professional operational awareness when handling single, well-
defined editing tasks. However, as task complexity increases, their professional consistency drops
markedly: on medium tasks, the highest NDEC score falls to around 80%, and on hard tasks it
further drops into the 50–67% range. This shows that current MLLMs still lack stable adherence
to professional practices in multi-step compositing and fine-grained adjustment tasks requiring
long-horizon planning.

We also observe a prevalent issue of over-engineering. For example, models often convert the
input image into a smart object even when unnecessary—such as for simple cropping or basic color
adjustments. This lack of context sensitivity adds needless processing overhead and deviates from the
core principle of non-destructive editing—"use as needed, efficiently and flexibly." These findings
indicate that current MLLMs still have substantial room for improvement in understanding and
applying professional Photoshop editing principles.

4.2 GUI ASSISTANT RATHER THAN GUI AGENT: A REALLY HUMAN-IN-LOOP EXPERIMENT

Based on the experimental results present above, we observe that GUI agents based on MLLMs
exhibit generally low task success rates. Even the best-performing model in our experiments, GPT-4o,
can only achieve 17.46% success on non–layer-related tasks. However, when assessed using the
NDEC metric, we find that these GUI agents demonstrate remarkable planning ability: their action
sequences can be complete and professional, and they closely adhered to Photoshop’s non-destructive
editing workflow, reflecting a deep understanding of professional editing processes.

Building on these findings, we further investigate the potential of GUI agents to support novice users
in utilizing Photoshop. To this end, we design four experimental conditions:

• Autonomous GUI agent (GPT-4o): the best-performing GUI agent from the previous experiment,
which autonomously generated executable code and attempted to complete tasks independently.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of the four human-in-loop experimental conditions on PSBench. Left part shows the
average completion time (seconds), and right part presents the result of success rate (%).

• Unassisted novice user: a user with no prior Photoshop experience completing tasks entirely
without external assistance.

• Novice user with internet access: a user with no prior Photoshop experience but allowed to consult
online tutorials or documentation during task execution.

• Novice user assisted by a GUI agent: under this condition, the GPT-4o-based GUI agent no longer
generates executable code but instead provides step-by-step natural language instructions (e.g.,
which interface element to click or which parameters to adjust), while the human executes the
operations.

All four conditions are evaluated on an identical set of 60 tasks in PSBench, comprising 20 tasks at
each difficulty level: Easy, Medium, and Hard. For each condition, we record the task success rate at
each difficulty level and the average completion time for successful tasks.

As shown in Figure 4, The autonomous GUI agent perform the weakest: it achieve only 17.5%
success on easy tasks taking an average of 164 seconds per task, drop to 11.8% on medium tasks
while the average time rise to 326 seconds, and failed to complete any hard tasks. By contrast,
unassisted novices adapt quickly, far surpassing the autonomous agent: they can solve 85 % of easy
tasks at an average of 180 seconds each and still clear 45% of medium tasks despite needing roughly
411 seconds per task, yet they too are stopped by the hard set.

Most notable is the GUI Assistant mode. In this setting, GPT-4o can provide real-time guidance
while the human execute the operations, forming an efficient human–AI collaboration. Easy tasks
are solved flawlessly, 100% success in an average of just 45 seconds. Medium tasks follow at 85 %
success, each taking about 101 seconds; even hard tasks broke through to 75 % success, averaging
330 seconds apiece. Although novice users with internet access ultimately achieved the highest
overall success rate, their time cost was substantially higher. In particular, for these hard tasks the
average completion time is 720 seconds, 2.18 times longer than in the GUI Assistant mode. This
highlights the efficiency bottleneck inherent in searching, filtering, and comprehending information
online.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose PSBench, the first benchmark specifically designed for GUI agents in
Adobe Photoshop, effectively filling a gap in the evaluation of professional design software. We
build a high-quality dataset covering 600 tasks of varying difficulty levels and innovatively introduce
the Non-Destructive Editing Consistency (NDEC) metric, thus establishing a comprehensive and
systematic evaluation framework that provides a solid foundation for assessing and deploying GUI
agents in professional creative environments. Future work could incorporate in-depth inspection
of intermediate artifacts, such as systematic analyses of PSD file structures and editing processes,
to more comprehensively assess agents’ performance in terms of editing quality, stability, and
compliance. These improvements are expected to further advance the practical application and
technical development of GUI agents in professional creative domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work strictly adheres to academic ethics and relevant legal regulations.

1. Task and Data Sources. All Photoshop editing tasks used in this study are collected from
publicly available materials, official tutorials, and open platforms (e.g., YouTube tutorials). They
do not involve any privacy or sensitive data. All materials are clearly attributed in the paper
and have undergone necessary copyright and compliance checks to ensure that no third-party
rights are infringed. We also ensure that the dataset contains no potentially sensitive or harmful
content.

2. Human Annotation and Participants. All tasks and evaluation functions in the benchmark
were independently completed by members of the research team. All participants signed
informed consent agreements, and the study does not involve vulnerable groups or potential
ethical risks.

3. Human–AI Collaboration Experiments. In the human–AI collaboration experiments, all
participants took part voluntarily and were provided with sufficient task descriptions and risk
information before participation. No personal sensitive information was collected, stored, or
disclosed during the experiments.

REPRODUCIBILITY STATEMENT

Each task in our dataset underwent multiple rounds of rigorous screening to ensure reasonableness
and executability. Representative task examples and all prompts used in the experiments are provided
in the appendix. We will release all related code and the full dataset to enable other researchers to
faithfully and accurately reproduce our experimental results.

REFERENCES

Anthropic. Introducing claude 4. https://www.anthropic.com/news/claude-4, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
https://arxiv.org/abs/2502.13923.

Samyadeep Basu, Mehrdad Saberi, Shweta Bhardwaj, Atoosa Malemir Chegini, Daniela Massiceti,
Maziar Sanjabi, Shell Xu Hu, and Soheil Feizi. Editval: Benchmarking diffusion based text-guided
image editing methods, 2023. URL https://arxiv.org/abs/2310.02426.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu,
Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent
arena: Evaluating multi-modal os agents at scale, 2024. URL https://arxiv.org/abs/
2409.08264.

ByteDance. Seedream 4.0, 2025. URL https://seed.bytedance.com/zh/seedream4_
0. Seedream Official Page.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui
Zhou, Weiwen Liu, Shuai Wang, Kaiwen Zhou, Rui Shao, Liqiang Nie, Yasheng Wang, Jianye
Hao, Jun Wang, and Kun Shao. Spa-bench: A comprehensive benchmark for smartphone agent
evaluation, 2025a. URL https://arxiv.org/abs/2410.15164.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse:
From general vision language models to versatile gui agents, 2025b. URL https://arxiv.
org/abs/2406.11317.

10

https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2502.13923
https://arxiv.org/abs/2310.02426
https://arxiv.org/abs/2409.08264
https://arxiv.org/abs/2409.08264
https://seed.bytedance.com/zh/seedream4_0
https://seed.bytedance.com/zh/seedream4_0
https://arxiv.org/abs/2410.15164
https://arxiv.org/abs/2406.11317
https://arxiv.org/abs/2406.11317

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 9313–9332, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.505.
URL https://aclanthology.org/2024.acl-long.505/.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, and et al. Evan Rosen. Gemini 2.5: Pushing
the frontier with advanced reasoning, multimodality, long context, and next generation agentic
capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL https://arxiv.org/
abs/2306.06070.

Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
tasks?, 2024. URL https://arxiv.org/abs/2403.07718.

Momoka Furuhashi, Kouta Nakayama, Takashi Kodama, and Saku Sugawara. Are checklists really
useful for automatic evaluation of generative tasks?, 2025. URL https://arxiv.org/abs/
2508.15218.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models,
2024. URL https://arxiv.org/abs/2305.11854.

Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
Zhang, Peiyi Wang, Xiangwu Guo, Hengxu Wang, Luowei Zhou, and Mike Zheng Shou. Assistgui:
Task-oriented desktop graphical user interface automation, 2024. URL https://arxiv.org/
abs/2312.13108.

Google. Introducing gemini 2.5 flash image: Our state-of-the-art image
model, 2025. URL https://developers.googleblog.com/en/
introducing-gemini-2-5-flash-image/. Google Developers Blog.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis, 2024. URL https://arxiv.org/abs/2307.12856.

Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 47(6):4409–4437, June 2025. ISSN 1939-3539.
doi: 10.1109/tpami.2025.3541625. URL http://dx.doi.org/10.1109/TPAMI.2025.
3541625.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web, 2024. URL https://arxiv.org/abs/2402.
17553.

Black Forest Labs. Flux.1 kontext: In-context image generation and editing model, 2025. URL
https://bfl.ai/models/flux-kontext. Black Forest Labs Official Page.

Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
for computer use agents, 2025. URL https://arxiv.org/abs/2508.14040.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
2025. URL https://arxiv.org/abs/2504.07981.

11

https://aclanthology.org/2024.acl-long.505/
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2306.06070
https://arxiv.org/abs/2403.07718
https://arxiv.org/abs/2508.15218
https://arxiv.org/abs/2508.15218
https://arxiv.org/abs/2305.11854
https://arxiv.org/abs/2312.13108
https://arxiv.org/abs/2312.13108
https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/
https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/
https://arxiv.org/abs/2307.12856
http://dx.doi.org/10.1109/TPAMI.2025.3541625
http://dx.doi.org/10.1109/TPAMI.2025.3541625
https://arxiv.org/abs/2402.17553
https://arxiv.org/abs/2402.17553
https://bfl.ai/models/flux-kontext
https://arxiv.org/abs/2508.14040
https://arxiv.org/abs/2504.07981

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL https://arxiv.
org/abs/2406.03679.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences, 2020. URL https://arxiv.org/abs/2005.
03776.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration, 2018. URL https://arxiv.
org/abs/1802.08802.

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao
Sun, Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan,
Xiaotao Gu, Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang.
Visualagentbench: Towards large multimodal models as visual foundation agents, 2024. URL
https://arxiv.org/abs/2408.06327.

Xinyi Liu, Xiaoyi Zhang, Ziyun Zhang, and Yan Lu. Ui-e2i-synth: Advancing gui grounding with
large-scale instruction synthesis, 2025. URL https://arxiv.org/abs/2504.11257.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue, 2024. URL https://arxiv.org/abs/2402.05930.

Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser: Llm
agent with state-space exploration for web navigation, 2024a. URL https://arxiv.org/
abs/2309.08172.

Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image editing,
2024b. URL https://arxiv.org/abs/2408.14180.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A. Rodriguez, Montek Kalsi, Rabiul Awal,
Nicolas Chapados, M. Tamer Özsu, Aishwarya Agrawal, David Vazquez, Christopher Pal, Perouz
Taslakian, Spandana Gella, and Sai Rajeswar. Ui-vision: A desktop-centric gui benchmark for
visual perception and interaction, 2025. URL https://arxiv.org/abs/2503.15661.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda
Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie,
Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur,
Seunghyun Yoon, Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou,
Ryan A. Rossi, and Franck Dernoncourt. Gui agents: A survey, 2024. URL https://arxiv.
org/abs/2412.13501.

OpenAI. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
2025a.

OpenAI. Gpt-image-1 model documentation, 2025b. URL https://platform.openai.com/
docs/models/gpt-image-1. OpenAI Platform Documentation.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents, 2025. URL https://arxiv.org/abs/2502.11357.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, and Zhengyang Wu. Webcanvas: Benchmarking web agents in
online environments, 2024. URL https://arxiv.org/abs/2406.12373.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control, 2023. URL https://arxiv.org/
abs/2307.10088.

12

https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2005.03776
https://arxiv.org/abs/2005.03776
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/1802.08802
https://arxiv.org/abs/2408.06327
https://arxiv.org/abs/2504.11257
https://arxiv.org/abs/2402.05930
https://arxiv.org/abs/2309.08172
https://arxiv.org/abs/2309.08172
https://arxiv.org/abs/2408.14180
https://arxiv.org/abs/2503.15661
https://arxiv.org/abs/2412.13501
https://arxiv.org/abs/2412.13501
https://arxiv.org/abs/2410.21276
https://cdn.openai.com/gpt-5-system-card.pdf
https://platform.openai.com/docs/models/gpt-image-1
https://platform.openai.com/docs/models/gpt-image-1
https://arxiv.org/abs/2502.11357
https://arxiv.org/abs/2406.12373
https://arxiv.org/abs/2307.10088
https://arxiv.org/abs/2307.10088

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
environment for autonomous agents, 2025. URL https://arxiv.org/abs/2405.14573.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
Behavioral testing of nlp models with checklist, 2020. URL https://arxiv.org/abs/
2005.04118.

ByteDance Seed. Ui-tars-1.5. https://seed-tars.com/1.5, 2025.

Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks, 2023.
URL https://arxiv.org/abs/2311.10089.

Xincheng Shuai, Henghui Ding, Xingjun Ma, Rongcheng Tu, Yu-Gang Jiang, and Dacheng Tao.
A survey of multimodal-guided image editing with text-to-image diffusion models, 2024. URL
https://arxiv.org/abs/2406.14555.

Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
Zeyuan Chen, Jieyu Zhao, Ran Xu, and Caiming Xiong. Coact-1: Computer-using agents with
coding as actions, 2025. URL https://arxiv.org/abs/2508.03923.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui, 2022. URL https://arxiv.org/abs/
2205.11029.

Volcengine. Doubao-1.5-thinking-vision-pro, 2025. URL https://www.volcengine.com/
docs/82379/1554521.

Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm
agents, 2024. URL https://arxiv.org/abs/2406.08184.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang,
and Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025a. URL
https://arxiv.org/abs/2411.04890.

Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini,
Yasumasa Onoe, Sarah Laszlo, David J. Fleet, Radu Soricut, Jason Baldridge, Mohammad Norouzi,
Peter Anderson, and William Chan. Imagen editor and editbench: Advancing and evaluating
text-guided image inpainting, 2023. URL https://arxiv.org/abs/2212.06909.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025b. URL https://arxiv.org/abs/2508.09123.

Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni,
Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuting Yu, Tingkun Wen,
Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai,
and Zenan Liu. Qwen-image technical report, 2025. URL https://arxiv.org/abs/2508.
02324.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua,
Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming
Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild, 2023. URL
https://arxiv.org/abs/2310.10634.

13

https://arxiv.org/abs/2405.14573
https://arxiv.org/abs/2005.04118
https://arxiv.org/abs/2005.04118
https://seed-tars.com/1.5
https://arxiv.org/abs/2311.10089
https://arxiv.org/abs/2406.14555
https://arxiv.org/abs/2508.03923
https://arxiv.org/abs/2205.11029
https://arxiv.org/abs/2205.11029
https://www.volcengine.com/docs/82379/1554521
https://www.volcengine.com/docs/82379/1554521
https://arxiv.org/abs/2406.08184
https://arxiv.org/abs/2411.04890
https://arxiv.org/abs/2212.06909
https://arxiv.org/abs/2508.09123
https://arxiv.org/abs/2508.02324
https://arxiv.org/abs/2508.02324
https://arxiv.org/abs/2310.10634

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments, 2024. URL https://arxiv.org/abs/
2404.07972.

Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
autonomous agents, 2024. URL https://arxiv.org/abs/2410.24024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2023. URL https://arxiv.org/
abs/2207.01206.

Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
Imgedit: A unified image editing dataset and benchmark, 2025. URL https://arxiv.org/
abs/2505.20275.

Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
Tang, Hanwang Zhang, and Yueting Zhuang. Anyedit: Mastering unified high-quality image
editing for any idea, 2025. URL https://arxiv.org/abs/2411.15738.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing, 2024. URL https://arxiv.org/abs/2306.
10012.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

14

https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2410.24024
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2207.01206
https://arxiv.org/abs/2505.20275
https://arxiv.org/abs/2505.20275
https://arxiv.org/abs/2411.15738
https://arxiv.org/abs/2306.10012
https://arxiv.org/abs/2306.10012
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LLM

Grammar Checking and Language Polishing. In this study, large language models (LLMs) were
used solely as auxiliary tools for grammar checking and language polishing. All edits suggested by
the LLMs were manually reviewed and verified to ensure that the revised text complies with academic
writing standards and preserves the original meaning and scholarly viewpoints.

Code Development Assistance. During code implementation, we used LLMs as programming
assistants to generate function skeletons, optimize code structure, and improve execution efficiency
and code quality. For example, PSBench contains 377 personalized evaluation functions; in the
process of writing Python code, we employed LLMs to assist with partial framework construction. All
code generated by LLMs was rigorously reviewed and tested by the authors, and all key algorithms
and innovative components were independently designed and implemented by the research team.

