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Abstract
We present a comprehensive empirical study on
how backdoor attacks affect CLIP by analyzing
the representations of backdoor images. Specifi-
cally, based on the methodology of representation
decomposing, image representations can be de-
composed into a sum of representations across
individual image patches, attention heads (AHs),
and multi-layer perceptrons (MLPs) in different
model layers. By examining the effect of back-
door attacks on model components, we have the
following empirical findings. (1) Different back-
door attacks would infect different model compo-
nents, i.e., local patch-based backdoor attacks
mainly affect AHs, while global perturbation-
based backdoor attacks mainly affect MLPs. (2)
Infected AHs are centered on the last layer, while
infected MLPs are decentralized on several late
layers. (3) Not all AHs in the last layer are in-
fected and even some AHs could still maintain
the original property-specific roles (e.g., “color”
and “location”). These observations motivate us
to defend against backdoor attacks by detecting
infected AHs, repairing their representations, or
filtering backdoor samples with too many infected
AHs, in the inference stage. Experimental results
validate our empirical findings and demonstrate
the effectiveness of the defense methods.

1. Introduction
Recently, Contrastive Language-Image Pretraining (CLIP)
(Radford et al., 2021) has received much attention due to
its powerful visual representations learned from natural lan-
guage supervision (Xu et al., 2021; Wu et al., 2023). Recent
research (Carlini & Terzis, 2022; Carlini et al., 2023; Bansal
et al., 2023) has disclosed the vulnerability of CLIP against
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Figure 1. Mean-ablation on all MLPs or AHs for various backdoor
attacks on CLIP. Dashed lines indicate the baseline ASR or CACC
of backdoor attacks. Best viewed in color.

backdoor attacks. Specifically, a malicious adversary can
poison a small proportion of backdoor image-text pairs into
the pre-training data, which would result in a backdoored
CLIP after multimodal contrastive learning. In the inference
stage, the backdoored CLIP would produce tampered image
representations when the trigger is attached to the images,
close to the text representation of the target attack class.
This situation exposes a serious security risk of deploying
CLIP in practical, real-world applications.

To defend against backdoor attacks on CLIP, recent research
has proposed many defense methods, e.g, robust multimodal
contrastive learning in the pre-training stage (Yang et al.,
2023b), fine-tuning the backdoored CLIP (Bansal et al.,
2023), reverse-engineering the trigger (Sur et al., 2023),
and detecting backdoor samples in the inference stage (Niu
et al., 2024). However, there still remains a limited system-
atic understanding of how backdoor attacks affect CLIP. To
fill this gap, we conduct a comprehensive empirical study
to investigate how backdoor attacks affect CLIP by analyz-
ing the representations of backdoor images. Specifically,
following the methodology of representation decomposing
(Gandelsman et al., 2024), we decouple the image represen-
tation as a sum of representations across individual image
patches, attention heads (AHs), and multi-layer perceptrons
(MLPs). Furthermore, we use mean-ablation (Gandelsman
et al., 2024), i.e., replacing representations of backdoor im-
ages on AHs or MLPs with mean representations of clean
images on the same components. In this way, we can exam-
ine the effect of backdoor attacks on these components by
comparing attack success rates (ASRs) and clean accuracies
(CACCs). Our key findings are summarized as follows.

(1) Different backdoor attacks would infect different model
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Figure 2. Mean-ablation on MLPs or AHs in each layer by three
ablation ways. Dashed lines indicate the baseline ASR or CACC
of backdoor attacks. Best viewed in color.

components, i.e., local patch-based backdoor attacks
mainly affect AHs, while global perturbation-based back-
door attacks mainly affect MLPs. To reveal this point, as
shown in Figure 1, we conduct pilot experiments to ablate
all AHs or MLPs for three local patch-based backdoor at-
tacks: BadNet (Gu et al., 2017), Kitty (Liang et al., 2023),
BadCLIP (Liang et al., 2023), and three global perturbation-
based backdoor attacks: Blended (Chen et al., 2017), Re-
flection (Liu et al., 2020), and ISSBA (Li et al., 2021). We
can see that mean-ablating all MLPs has little effect on the
ASRs of local patch-based backdoor attacks but dramatically
decreases the ASRs of global perturbation-based backdoor
attacks. On the contrary, mean-ablating all AHs achieves
the reversed performance. This finding reveals the different
attack preferences of two kinds of backdoor attacks on AHs
and MLPs.

