

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PSBENCH: EDITING IMAGE VIA GUI AGENTS IN PHOTOSHOP

Anonymous authors

Paper under double-blind review

ABSTRACT

Photoshop is a powerful and widely used professional software for image editing, design, and creative production. Its complex multi-level menu structure, extensive set of graphical processing tools, and reliance on precise manipulations make automated operation and agent interaction particularly challenging. Despite recent progress in GUI agents, existing datasets and methods are primarily designed for web-based interfaces and short-horizon, low-complexity tasks in operating systems, falling short in addressing the fine-grained control, multi-step decision-making, and semantic understanding required in professional graphic software. To this end, we propose the first benchmark specifically tailored for image editing in Adobe Photoshop environment, with a particular focus on its core principle of non-destructive editing through layers. The benchmark consists of 600 human-annotated tasks, spanning three difficulty levels. Easy and medium tasks are distilled from official Photoshop tutorials, capturing the most common basics. Hard tasks are directly collected from the most popular Photoshop tutorials in Youtube, ensuring both challenge and real-world relevance. Task categories cover fundamental functionalities such as canvas adjustment, layer manipulation, and filter application, each accompanied by dedicated fine-grained evaluation metrics. Through various experiments in PSBench, we find that current leading MLLMs, like Qwen2.5-VL, GPT-5 and Gemini-2.5-Pro, exhibit generally low task success rates but can demonstrate remarkable planning ability. Further via a human-in-loop experiment, we find that MLLMs can serve as highly effective Photoshop assistants, substantially boosting novice users' task success rates while dramatically reducing their operation time.

1 INTRODUCTION

Through simulating human interactions with graphical interfaces, Graphical User Interface (GUI) agents (Nguyen et al., 2024; Wang et al., 2025a) can automatically execute complex tasks and make intelligent decisions, thereby significantly enhancing software testing automation, improving user assistance, and driving the automation and intelligence of diverse workflows. These capabilities demonstrate great potential in improving efficiency, reducing human errors, and supporting the execution of complex multi-step tasks (Gur et al., 2024; Furuta et al., 2024).

In this paper, we explore the possibilities and prospects of applying GUI agents to the field of image editing. The key motivation stems from three core aspects: ① Despite the remarkable progress of diffusion-based image editing methods (Shuai et al., 2024; Huang et al., 2025), they remain deficient in aspects such as high-resolution fidelity, intricate lighting and shadow modeling, and background preservation (some cases are shown in Table 9). Yet, in day-to-day industry practice, skilled photo retouchers effortlessly deliver all these inside Adobe Photoshop¹ via nondestructive editing. Nondestructive editing, the philosophy of Adobe Photoshop, refers to any workflow that allows an image to be modified—whether through adjustments, retouching, or compositing—without permanently altering the original pixel data, thereby preserving the ability to revisit, revise, or remove every edit at any future point. ② However, Photoshop is notoriously tricky for beginners, since its powerful but intricate interface demands substantial training and domain expertise to navigate effectively. ③ Naturally, we expect GUI agents to lower the entry barrier for non-expert users

¹<https://www.adobe.com/products/photoshop.html>

054 engaging in image editing within Photoshop, yet current solutions remain far from satisfying practical
 055 demands. In detail, existing mainstream GUI agent benchmarks (Xie et al., 2023; Ma et al., 2024a;
 056 Furuta et al., 2024; Pahuja et al., 2025) primarily focus on web environments or general-purpose
 057 operating systems, like Webshop (Yao et al., 2023), OSWorld (Xie et al., 2024) and WebArena (Zhou
 058 et al., 2024), where tasks are relatively simple and lack domain expertise. Besides, these GUI agents
 059 often target everyday software accessible to non-experts such as Chrome or Word, with limited and
 060 uniform interaction modes that fail to capture the operational complexity of professional software,
 061 like Photoshop.

062 Therefore, we propose PSBench, a novel GUI agent benchmark focused on image editing tasks in
 063 Adobe Photoshop. Such a benchmark presents unique challenges for GUI automation: The interface
 064 of Photoshop is not only highly hierarchical and feature-rich but also depends on fine-grained,
 065 multi-step operations. For instance, Photoshop’s core layer system requires agents to understand
 066 and manipulate non-destructive editing workflows, including layer order, masks, and adjustment
 067 layers. Moreover, many tools (e.g., brush, lasso, path) are context-dependent and parameter-sensitive,
 068 producing entirely different effects under different modes or environments. Furthermore, numerous
 069 operations involve pixel-level precision and parameter adjustments, demanding a level of accuracy
 070 far beyond that required by everyday software accessible to non-experts.

071 In task design of PSBench, we introduce three difficulty levels: easy and medium tasks are manually
 072 designed based on basic operations (e.g., cropping, flipping), while hard tasks are sourced from
 073 popular YouTube tutorials to ensure both realism and diversity. Ultimately, we construct a high-
 074 quality human-annotated benchmark comprising 600 tasks and more than 300 fine-grained evaluation
 075 functions, covering a wide range of key Photoshop functionalities such as layers, canvas, and filters,
 076 and reflecting diverse real-world use cases. For evaluation in PSBench, in addition to conventional
 077 task success rate metrics, we further propose the Non-Destructive Editing Consistency (NDEC) metric,
 078 designed to assess whether agents adhere to Photoshop’s non-destructive editing philosophy. In such a
 079 metric, based on Adobe’s official definition of non-destructive editing, we design a checklist (Ribeiro
 080 et al., 2020) including six core questions to compare reference operation trajectory provided by
 081 expert annotators and agent trajectory on a per-task basis, thereby enhancing the professionalism and
 082 granularity of benchmark evaluation.

083 Comprehensive evaluations on PSBench reveal that even today’s top-tier MLLMs still struggle to
 084 translate vision–language prowess into reliable Photoshop execution, with overall success rates
 085 remaining in the modest single-digit to low-teens range. For example, Even the best model, GPT-4o,
 086 the top-performing model in PSBench, attains merely 17.46 % on non-layer tasks and a vanishing
 087 3.80 % on layer-intensive tasks. Yet beneath these numbers lies a striking competence: the generated
 088 action sequences can be complete and professional, and they closely adhered to Photoshop’s non-
 089 destructive editing workflow. Capitalizing on this latent competence, we further conduct a human-
 090 in-the-loop experiment and find that: these MLLMs can an serve as highly effective Photoshop
 091 assistants, substantially driving novice users’ task success rates up while slashing task completion
 092 times. Therefore, we argue that for a feature-rich and complex application like Photoshop, rather than
 093 merely pursuing fully automated GUI agents, adopting a human–AI collaborative mode—combining
 094 MLLMs’ deep understanding of Photoshop with human users’ precise operational skills—may be a
 095 more practical and efficient direction.

096 2 PSBENCH ENVIRONMENT

097 This section introduces the formal task definition of autonomous GUI agents, the composition of the
 098 PSBench environment, and its supported observation and action spaces.

100 2.1 TASK FORMULATION

102 In PSBench, each task is modeled as a partially observable Markov decision process (POMDP)
 103 $(\mathbb{S}, \mathbb{O}, \mathbb{A}, \mathbb{T}, \mathbb{R})$. Here, \mathbb{S} denotes the state space, \mathbb{O} denotes the observation space (see §2.3), \mathbb{A}
 104 denotes the action space (see §2.4), $\mathbb{T} : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{S}$ denotes the state transition function, and
 105 $\mathbb{R} : \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$ denotes the reward function.

107 At each interaction step, the agent generates an executable action $a_t \in \mathbb{A}$ based on the current
 108 observation $o_t \in \mathbb{O}$. The action is executed in the environment to produce a new state $s_{t+1} \in \mathbb{S}$ and a

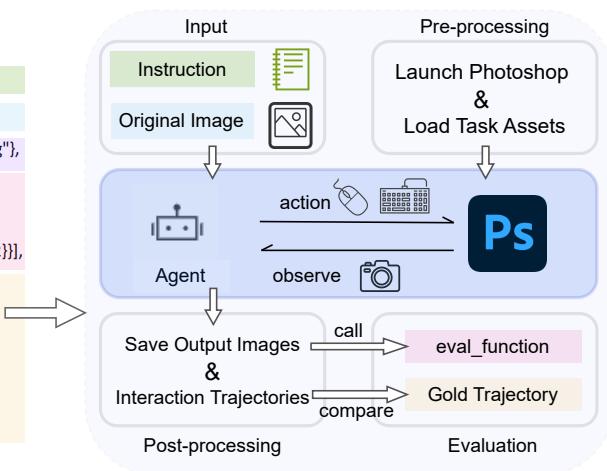


Figure 1: The overall framework of PSBench. The left part illustrates the task configuration: for each task, PSBench provides an instruction, input image resources, corresponding expected output images, and a gold trajectory. The right part demonstrates the actual interaction process of a GUI agent in the Photoshop environment: the GUI agent performs tasks by interacting with the environment through mouse and keyboard operations; the post-processing module saves output images and records interaction trajectories; the evaluation module invokes task-specific evaluation functions and compares the agent’s trajectory with the gold trajectory.

new partial observation $o_{t+1} \in \mathbb{O}$ (e.g., the updated screen screenshot). The state transition function \mathbb{T} determines the dynamics of the environment, while the reward function \mathbb{R} provides immediate feedback depending on the task completion status. This interaction loop continues until the agent triggers a terminal signal (DONE or FAIL, see §2.4) or reaches the maximum step limit.

2.2 REAL PHOTOSHOP ENVIRONMENT

PSBench operates on a locally installed portable version of Adobe Photoshop CS6 as the interactive environment. As illustrated on the right side of Figure 1, PSBench implements a complete interaction pipeline for systematic evaluation of GUI agents. The process begins with the pre-processing stage, during which task resources are loaded and the Photoshop environment is launched. Subsequently, the GUI agent observes the interface state, generates mouse and keyboard actions, and interacts with the real Photoshop environment. Finally, the post-processing module saves the output images and interaction trajectories, while the evaluation module invokes task-specific evaluation functions to compare the agent’s actual trajectory against the gold trajectory.

2.3 OBSERVATION SPACE

The observation space \mathbb{O} in PSBench is designed to closely reflect the complexity of real human–computer interaction, and is defined as the union of text and image modalities:

$$\mathbb{O} = \mathbb{O}_{\text{Text}} \cup \mathbb{O}_{\text{Image}}. \quad (1)$$

The image modality consists of full desktop screenshots of the Photoshop workspace, including key UI elements such as the toolbar, layer panel, properties panel, and menu bar, as well as mouse position and cursor shape (e.g., precision cursor during selection). The screenshots also capture task-relevant canvas content, such as layer order changes, filter previews, and selection outlines, which reflect the real-time state and contextual dependencies of Photoshop operations. Compared to general applications, Photoshop exhibits a denser and more dynamic interface with highly modular functionality, requiring agents to perform precise UI element localization and stronger semantic understanding in order to operate effectively in such a complex and frequently changing design environment.

2.4 ACTION SPACE

The action space \mathbb{A} in PSBench encompasses the full spectrum of human–computer interaction operations in Photoshop. Some action examples are shown in Table 1, including mouse movements, left/right clicks, multiple clicks, drag-and-drop operations, precise region selections, numerical inputs

162
163
164 Table 1: Some examples of the mouse and keyboard actions in PSBench.
165
166
167
168
169
170
171
172
173

Action Name	Description
WAIT	Pause operations for interface response
FAIL	Declare task failure and terminate
DONE	Declare task completion and end
click(x, y)	Click at specified coordinates (x, y)
dragTo(x, y)	Drag from current to target position (x, y)
write('text')	Input text content in current field
press('enter')	Press Enter key to confirm
press('b')	Select brush tool in Photoshop
hotkey('ctrl', 'z')	Undo last operation
hotkey('ctrl', 'shift', 'n')	Create a new transparent layer

174 and composite keyboard shortcuts (e.g., `Ctrl+Alt+I` to open the image size dialog). These actions
175 drive Photoshop’s core functional modules, such as menu commands, layer manipulations, tool
176 switching, and canvas editing.

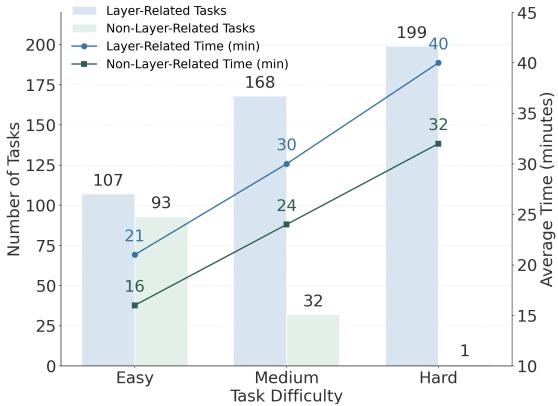
177 Following OSWorld (Xie et al., 2024), we further introduce three special actions: `WAIT` (to wait
178 for interface loading or filter rendering), `FAIL` (to declare task failure and terminate early), and
179 `DONE` (to declare task completion and submit results). Action execution is implemented using the
180 general-purpose Python library `pyautogui`², enabling accurate reproduction of complex Photoshop
181 interactions such as dragging to reorder layers, drawing paths, or entering color parameters. This
182 design ensures cross-platform consistency and requires the agent to output syntactically correct and
183 executable `pyautogui` code in order to accomplish specified tasks in Photoshop’s dense, multi-state
184 UI environment. For more details about the action space, please see Appendix D.1.