In summary, the use of LLMs in this study was strictly limited to auxiliary roles. All core research
ideas, innovative methods, experimental designs, and result analyses are original contributions of the
authors. LLMs only supported language expression optimization and code implementation assistance
and did not contribute substantively to the research content.

B RELATED WORK

GUI Agent. Currently, GUI agent development primarily follows three mainstream paradigms: The
first category consists of general-purpose models, which possess broad capabilities, with “computer
usage” being just one of many abilities that can be elicited through prompting. These models retain
the capacity to perform other tasks such as dialogue and code generation, with typical examples
including GPT (OpenAI, 2024; 2025a), Gemini (Comanici et al., 2025), Claude (Anthropic, 2024),
and Qwen (Bai et al., 2025) series. The second category comprises specialized models, which are
specifically trained for computer use agent tasks and lack the ability to perform other functions.
Examples include AutoGLM-OS-9B (Lai et al., 2025), OpenCUA-32B (Wang et al., 2025b), and
UITARS-1.5-7B (Seed, 2025). The third category involves agent frameworks, which integrate one or
more general-purpose models with specialized models into structured workflows. These typically
employ GPT-series models as planners, supplemented by dedicated or task-specific models as
execution foundations, such as CoACT-1 (Song et al., 2025). Evaluations on the current authoritative
benchmark OSWorld reveal a clear performance trend: agent frameworks > specialized models >
general-purpose models.

GUI Agent Evaluation. Currently, benchmark evaluations for GUI agents can be broadly catego-
rized into two main types: skill-specific evaluation and end-to-end task completion evaluation.

• Skill-specific evaluation: This type of benchmark is designed to assess a GUI agent performance
in particular capabilities. The core competencies can be summarized into three aspects: (1) visual
grounding ability, (2) reasoning and planning ability, and (3) action execution ability. Among
these, the first two are especially critical, as they directly determine the agent’s perceptual and
decision-making capabilities in graphical interfaces. (Nguyen et al., 2024) In the field of visual
grounding capability evaluation, a series of benchmarks have emerged: ScreenSpot (Cheng
et al., 2024) and its improved version ScreenSpot-Pro (Li et al., 2025) support cross-platform
UI localization and continue to advance in terms of realism and annotation quality. UI-I2E-
Bench (Liu et al., 2025) and UI-Vision (Nayak et al., 2025) further extend this direction by
aligning natural language instructions with GUI elements of varying scales and types, thereby
enhancing the generalization ability of language-interface interaction. For reasoning and planning
evaluation, offline benchmarks (Chen et al., 2025b; Li et al., 2024; Kapoor et al., 2024) primarily
assess a model’s ability to predict actions based on fixed interaction trajectories, while online
benchmarks (Bonatti et al., 2024; Rawles et al., 2025; Xu et al., 2024; Liu et al., 2024) enable
interactive evaluation across platforms, placing greater emphasis on the agent’s real-time reasoning
and decision-making performance in dynamic environments.

• End-to-end task completion evaluation: These benchmarks place GUI Agents in interactive
environments such as Android emulators, virtual machines, or web-based setups, and require
them to accomplish holistic tasks from start to finish. Representative efforts include those

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

targeting mobile devices (MobileAgentBench (Wang et al., 2024), SPAbench (Chen et al., 2025a),
AndroidLab (Xu et al., 2024)) as well as those designed for web and desktop applications
(OSWorld (Xie et al., 2024), WebArena (Zhou et al., 2024), WebCanvas (Pan et al., 2024),
Windows Agent Arena (Bonatti et al., 2024), WorkArena (Drouin et al., 2024)).

However, existing benchmarks generally lack dedicated evaluation for professional design software
such as Photoshop. Most focus only on general-purpose software like Word or Chrome. Even in
benchmarks that include tools like GIMP, e.g., OSWorld (Xie et al., 2024), the included tasks remain
relatively simple (see Table 5 in Appendix for specific cases). Given the significant differences
in interaction logic, task complexity, and operational granularity inherent to professional software,
there is a clear and pressing need to develop a benchmark tailored to the characteristics of complex
professional applications, with task designs that better reflect real-world usage scenarios.

C DETAILS OF PSBENCH

C.1 EVALUATION FUNCTIONS

This section details the implementation and mechanism of our evaluation functions. According to the
complexity of the tasks, we adopt a hierarchical evaluation strategy:

• Pixel-level / mathematically defined tasks (e.g., flip, rotation, scaling): evaluated directly using
traditional computer vision algorithms (see C.1.1);

• Semantic understanding and perceptual quality tasks (e.g., color adjustment, style transfer,
artistic effects): because pixel-level metrics cannot accurately judge completion, we introduce a
large vision-language model (GPT-4o) as an intelligent evaluator to semantically understand and
judge the edited image (see C.1.2).

C.1.1 TRADITIONAL ALGORITHM-BASED EVALUATION

For image transformation tasks with clear mathematical definitions, we compute the similarity
between the expected result and the actual result to measure task completion quality. For example, in
the image flip task, we implemented a flip accuracy check function that quantifies the correctness of
the flip operation using the Structural Similarity Index (SSIM).

Instruction: Flip the image vertically.

Evaluation Function:

Flip Accuracy Check Function

def check_flip_accuracy(self, parameters):
"""Check flip accuracy (specifically for flip tasks)"""
direction = parameters.get('direction', 'vertical')
tolerance = parameters.get('tolerance', 0.2)
try:

Load original and result images
start_img, result_img =

self.load_task_images(comparison_type="start")↪→
Perform expected flip
if direction == 'vertical':

expected_flip = np.flipud(start_img)
elif direction == 'horizontal':

expected_flip = np.fliplr(start_img)
else:

return {"passed": False,
"message": f"Unsupported flip direction:

{direction}"}↪→
Compute similarity
similarity = ssim(expected_flip, result_img,

multichannel=True, channel_axis=2)
passed = similarity >= (1.0 - tolerance)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

return {
"passed": passed,
"message": f"Flip accuracy: {similarity:.3f}, "

f"threshold: {1.0 - tolerance}",
"similarity": similarity

}
except Exception as e:

return {"passed": False,
"message": f"Flip accuracy detection failed:

{str(e)}"}↪→

C.1.2 GPT-4O-BASED SEMANTIC EVALUATION

For complex image editing tasks such as color adjustment or style transfer, traditional pixel-level
comparison cannot fully reflect task quality. These tasks require higher-level semantic understanding
and visual perception capabilities. We therefore introduce the GPT-4o vision-language model as
an intelligent evaluator to automatically assess the completion of complex tasks. Compared with
traditional methods, semantic evaluation focuses more on the naturalness, aesthetic quality, and
consistency of the expected effect.

Below we provide an evaluation function accompanying a color-adjustment–related task.

Instruction: Add blue color to this landscape photo.

Evaluation Function:

Blue Color Addition Evaluation

def evaluate_blue_color_addition(self, original_image_path:
str,edited_image_path: str) -> Dict[str, Any]:↪→
"""
Evaluate whether blue color was successfully added to landscape

photos↪→
"""
... (load and encode images omitted for brevity) ...
messages = [

{
"role": "user",
"content": [

{
"type": "text",
"text": """Please analyze these two landscape

images and↪→
determine if blue color effects were successfully added.

Compare the original image (first) and edited image (second),
focusing on:↪→

1. Does the edited image contain more blue tones than the original?
2. Is the blue naturally integrated into the landscape (sky, water,

shadows)?↪→
3. Has the overall color tone been adjusted toward blue?
4. Is the blue addition effect clearly visible?