(2) Infected AHs are centered on the last layer, while in-
fected MLPs are dispersed on several late layers. We fur-
ther explore the effect of backdoor attacks on AHs or MLPs
in various model layers. Specifically, we use three types
of layer-wise mean-ablation schemes. Forward (Backward)
ablation means that we ablate AHs or MLPs in sequence (in
the reversed sequence) up to a given layer. Separate ablation
indicates that we only ablate AHs or MLPs on a given layer.
From the results in Figure 2, we can see that ablating AHs
only in the last layer greatly decreases the ASRs of BadNet
and BadCLIP, indicating the infected AHs are centered on
the last layer. In contrast, only ablating all MLPs in the last

five layers can reduce the ASRs of Blended and ISSBA to
almost zero, and meanwhile, only ablating any one of them
cannot effectively reduce the ASRs, implying the infected
MLPs are decentralized in the last five layers. This find-
ing reveals the difference in the locations and features of
infected AHs and MLPs.

(3) Not all AHs in the last layer are infected and even some
AHs could still maintain the original property-specific
roles (e.g., “color” and “location”). By visualizing head-
specific attention maps as shown in Figure 3, we found that
some AHs do not catch the triggers and have lower Mean
Maximum Distances (MMDs) compared with clean counter-
parts, thereby indicating these AHs are not affected. Beyond
exploring the characteristics of infected AHs and MLPs in
the visual modality, motivated by the algorithm TEXTSPAN
(Gandelsman et al., 2024), we further investigate the char-
acteristics of infected AHs or MLPs in the text modality
by CLIP’ text representations. The experimental results are
shown in Figure 3 and Figure 4. We can see that certain
infected AHs’ descriptive texts have no significant change
in semantics, e.g., the 4th AH and the 10th AH, where the
descriptive texts of clean and infected AHS are both related
to the property-specific roles (e.g., “color” and “location”),
while the infected MLPs generally have different semantic
descriptive texts (clean MLPs commonly have no property-
specific roles). This finding reveals the different multimodal
characteristics of infected AHs and MLPs.

These observations motivate us to defend against backdoor
attacks by repairing representations of infected model com-
ponents or filtering backdoor samples. Specifically, we
directly mean-ablate MLPs in the last five layers for global
perturbation-based attacks due to the decentralization of
infected MLPs. For local patch-based attacks, instead of
removing all AHs in the last layer, we selectively mean-
ablate AHs that are much affected by backdoor attacks. To
this end, we construct head-specific prototypes by averaging
head-specific representations from a small proportion of
clean validation data. Based on these head prototypes, we
select the AHs with lower cosine similarity between their
representations and the corresponding head prototypes as
the heavily-infected ones. Then, we can repair representa-
tions of these selected AHs or directly filter samples with
too many heavily-infected AHs. Extensive experiments ver-
ify the effectiveness of our method to directly defend against
various backdoor attacks and further improve existing ad-
vanced defense methods. Our main contributions can be
summarized as follows:

• Comprehensive empirical study. We conduct a compre-
hensive empirical study on how backdoor attacks affect
CLIP and present three insightful findings.

• Novel backdoor defense methods. Motivated by these
findings, we design two novel backdoor defense methods
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that detect infected AHs, repair representations, or filter
samples.

• Strong experimental results. Extensive experiments vali-
date the effectiveness of repairing representations and the
scalability of the method to existing defense methods.

2. Preliminary
In this section, we introduce the necessary symbols to define
backdoor attacks on CLIP, present the structure of vision
transformers (ViTs), and show the representation decompo-
sition on CLIP.