185
186

3 PSBENCH BENCHMARK

187188

3.1 DATA COLLECTION

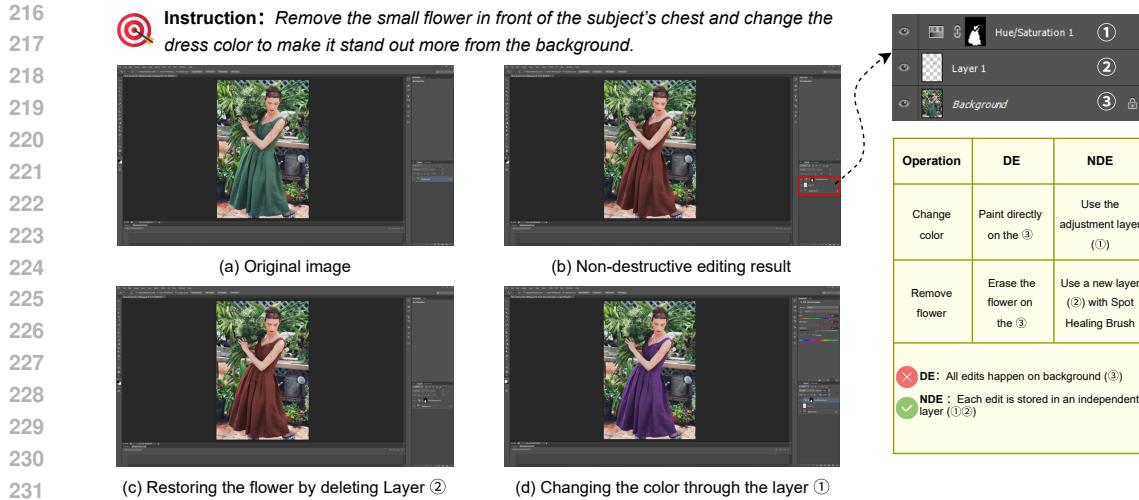


189

190 PSBench comprises a total of 600 diverse
191 image editing tasks, collected and organized
192 by four annotators proficient in Photoshop.
193 Across the entire data collection process,
194 four Photoshop-savvy annotators
195 devoted approximately **270 working hours**
196 **in total**. The detailed human effort could
197 be found in Figure 2. The task construction
198 process includes three main aspects:

199 **Task Collection.** Existing benchmarks,
200 such as ASSISTGUI (Gao et al., 2024), OS-
201 World (Xie et al., 2024), mainly focus on
202 relatively simple operations, which fail to
203 capture the complexity of real-world edit-
204 ing requirements. Unlike existing benchmarks,
205 PSBench categorizes tasks into three levels of
206 complexity to enable multi-level evalua-
207 tion;

208 • **Easy:** Tasks involving only a single category of operations.
209 • **Medium:** Tasks combining operations from 2–3 different categories .
210 • **Hard:** Tasks involving operations from more than 3 categories, corresponding to complex, real-
211 world editing workflows.


212 Easy and medium tasks are manually created by annotators, who carefully examine the official
213 Photoshop tutorials to identify the most common basic operations and then manually formulated the
214 corresponding task instructions. Hard tasks are derived from popular YouTube Photoshop tutorials³,

215 Figure 2: Task distribution and human effort of PSBench.

²<https://pyautogui.readthedocs.io/en/latest/>

³<https://www.youtube.com/@WebflippyOfficialPage>

232 Figure 3: Non-destructive Editing in Photoshop: Element Removal and Rapid Recoloring. In this case, Panel
 233 (a) shows the original image, panel (b) illustrates the NDE-compliant workflow and result: A dedicated
 234 Hue/Saturation adjustment layer ① recolors the dress, while a separate healing layer ②—configured with
 235 the “Sample All Layers” spot-healing brush—excises the flower, thereby leaving the original background
 236 layer ③ completely intact. The edge of such a way appears in revision: toggling the healing layer instantly
 237 restores removed content, and double-clicking the adjustment layer re-parameterizes color without new masks or
 238 repainting—operations that DE can only match through slow, error-prone manual rework.

239 which cover topics like photo manipulation, photo effects, color effects, blend & retouching, text
 240 effects and much more. Annotators transcribe the high-level natural language instructions based on
 241 the video content. More task examples details can be found in Appendix C.3.

242 Besides, tasks could be further divided into layer-related and non-layer-related. **Layer-related tasks**
 243 require creating new layers to accomplish complex edits and thus inherently follow a non-destructive
 244 editing workflow. Typical examples include adding adjustment layers to modify color tones or
 245 creating text layers to add text to an image in a non-destructive manner. While, **non-layer-related**
 246 tasks, on the other hand, refer to operations that do not involve any layer manipulation, for example,
 247 simple actions such as flipping or cropping.

248 **Project File Preparation.** To ensure reproducibility of experimental results, PSBench provides
 249 complete project files for all editing tasks, including: ① **Initial image**, the original input image
 250 provided to the agent at the start of each task, serving as the basis for all subsequent edits (highlighted
 251 in blue in Figure 1). ② **Target image**, produced by professional annotators strictly following the
 252 task instructions, serving as reference outputs for evaluation (highlighted in purple in Figure 1).
 253 ③ **Gold Trajectory**, the complete sequence of Photoshop operations created by annotators under
 254 non-destructive editing principles, used to compare against the agent’s trajectory (highlighted in
 255 orange in Figure 1).

256 **Quality Control.** To ensure annotation quality, we adopt a rigorous multi-round cross-validation
 257 process. Specifically, each task—including the task instruction, target image, and gold trajectory—is
 258 independently annotated by two professional annotators in parallel. When the two annotations show
 259 inconsistencies or disagreements, a third annotator is introduced to provide an additional independent
 260 annotation for the same sample. The three annotators then discuss their results and, with reference
 261 to Adobe’s official documentation and professional editing standards, jointly determine the final
 262 annotation. This “three-way adjudication” mechanism effectively ensures the accuracy, consistency,
 263 and professional validity of all annotations in accordance with Photoshop editing standards.

264 3.2 DATA STATISTICS

265 **Statistics.** The PSBench dataset consists of 600 Photoshop editing tasks, evenly distributed across
 266 three difficulty levels—Easy, Medium, and Hard—with 200 tasks in each category to ensure balanced
 267 coverage of complexity. We further categorize tasks into layer-related and non-layer-related. Among
 268 easy tasks, 107 (54%) involve layer operations; this number increases to 168 (84%) for medium tasks,

270
271 Table 2: Comparison with existing GUI agent benchmarks.
272

Environment	#Samples	Time Horizon	Exec. Env.	#Eval. Func.	Soft.Spec.Eval.	Precise Element
OmniAct (Kapoor et al., 2024)	9,802	—	✗	0	✗	✓
AITW (Rawles et al., 2023)	30k	6.5	✗	0	✗	✗
MetaGUI (Sun et al., 2022)	1,125	—	✗	0	✗	✗
PixelHelp (Li et al., 2020)	187	4.2	✗	0	✗	✗
WebLinx (Lù et al., 2024)	2,337	43	✗	0	✗	✗
Mind2Web (Deng et al., 2023)	2,350	7.3	✗	0	✗	✗
OSWorld (Xie et al., 2024)	369	15	✓	134	✗	✓
WorkArena (Drouin et al., 2024)	33	15	✓	7	✗	✓
WebArena (Zhou et al., 2024)	812	—	✓	5	✗	✗
WebShop (Yao et al., 2023)	12k	11.3	✓	1	✗	✗
MiniWoB++ (Liu et al., 2018)	125	3.6	✓	125	✗	✗
PSBench	600	49	✓	377	✓	✓

282 and further to 199 (99%) for hard tasks. These statistics reveal a clear trend: as task difficulty rises,
 283 the proportion of layer-related tasks grows substantially. In particular, nearly all hard tasks involve
 284 complex layer-based operations, as shown in Figure 2, underscoring PSBench’s strong emphasis on
 285 evaluating agents’ capabilities in non-destructive, layer-centric editing workflows.
 286

287 **Comparison with Existing Benchmarks.** In comparison with existing benchmarks, PSBench
 288 demonstrates distinctive advantages. We conduct comparisons across six core dimensions, including
 289 samples (total number of tasks), time horizon (the number of UI actions per task, reported as the
 290 average operation length for Hard tasks), Exec. Env. (whether a real interactive execution environment
 291 is provided), #Eval. Func. (the number of execution-based evaluation functions), Soft.Spec.Eval.
 292 (software-specific evaluation, such as the NDEC metric uniquely introduced in PSBench, the metric
 293 formally defined in 3.3.2), and Precise Element (whether agents are required to operate via screen
 294 coordinates rather than DOM selectors, which imposes higher demands on spatial understanding and
 295 visual reasoning). As shown in Table 2, PSBench exhibits clear strengths in evaluation dimensions,
 296 and professional relevance. Furthermore, we also compare the proposed PSBench with existing image
 297 editing Benchmarks in Appendix E for a detailed discussion.
 298

299 3.3 EVALUATION

300 In PSBench, we adopt traditional task success rates as the evaluation metric. Moreover, we introduce
 301 a novel process-level metric tailored to the characteristics of professional Photoshop (PS) workflows—
 302 Non-Destructive Editing Consistency (NDEC).
 303

304 3.3.1 TASK SUCCESS RATE

305 For different task types, we design specialized evaluation functions (highlighted in pink in Figure 1)
 306 based on pixel-level or semantic-level similarity. Details of these evaluation functions can be found
 307 in C.1. The agent’s output is compared against the reference target image, and a task is deemed
 308 successful if the similarity score exceeds a predefined threshold. To account for Photoshop’s wide
 309 variety of operations, PSBench includes more than 300 custom evaluation functions covering layer
 310 editing, masking, color adjustment, and filter application.
 312

313 3.3.2 NON-DESTRUCTIVE EDITING CONSISTENCY (NDEC)

314 Non-destructive editing (NDE) is the core philosophy of Adobe Photoshop. As illustrated in Figure 3,
 315 the comparison table in the lower right systematically summarizes the essential differences between
 316 non-destructive editing and destructive editing. By storing each edit instruction in independent layers,
 317 NDE forms a flexible, reversible, and adjustable editing process.
 318

319 Unlike evaluation methods that solely focus on the correctness of final image outputs, PSBench
 320 leverages NDEC to holistically assess an agent’s performance in Photoshop from both result quality
 321 and process professionalism. For every completed task, PSBench automatically records the final
 322 output image together with the full interaction trajectory (also called agent trajectory), including the
 323 historical states of the layer panel. NDEC measures whether the agent trajectory aligns with common
 324 non-destructive practices followed by professional users.
 325

324 However, implementing such a metric is far from trivial. Inspired by prior work (Furuhashi et al.,
 325 2025), NDEC is implemented as a checklist-based evaluation. Based on Adobe’s official documentation⁴
 326 of non-destructive editing, we design a checklist including six questions to compare the agent
 327 trajectory with the gold trajectory. The checklist examines whether the editing process makes proper
 328 use of Smart Objects, Masks (including layer and filter masks), Smart Filters, Adjustment Layers,
 329 Duplicate Layers, and blank Layers. Meanwhile, the term “proper use” indicates that the agent applies
 330 these tools in a way that genuinely enhances flexibility and editability. For instance, in a simple
 331 cropping task, adding a layer mask is redundant; however, in complex compositing tasks, applying
 332 a layer mask at object boundaries allows iterative refinements without redoing the segmentation,
 333 thereby significantly improving flexibility.

334 During evaluation, human evaluators systematically compare the agent trajectory against the gold
 335 trajectory using the aforementioned checklist, assigning binary labels (yes/no) for each of the six
 336 criteria, resulting in a 6-dimensional score vector for each task. The NDEC score for an individual
 337 task is calculated as:

$$338 \quad \text{NDEC}_{task} = \frac{k}{6} \times 100\% \quad (2)$$

339 where k represents the number of checklist criteria satisfied by the agent. The overall NDEC
 340 performance of a model is computed as the arithmetic mean across all N evaluation tasks:

$$342 \quad \text{NDEC}_{model} = \frac{1}{N} \sum_{i=1}^N \text{NDEC}_{task}^{(i)} \quad (3)$$

343 This metric yields scores ranging from 0% to 100%, where higher scores indicate better adherence to
 344 non-destructive editing principles.

345 NDEC thus provides a quantitative measure of an agent’s operational professionalism and workflow
 346 flexibility, serving as a complementary evaluation alongside success rate metrics to deliver a compre-
 347 hensive assessment of model performance in Photoshop editing scenarios. We also provide several
 348 concrete examples of the NDEC checklist in Appendix C.2 for illustration.

353 4 EXPERIMENTS

355 4.1 EVALUATED MLLMs ON PSBENCH

356 We evaluate seven powerful proprietary MLLMs on PSBench, including GPT (OpenAI, 2024;
 357 2025a), Gemini (Comanici et al., 2025), Claude (Anthropic, 2024), Doubao (Volcengine, 2025), and
 358 Qwen (Bai et al., 2025) series, all of which have shown outstanding performance on the OSWorld
 359 leaderboard⁵. In all experiments we use unified prompts provided in Appendix D.1. To control the
 360 task duration, we set different maximum time limits for different difficulty levels: 5 minutes for
 361 *easy*, 10 minutes for *medium*, and 20 minutes for *hard*. A GUI agent must complete the assigned
 362 task within the time limit; otherwise, the attempt is counted as a failure. Manual checks confirm that
 363 these limits are sufficient for all tasks. Additional experiments results and analysis are provided in
 364 Appendix D.2

365 **Success rates** We compute success rates (SR) for each model under each task difficulty. To further
 366 examine MLLMs’ ability to handle Photoshop’s core feature—layer operations—we divide tasks
 367 into *layer-related* and *non-layer-related* categories and report their success rates separately. Table 3
 368 summarizes the results across all models, task difficulties, and task types. Even the best model,
 369 GPT-4o, achieves only 17.46% SR on non-layer-related tasks and 3.80% on layer-related tasks. All
 370 MLLMs perform poorly on layer-related tasks. As task difficulty increases, SR drops sharply; in
 371 particular, among 7 MLLMs evaluated on 600 tasks (4,200 model–task pairs), only Qwen2.5-VL-72B
 372 achieves a 2.01% SR on hard tasks.