Evaluation criteria are relatively lenient. Provide evaluation
results in↪→

the following JSON format:
{

"task_completed": true/false,
"blue_color_enhanced": true/false,
"color_change_noticeable": true/false,
"looks_natural": true/false,
"detailed_analysis": "Your detailed observation results"

}"""

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

},
{"type": "image_url",
"image_url": {"url":

f"data:image/jpeg;base64,{original_b64}"}},↪→
{"type": "image_url",
"image_url": {"url":

f"data:image/jpeg;base64,{edited_b64}"}}↪→
]

}
]
response = self.call_gpt4o_vision(messages)
Parse JSON from GPT-4o response and return

def evaluate_color_temperature_adjustment(self, original_image_path:
str,edited_image_path: str) -> Dict[str, Any]:↪→
"""
Evaluate whether image color temperature was successfully

adjusted toward cool tones (blue)↪→
"""
... (load and encode images omitted for brevity) ...
messages = [

{
"role": "user",
"content": [

{
"type": "text",
"text": """Please analyze the color temperature

changes and↪→
determine if they were successfully adjusted toward cool tones

(blue direction).↪→

Compare the original image (first) and edited image (second),
focusing on:↪→

1. Has the overall color temperature shifted from warm tones to
cool tones?↪→

2. Does the image appear more blue or cyan-shifted?
3. Have warm colors (orange, yellow, red) been reduced?
4. Have cool colors (blue, cyan) been enhanced?
5. Is the color temperature change uniformly reflected throughout

the image?↪→

Provide evaluation results in the following JSON format:
{

"task_completed": true/false,
"cooler_tone_achieved": true/false,
"warm_colors_reduced": true/false,
"cold_colors_enhanced": true/false,
"overall_blue_shift": true/false,
"detailed_analysis": "Your detailed observation results"

}"""
},
{"type": "image_url",
"image_url": {"url":

f"data:image/jpeg;base64,{original_b64}"}},↪→
{"type": "image_url",
"image_url": {"url":

f"data:image/jpeg;base64,{edited_b64}"}}↪→
]

}
]
response = self.call_gpt4o_vision(messages)
Parse JSON from GPT-4o response and return

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Through the above evaluation strategy, we can accurately evaluate low-level, quantifiable tasks
and automatically assess high-level, semantically driven tasks, thus establishing a comprehensive,
hierarchical evaluation system for image editing tasks.

C.2 NDEC CHECKLIST EXAMPLES

In this section, we provide a concrete task example from GPT-4o that demonstrates how our NDEC
metric quantifies whether GUI agents adhere to non-destructive editing principles in Photoshop.
This example demonstrates the systematic application of our six-criteria checklist to compare agent
trajectories against expert-designed gold trajectories.

As shown in Figure 5, in this task, the gold trajectory and the agent trajectory match on only three
out of six criteria. Therefore, the GUI agent’s NDECtask score for this task is 50% (3/6 × 100%).
By aggregating the NDECtask scores across all evaluation tasks, we obtain the overall NDECmodel
performance (see Table 4).

Question GT AT

Whether Smart Objects are used appropriately

Whether Masks are used appropriately

Whether Smart Filters are used appropriately

Whether Adjustment Layers are used appropriately

Whether Blank Layers are used appropriately

Whether Duplicate Layers are used appropriately

Convert background layer to Smart Object

Duplicate Smart Object layer twice, rename to "Smooth" and "Texture"

Apply Gaussian Blur Smart Filter to "Smooth" layer (hide blemishes)

Apply High Pass Smart Filter to "Texture" layer (extract texture details)

Set "Texture" layer blend mode to Linear Light

Group both layers and add black layer mask

Use brush tool to paint on mask for selective skin retouching

Add Levels adjustment layer for tonal adjustments

Add Selective Color adjustment layer for color grading

Open image and duplicate background layer

Create new blank layer, enable "Sample All Layers"

Use Spot Healing Brush to remove acne scars and blemishes on blank layer

Create another blank layer, use Healing Brush to soften wrinkles

Add Color Balance adjustment layer to adjust skin tone warmth/coolness

Optionally add Color Lookup Table adjustment layer for creative color grading style

Figure 5: A NDEC evaluation example, showing the comparison between Gold Trajectory (GT) and Agent
Trajectory (AT) using our proposed six-criteria checklist.

C.3 TASK EXAMPLES DETAILS

In this section, we present several task examples. As shown in Table 5, the first two rows illustrate two
tasks performed in GIMP from OSWorld, while the last three rows show tasks of varying difficulty in

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Photoshop from our newly proposed benchmark, PSBench. It can be observed that the time horizon
(i.e., the number of UI actions per task) and task complexity in PSBench significantly exceed those
in previous work, thereby filling a critical gap in evaluating GUI agents on large-scale, art-design
software.

Table 5: Task example details from PSBench and other work about design.

Source Instruction Initial image Target image Time
Horizon

OSWorld
(GIMP)

Could you
make the

background
of this
image

transparent
for me?

4

OSWorld
(GIMP)

Please rotate
my figure to

mirror it
horizontally

1

PSBench
(Easy)

Add a
gradient

mask to the
bottom of
the image.

4

PSBench
(Medium)

Make the
image black
and white

but keep the
center area

in its
original
colors.

17

PSBench
(Hard)

Add a
glowing

effect to the
kangaroo in
the picture.

46

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.4 DATA STATISTICS DETAILS

C.4.1 EDITING WORKFLOW CATEGORIES

Figure 6: Distribution of the 16 editing workflow cate-
gories in PSBench.

In this section, we present the task categories
covered by PSBench. Our benchmark consists
of 16 types of commonly used Photoshop image-
editing workflows, including Transform & Ge-
ometry, Basic Adjustments, Special Effects, and
other essential categories.The full distribution is
shown in Figure 6.

Following the Adobe official user guide6, we
derive our taxonomy based on the major image-
editing categories defined in the documentation.
Excluding Web, Screen and App Design and
Video and Animation—which are oriented to-
ward design or multimedia tasks rather than con-
ventional image editing—PSBench covers all
remaining key workflow types. Therefore, PS-
Bench provides extensive coverage of the typ-
ical Photoshop editing workflows and exhibits
strong diversity and representativeness.

As shown in Table 6, we provide a represen-
tative example for each workflow category to
illustrate the nature of the editing operation and
its associated challenges.

Table 6: Examples of the editing workflow categories in PSBench.

Type Instruction Initial Target

Transform &
Geometry

Flip the image
vertically.

Basic
Adjustments

Increase the
brightness of the
image by 60%.

Local Editing &
Masks

Add a gradient
mask to the bottom

of the image.

6https://helpx.adobe.com/cn/photoshop/user-guide.html

21

https://helpx.adobe.com/cn/photoshop/user-guide.html

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Type Instruction Initial Target

Filters and Blur
Effects

Apply mosaic filter
with cell size of 10

pixels.

Sharpening
Apply unsharp
mask filter to

sharpen the image.

Noise & Grain
& Texture

Add noise to the
entire image.

Layer Blending
& Opacity

Set the opacity of
the top layer to

50%.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Type Instruction Initial Target

Compositing
Add sky

background to the
image.

Image
Restoration

Enhance, retouch,
and colorize the
black-and-white

images

Portrait
Retouching

Remove blemishes,
wrinkles, acne scars,

dark spots, and
blackheads from the

person’s face
naturally.

Special Effects

Add a glowing
effect to the

kangaroo in the
picture.

Shapes &
Graphic

Elements

Add a rounded
rectangle selection

to the top-right
corner and fill it

with blue.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Type Instruction Initial Target

Text and
Typography

Add vertical text
’Sample’ to the left
side of the image.

Main Subject
Editing

Create selection
outline for the

person in the image.

Color
Conversion &

Stylization

Change the yellow
leaves to green

leaves in the image.

Core Color &
Tone

Adjustment

Add awesome color
grade to the image.

C.4.2 OPERATION-LEVEL CATEGORIES

For the systematic evaluation of agents’ capabilities in real-world image editing software, PSBench
models Photoshop interactions at the operation level. Based on the Adobe Photoshop official user
guide 7, we systematically organized common editing functionalities and categorized them into six
core classes, comprising a total of 74 fine-grained operations. These six categories include Geometric
Transformations, Color and Tone Adjustments, Filter Effects, Selection Operations, Layer Operations,
and Painting and Retouching tools, which collectively represent the essential functional space of
professional image editing workflows.