The threat model (CLIP). Generally, CLIP (Radford
et al., 2021) mainly consists of a visual encoder denoted by
V(·), a textual encoder denoted by T (·), a projection matrix
P that projects visual and textual representations into the
joint space. The training data of CLIP contains about 400
million image-text pairs crawled from the Internet denoted
by D = {(xi, ti)}Ni=1 where ti is the caption text of the
image xi. In the context of backdoor attacks (Li et al.,
2021; 2022; Wenger et al., 2021), a malicious adversary
could poison a small proportion of backdoor image-text
pairs denoted by D̃BD = {(x̃i, t̃i)}NBD

i=1 where x̃i = (1 −
M) ⊗ xi +M⊗ Θ is a backdoor image with the trigger
pattern Θ (Gu et al., 2017; Chen et al., 2017), a mask M,
and t̃i = T (yt) is the proxy caption for the target class yt.
Then, the original training dataset could be poisoned as D̃ =
{D̃BD ∪ D}. During the training stage, given a batch of Ñb

image-text pairs, the cosine similarity for image-text pairs is
denoted by Sij = ϕ(x̃i, t̃j) = cos(PV(x̃i),PT (t̃j)), and
the CLIP loss can be formalized by the follows.

LCLIP =− 1

2Ñb

( Ñb∑
i=1

log
[ exp(Sij/τ)∑Ñb

j=1 exp(Sij/τ)

]
(1)

+

Ñb∑
j=1

log
[ exp(ϕ(Sji/τ)∑Ñb

i=1 exp(Sij/τ)

])
,

where τ is a temperature parameter. After multimodal con-
trastive learning on the poisoned data, the trigger Θ would
have a strong correlation with the name of the target class
yt. We formally define the thread model as {Ṽ(·), T̃ (·)}.
During the inference stage, when encountering the image
x̃i attached with the trigger, the posterior probability of the
image for the yt-th target class would become very high,
which makes the model output the adversary-desirable label.

Architecture of ViTs. Specifically, in this paper, we use
ViTs (Dosovitskiy et al., 2020) as the visual encoder. ViTs
mainly consist of L residual attention blocks, each con-
taining a multi-head self-attention (MHSA) structure and
a multi-layer perception (MLP), followed by skip connec-
tions (He et al., 2016) and layer normalization (LN). As

the input of ViTs, each image xi ∈ RH×W×3 is split into
N non-overlapping image patches, which are projected lin-
early into N d-dimensional vectors. Moreover, positional
embeddings are added to them to create the image tokens
{z0i }i∈1,··· ,N . Notably, an additional class token z00 ∈ Rd,
is also introduced to aggregate token information. In this
way, we denote the matrix Z0 ∈ Rd×(N+1) by the initial
state of the input. The calculation procedure for the l-th
layer in ViTs can be presented below.

Ẑl = MHSAl(LN(Zl−1)) +Zl−1,

Zl = MLPl(LN(Ẑl)) + Ẑl. (2)

Specifically, the first column in Zl indicates the class to-
ken [Zl]cls. Finally, the image representation R(xi) can
be denoted as the linear projection from the ViT output:
R(xi) = PV(xi) = P [ZL]cls.

Decomposing CLIP’s image representations. Consider-
ing the residual structure of ViTs, Gandelsman et al. (2024)
proposed to express its output as a sum of the direct contri-
butions of individual layers of the model.

R(xi) = P [Z0]cls +
∑L

l=1
P [MHSAl(Zl−1)]cls

+
∑L

l=1
P [MLPl(Ẑl)]cls. (3)

Note that the representation decomposition ignores the ef-
fect of LN(·) to simplify derivations. More analysis of the
effect of layer normalization can be found in Appendix A.1
of Gandelsman et al. (2024). Furthermore, following El-
hage et al. (2021), a more fine-grained output of MHSA can
be rewritten as a sum over H independent attention heads
(AHs) and the N input tokens.