373 In subsequent manual verification, we find that these 2.01% successful cases mainly occur in skin-
 374 retouching tasks. We originally expect the model to use the *Mixer Brush Tool* to remove blemishes,

375 ⁴<https://helpx.adobe.com/cn/photoshop/using/nondestructive-editing.html>

376 ⁵<https://os-world.github.io/>

378
379
Table 3: Success rates of MLLMs on PSBench. LR represents layer-related tasks, NLR represents non-layer-
related tasks.
380

381 382 MLLM	383 Easy Success Rate		384 Medium Success Rate		385 Hard Success Rate		386 Overall Success Rate	
	387 LR	388 NLR	389 LR	390 NLR	391 LR	392 NLR	393 LR	394 NLR
Claude-4-Sonnet	0.00%	3.23%	0.00%	0.00%	0.00%	0.00%	0.00%	2.38%
Qwen2.5-VL-72B	6.54%	9.68%	0.00%	15.63%	2.01%	0.00%	2.32%	11.11%
Doubao-1.5-Thinking-Vision-Pro	11.21%	13.98%	0.00%	0.00%	0.00%	0.00%	2.53%	10.32%
GPT-5	0.00%	13.98%	0.00%	0.00%	0.00%	0.00%	0.00%	10.32%
Claude-Opus-4	0.00%	3.23%	0.00%	0.00%	0.00%	0.00%	0.00%	2.38%
Gemini-2.5-Pro	0.00%	7.53%	0.00%	0.00%	0.00%	0.00%	0.00%	5.56%
GPT-4o	16.82%	18.28%	0.00%	15.63%	0.00%	0.00%	3.80%	17.46%

390
but Qwen2.5-VL-72B actually applied a blur filter on a new layer to pass the evaluation function.
391
Although this approach do not fully match human expectations, it produced an acceptable edit, so we
392
retain it as a success. This phenomenon further reveals that current MLLMs still underperform on
393
real-world Photoshop editing tasks. A more detailed failure analysis is provided in Appendix D.3.
394

395
NDEC Table 4 also shows that
396
mainstream MLLMs demonstrate a
397
certain degree of professional prac-
398
tice awareness in Photoshop editing
399
tasks. All models achieve overall
400
NDEC scores above 70%, indicating
401
that their generated action sequences
402
largely adhere to non-destructive edit-
403
ing principles.

404
On easy tasks, model performance is
405
especially strong, with the best model
406
reaching a NDEC score of 95.83%,
407
nearly perfectly reproducing expert-level non-destructive workflows. This suggests that MLLMs
408
already possess a high degree of professional operational awareness when handling single, well-
409
defined editing tasks. However, as task complexity increases, their professional consistency drops
410
markedly: on medium tasks, the highest NDEC score falls to around 80%, and on hard tasks it
411
further drops into the 50–67% range. This shows that current MLLMs still lack stable adherence
412
to professional practices in multi-step compositing and fine-grained adjustment tasks requiring
413
long-horizon planning.

414
We also observe a prevalent issue of *over-engineering*. For example, models often convert the
415
input image into a smart object even when unnecessary—such as for simple cropping or basic color
416
adjustments. This lack of context sensitivity adds needless processing overhead and deviates from the
417
core principle of non-destructive editing—"use as needed, efficiently and flexibly." These findings
418
indicate that current MLLMs still have substantial room for improvement in understanding and
419
applying professional Photoshop editing principles.

420 421 4.2 GUI ASSISTANT RATHER THAN GUI AGENT: A REALLY HUMAN-IN-LOOP EXPERIMENT

422
Based on the experimental results present above, we observe that GUI agents based on MLLMs
423
exhibit generally low task success rates. Even the best-performing model in our experiments, GPT-4o,
424
can only achieve 17.46% success on non-layer-related tasks. However, when assessed using the
425
NDEC metric, we find that these GUI agents demonstrate remarkable planning ability: their action
426
sequences can be complete and professional, and they closely adhered to Photoshop's non-destructive
427
editing workflow, reflecting a deep understanding of professional editing processes.

428
Building on these findings, we further investigate the potential of GUI agents to support novice users
429
in utilizing Photoshop. To this end, we design four experimental conditions:

430
431

- Autonomous GUI agent (GPT-4o): the best-performing GUI agent from the previous experiment,
which autonomously generated executable code and attempted to complete tasks independently.

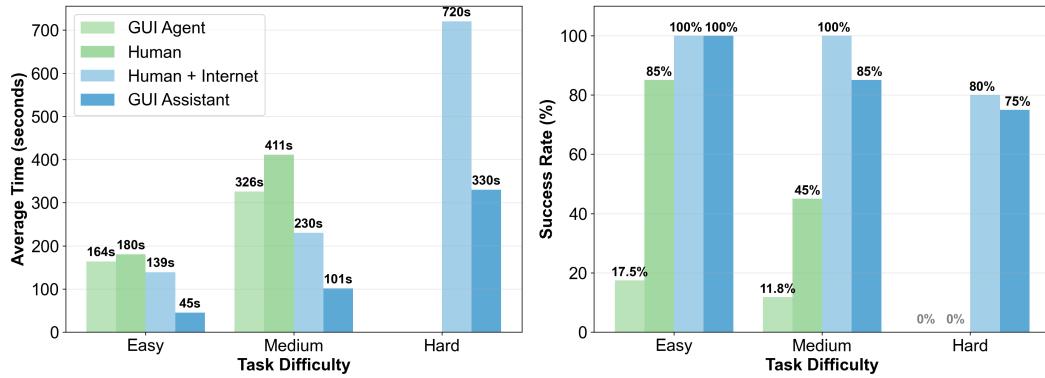


Figure 4: Comparison of the four human-in-loop experimental conditions on PSBench. Left part shows the average completion time (seconds), and right part presents the result of success rate (%).

- Unassisted novice user: a user with no prior Photoshop experience completing tasks entirely without external assistance.
- Novice user with internet access: a user with no prior Photoshop experience but allowed to consult online tutorials or documentation during task execution.
- Novice user assisted by a GUI agent: under this condition, the GPT-4o-based GUI agent no longer generates executable code but instead provides step-by-step natural language instructions (e.g., which interface element to click or which parameters to adjust), while the human executes the operations.

All four conditions are evaluated on an identical set of 60 tasks in PSBench, comprising 20 tasks at each difficulty level: Easy, Medium, and Hard. For each condition, we record the task success rate at each difficulty level and the average completion time for successful tasks.

As shown in Figure 4, the autonomous GUI agent perform the weakest: it achieve only 17.5% success on easy tasks taking an average of 164 seconds per task, drop to 11.8% on medium tasks while the average time rise to 326 seconds, and failed to complete any hard tasks. By contrast, unassisted novices adapt quickly, far surpassing the autonomous agent: they can solve 85 % of easy tasks at an average of 180 seconds each and still clear 45% of medium tasks despite needing roughly 411 seconds per task, yet they too are stopped by the hard set.

Most notable is the GUI Assistant mode. In this setting, GPT-4o can provide real-time guidance while the human execute the operations, forming an efficient human–AI collaboration. Easy tasks are solved flawlessly, 100% success in an average of just 45 seconds. Medium tasks follow at 85 % success, each taking about 101 seconds; even hard tasks broke through to 75 % success, averaging 330 seconds apiece. Although novice users with internet access ultimately achieved the highest overall success rate, their time cost was substantially higher. In particular, for these hard tasks the average completion time is 720 seconds, 2.18 times longer than in the GUI Assistant mode. This highlights the efficiency bottleneck inherent in searching, filtering, and comprehending information online.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose PSBench, the first benchmark specifically designed for GUI agents in Adobe Photoshop, effectively filling a gap in the evaluation of professional design software. We build a high-quality dataset covering 600 tasks of varying difficulty levels and innovatively introduce the Non-Destructive Editing Consistency (NDEC) metric, thus establishing a comprehensive and systematic evaluation framework that provides a solid foundation for assessing and deploying GUI agents in professional creative environments. Future work could incorporate in-depth inspection of intermediate artifacts, such as systematic analyses of PSD file structures and editing processes, to more comprehensively assess agents’ performance in terms of editing quality, stability, and compliance. These improvements are expected to further advance the practical application and technical development of GUI agents in professional creative domains.

ETHICS STATEMENT

This work strictly adheres to academic ethics and relevant legal regulations.

- 1. Task and Data Sources.** All Photoshop editing tasks used in this study are collected from publicly available materials, official tutorials, and open platforms (e.g., YouTube tutorials). They do not involve any privacy or sensitive data. All materials are clearly attributed in the paper and have undergone necessary copyright and compliance checks to ensure that no third-party rights are infringed. We also ensure that the dataset contains no potentially sensitive or harmful content.
- 2. Human Annotation and Participants.** All tasks and evaluation functions in the benchmark were independently completed by members of the research team. All participants signed informed consent agreements, and the study does not involve vulnerable groups or potential ethical risks.
- 3. Human–AI Collaboration Experiments.** In the human–AI collaboration experiments, all participants took part voluntarily and were provided with sufficient task descriptions and risk information before participation. No personal sensitive information was collected, stored, or disclosed during the experiments.

REPRODUCIBILITY STATEMENT

Each task in our dataset underwent multiple rounds of rigorous screening to ensure reasonableness and executability. Representative task examples and all prompts used in the experiments are provided in the appendix. We will release all related code and the full dataset to enable other researchers to faithfully and accurately reproduce our experimental results.

REFERENCES

Anthropic. Introducing claude 4. <https://www.anthropic.com/news/clause-4>, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL <https://arxiv.org/abs/2502.13923>.

Samyadeep Basu, Mehrdad Saberi, Shweta Bhardwaj, Atoosa Malemir Chegini, Daniela Massiceti, Maziar Sanjabi, Shell Xu Hu, and Soheil Feizi. Editval: Benchmarking diffusion based text-guided image editing methods, 2023. URL <https://arxiv.org/abs/2310.02426>.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, Lawrence Jang, and Zack Hui. Windows agent arena: Evaluating multi-modal os agents at scale, 2024. URL <https://arxiv.org/abs/2409.08264>.

ByteDance. Seedream 4.0, 2025. URL https://seed.bytedance.com/zh/seedream4_0. Seedream Official Page.

Jingxuan Chen, Derek Yuen, Bin Xie, Yuhao Yang, Gongwei Chen, Zhihao Wu, Li Yixing, Xurui Zhou, Weiwen Liu, Shuai Wang, Kaiwen Zhou, Rui Shao, Liqiang Nie, Yasheng Wang, Jianye Hao, Jun Wang, and Kun Shao. Spa-bench: A comprehensive benchmark for smartphone agent evaluation, 2025a. URL <https://arxiv.org/abs/2410.15164>.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu, Guirong Chen, Yupeng Huo, Yuan Yao, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Guicourse: From general vision language models to versatile gui agents, 2025b. URL <https://arxiv.org/abs/2406.11317>.

540 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Li YanTao, Jianbing Zhang, and Zhiyong
 541 Wu. SeeClick: Harnessing GUI grounding for advanced visual GUI agents. In Lun-Wei Ku, Andre
 542 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
 543 for Computational Linguistics (Volume 1: Long Papers)*, pp. 9313–9332, Bangkok, Thailand,
 544 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.505.
 545 URL <https://aclanthology.org/2024.acl-long.505/>.

546 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 547 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, and et al. Evan Rosen. Gemini 2.5: Pushing
 548 the frontier with advanced reasoning, multimodality, long context, and next generation agentic
 549 capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

550 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
 551 Yu Su. Mind2web: Towards a generalist agent for the web, 2023. URL <https://arxiv.org/abs/2306.06070>.

552 Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H. Laradji, Manuel Del Verme, Tom
 553 Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, Nicolas Chapados, and
 554 Alexandre Lacoste. Workarena: How capable are web agents at solving common knowledge work
 555 tasks?, 2024. URL <https://arxiv.org/abs/2403.07718>.

556 Momoka Furuhashi, Kouta Nakayama, Takashi Kodama, and Saku Sugawara. Are checklists really
 557 useful for automatic evaluation of generative tasks?, 2025. URL <https://arxiv.org/abs/2508.15218>.

558 Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
 559 Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models,
 560 2024. URL <https://arxiv.org/abs/2305.11854>.

561 Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu, Weichen
 562 Zhang, Peiyi Wang, Xiangwu Guo, Hengxu Wang, Luowei Zhou, and Mike Zheng Shou. Assistgui:
 563 Task-oriented desktop graphical user interface automation, 2024. URL <https://arxiv.org/abs/2312.13108>.

564 Google. Introducing gemini 2.5 flash image: Our state-of-the-art image
 565 model, 2025. URL <https://developers.googleblog.com/en/introducing-gemini-2-5-flash-image/>. Google Developers Blog.

566 Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
 567 Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
 568 synthesis, 2024. URL <https://arxiv.org/abs/2307.12856>.

569 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
 570 Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(6):4409–4437, June 2025. ISSN 1939-3539.
 571 doi: 10.1109/tpami.2025.3541625. URL <http://dx.doi.org/10.1109/TPAMI.2025.3541625>.

572 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
 573 and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
 574 autonomous agents for desktop and web, 2024. URL <https://arxiv.org/abs/2402.17553>.

575 Black Forest Labs. Flux.1 kontext: In-context image generation and editing model, 2025. URL
 576 <https://bfl.ai/models/flux-kontext>. Black Forest Labs Official Page.

577 Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
 578 Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
 579 for computer use agents, 2025. URL <https://arxiv.org/abs/2508.14040>.

580 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 581 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use,
 582 2025. URL <https://arxiv.org/abs/2504.07981>.

594 Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
 595 and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL <https://arxiv.org/abs/2406.03679>.

596

597 Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
 598 instructions to mobile ui action sequences, 2020. URL <https://arxiv.org/abs/2005.03776>.

599

600

601 Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
 602 learning on web interfaces using workflow-guided exploration, 2018. URL <https://arxiv.org/abs/1802.08802>.