The detailed 74 operations within these six categories are summarized as follows:

7https://helpx.adobe.com/cn/photoshop/user-guide.html

24

https://helpx.adobe.com/cn/photoshop/user-guide.html

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Details of operation in Photoshop

Category 1: Geometric Transformations (5 operations)
• Flip Horizontal
• Flip Vertical
• Rotate (90°/180°/arbitrary angle)
• Crop
• Canvas Resize

Category 2: Color and Tone Adjustments (14 operations)
• Brightness/Contrast
• Hue/Saturation
• Levels
• Curves
• Color Balance
• Exposure
• Shadows/Highlights
• Desaturate / Grayscale
• Invert
• Threshold
• Gradient Mapping
• Channel Mixer
• Photo Filter
• Channel Adjust Image

Category 3: Filter Effects (13 operations)
• Gaussian Blur
• Motion Blur
• Sharpen / Unsharp Mask
• Emboss
• Sketch Filters
• Texture Filters
• Pixelate
• Distort
• Noise Add/Reduce
• Render Filters (Clouds / Lens Flare)
• Artistic Filters
• Blur Gallery
• Channel Apply Filter

Category 4: Selection Operations (13 operations)
• Rectangular / Elliptical Marquee
• Lasso Tool
• Polygonal Lasso
• Magic Wand
• Quick Selection Tool

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Color Range
• Border
• Pen Tool
• Convert Point Tool
• Paths Panel / Path Operations
• Path to Selection
• Channel Selection
• Channel Cutout

Category 5: Layer Operations (12 operations)
• New / Delete Layer
• Toggle Layer Visibility
• Layer Opacity
• Blending Mode (Normal / Multiply / Screen, etc.)
• Reorder Layers
• Merge Layers
• Layer Styles (Drop Shadow / Stroke, etc.)
• Gradient Mask
• Quick Mask
• Brush Editing Mask
• Eraser Editing Mask
• Selection Mask Image Composition

Category 6: Painting and Retouching (17 operations)
• Brush Tool
• Eraser
• Clone Stamp
• Spot Healing Brush
• Gradient Tool
• Paint Bucket
• Color Replacement Tool
• Mixer Brush Tool
• Pattern Stamp Tool
• History Brush Tool
• Patch Tool
• Red Eye Tool
• Dodge Tool
• Sharpen Tool
• Burn Tool
• Content-Aware Fill
• Background Eraser Tool

To verify the representativeness and coverage of the task set, we further analyzed the frequency
distribution of these six operation categories across tasks of varying difficulty levels , as shown in
Figure 7 . The results indicate that all six categories are broadly utilized across all difficulty levels,
with proportions becoming more balanced as task complexity increases. This trend reflects that high-

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

difficulty tasks typically involve more complex tool combinations and multi-step editing workflows,
whereas low-difficulty tasks tend to rely on fewer, high-frequency basic operations. Overall, this
distribution demonstrates that PSBench provides not only comprehensive functional coverage but
also realistically captures the operational complexity and skill requirements across difficulty levels,
offering a reliable benchmark for evaluating the real-world interactive capabilities of multimodal
agents.

Figure 7: Frequency distribution of six operation-level categories across different task difficulty levels in
PSBench.

C.5 VISUALIZATION OF THE AGENT EXECUTION PIPELINE

In this subsection, we provide a concrete example of the GUI Agent workflow using the task “Add
lighting effect to the oil lamp in the image.” as an illustrative case. The initial input to the GUI Agent
consists of two components: (1) the task instruction, and (2) the initial screenshot, which includes
both the unedited source image and the full Photoshop interface.

Starting from Step 2 (i.e., for all n ≥ 2), each step receives two inputs:

• the updated screenshot obtained after executing the action from Step (n− 1), and

• the accumulated memory from the previous (n− 1) steps, which stores the agent’s interme-
diate reasoning, state analysis, and action planning.

As shown in Table 7, the workflow is decomposed into four synchronized components: (1) Step
n indicates the current reasoning step; (2) Screenshot provides the interface state after executing
Step (n− 1); (3) Agent Response contains the model’s analysis of the current state and justification
for the next action; (4) Action Code is the executable Python code issued by the agent to interact
with Photoshop.

Overall, the screenshot produced after each executed action becomes the visual input for the next
reasoning step, forming a closed-loop, step-by-step interaction cycle. This design ensures that the
GUI Agent maintains coherent reasoning, stable grounding, and controlled execution throughout
multi-step editing tasks.

After the task is completed, the benchmark automatically saves the edited result and invokes the
evaluation function to assess its quality. At the same time, it extracts the agent’s internal action
trajectory from the GUI Agent’s responses. For this task, the extracted trajectory includes:

• Duplicate the image layer.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Convert the duplicated layer into a Smart Object.
• Apply the “Lighting Effects” Smart Filter.

These trajectories are then used for checklist-based NDEC evaluation to determine whether the GUI
Agent adhered to Photoshop’s non-destructive editing principles during the task.

Table 7: Step-by-step GUI Agent workflow for the task “Add lighting effect to the oil lamp in the image.”

Step Screenshot Agent Response Action Code

1

The instruction requires adding a
lighting effect to the oil lamp. The
first step is to duplicate the current

layer to ensure non-destructive
editing. We will use the Photoshop

hotkey Ctrl+J to duplicate the
layer.

pyautogui.hotkey
(’ctrl’,’j’)

2

The layer has been successfully
duplicated. To enable mask-based
editing and Smart Filters, we now

need to convert this duplicated layer
into a Smart Object. Right-click on

“Layer 1” in the Layers panel to
open the context menu.

pyautogui.click
(1758,726,
button=’right’)

3

The context menu is open next to the
Layers panel. Select “Convert to
Smart Object” to turn the active

layer into a Smart Object.

pyautogui.click
(1568,425)

4

The top layer is now converted to a
Smart Object and remains selected.

Next, we will apply an editable filter.
Open the Filter menu from the

Photoshop top menu bar.

pyautogui.click
(318,14)

5

The Filter dropdown menu is visible,
showing categories such as Blur,

Distort, Noise, Render, Sharpen, etc.
To add lighting to the lamp, we need
to open the Render submenu under

Filter.

pyautogui.click
(352,319)

6

The Render submenu appears with
options such as Clouds, Fibers,

Lighting Effects, etc. Select
“Lighting Effects” to open the

lighting editor for the Smart Object
layer.

pyautogui.click
(612,399)

7

The Lighting Effects panel is open.
To choose a lighting preset, click the
Presets dropdown on the left side of

the panel.

pyautogui.click
(154,45)

8

The Presets dropdown shows
options such as Flashlight, Flood

Light, RGB Light, etc. Select
“Flashlight” to create a focused
lighting effect on the oil lamp.

pyautogui.click
(133,190)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Step Screenshot Agent Response Action Code

9

The “Flashlight” preset is
successfully selected. Click the OK
button at the top to apply the lighting

effect to the Smart Object layer.

pyautogui.click
(901,43)

D DETAILS OF EXPERIMENTS

D.1 PROMPT DETAILS

In this section, we present the prompts used in our experiments. We found that when both the
Semantic Planning Prompt and the Task Execution Prompt are provided to MLLMs simultaneously,
the models tend to generate a large number of invalid PyAutoGUI commands during execution, which
often leads to task failure.

Therefore, we separate the two types of prompts: Section D.1.1 provides the Semantic Planning
Prompt, while Section D.1.2 provides the full Task Execution Prompt (which also includes the
complete action space description).

During the evaluation process, MLLMs first generate a complete agent trajectory based on the
Semantic Planning Prompt for conducting NDEC evaluation; subsequently, they complete the task
according to the Task Execution Prompt. This design ensures that a full agent trajectory is obtained
for NDEC analysis regardless of whether the GUI agent successfully completes the task.

D.1.1 SEMANTIC PLANNING PROMPT

Semantic Planning Prompt

You are a Photoshop expert planning how to complete this task:
{instruction}↪→

Please provide a high-level semantic plan with 3-10 steps that
describe WHAT needs to be done, not HOW to do it technically.↪→

Important: Always follow Photoshop's non-destructive editing
principles. This means:↪→
Prefer adjustment layers over direct pixel editing
Use smart objects for transformations and filters
Apply smart filters instead of permanent filters
Use masks (layer masks, vector masks, filter masks) instead of

erasing↪→
Perform retouching on separate layers, not the original image
Use non-destructive cropping (hide, don't delete)
When working with RAW, keep original data intact by using smart

objects↪→

Focus on the conceptual workflow, not specific clicks or
coordinates. For example:↪→
Instead of ``Click on coordinates (132, 16)'' say ``Access the

Image menu''↪→
Instead of ``Press Ctrl+T'' say ``Activate free transform mode''
Instead of ``pyautogui.click(...)'' say ``Apply rotation

transformation''↪→

Respond with ONLY a JSON array of step descriptions, like:
\begin{verbatim}
["Step 1 description", "Step 2 description" ...]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

\end{verbatim}

Task: {instruction}

D.1.2 TASK EXECUTION PROMPT

In the Task Execution Prompt, we provide commonly used Photoshop keyboard shortcuts and menu
bar coordinates to assist the GUI agent in accurately performing tasks.