[MHSAl(Zl−1)]cls =
∑H

h=1

∑N

n=0
xl,h
i , (4)

where xl,h
i = αl,h

i W l,hzl−1
i , W l,h are transition matri-

ces, and αl,h
i are the attention weights from the class to-

ken to the i-th token in the h-th head (
∑N

i=0 α
l,h
i = 1).

Therefore, the second term in Eq. (3) can be rewritten as:∑L
l=1 P [MHSAl(Zl−1)]cls =

∑L
l=1

∑H
h=1

∑N
n=0 cn,l,h

where cn,l,h = Pxl,h
i .. Specifically, the decoupled rep-

resentations of H AHs across L layers can be denoted by
Chead =

∑N
n=0 cn,l,h ∈ RL×H . We can interpret them

via CLIP’s text representations by directly calculating their
cosine similarities in the joint vision-language space.

3. A Closer Look at Backdoor Attacks on
CLIP

In this section, we conduct preliminary experiments to in-
vestigate how backdoor attacks affect CLIP. Specifically,
we consider four backdoor attacks (i.e., BadNet (Gu et al.,
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Figure 3. Visualization of (selected) AHs in the last layer. Larger head-specific MMD scores indicate greater distribution differences in
the representation of AHs. On the other hand, larger text similarities mean smaller semantic changes in AHs’ descriptive texts.

2017), Blended (Chen et al., 2017), ISSBA (Li et al., 2021),
and BadCLIP (Liang et al., 2023)) to poison CLIP (Bansal
et al., 2023; Carlini & Terzis, 2022), thereby producing
four types of backdoored CLIPs respectively. The details of
backdoor attacks are shown in Appendix D.1. To explore
the effect of backdoor attacks on each model component,
we use mean-ablation (Gandelsman et al., 2024) that re-
places representations of potentially infected components
with mean representations of corresponding components
from clean validation images. In this way, we can validate
the effect of backdoor attacks on the component by compar-
ing attack success rates (ASR) and clean accuracy (CACC).
We conduct this experiment on the ImageNet-1K validation
dataset, using 20% of the images as the clean validation
data. We mainly explore the effect of backdoor attacks on
attention heads (AHs) and multi-layer perceptrons (MLPs).
The key findings are summarized as follows.

Finding 1: different backdoor attacks would infect differ-
ent model components, i.e., local patch-based backdoor
attacks mainly affect AHs, while global perturbation-based
backdoor attacks mainly affect MLPs. First of all, we di-
rectly mean-ablate all AHs or MLPs. From the results in
Figure 1, we can see that after mean-ablating all MLPs, the
ASRs of BadNet and BadCLIP have little effect compared
with their baseline ASR (dashed lines), while the ASRs of
Blended and ISSBA dramatically decrease nearly to zero.
Conversely, when mean-ablating all AHs, the ASR of Bad-

Net and BadCLIP become almost zero, while the ASR of
Blended and ISSBA remain unchanged. This observation
indicates that BadNet and BadCLIP mainly affect AHs,
while Blended and ISSBA primarily affect MLPs. Besides,
mean-abating all MLPs has little effect on the CACC (nearly
reduced by 6%∼7%), while mean-ablating all AHs greatly
decreases the CACC to reach almost zero. This observation
is consistent with the finding in (Gandelsman et al., 2024)
that MLPs have a negligible effect on generalization, while
AHs capture useful information for generalization.

Explanation for finding 1. The potential reason for this
observation lies in the characteristics of their triggers.
Specifically, the triggers of BadNet and BadCLIP are local
patches located in a small area of the image, while the trig-
gers of Blended and ISSBA are noise pixels embedded into
the entire image. Considering the multi-head self-attention
mechanism in ViTs that can encode contextual cues of a
sequence of image patches, the information of local patch
triggers is easier to encode into AHs than that of global
noise pixels. Conversely, MLPs mainly focus on aggregat-
ing representation information from AHs, which attends to
global noise pixels (Gu et al., 2022).