603

604 Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
 605 Xinyi Liu, Hanlin Zhao, Jiadai Sun, Xinyue Yang, Yu Yang, Zehan Qi, Shuntian Yao, Xueqiao
 606 Sun, Siyi Cheng, Qinkai Zheng, Hao Yu, Hanchen Zhang, Wenyi Hong, Ming Ding, Lihang Pan,
 607 Xiaotao Gu, Aohan Zeng, Zhengxiao Du, Chan Hee Song, Yu Su, Yuxiao Dong, and Jie Tang.
 608 Visualagentbench: Towards large multimodal models as visual foundation agents, 2024. URL
 609 <https://arxiv.org/abs/2408.06327>.

610

611 Xinyi Liu, Xiaoyi Zhang, Ziyun Zhang, and Yan Lu. Ui-e2i-synth: Advancing gui grounding with
 612 large-scale instruction synthesis, 2025. URL <https://arxiv.org/abs/2504.11257>.

613

614 Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
 615 multi-turn dialogue, 2024. URL <https://arxiv.org/abs/2402.05930>.

616

617 Kaixin Ma, Hongming Zhang, Hongwei Wang, Xiaoman Pan, Wenhao Yu, and Dong Yu. Laser: Llm
 618 agent with state-space exploration for web navigation, 2024a. URL <https://arxiv.org/abs/2309.08172>.

619

620 Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
 621 Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image editing,
 622 2024b. URL <https://arxiv.org/abs/2408.14180>.

623

624 Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A. Rodriguez, Montek Kalsi, Rabiul Awal,
 625 Nicolas Chapados, M. Tamer Özsu, Aishwarya Agrawal, David Vazquez, Christopher Pal, Perouz
 Taslakian, Spandana Gella, and Sai Rajeswar. Ui-vision: A desktop-centric gui benchmark for
 626 visual perception and interaction, 2025. URL <https://arxiv.org/abs/2503.15661>.

627

628 Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyoung Park, Zhengmian Hu, Hanjia Lyu, Junda
 629 Wu, Ryan Aponte, Yu Xia, Xintong Li, Jing Shi, Hongjie Chen, Viet Dac Lai, Zhouhang Xie,
 630 Sungchul Kim, Ruiyi Zhang, Tong Yu, Mehrab Tanjim, Nesreen K. Ahmed, Puneet Mathur,
 631 Seunghyun Yoon, Lina Yao, Branislav Kveton, Thien Huu Nguyen, Trung Bui, Tianyi Zhou,
 632 Ryan A. Rossi, and Franck Dernoncourt. Gui agents: A survey, 2024. URL <https://arxiv.org/abs/2412.13501>.

633

634 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

635

636 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>,
 2025a.

637

638 OpenAI. Gpt-image-1 model documentation, 2025b. URL <https://platform.openai.com/docs/models/gpt-image-1>. OpenAI Platform Documentation.

639

640 Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
 641 and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
 642 modal web agents, 2025. URL <https://arxiv.org/abs/2502.11357>.

643

644 Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
 645 Shuyan Zhou, Tongshuang Wu, and Zhengyang Wu. Webcanvas: Benchmarking web agents in
 646 online environments, 2024. URL <https://arxiv.org/abs/2406.12373>.

647

648 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
 649 the wild: A large-scale dataset for android device control, 2023. URL <https://arxiv.org/abs/2307.10088>.

648 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 649 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
 650 Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmarking
 651 environment for autonomous agents, 2025. URL <https://arxiv.org/abs/2405.14573>.

652 Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy:
 653 Behavioral testing of nlp models with checklist, 2020. URL <https://arxiv.org/abs/2005.04118>.

654 ByteDance Seed. Ui-tars-1.5. <https://seed-tars.com/1.5>, 2025.

655 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
 656 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks, 2023.
 657 URL <https://arxiv.org/abs/2311.10089>.

658 Xincheng Shuai, Henghui Ding, Xingjun Ma, Rongcheng Tu, Yu-Gang Jiang, and Dacheng Tao.
 659 A survey of multimodal-guided image editing with text-to-image diffusion models, 2024. URL
 660 <https://arxiv.org/abs/2406.14555>.

661 Linxin Song, Yutong Dai, Viraj Prabhu, Jieyu Zhang, Taiwei Shi, Li Li, Junnan Li, Silvio Savarese,
 662 Zeyuan Chen, Jieyu Zhao, Ran Xu, and Caiming Xiong. Coact-1: Computer-using agents with
 663 coding as actions, 2025. URL <https://arxiv.org/abs/2508.03923>.

664 Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
 665 multi-modal conversational agents on mobile gui, 2022. URL <https://arxiv.org/abs/2205.11029>.

666 Volcengine. Doubao-1.5-thinking-vision-pro, 2025. URL <https://www.volcengine.com/docs/82379/1554521>.

667 Luyuan Wang, Yongyu Deng, Yiwei Zha, Guodong Mao, Qinmin Wang, Tianchen Min, Wei Chen,
 668 and Shoufa Chen. Mobileagentbench: An efficient and user-friendly benchmark for mobile llm
 669 agents, 2024. URL <https://arxiv.org/abs/2406.08184>.

670 Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhang Che,
 671 Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang,
 672 and Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025a. URL
 673 <https://arxiv.org/abs/2411.04890>.

674 Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini,
 675 Yasumasa Onoe, Sarah Laszlo, David J. Fleet, Radu Soricut, Jason Baldridge, Mohammad Norouzi,
 676 Peter Anderson, and William Chan. Imagen editor and editbench: Advancing and evaluating
 677 text-guided image inpainting, 2023. URL <https://arxiv.org/abs/2212.06909>.

678 Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
 679 Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
 680 Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
 681 Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
 682 Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Difyi Yang,
 683 Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
 684 computer-use agents, 2025b. URL <https://arxiv.org/abs/2508.09123>.

685 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 686 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 687 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan Ni,
 688 Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuteng Yu, Tingkun Wen,
 689 Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan Cai,
 690 and Zenan Liu. Qwen-image technical report, 2025. URL <https://arxiv.org/abs/2508.02324>.

691 Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua,
 692 Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming
 693 Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild, 2023. URL
 694 <https://arxiv.org/abs/2310.10634>.

702 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
703 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
704 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
705 for open-ended tasks in real computer environments, 2024. URL <https://arxiv.org/abs/2404.07972>.

706

707 Yifan Xu, Xiao Liu, Xueqiao Sun, Siyi Cheng, Hao Yu, Hanyu Lai, Shudan Zhang, Dan Zhang,
708 Jie Tang, and Yuxiao Dong. Androidlab: Training and systematic benchmarking of android
709 autonomous agents, 2024. URL <https://arxiv.org/abs/2410.24024>.

710

711 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
712 real-world web interaction with grounded language agents, 2023. URL <https://arxiv.org/abs/2207.01206>.

713

714 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
715 Imgedit: A unified image editing dataset and benchmark, 2025. URL <https://arxiv.org/abs/2505.20275>.

716

717 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
718 Tang, Hanwang Zhang, and Yueteng Zhuang. Anyedit: Mastering unified high-quality image
719 editing for any idea, 2025. URL <https://arxiv.org/abs/2411.15738>.

720

721 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
722 dataset for instruction-guided image editing, 2024. URL <https://arxiv.org/abs/2306.10012>.

723

724 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
725 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
726 web environment for building autonomous agents, 2024. URL <https://arxiv.org/abs/2307.13854>.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

A USE OF LLM

758 **Grammar Checking and Language Polishing.** In this study, large language models (LLMs) were
 759 used solely as auxiliary tools for grammar checking and language polishing. All edits suggested by
 760 the LLMs were manually reviewed and verified to ensure that the revised text complies with academic
 761 writing standards and preserves the original meaning and scholarly viewpoints.

763 **Code Development Assistance.** During code implementation, we used LLMs as programming
 764 assistants to generate function skeletons, optimize code structure, and improve execution efficiency
 765 and code quality. For example, PSBench contains 377 personalized evaluation functions; in the
 766 process of writing Python code, we employed LLMs to assist with partial framework construction. All
 767 code generated by LLMs was rigorously reviewed and tested by the authors, and all key algorithms
 768 and innovative components were independently designed and implemented by the research team.

769 In summary, the use of LLMs in this study was strictly limited to auxiliary roles. All core research
 770 ideas, innovative methods, experimental designs, and result analyses are original contributions of the
 771 authors. LLMs only supported language expression optimization and code implementation assistance
 772 and did not contribute substantively to the research content.

774

B RELATED WORK

776 **GUI Agent.** Currently, GUI agent development primarily follows three mainstream paradigms: The
 777 first category consists of general-purpose models, which possess broad capabilities, with “computer
 778 usage” being just one of many abilities that can be elicited through prompting. These models retain
 779 the capacity to perform other tasks such as dialogue and code generation, with typical examples
 780 including GPT (OpenAI, 2024; 2025a), Gemini (Comanici et al., 2025), Claude (Anthropic, 2024),
 781 and Qwen (Bai et al., 2025) series. The second category comprises specialized models, which are
 782 specifically trained for computer use agent tasks and lack the ability to perform other functions.
 783 Examples include AutoGLM-OS-9B (Lai et al., 2025), OpenCUA-32B (Wang et al., 2025b), and
 784 UITARS-1.5-7B (Seed, 2025). The third category involves agent frameworks, which integrate one or
 785 more general-purpose models with specialized models into structured workflows. These typically
 786 employ GPT-series models as planners, supplemented by dedicated or task-specific models as
 787 execution foundations, such as CoACT-1 (Song et al., 2025). Evaluations on the current authoritative
 788 benchmark OSWorld reveal a clear performance trend: agent frameworks > specialized models >
 789 general-purpose models.

790 **GUI Agent Evaluation.** Currently, benchmark evaluations for GUI agents can be broadly catego-
 791 rized into two main types: skill-specific evaluation and end-to-end task completion evaluation.

- 793 • **Skill-specific evaluation:** This type of benchmark is designed to assess a GUI agent performance
 794 in particular capabilities. The core competencies can be summarized into three aspects: (1) visual
 795 grounding ability, (2) reasoning and planning ability, and (3) action execution ability. Among
 796 these, the first two are especially critical, as they directly determine the agent’s perceptual and
 797 decision-making capabilities in graphical interfaces. (Nguyen et al., 2024) In the field of visual
 798 grounding capability evaluation, a series of benchmarks have emerged: ScreenSpot (Cheng
 799 et al., 2024) and its improved version ScreenSpot-Pro (Li et al., 2025) support cross-platform
 800 UI localization and continue to advance in terms of realism and annotation quality. UI-I2E-
 801 Bench (Liu et al., 2025) and UI-Vision (Nayak et al., 2025) further extend this direction by
 802 aligning natural language instructions with GUI elements of varying scales and types, thereby
 803 enhancing the generalization ability of language-interface interaction. For reasoning and planning
 804 evaluation, offline benchmarks (Chen et al., 2025b; Li et al., 2024; Kapoor et al., 2024) primarily
 805 assess a model’s ability to predict actions based on fixed interaction trajectories, while online
 806 benchmarks (Bonatti et al., 2024; Rawles et al., 2025; Xu et al., 2024; Liu et al., 2024) enable
 807 interactive evaluation across platforms, placing greater emphasis on the agent’s real-time reasoning
 808 and decision-making performance in dynamic environments.
- 809 • **End-to-end task completion evaluation:** These benchmarks place GUI Agents in interactive
 environments such as Android emulators, virtual machines, or web-based setups, and require
 them to accomplish holistic tasks from start to finish. Representative efforts include those

810 targeting mobile devices (MobileAgentBench (Wang et al., 2024), SPAbench (Chen et al., 2025a),
 811 AndroidLab (Xu et al., 2024)) as well as those designed for web and desktop applications
 812 (OSWorld (Xie et al., 2024), WebArena (Zhou et al., 2024), WebCanvas (Pan et al., 2024),
 813 Windows Agent Arena (Bonatti et al., 2024), WorkArena (Drouin et al., 2024)).

814
 815 However, existing benchmarks generally lack dedicated evaluation for professional design software
 816 such as Photoshop. Most focus only on general-purpose software like Word or Chrome. Even in
 817 benchmarks that include tools like GIMP, e.g., OSWorld (Xie et al., 2024), the included tasks remain
 818 relatively simple (see Table 5 in Appendix for specific cases). Given the significant differences
 819 in interaction logic, task complexity, and operational granularity inherent to professional software,
 820 there is a clear and pressing need to develop a benchmark tailored to the characteristics of complex
 821 professional applications, with task designs that better reflect real-world usage scenarios.
 822

823 C DETAILS OF PSBENCH

824 C.1 EVALUATION FUNCTIONS

825 This section details the implementation and mechanism of our evaluation functions. According to the
 826 complexity of the tasks, we adopt a hierarchical evaluation strategy:
 827

- 828 • **Pixel-level / mathematically defined tasks** (e.g., flip, rotation, scaling): evaluated directly using
 829 traditional computer vision algorithms (see C.1.1);
- 830 • **Semantic understanding and perceptual quality tasks** (e.g., color adjustment, style transfer,
 831 artistic effects): because pixel-level metrics cannot accurately judge completion, we introduce a
 832 large vision-language model (GPT-4o) as an intelligent evaluator to semantically understand and
 833 judge the edited image (see C.1.2).

834 C.1.1 TRADITIONAL ALGORITHM-BASED EVALUATION

835 For image transformation tasks with clear mathematical definitions, we compute the similarity
 836 between the expected result and the actual result to measure task completion quality. For example, in
 837 the image flip task, we implemented a flip accuracy check function that quantifies the correctness of
 838 the flip operation using the Structural Similarity Index (SSIM).
 839

840 **Instruction:** Flip the image vertically.