Task Execution Prompt

You are a professional Photoshop user who follows my instructions
to perform tasks in Photoshop, specifically using Adobe
Photoshop CS6 through PyAutoGUI commands for legitimate
software testing and automation.

↪→
↪→
↪→

You have solid knowledge of Photoshop operations and assume your
code will run on a machine capable of controlling mouse and
keyboard. For each step, you will receive observations in the
form of current screen screenshots. Based on these observations,
you should predict and output the next action to be executed on
the computer.

↪→
↪→
↪→
↪→
↪→

This usage is authorized for quality assurance purposes.

Task: {instruction}

Your response will be executed directly as Python code. You MUST
return a valid, executable command.↪→

Valid responses (pyautogui commands and wait done fail):

- pyautogui.click(x, y)
- pyautogui.press('key')
- pyautogui.hotkey('ctrl', 'key')
- pyautogui.typewrite('text')
- time.sleep(2)
- WAIT
- DONE
- FAIL

NEVER respond with:

- Single characters: ".", "x", "s"
- Descriptions: "did not affect interface"
- Explanations or comments
- Your thought process or observations

If you're uncertain about what to do, return "WAIT" instead of an
invalid command.↪→

You should use "WAIT" with caution. If you use "WAIT" three times
in a row, the task will be directly judged as a failure.↪→

Important Guidelines:
1. You can only use PyAutoGUI commands like pyautogui.click(x, y),

pyautogui.hotkey('ctrl', 'c'), pyautogui.typewrite('text')↪→
2. Use absolute screen coordinates for clicks
3. Wait between actions using time.sleep() or pyautogui.sleep()
4. When task is complete, return "DONE"
5. If task fails or you're stuck, return "FAIL"
6. If you need more time to observe, return "WAIT"

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Available PYAUTOGUI Actions:

GENERAL ACTIONS:

- pyautogui.click(x, y) - Click at specific coordinates
- pyautogui.rightClick(x, y) - Right-click at coordinates
- pyautogui.doubleClick(x, y) - Double-click at coordinates
- pyautogui.drag(x1, y1, x2, y2, duration=1) - Drag from point A to

point B↪→
- pyautogui.scroll(clicks, x=None, y=None) - Scroll up(+) or down(-)

at position↪→
- pyautogui.typewrite('text') - Type text string
- pyautogui.press('key') - Press single key (enter, escape, space,

etc.)↪→
- pyautogui.hotkey('key1', 'key2') - Press key combination
- time.sleep(seconds) - Wait for specified duration

DRAG OPERATIONS - CORRECT SYNTAX:
WRONG: pyautogui.drag(x1, y1, x2, y2, duration=1)
CORRECT:

pyautogui.click(x1, y1)
pyautogui.dragTo(x2, y2, duration=1)

For Photoshop selections (like rectangular marquee):
1. Press 'm' to select rectangular marquee tool
2. pyautogui.click(start_x, start_y) # Click at starting corner
3. pyautogui.dragTo(end_x, end_y, duration=1) # Drag to ending

corner↪→

Example: To select from (400,300) to (600,500):
ACTION: pyautogui.click(400, 300); pyautogui.dragTo(600, 500,

duration=1)↪→

PHOTOSHOP KEYBOARD SHORTCUTS:

- pyautogui.press('v') - Move Tool
- pyautogui.press('m') - Rectangular Marquee Tool
- pyautogui.press('l') - Lasso Tool
- pyautogui.press('w') - Magic Wand Tool
- pyautogui.press('c') - Crop Tool
- pyautogui.press('i') - Eyedropper Tool
- pyautogui.press('j') - Healing Brush Tool
- pyautogui.press('b') - Brush Tool
- pyautogui.press('s') - Clone Stamp Tool
- pyautogui.press('e') - Eraser Tool
- pyautogui.press('g') - Gradient Tool
- pyautogui.press('r') - Blur Tool
- pyautogui.press('o') - Dodge Tool
- pyautogui.press('p') - Pen Tool
- pyautogui.press('t') - Type Tool
- pyautogui.press('u') - Rectangle Tool
- pyautogui.press('h') - Hand Tool
- pyautogui.press('z') - Zoom Tool

FILE OPERATIONS:
- pyautogui.hotkey('ctrl', 'n') - New Document
- pyautogui.hotkey('ctrl', 'o') - Open File
- pyautogui.hotkey('ctrl', 's') - Save
- pyautogui.hotkey('ctrl', 'shift', 's') - Save As
- pyautogui.hotkey('ctrl', 'alt', 'shift', 's') - Export As
- pyautogui.hotkey('ctrl', 'w') - Close Document

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

- pyautogui.hotkey('ctrl', 'q') - Quit Photoshop

EDIT OPERATIONS:
- pyautogui.hotkey('ctrl', 'z') - Undo
- pyautogui.hotkey('ctrl', 'shift', 'z') - Redo
- pyautogui.hotkey('ctrl', 'x') - Cut
- pyautogui.hotkey('ctrl', 'c') - Copy
- pyautogui.hotkey('ctrl', 'v') - Paste
- pyautogui.hotkey('ctrl', 'shift', 'v') - Paste Special
- pyautogui.hotkey('ctrl', 'alt', 'z') - Step Backward
- pyautogui.hotkey('ctrl', 'shift', 'alt', 'z') - Step Forward

SELECTION OPERATIONS:
- pyautogui.hotkey('ctrl', 'a') - Select All
- pyautogui.hotkey('ctrl', 'd') - Deselect
- pyautogui.hotkey('ctrl', 'shift', 'd') - Reselect
- pyautogui.hotkey('ctrl', 'shift', 'i') - Inverse Selection
- pyautogui.hotkey('ctrl', 'shift', 'alt', 'd') - Feather Selection
- pyautogui.hotkey('shift', 'f6') - Select Subject
- pyautogui.hotkey('alt', 'ctrl', 'r') - Refine Edge

IMAGE OPERATIONS:
- pyautogui.hotkey('ctrl', 'alt', 'i') - Image Size
- pyautogui.hotkey('ctrl', 'alt', 'c') - Canvas Size
- pyautogui.hotkey('ctrl', 'i') - Invert Colors
- pyautogui.hotkey('ctrl', 'shift', 'u') - Desaturate
- pyautogui.hotkey('ctrl', 'l') - Levels
- pyautogui.hotkey('ctrl', 'm') - Curves
- pyautogui.hotkey('ctrl', 'u') - Hue/Saturation
- pyautogui.hotkey('ctrl', 'b') - Color Balance

LAYER OPERATIONS:
- pyautogui.hotkey('ctrl', 'shift', 'n') - New Layer
- pyautogui.hotkey('ctrl', 'j') - Duplicate Layer
- pyautogui.hotkey('delete') - Delete Layer
- pyautogui.hotkey('ctrl', 'shift', 'alt', 'e') - Stamp Visible
- pyautogui.hotkey('ctrl', 'e') - Merge Down
- pyautogui.hotkey('ctrl', 'shift', 'e') - Merge Visible
- pyautogui.hotkey('ctrl', 'g') - Group Layers
- pyautogui.hotkey('ctrl', 'shift', 'g') - Ungroup Layers

VIEW OPERATIONS:
- pyautogui.hotkey('ctrl', 'plus') - Zoom In
- pyautogui.hotkey('ctrl', 'minus') - Zoom Out
- pyautogui.hotkey('ctrl', '0') - Fit on Screen
- pyautogui.hotkey('ctrl', '1') - Actual Pixels (100%)
- pyautogui.hotkey('f') - Cycle Screen Modes
- pyautogui.hotkey('tab') - Hide/Show Panels
- pyautogui.hotkey('shift', 'tab') - Hide/Show Toolbox
- pyautogui.hotkey('ctrl', 'r') - Show/Hide Rulers

FILTER SHORTCUTS:
- pyautogui.hotkey('ctrl', 'f') - Repeat Last Filter
- pyautogui.hotkey('ctrl', 'shift', 'f') - Fade Last Filter
- pyautogui.hotkey('ctrl', 'alt', 'f') - Gaussian Blur (if last

used)↪→

BRUSH/TOOL MODIFIERS:
- pyautogui.press('[') - Decrease Brush Size
- pyautogui.press(']') - Increase Brush Size
- pyautogui.hotkey('shift', '[') - Decrease Brush Hardness
- pyautogui.hotkey('shift', ']') - Increase Brush Hardness
- pyautogui.press('x') - Switch Foreground/Background Colors
- pyautogui.press('d') - Default Colors (Black/White)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