841 **Evaluation Function:**

842

843 **Flip Accuracy Check Function**

```

844     def check_flip_accuracy(self, parameters):
845         """Check flip accuracy (specifically for flip tasks)"""
846         direction = parameters.get('direction', 'vertical')
847         tolerance = parameters.get('tolerance', 0.2)
848         try:
849             # Load original and result images
850             start_img, result_img =
851                 self.load_task_images(comparison_type="start")
852             # Perform expected flip
853             if direction == 'vertical':
854                 expected_flip = np.flipud(start_img)
855             elif direction == 'horizontal':
856                 expected_flip = np.fliplr(start_img)
857             else:
858                 return {"passed": False,
859                         "message": f"Unsupported flip direction:
860                         {direction}"}
861             # Compute similarity
862             similarity = ssim(expected_flip, result_img,
863                               multichannel=True, channel_axis=2)
864             passed = similarity >= (1.0 - tolerance)
865         except Exception as e:
866             return {"passed": False, "message": str(e)}
867         return {"passed": True, "message": "Flip accuracy check passed."}
868     
```

```

864
865         return {
866             "passed": passed,
867             "message": f"Flip accuracy: {similarity:.3f}, "
868             f"threshold: {1.0 - tolerance}",
869             "similarity": similarity
870         }
871     except Exception as e:
872         return {"passed": False,
873             "message": f"Flip accuracy detection failed:
874             {str(e)}"}
875

```

C.1.2 GPT-4O-BASED SEMANTIC EVALUATION

For complex image editing tasks such as color adjustment or style transfer, traditional pixel-level comparison cannot fully reflect task quality. These tasks require higher-level semantic understanding and visual perception capabilities. We therefore introduce the GPT-4o vision-language model as an intelligent evaluator to automatically assess the completion of complex tasks. Compared with traditional methods, semantic evaluation focuses more on the naturalness, aesthetic quality, and consistency of the expected effect.

Below we provide an evaluation function accompanying a color-adjustment-related task.

Instruction: Add blue color to this landscape photo.

Evaluation Function:

```

887     Blue Color Addition Evaluation
888
889     def evaluate_blue_color_addition(self, original_image_path:
890         str, edited_image_path: str) -> Dict[str, Any]:
891         """
892             Evaluate whether blue color was successfully added to landscape
893             str
894             # ... (load and encode images omitted for brevity) ...
895             messages = [
896                 {
897                     "role": "user",
898                     "content": [
899                         {
900                             "type": "text",
901                             "text": """Please analyze these two landscape
902                             str
903                             determine if blue color effects were successfully added.
904
905                             Compare the original image (first) and edited image (second),
906                             str
907                             1. Does the edited image contain more blue tones than the original?
908                             2. Is the blue naturally integrated into the landscape (sky, water,
909                             str
910                             3. Has the overall color tone been adjusted toward blue?
911                             4. Is the blue addition effect clearly visible?
912
913                             Evaluation criteria are relatively lenient. Provide evaluation
914                             str
915                             the following JSON format:
916                             {
917                                 "task_completed": true/false,
918                                 "blue_color_enhanced": true/false,
919                                 "color_change_noticeable": true/false,
920                                 "looks_natural": true/false,
921                                 "detailed_analysis": "Your detailed observation results"
922                             }"""
923

```

```

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
    },
    {"type": "image_url",
     "image_url": {"url":
       → f"data:image/jpeg;base64,{original_b64}"}},
    {"type": "image_url",
     "image_url": {"url":
       → f"data:image/jpeg;base64,{edited_b64}"}}
  ]
}
]
response = self.call_gpt4o_vision(messages)
# Parse JSON from GPT-4o response and return

def evaluate_color_temperature_adjustment(self, original_image_path:
→ str, edited_image_path: str) -> Dict[str, Any]:
"""
Evaluate whether image color temperature was successfully
→ adjusted toward cool tones (blue)
"""
# ... (load and encode images omitted for brevity) ...
messages = [
{
  "role": "user",
  "content": [
    {
      "type": "text",
      "text": """Please analyze the color temperature
→ changes and
determine if they were successfully adjusted toward cool tones
→ (blue direction).

Compare the original image (first) and edited image (second),
→ focusing on:
1. Has the overall color temperature shifted from warm tones to
→ cool tones?
2. Does the image appear more blue or cyan-shifted?
3. Have warm colors (orange, yellow, red) been reduced?
4. Have cool colors (blue, cyan) been enhanced?
5. Is the color temperature change uniformly reflected throughout
→ the image?

Provide evaluation results in the following JSON format:
{
  "task_completed": true/false,
  "cooler_tone_achieved": true/false,
  "warm_colors_reduced": true/false,
  "cold_colors_enhanced": true/false,
  "overall_blue_shift": true/false,
  "detailed_analysis": "Your detailed observation results"
}"""
    },
    {"type": "image_url",
     "image_url": {"url":
       → f"data:image/jpeg;base64,{original_b64}"}},
    {"type": "image_url",
     "image_url": {"url":
       → f"data:image/jpeg;base64,{edited_b64}"}}
  ]
}
]
response = self.call_gpt4o_vision(messages)
# Parse JSON from GPT-4o response and return

```

972 Through the above evaluation strategy, we can accurately evaluate low-level, quantifiable tasks
 973 and automatically assess high-level, semantically driven tasks, thus establishing a comprehensive,
 974 hierarchical evaluation system for image editing tasks.
 975

976 C.2 NDEC CHECKLIST EXAMPLES

978 In this section, we provide a concrete task example from GPT-4o that demonstrates how our NDEC
 979 metric quantifies whether GUI agents adhere to non-destructive editing principles in Photoshop.
 980 This example demonstrates the systematic application of our six-criteria checklist to compare agent
 981 trajectories against expert-designed gold trajectories.

982 As shown in Figure 5, in this task, the gold trajectory and the agent trajectory match on only three
 983 out of six criteria. Therefore, the GUI agent's $NDEC_{task}$ score for this task is 50% ($3/6 \times 100\%$).
 984 By aggregating the $NDEC_{task}$ scores across all evaluation tasks, we obtain the overall $NDEC_{model}$
 985 performance (see Table 4).

C.3 TASK EXAMPLES DETAILS

In this section, we present several task examples. As shown in Table 5, the first two rows illustrate two tasks performed in GIMP from OSWorld, while the last three rows show tasks of varying difficulty in

1026 Photoshop from our newly proposed benchmark, PSBench. It can be observed that the time horizon
 1027 (i.e., the number of UI actions per task) and task complexity in PSBench significantly exceed those
 1028 in previous work, thereby filling a critical gap in evaluating GUI agents on large-scale, art-design
 1029 software.

Table 5: Task example details from PSBench and other work about design.

Source	Instruction	Initial image	Target image	Time Horizon
OSWorld (GIMP)	Could you make the background of this image transparent for me?			4
OSWorld (GIMP)	Please rotate my figure to mirror it horizontally			1
PSBench (Easy)	Add a gradient mask to the bottom of the image.			4
PSBench (Medium)	Make the image black and white but keep the center area in its original colors.			17
PSBench (Hard)	Add a glowing effect to the kangaroo in the picture.			46

1080 C.4 DATA STATISTICS DETAILS
10811082 C.4.1 EDITING WORKFLOW CATEGORIES
1083

1084 In this section, we present the task categories
1085 covered by PSBench. Our benchmark consists
1086 of 16 types of commonly used Photoshop image-
1087 editing workflows, including *Transform & Ge-
1088 ometry*, *Basic Adjustments*, *Special Effects*, and
1089 other essential categories. The full distribution is
1090 shown in Figure 6.

1091 Following the Adobe official user guide⁶, we
1092 derive our taxonomy based on the major image-
1093 editing categories defined in the documentation.
1094 Excluding *Web*, *Screen and App Design* and
1095 *Video and Animation*—which are oriented to-
1096 ward design or multimedia tasks rather than con-
1097 ventional image editing—PSBench covers all
1098 remaining key workflow types. Therefore, PS-
1099 Bench provides extensive coverage of the typ-
1100 ical Photoshop editing workflows and exhibits
1101 strong diversity and representativeness.

1102 As shown in Table 6, we provide a represen-
1103 tative example for each workflow category to
1104 illustrate the nature of the editing operation and
1105 its associated challenges.

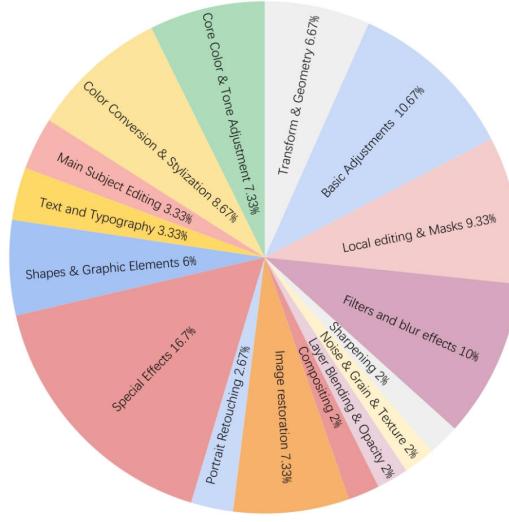
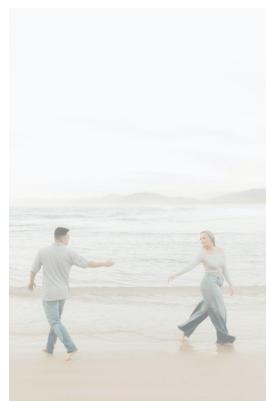



Figure 6: Distribution of the 16 editing workflow categories in PSBench.

Table 6: Examples of the editing workflow categories in PSBench.

Type	Instruction	Initial	Target
Transform & Geometry	Flip the image vertically.		
Basic Adjustments	Increase the brightness of the image by 60%.		
Local Editing & Masks	Add a gradient mask to the bottom of the image.		

⁶<https://helpx.adobe.com/cn/photoshop/user-guide.html>

Type	Instruction	Initial	Target	
1134				
1135				
1136				
1137				
1138				
1139				
1140	Filters and Blur Effects	Apply mosaic filter with cell size of 10 pixels.		
1141				
1142				
1143				
1144				
1145				
1146				
1147				
1148				
1149				
1150				
1151	Sharpening	Apply unsharp mask filter to sharpen the image.		
1152				
1153				
1154				
1155				
1156				
1157				
1158				
1159				
1160				
1161				
1162				
1163	Noise & Grain & Texture	Add noise to the entire image.		
1164				
1165				
1166				
1167				
1168				
1169				
1170				
1171				
1172				
1173				
1174				
1175				
1176	Layer Blending & Opacity	Set the opacity of the top layer to 50%.		
1177				
1178				
1179				
1180				
1181				
1182				
1183				
1184				
1185				
1186				
1187				

Type	Instruction	Initial	Target	
1188				
1189				
1190				
1191				
1192				
1193				
1194				
1195				
1196	Compositing	Add sky background to the image.		
1197				
1198				
1199				
1200				
1201				
1202				
1203				
1204				
1205	Image Restoration	Enhance, retouch, and colorize the black-and-white images		
1206				
1207				
1208				
1209				
1210				
1211	Portrait Retouching	Remove blemishes, wrinkles, acne scars, dark spots, and blackheads from the person's face naturally.		
1212				
1213				
1214				
1215				
1216				
1217				
1218				
1219				
1220	Special Effects	Add a glowing effect to the kangaroo in the picture.		
1221				
1222				
1223				
1224				
1225				
1226				
1227				
1228				
1229				
1230				
1231	Shapes & Graphic Elements	Add a rounded rectangle selection to the top-right corner and fill it with blue.		
1232				
1233				
1234				
1235				
1236				
1237				
1238				
1239				
1240				
1241				

Type	Instruction	Initial	Target
Text and Typography	Add vertical text 'Sample' to the left side of the image.		
Main Subject Editing	Create selection outline for the person in the image.		
Color Conversion & Stylization	Change the yellow leaves to green leaves in the image.		
Core Color & Tone Adjustment	Add awesome color grade to the image.		

C.4.2 OPERATION-LEVEL CATEGORIES

For the systematic evaluation of agents' capabilities in real-world image editing software, PSBench models Photoshop interactions at the operation level. Based on the Adobe Photoshop official user guide⁷, we systematically organized common editing functionalities and categorized them into six core classes, comprising a total of 74 fine-grained operations. These six categories include Geometric Transformations, Color and Tone Adjustments, Filter Effects, Selection Operations, Layer Operations, and Painting and Retouching tools, which collectively represent the essential functional space of professional image editing workflows.

The detailed 74 operations within these six categories are summarized as follows:

⁷<https://helpx.adobe.com/cn/photoshop/user-guide.html>

1296
1297

Details of operation in Photoshop

1298

Category 1: Geometric Transformations (5 operations)

1299

- Flip Horizontal
- Flip Vertical
- Rotate (90°/180°/arbitrary angle)
- Crop
- Canvas Resize

1300

1301

1302

1303

1304

1305

1306

Category 2: Color and Tone Adjustments (14 operations)

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

Category 3: Filter Effects (13 operations)

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

- Gaussian Blur
- Motion Blur
- Sharpen / Unsharp Mask
- Emboss
- Sketch Filters
- Texture Filters
- Pixelate
- Distort
- Noise Add/Reduce
- Render Filters (Clouds / Lens Flare)
- Artistic Filters
- Blur Gallery
- Channel Apply Filter

Category 4: Selection Operations (13 operations)

1343

1344

1345

1346

1347

1348

1349

- Rectangular / Elliptical Marquee
- Lasso Tool
- Polygonal Lasso
- Magic Wand
- Quick Selection Tool

- 1350 • Color Range
- 1351 • Border
- 1352 • Pen Tool
- 1353 • Convert Point Tool
- 1354 • Paths Panel / Path Operations
- 1355 • Path to Selection
- 1356 • Channel Selection
- 1357 • Channel Cutout

1361 Category 5: Layer Operations (12 operations)

- 1362 • New / Delete Layer
- 1363 • Toggle Layer Visibility
- 1364 • Layer Opacity
- 1365 • Blending Mode (Normal / Multiply / Screen, etc.)
- 1366 • Reorder Layers
- 1367 • Merge Layers
- 1368 • Layer Styles (Drop Shadow / Stroke, etc.)
- 1369 • Gradient Mask
- 1370 • Quick Mask
- 1371 • Brush Editing Mask
- 1372 • Eraser Editing Mask
- 1373 • Selection Mask Image Composition

1377 Category 6: Painting and Retouching (17 operations)

- 1378 • Brush Tool
- 1379 • Eraser
- 1380 • Clone Stamp
- 1381 • Spot Healing Brush
- 1382 • Gradient Tool
- 1383 • Paint Bucket
- 1384 • Color Replacement Tool
- 1385 • Mixer Brush Tool
- 1386 • Pattern Stamp Tool
- 1387 • History Brush Tool
- 1388 • Patch Tool
- 1389 • Red Eye Tool
- 1390 • Dodge Tool
- 1391 • Sharpen Tool
- 1392 • Burn Tool
- 1393 • Content-Aware Fill
- 1394 • Background Eraser Tool

1400 To verify the representativeness and coverage of the task set, we further analyzed the frequency
 1401 distribution of these six operation categories across tasks of varying difficulty levels , as shown in
 1402 Figure 7 . The results indicate that all six categories are broadly utilized across all difficulty levels,
 1403 with proportions becoming more balanced as task complexity increases. This trend reflects that high-

difficulty tasks typically involve more complex tool combinations and multi-step editing workflows, whereas low-difficulty tasks tend to rely on fewer, high-frequency basic operations. Overall, this distribution demonstrates that PSBench provides not only comprehensive functional coverage but also realistically captures the operational complexity and skill requirements across difficulty levels, offering a reliable benchmark for evaluating the real-world interactive capabilities of multimodal agents.

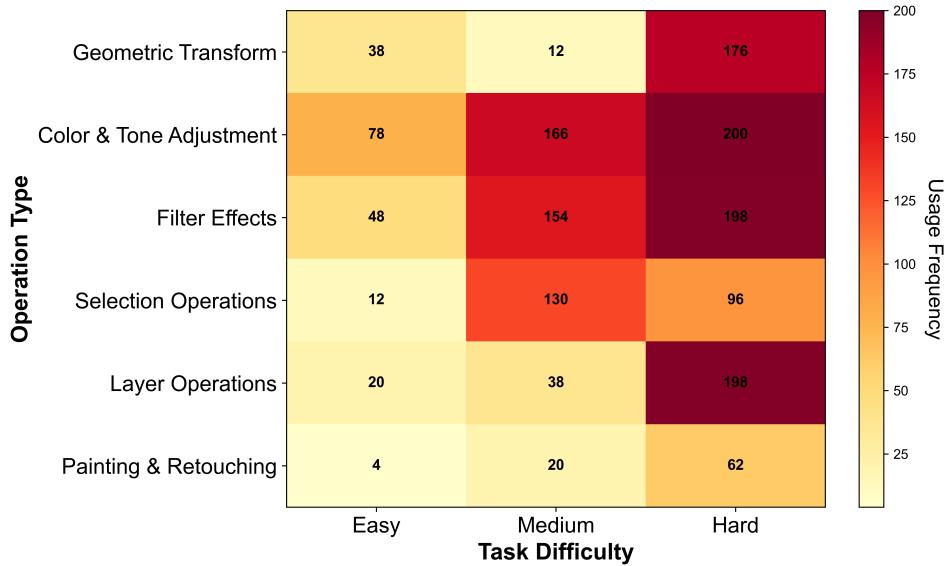


Figure 7: Frequency distribution of six operation-level categories across different task difficulty levels in PSBench.

C.5 VISUALIZATION OF THE AGENT EXECUTION PIPELINE

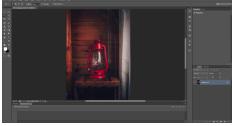
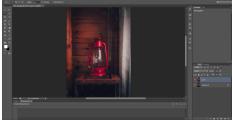
In this subsection, we provide a concrete example of the GUI Agent workflow using the task “*Add lighting effect to the oil lamp in the image.*” as an illustrative case. The initial input to the GUI Agent consists of two components: (1) the task instruction, and (2) the initial screenshot, which includes both the unedited source image and the full Photoshop interface.

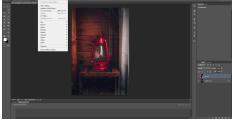
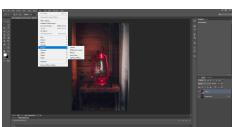
Starting from Step 2 (i.e., for all $n \geq 2$), each step receives two inputs:

- the updated screenshot obtained after executing the action from Step $(n - 1)$, and
- the accumulated memory from the previous $(n - 1)$ steps, which stores the agent’s intermediate reasoning, state analysis, and action planning.

As shown in Table 7, the workflow is decomposed into four synchronized components: (1) **Step n** indicates the current reasoning step; (2) **Screenshot** provides the interface state after executing Step $(n - 1)$; (3) **Agent Response** contains the model’s analysis of the current state and justification for the next action; (4) **Action Code** is the executable Python code issued by the agent to interact with Photoshop.

Overall, the screenshot produced after each executed action becomes the visual input for the next reasoning step, forming a closed-loop, step-by-step interaction cycle. This design ensures that the GUI Agent maintains coherent reasoning, stable grounding, and controlled execution throughout multi-step editing tasks.



After the task is completed, the benchmark automatically saves the edited result and invokes the evaluation function to assess its quality. At the same time, it extracts the agent’s internal action trajectory from the GUI Agent’s responses. For this task, the extracted trajectory includes:

- Duplicate the image layer.

1458 • Convert the duplicated layer into a Smart Object.
 1459 • Apply the “Lighting Effects” Smart Filter.

1461 These trajectories are then used for checklist-based NDEC evaluation to determine whether the GUI
 1462 Agent adhered to Photoshop’s non-destructive editing principles during the task.
 1463

1464 Table 7: Step-by-step GUI Agent workflow for the task “Add lighting effect to the oil lamp in the image.”
 1465

1466 Step	1467 Screenshot	1468 Agent Response	1469 Action Code
1470 1		1471 The instruction requires adding a 1472 lighting effect to the oil lamp. The 1473 first step is to duplicate the current 1474 layer to ensure non-destructive 1475 editing. We will use the Photoshop 1476 hotkey <code>Ctrl+J</code> to duplicate the 1477 layer.	1478 pyautogui.hotkey 1479 ('ctrl','j')
1480 2		1481 The layer has been successfully 1482 duplicated. To enable mask-based 1483 editing and Smart Filters, we now 1484 need to convert this duplicated layer 1485 into a Smart Object. Right-click on 1486 “Layer 1” in the Layers panel to 1487 open the context menu.	1488 pyautogui.click 1489 (1758, 726, 1490 button='right')
1491 3		1492 The context menu is open next to the 1493 Layers panel. Select “Convert to 1494 Smart Object” to turn the active 1495 layer into a Smart Object.	1496 pyautogui.click 1497 (1568, 425)
1498 4		1499 The top layer is now converted to a 1500 Smart Object and remains selected. 1501 Next, we will apply an editable filter. 1502 Open the Filter menu from the 1503 Photoshop top menu bar.	1504 pyautogui.click 1505 (318, 14)
1506 5		1507 The Filter dropdown menu is visible, 1508 showing categories such as Blur, 1509 Distort, Noise, Render, Sharpen, etc. 1510 To add lighting to the lamp, we need 1511 to open the Render submenu under 1502 Filter.	1503 pyautogui.click 1504 (352, 319)
1505 6		1506 The Render submenu appears with 1507 options such as Clouds, Fibers, 1508 Lighting Effects, etc. Select 1509 “Lighting Effects” to open the 1510 lighting editor for the Smart Object 1511 layer.	1502 pyautogui.click 1503 (612, 399)
1508 7		1509 The Lighting Effects panel is open. 1510 To choose a lighting preset, click the 1511 Presets dropdown on the left side of 1502 the panel.	1503 pyautogui.click 1504 (154, 45)
1511 8		1512 The Presets dropdown shows 1513 options such as Flashlight, Flood 1514 Light, RGB Light, etc. Select 1515 “Flashlight” to create a focused 1516 lighting effect on the oil lamp.	1517 pyautogui.click 1518 (133, 190)

1512	Step	Screenshot	Agent Response	Action Code
1513				
1514				
1515				
1516				
1517	9		The “Flashlight” preset is successfully selected. Click the OK button at the top to apply the lighting effect to the Smart Object layer.	pyautogui.click(901, 43)
1518				
1519				
1520	D	DETAILS OF EXPERIMENTS		
1521				
1522	D.1	PROMPT DETAILS		
1523				
1524	In this section, we present the prompts used in our experiments. We found that when both the <i>Semantic Planning Prompt</i> and the <i>Task Execution Prompt</i> are provided to MLLMs simultaneously, the models tend to generate a large number of invalid PyAutoGUI commands during execution, which often leads to task failure.			
1525				
1526				
1527				
1528	Therefore, we separate the two types of prompts: Section D.1.1 provides the Semantic Planning Prompt, while Section D.1.2 provides the full Task Execution Prompt (which also includes the complete action space description).			
1529				
1530				
1531				
1532	During the evaluation process, MLLMs first generate a complete agent trajectory based on the Semantic Planning Prompt for conducting NDEC evaluation; subsequently, they complete the task according to the Task Execution Prompt. This design ensures that a full agent trajectory is obtained for NDEC analysis regardless of whether the GUI agent successfully completes the task.			
1533				
1534				
1535				
1536	D.1.1	SEMANTIC PLANNING PROMPT		
1537				
1538	Semantic Planning Prompt			
1539				
1540	You are a Photoshop expert planning how to complete this task:			
1541	→ {instruction}			
1542				
1543	Please provide a high-level semantic plan with 3-10 steps that			
1544	→ describe WHAT needs to be done, not HOW to do it technically.			
1545	Important: Always follow Photoshop's non-destructive editing			
1546	→ principles. This means:			
1547	Prefer adjustment layers over direct pixel editing			
1548	Use smart objects for transformations and filters			
1549	Apply smart filters instead of permanent filters			
1550	Use masks (layer masks, vector masks, filter masks) instead of			
1551	→ erasing			
1552	Perform retouching on separate layers, not the original image			
1553	Use non-destructive cropping (hide, don't delete)			
1554	When working with RAW, keep original data intact by using smart			
1555	→ objects			
1556	Focus on the conceptual workflow, not specific clicks or			
1557	→ coordinates. For example:			
1558	Instead of ``Click on coordinates (132, 16)'' say ``Access the			
1559	→ Image menu''			
1560	Instead of ``Press Ctrl+T'' say ``Activate free transform mode''			
1561	Instead of ``pyautogui.click(...)'', say ``Apply rotation			
1562	→ transformation''			
1563	Respond with ONLY a JSON array of step descriptions, like:			
1564	\begin{verbatim}			
1565	["Step 1 description", "Step 2 description" ...]			

```

1566
1567   \end{verbatim}
1568
1569   Task: {instruction}
1570
1571
1572
```