- pyautogui.press(',') - Previous Brush
- pyautogui.press('.') - Next Brush

If screenshot shows unexpected state:

- Use pyautogui.press('escape') to close unexpected dialogs
- Use pyautogui.hotkey('ctrl', 'z') to undo problematic actions
- Return WAIT to observe changes after corrective actions
- Look for alternative paths to achieve the same goal

DECISION MAKING PRIORITIES:
1. Shortcuts First: ALWAYS prefer keyboard shortcuts over mouse

clicks when available↪→
- Tool selection: Use 'b' instead of clicking brush tool

coordinates↪→
- File operations: Use Ctrl+O instead of clicking File > Open
- Edit operations: Use Ctrl+Z instead of clicking Edit > Undo
- Only use mouse clicks when no shortcut exists

2. Precision Second*: Use exact coordinates only for complex UI
interactions without shortcuts↪→

3. Safety Third: Include delays between actions to ensure UI
stability↪→

4. Fallback Fourth: Have alternative approaches ready if primary
method fails↪→

Mandatory workflow for each step (you can only output a single
PyAutoGUI command or DONE/FAIL/WAIT):↪→

1. Observe: Carefully examine the current screenshot
2. Analyze: Identify what changed since the last action
3. Verify: Check if the previous action succeeded
4. Decide: Determine the next required action
5. Execute: Provide PyAutoGUI command

Critical visual analysis requirements (internal thinking only, do
not output):↪→

1. Always analyze the current screenshot first before taking any
action↪→

2. Look for UI changes from your previous action (new menus,
dialogs, highlighted elements)↪→

3. Identify what elements are currently visible and interactive
4. Determine if your previous action was successful by observing

visual feedback↪→
5. You MUST process and analyze the screenshot - this is essential

for success↪→

Visual UI element identification and clicking strategy: (Internal
thinking - DO NOT OUTPUT)↪→

Critical philosophy: **Analyze screenshot → Identify target → Click
directly**↪→

Dialog navigation rules:
1. Try not to use Tab navigation in dialogs (unreliable,

unpredictable field order)↪→
2. Never assume field positions without looking at the screenshot
3. Always analyze the screenshot to visually locate the target

element↪→
4. Always click directly on the specific field/button you can see
Visual field identification process:
1. Analyze dialog layout: "I can see a dialog with input fields

labeled Width, Height, etc."↪→
2. Locate target field: "The Height field is positioned below the

Width field"↪→
3. Identify click target: "I need to click on the Height input box,

not just the label"↪→

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

4. Execute click: "I will click approximately at the center of the
Height input field"↪→

5. Verify selection: "After clicking, I should see the field become
selected/highlighted"↪→

Enhanced decision making for field selection:
Instead of: "Step 3: Press Tab to go to height field"
Think: "Step 3: I can see the Height field in the dialog. I will

click directly on the Height input field to select it, then
type the new value"

↪→
↪→

PHOTOSHOP CS6 UI COORDINATES & ELEMENTS:

MENU BAR (Top):
- File Menu: (56, 16)
- Edit Menu: (82, 16)
- Image Menu: (132, 16)
- Layer Menu: (182, 16)
- Select Menu: (272, 16)
- Filter Menu: (322, 15)
- View Menu: (390, 16)
- Window Menu: (446, 16)
- Help Menu: (499, 16)

IMAGE TRANSFORMATIONS:
- Image Menu: (132, 16)
- Image Size: (213, 170)
- Canvas Size: (195, 189)
- Image Rotation: (232, 214)
- 180°: (437, 210)
- 90° CW: (437, 230)
- 90° CCW: (437, 250)
- Arbitrary: (437, 270)
- Flip Canvas Horizontal: (437, 300)
- Flip Canvas Vertical: (437, 325)

- Crop: (227, 235)
- Trim: (215, 253)

LAYER OPERATIONS:
- Layer Menu: (182, 16)
- New Layer: (532, 38)
- Duplicate Layer: (242, 58)
- Delete Layer: (475, 80)
- Layer Properties: (182, 145)
- Flatten Image: (260, 727)

SELECTION TOOLS:
- Select Menu: (272, 16)
- All: (343, 34) or Ctrl+A
- Deselect: (343, 60) or Ctrl+D
- Reselect: (343, 77)
- Inverse: (343, 96) or Ctrl+Shift+I

TOOLBOX (Left Panel):
- Move Tool: (15, 105)
- Rectangular Marquee: (15, 125)
- Lasso Tool: (15, 154)
- Magic Wand: (15, 180)
- Crop Tool: (15, 205)
- Eyedropper: (15, 230)
- Healing Brush: (15, 255)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

- Brush Tool: (15, 285)
- Clone Stamp: (15, 310)
- Eraser: (15, 360)
- Gradient Tool: (15, 390)
- Blur Tool: (15, 415)
- Dodge Tool: (15, 445)
- Pen Tool: (15, 478)
- Type Tool: (15, 500)
- Rectangle Tool: (15, 556)
- Hand Tool: (15,582)
- Zoom Tool: (15, 604)

Few-shot examples:
Example 1 - Drawing a heart on the image
You should make the following responses in sequence:
Response 1: pyautogui.press('b')
Response 2: pyautogui.drag(766, 700, 812, 753, duration=1)
Response 3: pyautogui.drag(856, 700, 812, 753, duration=1)
Response 4: DONE

Example 2 - Applying a filter to the image:
You should make the following responses in sequence:
Response 1: pyautogui.click(322, 15)
Response 2: pyautogui.click(419, 233)
Response 3: pyautogui.click(618, 389)
Response 4: pyautogui.typewrite('8')
Response 5: pyautogui.press('enter')

COMMON PATTERNS & TIPS:

1. Menu Navigation: Always wait briefly after clicking menus for
them to fully open↪→

2. Keyboard Shortcuts: Use shortcuts when available (Ctrl+O, Ctrl+S,
etc.)↪→

3. Dialog Handling: Look for OK/Cancel buttons in standard
positions↪→

4. Tool Selection: Click on tools in the toolbox before using them
5. Coordinate Precision: Use the exact coordinates provided, but

adjust slightly if elements seem misaligned↪→
6. Error Recovery: If something goes wrong, try Ctrl+Z to undo,

then retry↪→

TROUBLESHOOTING:
- If menu doesn't open: Click again or try pressing Esc first
- If coordinates seem off: Try nearby coordinates (+/- 5 pixels)
- If dialog appears unexpectedly: Look for OK/Cancel buttons
- If operation fails: Use Ctrl+Z to undo and retry different

approach↪→

Important note: In Photoshop, images typically don't fill the
entire canvas. Before making any selections:↪→

1. The image may only occupy part of the canvas area
2. Always check the actual image boundaries first(No Output)
3. Use selection tools within the image area, not the entire canvas
4. If you get "Warning: No pixels were selected", the selection

area may be outside the image bounds↪→

Remember: Success depends on careful screenshot analysis and
adaptive decision-making! Think step by step and use
coordinates precisely. The content you generate must be
executable pyautogui actions!

↪→
↪→
↪→

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

D.2 PHOTOSHOP VIA GUI AGENTS VS. END-TO-END IMAGE EDITING MODELS

Table 8: Success rates on PSBench of end-to-end image editing
models.

Model Easy Medium Hard Overall

Qwen-Image-Edit 100% 100% 80.50% 93.50%
GPT-Image-1 100% 100% 90.00% 96.67%

FLUX.1 Kontext [pro] 100% 100% 75.00% 91.67%
FLUX.1 Kontext [max] 100% 100% 72.50% 90.83%
gemini-2.5-flash-image 100% 100% 90.00% 96.67%

Seedream 4.0 100% 100% 85.50% 95.17%

Results: We evaluate six state-
of-the-art end-to-end image editing
models from the Artificial Anal-
ysis Image Editing Leaderboard8:
Seedream 4.0 (ByteDance, 2025),
FLUX.1 Kontext [pro] (Labs, 2025),
FLUX.1 Kontext [max], GPT-Image-
1 (OpenAI, 2025b), Qwen-Image-
Edit (Wu et al., 2025), and gemini-
2.5-flash-image (Google, 2025). To
ensure consistency with the GUI agent
experiments, we directly use each
task’s natural language instruction as the prompt and applied the same evaluation functions as
in the GUI agent setting to assess the editing results, thereby obtaining each model’s success rate on
PSBench (see Table 8). Because end-to-end image editing models lack explicit visual planning and
operation trajectories, we do not evaluate them using the NDEC metric.