D.1.2 TASK EXECUTION PROMPT

In the Task Execution Prompt, we provide commonly used Photoshop keyboard shortcuts and menu bar coordinates to assist the GUI agent in accurately performing tasks.

```

1573
1574
1575
1576   Task Execution Prompt
1577
1578   You are a professional Photoshop user who follows my instructions
1579   ↳ to perform tasks in Photoshop, specifically using Adobe
1580   ↳ Photoshop CS6 through PyAutoGUI commands for legitimate
1581   ↳ software testing and automation.
1582
1583   You have solid knowledge of Photoshop operations and assume your
1584   ↳ code will run on a machine capable of controlling mouse and
1585   ↳ keyboard. For each step, you will receive observations in the
1586   ↳ form of current screen screenshots. Based on these observations,
1587   ↳ you should predict and output the next action to be executed on
1588   ↳ the computer.
1589
1590   This usage is authorized for quality assurance purposes.
1591
1592   Task: {instruction}
1593
1594
1595   Your response will be executed directly as Python code. You MUST
1596   ↳ return a valid, executable command.
1597   Valid responses (pyautogui commands and wait done fail):
1598
1599   - pyautogui.click(x, y)
1600   - pyautogui.press('key')
1601   - pyautogui.hotkey('ctrl', 'key')
1602   - pyautogui.typewrite('text')
1603   - time.sleep(2)
1604   - WAIT
1605   - DONE
1606   - FAIL
1607
1608   NEVER respond with:
1609
1610   - Single characters: ".", "x", "s"
1611   - Descriptions: "did not affect interface"
1612   - Explanations or comments
1613   - Your thought process or observations
1614
1615   If you're uncertain about what to do, return "WAIT" instead of an
1616   ↳ invalid command.
1617   You should use "WAIT" with caution. If you use "WAIT" three times
1618   ↳ in a row, the task will be directly judged as a failure.
1619
1620   Important Guidelines:
1621   1. You can only use PyAutoGUI commands like pyautogui.click(x, y),
1622   ↳ pyautogui.hotkey('ctrl', 'c'), pyautogui.typewrite('text')
1623   2. Use absolute screen coordinates for clicks
1624   3. Wait between actions using time.sleep() or pyautogui.sleep()
1625   4. When task is complete, return "DONE"
1626   5. If task fails or you're stuck, return "FAIL"
1627   6. If you need more time to observe, return "WAIT"
```

```

1620
1621 Available PYAUTOGUI Actions:
1622
1623 GENERAL ACTIONS:
1624
1625 - pyautogui.click(x, y) - Click at specific coordinates
1626 - pyautogui.rightClick(x, y) - Right-click at coordinates
1627 - pyautogui.doubleClick(x, y) - Double-click at coordinates
1628 - pyautogui.drag(x1, y1, x2, y2, duration=1) - Drag from point A to
1629   ↪ point B
1630 - pyautogui.scroll(clicks, x=None, y=None) - Scroll up(+) or down(-)
1631   ↪ at position
1632 - pyautogui.typewrite('text') - Type text string
1633 - pyautogui.press('key') - Press single key (enter, escape, space,
1634   ↪ etc.)
1635 - pyautogui.hotkey('key1', 'key2') - Press key combination
1636 - time.sleep(seconds) - Wait for specified duration
1637
1638 DRAG OPERATIONS - CORRECT SYNTAX:
1639 WRONG: pyautogui.drag(x1, y1, x2, y2, duration=1)
1640 CORRECT:
1641   pyautogui.click(x1, y1)
1642   pyautogui.dragTo(x2, y2, duration=1)
1643
1644 For Photoshop selections (like rectangular marquee):
1645 1. Press 'm' to select rectangular marquee tool
1646 2. pyautogui.click(start_x, start_y) # Click at starting corner
1647 3. pyautogui.dragTo(end_x, end_y, duration=1) # Drag to ending
1648   ↪ corner
1649
1650 Example: To select from (400,300) to (600,500):
1651 ACTION: pyautogui.click(400, 300); pyautogui.dragTo(600, 500,
1652   ↪ duration=1)
1653
1654 PHOTOSHOP KEYBOARD SHORTCUTS:
1655
1656 - pyautogui.press('v') - Move Tool
1657 - pyautogui.press('m') - Rectangular Marquee Tool
1658 - pyautogui.press('l') - Lasso Tool
1659 - pyautogui.press('w') - Magic Wand Tool
1660 - pyautogui.press('c') - Crop Tool
1661 - pyautogui.press('i') - Eyedropper Tool
1662 - pyautogui.press('j') - Healing Brush Tool
1663 - pyautogui.press('b') - Brush Tool
1664 - pyautogui.press('s') - Clone Stamp Tool
1665 - pyautogui.press('e') - Eraser Tool
1666 - pyautogui.press('g') - Gradient Tool
1667 - pyautogui.press('r') - Blur Tool
1668 - pyautogui.press('o') - Dodge Tool
1669 - pyautogui.press('p') - Pen Tool
1670 - pyautogui.press('t') - Type Tool
1671 - pyautogui.press('u') - Rectangle Tool
1672 - pyautogui.press('h') - Hand Tool
1673 - pyautogui.press('z') - Zoom Tool
1674
1675 FILE OPERATIONS:
1676 - pyautogui.hotkey('ctrl', 'n') - New Document
1677 - pyautogui.hotkey('ctrl', 'o') - Open File
1678 - pyautogui.hotkey('ctrl', 's') - Save
1679 - pyautogui.hotkey('ctrl', 'shift', 's') - Save As
1680 - pyautogui.hotkey('ctrl', 'alt', 'shift', 's') - Export As
1681 - pyautogui.hotkey('ctrl', 'w') - Close Document

```

```

1674
1675     - pyautogui.hotkey('ctrl', 'q') - Quit Photoshop
1676
1677 EDIT OPERATIONS:
1678     - pyautogui.hotkey('ctrl', 'z') - Undo
1679     - pyautogui.hotkey('ctrl', 'shift', 'z') - Redo
1680     - pyautogui.hotkey('ctrl', 'x') - Cut
1681     - pyautogui.hotkey('ctrl', 'c') - Copy
1682     - pyautogui.hotkey('ctrl', 'v') - Paste
1683     - pyautogui.hotkey('ctrl', 'shift', 'v') - Paste Special
1684     - pyautogui.hotkey('ctrl', 'alt', 'z') - Step Backward
1685     - pyautogui.hotkey('ctrl', 'shift', 'alt', 'z') - Step Forward
1686
1687 SELECTION OPERATIONS:
1688     - pyautogui.hotkey('ctrl', 'a') - Select All
1689     - pyautogui.hotkey('ctrl', 'd') - Deselect
1690     - pyautogui.hotkey('ctrl', 'shift', 'd') - Reselect
1691     - pyautogui.hotkey('ctrl', 'shift', 'i') - Inverse Selection
1692     - pyautogui.hotkey('ctrl', 'shift', 'alt', 'd') - Feather Selection
1693     - pyautogui.hotkey('shift', 'f6') - Select Subject
1694     - pyautogui.hotkey('alt', 'ctrl', 'r') - Refine Edge
1695
1696 IMAGE OPERATIONS:
1697     - pyautogui.hotkey('ctrl', 'alt', 'i') - Image Size
1698     - pyautogui.hotkey('ctrl', 'alt', 'c') - Canvas Size
1699     - pyautogui.hotkey('ctrl', 'i') - Invert Colors
1700     - pyautogui.hotkey('ctrl', 'shift', 'u') - Desaturate
1701     - pyautogui.hotkey('ctrl', 'l') - Levels
1702     - pyautogui.hotkey('ctrl', 'm') - Curves
1703     - pyautogui.hotkey('ctrl', 'u') - Hue/Saturation
1704     - pyautogui.hotkey('ctrl', 'b') - Color Balance
1705
1706 LAYER OPERATIONS:
1707     - pyautogui.hotkey('ctrl', 'shift', 'n') - New Layer
1708     - pyautogui.hotkey('ctrl', 'j') - Duplicate Layer
1709     - pyautogui.hotkey('delete') - Delete Layer
1710     - pyautogui.hotkey('ctrl', 'shift', 'alt', 'e') - Stamp Visible
1711     - pyautogui.hotkey('ctrl', 'e') - Merge Down
1712     - pyautogui.hotkey('ctrl', 'shift', 'e') - Merge Visible
1713     - pyautogui.hotkey('ctrl', 'g') - Group Layers
1714     - pyautogui.hotkey('ctrl', 'shift', 'g') - Ungroup Layers
1715
1716 VIEW OPERATIONS:
1717     - pyautogui.hotkey('ctrl', 'plus') - Zoom In
1718     - pyautogui.hotkey('ctrl', 'minus') - Zoom Out
1719     - pyautogui.hotkey('ctrl', '0') - Fit on Screen
1720     - pyautogui.hotkey('ctrl', '1') - Actual Pixels (100%)
1721     - pyautogui.hotkey('f') - Cycle Screen Modes
1722     - pyautogui.hotkey('tab') - Hide/Show Panels
1723     - pyautogui.hotkey('shift', 'tab') - Hide/Show Toolbox
1724     - pyautogui.hotkey('ctrl', 'r') - Show/Hide Rulers
1725
1726 FILTER SHORTCUTS:
1727     - pyautogui.hotkey('ctrl', 'f') - Repeat Last Filter
1728     - pyautogui.hotkey('ctrl', 'shift', 'f') - Fade Last Filter
1729     - pyautogui.hotkey('ctrl', 'alt', 'f') - Gaussian Blur (if last
1730     ↵ used)
1731
1732 BRUSH/TOOL MODIFIERS:
1733     - pyautogui.press('[') - Decrease Brush Size
1734     - pyautogui.press(']') - Increase Brush Size
1735     - pyautogui.hotkey('shift', '[') - Decrease Brush Hardness
1736     - pyautogui.hotkey('shift', ']') - Increase Brush Hardness
1737     - pyautogui.press('x') - Switch Foreground/Background Colors
1738     - pyautogui.press('d') - Default Colors (Black/White)
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3098
3099
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3198
3199
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3298
3299
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3398
3399
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3498
3499
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3598
3599
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3679
3680
3681
3682
3683
3684
3
```

```

1728
1729     - pyautogui.press(',') - Previous Brush
1730     - pyautogui.press('.') - Next Brush
1731
1732     If screenshot shows unexpected state:
1733
1734     - Use pyautogui.press('escape') to close unexpected dialogs
1735     - Use pyautogui.hotkey('ctrl', 'z') to undo problematic actions
1736     - Return WAIT to observe changes after corrective actions
1737     - Look for alternative paths to achieve the same goal
1738
1739     DECISION MAKING PRIORITIES:
1740     1. Shortcuts First: ALWAYS prefer keyboard shortcuts over mouse
1741        ↳ clicks when available
1742        - Tool selection: Use 'b' instead of clicking brush tool
1743        ↳ coordinates
1744        - File operations: Use Ctrl+O instead of clicking File > Open
1745        - Edit operations: Use Ctrl+Z instead of clicking Edit > Undo
1746        - Only use mouse clicks when no shortcut exists
1747     2. Precision Second*: Use exact coordinates only for complex UI
1748        ↳ interactions without shortcuts
1749     3. Safety Third: Include delays between actions to ensure UI
1750        ↳ stability
1751     4. Fallback Fourth: Have alternative approaches ready if primary
1752        ↳ method fails
1753
1754     Mandatory workflow for each step (you can only output a single
1755     ↳ PyAutoGUI command or DONE/FAIL/WAIT):
1756     1. Observe: Carefully examine the current screenshot
1757     2. Analyze: Identify what changed since the last action
1758     3. Verify: Check if the previous action succeeded
1759     4. Decide: Determine the next required action
1760     5. Execute: Provide PyAutoGUI command
1761
1762     Critical visual analysis requirements (internal thinking only, do
1763     ↳ not output):
1764     1. Always analyze the current screenshot first before taking any
1765        ↳ action
1766     2. Look for UI changes from your previous action (new menus,
1767        ↳ dialogs, highlighted elements)
1768     3. Identify what elements are currently visible and interactive
1769     4. Determine if your previous action was successful by observing
1770        ↳ visual feedback
1771     5. You MUST process and analyze the screenshot - this is essential
1772        ↳ for success
1773
1774     Visual UI element identification and clicking strategy: (Internal
1775     ↳ thinking - DO NOT OUTPUT)
1776     Critical philosophy: **Analyze screenshot → Identify target → Click
1777     ↳ directly**
1778     Dialog navigation rules:
1779     1. Try not to use Tab navigation in dialogs (unreliable,
1780        ↳ unpredictable field order)
1781     2. Never assume field positions without looking at the screenshot
1782     3. Always analyze the screenshot to visually locate the target
1783        ↳ element
1784     4. Always click directly on the specific field/button you can see
1785     Visual field identification process:
1786     1. Analyze dialog layout: "I can see a dialog with input fields
1787        ↳ labeled Width, Height, etc."
1788     2. Locate target field: "The Height field is positioned below the
1789        ↳ Width field"
1790     3. Identify click target: "I need to click on the Height input box,
1791        ↳ not just the label"

```

```

1782
1783 4. Execute click: "I will click approximately at the center of the
1784   ↳ Height input field"
1785 5. Verify selection: "After clicking, I should see the field become
1786   ↳ selected/highlighted"
1787 Enhanced decision making for field selection:
1788 Instead of: "Step 3: Press Tab to go to height field"
1789 Think: "Step 3: I can see the Height field in the dialog. I will
1790   ↳ click directly on the Height input field to select it, then
1791   ↳ type the new value"
1792
1793
1794
1795 PHOTOSHOP CS6 UI COORDINATES & ELEMENTS:
1796
1797 MENU BAR (Top):
1798 - File Menu: (56, 16)
1799 - Edit Menu: (82, 16)
1800 - Image Menu: (132, 16)
1801 - Layer Menu: (182, 16)
1802 - Select Menu: (272, 16)
1803 - Filter Menu: (322, 15)
1804 - View Menu: (390, 16)
1805 - Window Menu: (446, 16)
1806 - Help Menu: (499, 16)
1807
1808 IMAGE TRANSFORMATIONS:
1809 - Image Menu: (132, 16)
1810   - Image Size: (213, 170)
1811   - Canvas Size: (195, 189)
1812   - Image Rotation: (232, 214)
1813     - 180°: (437, 210)
1814     - 90° CW: (437, 230)
1815     - 90° CCW: (437, 250)
1816     - Arbitrary: (437, 270)
1817     - Flip Canvas Horizontal: (437, 300)
1818     - Flip Canvas Vertical: (437, 325)
1819   - Crop: (227, 235)
1820   - Trim: (215, 253)
1821
1822 LAYER OPERATIONS:
1823 - Layer Menu: (182, 16)
1824   - New Layer: (532, 38)
1825   - Duplicate Layer: (242, 58)
1826   - Delete Layer: (475, 80)
1827   - Layer Properties: (182, 145)
1828   - Flatten Image: (260, 727)
1829
1830 SELECTION TOOLS:
1831 - Select Menu: (272, 16)
1832   - All: (343, 34) or Ctrl+A
1833   - Deselect: (343, 60) or Ctrl+D
1834   - Reselect: (343, 77)
1835   - Inverse: (343, 96) or Ctrl+Shift+I
1836
1837 TOOLBOX (Left Panel):
1838 - Move Tool: (15, 105)
1839 - Rectangular Marquee: (15, 125)
1840 - Lasso Tool: (15, 154)
1841 - Magic Wand: (15, 180)
1842 - Crop Tool: (15, 205)
1843 - Eyedropper: (15, 230)
1844 - Healing Brush: (15, 255)
1845

```

```

1836
1837     - Brush Tool: (15, 285)
1838     - Clone Stamp: (15, 310)
1839     - Eraser: (15, 360)
1840     - Gradient Tool: (15, 390)
1841     - Blur Tool: (15, 415)
1842     - Dodge Tool: (15, 445)
1843     - Pen Tool: (15, 478)
1844     - Type Tool: (15, 500)
1845     - Rectangle Tool: (15, 556)
1846     - Hand Tool: (15, 582)
1847     - Zoom Tool: (15, 604)

1848 Few-shot examples:
1849 Example 1 - Drawing a heart on the image
1850 You should make the following responses in sequence:
1851 Response 1: pyautogui.press('b')
1852 Response 2: pyautogui.drag(766, 700, 812, 753, duration=1)
1853 Response 3: pyautogui.drag(856, 700, 812, 753, duration=1)
1854 Response 4: DONE

1855 Example 2 - Applying a filter to the image:
1856 You should make the following responses in sequence:
1857 Response 1: pyautogui.click(322, 15)
1858 Response 2: pyautogui.click(419, 233)
1859 Response 3: pyautogui.click(618, 389)
1860 Response 4: pyautogui.typewrite('8')
1861 Response 5: pyautogui.press('enter')

1862 ---
1863 COMMON PATTERNS & TIPS:
1864
1865 1. Menu Navigation: Always wait briefly after clicking menus for
1866    ↳ them to fully open
1867 2. Keyboard Shortcuts: Use shortcuts when available (Ctrl+O, Ctrl+S,
1868    ↳ etc.)
1869 3. Dialog Handling: Look for OK/Cancel buttons in standard
1870    ↳ positions
1871 4. Tool Selection: Click on tools in the toolbox before using them
1872 5. Coordinate Precision: Use the exact coordinates provided, but
1873    ↳ adjust slightly if elements seem misaligned
1874 6. Error Recovery: If something goes wrong, try Ctrl+Z to undo,
1875    ↳ then retry

1876 TROUBLESHOOTING:
1877 - If menu doesn't open: Click again or try pressing Esc first
1878 - If coordinates seem off: Try nearby coordinates (+/- 5 pixels)
1879 - If dialog appears unexpectedly: Look for OK/Cancel buttons
1880 - If operation fails: Use Ctrl+Z to undo and retry different
1881    ↳ approach

1882 Important note: In Photoshop, images typically don't fill the
1883    ↳ entire canvas. Before making any selections:
1884 1. The image may only occupy part of the canvas area
1885 2. Always check the actual image boundaries first (No Output)
1886 3. Use selection tools within the image area, not the entire canvas
1887 4. If you get "Warning: No pixels were selected", the selection
1888    ↳ area may be outside the image bounds

1889 Remember: Success depends on careful screenshot analysis and
1890    ↳ adaptive decision-making! Think step by step and use
1891    ↳ coordinates precisely. The content you generate must be
1892    ↳ executable pyautogui actions!

```

1890 D.2 PHOTOSHOP VIA GUI AGENTS VS. END-TO-END IMAGE EDITING MODELS
1891

1892 **Results:** We evaluate six state-
1893 of-the-art end-to-end image editing
1894 models from the Artificial Anal-
1895 ysis Image Editing Leaderboard⁸:
1896 Seedream 4.0 (ByteDance, 2025),
1897 FLUX.1 Kontext [pro] (Labs, 2025),
1898 FLUX.1 Kontext [max], GPT-Image-
1899 1 (OpenAI, 2025b), Qwen-Image-
1900 Edit (Wu et al., 2025), and gemini-
1901 2.5-flash-image (Google, 2025). To
1902 ensure consistency with the GUI agent
1903 experiments, we directly use each
1904 task’s natural language instruction as the prompt and applied the same evaluation functions as
1905 in the GUI agent setting to assess the editing results, thereby obtaining each model’s success rate on
1906 PSBench (see Table 8). Because end-to-end image editing models lack explicit visual planning and
1907 operation trajectories, we do not evaluate them using the NDEC metric.

1908 **Analysis:** As shown in Table 8, end-to-end image editing models demonstrate strong overall per-
1909 formance on PSBench, achieving a 100% success rate in both the easy and medium task categories. This
1910 indicates that such models have already developed mature capabilities for tasks involving only basic
1911 editing operations.

1912 A high success rate does not imply perfect task execution, because the metric is tailored to the
1913 GUI agent and only checks whether the operations specified in the instruction are carried out. An
1914 in-depth analysis of failure cases in the hard task category reveals that, when confronted with more
1915 complex and open-ended editing scenarios in real-world settings, these models still exhibit significant
1916 shortcomings, as illustrated in Table 9.

- 1917 • **Image quality degradation:** Image editing models often perform destructive modifications on
1918 the original pixels during tasks, resulting in loss of fine details and reduced overall sharpness.
- 1919 • **Loss of original information integrity:** These models tend to conduct excessive or unintended
1920 corrections, which may introduce distortions or lead to the loss of critical information.
- 1921 • **Lack of naturalness in editing effects:** The generated results frequently display a stereotyped or
1922 templated appearance and lack the realistic, natural visual quality typically achieved by human
1923 editors.
- 1924 • **Limited controllability and adjustability:** End-to-end models primarily rely on prompt-based
1925 iterative adjustments, with each generation potentially introducing new pixel-level degradation and
1926 quality fluctuations, making it difficult to reliably and precisely meet specific user expectations. In
1927 sharp contrast, Photoshop’s non-destructive editing workflow inherently supports parameterized
1928 and reversible modifications. For example, after a GUI agent completes a color-related task in
1929 Photoshop, a user dissatisfied with the result can simply adjust the layer parameters to achieve the
1930 desired effect—quickly and efficiently—while avoiding the cumulative quality loss associated
1931 with repeated modifications.(As shown in Figure 3(d))

1932 In summary, Photoshop retains a clear advantage in professional image editing tasks. Building a
1933 dedicated GUI agent benchmark tailored to this professional environment can drive improvements in
1934 agent capabilities for complex editing workflows and provide powerful support for assisting humans
1935 in producing high-quality, controllable image edits.

1936 D.3 FAILURE ANALYSIS
1937

1939 We select 150 failed cases and analyze them based on screen recordings of task execution, identifying
1940 common failure patterns. Overall, these failures can be categorized into three main types:

1941 **Perceptual Errors (about 67%)** This is the primary cause of task failures. The agent is often able to
1942 open a dialog box but fails to accurately locate specific input fields or controls. It also shows limited

1943 Table 8: Success rates on PSBench of end-to-end image editing
models.

Model	Easy	Medium	Hard	Overall
Qwen-Image-Edit	100%	100%	80.50%	93.50%
GPT-Image-1	100%	100%	90.00%	96.67%
FLUX.1 Kontext [pro]	100%	100%	75.00%	91.67%
FLUX.1 Kontext [max]	100%	100%	72.50%	90.83%
gemini-2.5-flash-image	100%	100%	90.00%	96.67%
Seedream 4.0	100%	100%	85.50%	95.17%

⁸<https://huggingface.co/spaces/ArtificialAnalysis/Text-to-Image-Leaderboard>

Table 9: Comparison between Photoshop and End-to-End Image Editing Models Results.

1944	1945	1946	1947	Instruction	Source Image	Editing in Photoshop	E2E Image Editing Result	Observed Shortcoming
1948	1949	1950	1951	Make winter snow effect for the image.				Image quality degradation^a
1952	1953	1954	1955	Add a glowing effect to the kangaroo in the picture.				Loss of original information integrity^b
1956	1957	1958	1959					
1960	1961	1962	1963	Add a halo effect to the lights in the image.				Lack of natural editing effect^c
1964	1965	1966	1967					
1968	1969	1970	1971					

^a Significant loss of rock texture details on the mountain; lake reflection becomes blurry.

^b Global pixel reconstruction causes noticeable changes in key features such as facial details and hairstyle.

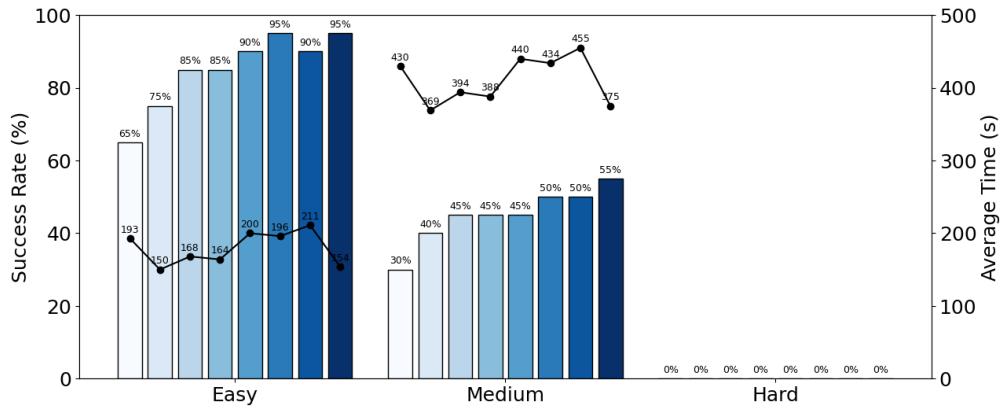
^c The halo effect appears overly strong and abrupt, forming stiff circular spots and lacking the natural gradient of real light sources.

ability to recognize and select fine-grained options in drop-down menus; for example, it can open the Filter menu but cannot reliably select a specific option such as “Motion Blur.” In such cases, the GUI agent repeatedly clicks on ineffective coordinates until the task times out.

Task Planning Errors (about 20%) These errors predominantly occur in high-difficulty tasks and essentially reflect insufficient understanding of Photoshop’s functional structure. While the GUI agent can generate relatively complete high-level action plans (for instance, deciding to use a particular filter or adjust a specific parameter), it struggles to translate these abstract plans into concrete operation sequences. A typical example is knowing which filter can produce the desired effect but failing to plan an exact navigation path such as “Filter → Sharpen,” resulting in a gap between high-level planning and low-level execution.

Execution Control Errors (about 13%) This type of error often appears in tasks involving complex selections. In isolated tests, the GUI agent can successfully execute multi-step selection operations, suggesting that these execution failures are largely triggered by perceptual deficiencies—specifically, difficulty in accurately localizing the image and target selection area from the current screen capture. Moreover, the agent exhibits limited flexibility in interactive control. Human users typically fine-tune parameters by dragging sliders and observing real-time changes to the image, whereas the agent tends to rely on directly entering values into input fields, lacking dynamic adjustment capability. This limitation reduces both the precision and the efficiency of task completion.

D.4 HUMAN-IN-THE-LOOP USER STUDY


In our human-in-the-loop experiment, we recruited 24 undergraduate students majoring in computer-related disciplines. All participants possessed basic software operation skills but were complete

1998 novices in Photoshop: each reported a total usage time of less than two hours and had not received
 1999 any form of image-editing training.
 2000

2001 To compare the effectiveness of different modes of human–AI collaboration, the 24 participants were
 2002 evenly divided into three groups:

- **Unassisted novice user:** participants attempted to complete the tasks without any additional help.
- **Novice user with internet access:** participants were allowed to freely consult online tutorials or documentation.
- **Novice user assisted by a GUI agent:** participants received real-time step-by-step natural-language guidance from GPT-4o (without generating executable code).

2010 All groups were tested on the same set of 60 tasks (20 Easy, 20 Medium, 20 Hard). For each
 2011 participant, we recorded both the task success rate and the average completion time of successfully
 2012 completed tasks. The individual results are shown in Figure 8, Figure 9, and Figure 10. We
 2013 subsequently averaged the results within each group to obtain the overall performance under the three
 2014 experimental conditions, as presented in Figure 4.

2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051

Figure 8: Results of Unassisted Novice Users.

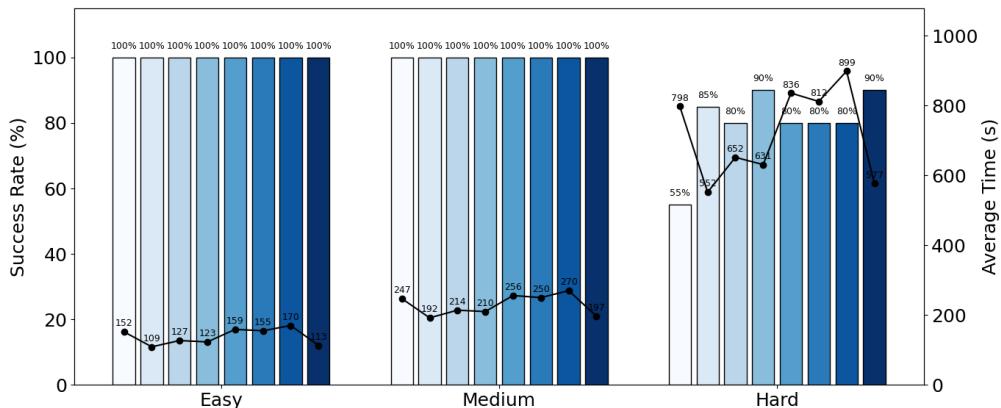


Figure 9: Results of Novice Users with Internet Access.

E COMPARISON WITH IMAGE EDITING BENCHMARKS

Since PSBench is designed for Photoshop, its tasks are essentially image-editing tasks. Therefore, we also compare it with existing benchmarks for image editing, as summarized in Table 10. The



Figure 10: Results of Novice Users Assisted by a GUI Agent.

comparison considers five aspects: samples (total number of tasks), types (range of editing categories), task-specific evaluation (presence of task-specific evaluators for each task), non-destructive editing (whether edits preserve the original material, e.g., via adjustment layers or masks), and task source (real user tasks or synthetic tasks). This comparison enables a comprehensive assessment of PSBench relative to other image-editing benchmarks in terms of scale, task diversity, evaluation mechanisms, and task authenticity.

Table 10: Comparison with Existing Image Editing Benchmarks.

Benchmark	#Samples	#Types	Task-Specific Eval.	Non-Destructive Edit	Task Source
EditVal (Basu et al., 2023)	648	13	✗	✗	Synthetic
EmuEdit (Sheynin et al., 2023)	3,055	7	✗	✗	Synthetic
EditBench (Wang et al., 2023)	240	1	✗	✗	Synthetic
MagicBrush (Zhang et al., 2024)	1,053	9	✗	✗	Synthetic
I2EBench (Ma et al., 2024b)	2,240	16	✗	✗	Synthetic
ImgEdit-Bench (Ye et al., 2025)	811	14	✗	✗	Synthetic
AnyEdit (Yu et al., 2025)	1,250	25	✗	✗	Synthetic
PSBench	600	16	✓	✓	Real-user