Analysis: As shown in Table 8, end-to-end image editing models demonstrate strong overall perfor-
mance on PSBench, achieving a 100% success rate in both the easy and medium task categories. This
indicates that such models have already developed mature capabilities for tasks involving only basic
editing operations.

A high success rate does not imply perfect task execution, because the metric is tailored to the
GUI agent and only checks whether the operations specified in the instruction are carried out. An
in-depth analysis of failure cases in the hard task category reveals that, when confronted with more
complex and open-ended editing scenarios in real-world settings, these models still exhibit significant
shortcomings, as illustrated in Table 9.

• Image quality degradation: Image editing models often perform destructive modifications on
the original pixels during tasks, resulting in loss of fine details and reduced overall sharpness.

• Loss of original information integrity: These models tend to conduct excessive or unintended
corrections, which may introduce distortions or lead to the loss of critical information.

• Lack of naturalness in editing effects: The generated results frequently display a stereotyped or
templated appearance and lack the realistic, natural visual quality typically achieved by human
editors.

• Limited controllability and adjustability: End-to-end models primarily rely on prompt-based
iterative adjustments, with each generation potentially introducing new pixel-level degradation and
quality fluctuations, making it difficult to reliably and precisely meet specific user expectations. In
sharp contrast, Photoshop’s non-destructive editing workflow inherently supports parameterized
and reversible modifications. For example, after a GUI agent completes a color-related task in
Photoshop, a user dissatisfied with the result can simply adjust the layer parameters to achieve the
desired effect—quickly and efficiently—while avoiding the cumulative quality loss associated
with repeated modifications.(As shown in Figure 3(d))

In summary, Photoshop retains a clear advantage in professional image editing tasks. Building a
dedicated GUI agent benchmark tailored to this professional environment can drive improvements in
agent capabilities for complex editing workflows and provide powerful support for assisting humans
in producing high-quality, controllable image edits.

D.3 FAILURE ANALYSIS

We select 150 failed cases and analyze them based on screen recordings of task execution, identifying
common failure patterns. Overall, these failures can be categorized into three main types:

Perceptual Errors (about 67%) This is the primary cause of task failures. The agent is often able to
open a dialog box but fails to accurately locate specific input fields or controls. It also shows limited

8https://huggingface.co/spaces/ArtificialAnalysis/Text-to-Image-Leaderboard

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 9: Comparison between Photoshop and End-to-End Image Editing Models Results.

Instruction Source Image Editing in
Photoshop

E2E Image
Editing Result

Observed
Shortcoming

Make winter
snow effect

for the
image.

Image quality
degradationa

Add a
glowing

effect to the
kangaroo in
the picture.

Loss of
original

information
integrityb

Add a halo
effect to the
lights in the

image.

Lack of
natural

editing effectc

a Significant loss of rock texture details on the mountain; lake reflection becomes blurry.
b Global pixel reconstruction causes noticeable changes in key features such as facial details and hairstyle.
c The halo effect appears overly strong and abrupt, forming stiff circular spots and lacking the natural
gradient of real light sources.

ability to recognize and select fine-grained options in drop-down menus; for example, it can open the
Filter menu but cannot reliably select a specific option such as “Motion Blur.” In such cases, the GUI
agent repeatedly clicks on ineffective coordinates until the task times out.

Task Planning Errors (about 20%) These errors predominantly occur in high-difficulty tasks and
essentially reflect insufficient understanding of Photoshop’s functional structure. While the GUI agent
can generate relatively complete high-level action plans (for instance, deciding to use a particular filter
or adjust a specific parameter), it struggles to translate these abstract plans into concrete operation
sequences. A typical example is knowing which filter can produce the desired effect but failing to
plan an exact navigation path such as “Filter → Sharpen,” resulting in a gap between high-level
planning and low-level execution.

Execution Control Errors (about 13%) This type of error often appears in tasks involving complex
selections. In isolated tests, the GUI agent can successfully execute multi-step selection operations,
suggesting that these execution failures are largely triggered by perceptual deficiencies—specifically,
difficulty in accurately localizing the image and target selection area from the current screen capture.
Moreover, the agent exhibits limited flexibility in interactive control. Human users typically fine-tune
parameters by dragging sliders and observing real-time changes to the image, whereas the agent
tends to rely on directly entering values into input fields, lacking dynamic adjustment capability. This
limitation reduces both the precision and the efficiency of task completion.

D.4 HUMAN-IN-THE-LOOP USER STUDY

In our human-in-the-loop experiment, we recruited 24 undergraduate students majoring in computer-
related disciplines. All participants possessed basic software operation skills but were complete

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

novices in Photoshop: each reported a total usage time of less than two hours and had not received
any form of image-editing training.

To compare the effectiveness of different modes of human–AI collaboration, the 24 participants were
evenly divided into three groups:

• Unassisted novice user: participants attempted to complete the tasks without any additional
help.

• Novice user with internet access: participants were allowed to freely consult online tutorials
or documentation.

• Novice user assisted by a GUI agent: participants received real-time step-by-step natural-
language guidance from GPT-4o (without generating executable code).

All groups were tested on the same set of 60 tasks (20 Easy, 20 Medium, 20 Hard). For each
participant, we recorded both the task success rate and the average completion time of successfully
completed tasks. The individual results are shown in Figure 8, Figure 9, and Figure 10. We
subsequently averaged the results within each group to obtain the overall performance under the three
experimental conditions, as presented in Figure 4.

Figure 8: Results of Unassisted Novice Users.

Figure 9: Results of Novice Users with Internet Access.

E COMPARISON WITH IMAGE EDITING BENCHMARKS

Since PSBench is designed for Photoshop, its tasks are essentially image-editing tasks. Therefore,
we also compare it with existing benchmarks for image editing, as summarized in Table 10. The

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Figure 10: Results of Novice Users Assisted by a GUI Agent.

comparison considers five aspects: samples (total number of tasks), types (range of editing categories),
task-specific evaluation (presence of task-specific evaluators for each task), non-destructive editing
(whether edits preserve the original material, e.g., via adjustment layers or masks), and task source
(real user tasks or synthetic tasks). This comparison enables a comprehensive assessment of PSBench
relative to other image-editing benchmarks in terms of scale, task diversity, evaluation mechanisms,
and task authenticity.

Table 10: Comparison with Existing Image Editing Benchmarks.

Benchmark #Samples #Types Task-Specific Eval. Non-Destructive Edit Task Source

EditVal (Basu et al., 2023) 648 13 ✗ ✗ Synthetic
EmuEdit (Sheynin et al., 2023) 3,055 7 ✗ ✗ Synthetic
EditBench (Wang et al., 2023) 240 1 ✗ ✗ Synthetic

MagicBrush (Zhang et al., 2024) 1,053 9 ✗ ✗ Synthetic
I2EBench (Ma et al., 2024b) 2,240 16 ✗ ✗ Synthetic

ImgEdit-Bench (Ye et al., 2025) 811 14 ✗ ✗ Synthetic
AnyEdit (Yu et al., 2025) 1,250 25 ✗ ✗ Synthetic

PSBench 600 16 ✓ ✓ Real-user

39

	Introduction
	PSBench Environment
	Task Formulation
	Real Photoshop Environment
	Observation Space
	Action Space

	PSBench Benchmark
	Data Collection
	Data Statistics
	Evaluation
	Task Success Rate
	Non-Destructive Editing Consistency (NDEC)

	Experiments
	Evaluated MLLMs on PSBench
	GUI Assistant rather than GUI Agent: A really human-in-loop experiment

	Conclusion and Future Work
	Use of LLM
	Related Work
	Details of PSBench
	Evaluation Functions
	Traditional Algorithm-Based Evaluation
	GPT-4o-Based Semantic Evaluation

	NDEC Checklist Examples
	Task Examples Details
	Data Statistics Details
	Editing Workflow Categories
	Operation-Level Categories

	Visualization of the Agent Execution Pipeline

	Details of Experiments
	Prompt Details
	Semantic Planning Prompt
	Task Execution Prompt

	Photoshop via GUI Agents vs. End-to-End Image Editing Models
	Failure Analysis
	Human-in-the-loop User Study

	Comparison with Image Editing Benchmarks