Finding 2: infected AHs are centered on the last layer,
while infected MLPs are decentralized on several late
layers. Here, we further explore the effect of backdoor
attacks on AHs or MLPs in various model layers. Specifi-
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Figure 4. Visualization of Top-5 descriptive texts on MLPs. Each rectangular box indicates one layer’s MLP.

cally, we use three types of mean-ablation schemes, i.e., for-
ward/backward/separate ablation. Forward ablation means
that we ablate AHs or MLPs in sequence up to a given layer.
Conversely, backward ablation means that we ablate AHs
or MLPs in the reversed sequence up to a given layer. Sep-
arate ablation indicates that we only ablate AHs or MLPs
on a given layer. Figure 2 (a)-1/2, (b)-1/2, (c)-1/2 show the
ASR results of forward, backward, and separate AH/MLP
ablation respectively respectively. We can see that only
ablating the last layer’s AHs can cause a large decrease in
the ASR of BadNet and BadCLIP. This observation implies
that infected AHs are centered on the last layer. In con-
trast, only ablating MLPs in the last five layers makes the
ASR of Blended and ISSBA reach zero, which indicates that
infected MLPs are decentralized on the last five layers. Fur-
thermore, we found an intriguing phenomenon that ablating
any one layer’s MLP has a limited effect on the ASR. This
observation indicates that infected MLPs are decentralized,
i.e., ablating one would have a negligible effect on the over-
all. Besides, we use Mean Maximum Discrepancy (MMD)
(Arbel et al., 2019) to evaluate the distribution difference
between representations of clean and backdoor images on
AHs or MLPs in each model layer. The results are shown in
Figure 8 (d)-1/2 in Appendix 8. We can also find that AHs
in the last model layer have large MMD scores on BadNet
and BadCLIP, and MLPs in the last five layers have large
MMD scores on Blended and ISSBA.

Explanation for finding 2. The potential reason lies in
the visual patterns of their triggers. Specifically, local patch
triggers are regional pixels and resemble high-level visual
properties (e.g., “ear” and “eye”), which are easier to encode
as high-level visual patterns in the last AHs, while global
noise pixels are scattered and resemble low-level visual
information (e.g., “texture” and “shape”) encoded in the last
several MLPs (Park & Kim, 2022).

Finding 3: Not all AHs in the last layer are infected, and
even some AHs could still maintain the original property-

specific roles (e.g., “color” and “location”). We further
explore the characteristics of infected AHs and MLPs. Note
that we only target AHs in the last layer on BadNet and
BadCLIP, and MLPs on Blended and ISSBA. Firstly, we
aim to visualize head-specific attention token maps toward
the class text (i.e., an image of a [class name]) to examine
the contribution of each head toward the class. Benefiting
from representation decomposing, we can achieve this aim
by directly calculating the cosine similarity between the
decoupled representation of the h-th AH on the l-th layer
(Cl

h) and the text representation. The results are shown in
Figure 3. We can see that although many AHs on BadNet
and BadCLIP attend to the triggers, some AHs, e.g., the
6th and 8th AHs on BadNet and the 12th AH on BadCLIP,
still do not catch the triggers. To better characterize the
difference between AHs, we calculate head-specific MMD
scores between head-specific representations of clean and
backdoor images. The results show that when AHs attend to
the trigger, the MMD scores become larger. Otherwise, the
MMD scores are relatively low when they do not catch the
trigger. This observation also verifies that although many
AHs have been affected to produce damaged representations
inconsistent with the distribution of clean representations,
some AHs are still not greatly infected to do that.

Besides, we explore the functionality change of infected
AHs and MLPs caused by backdoor attacks. Note that
clarifying the concept of functionality is quite difficult in
visual models by visualization. Fortunately, with the help of
CLIP’s text representations, recent research (Gandelsman
et al., 2024) proposed the algorithm called TEXTSPAN
to characterize the functionality of each model component
by finding descriptive texts that can span its output space.
Based on this algorithm, we can find two types of descriptive
texts for infected (clean) AHs and MLPs by using backdoor
(clean) images. Then, we can compare the semantic differ-
ences between two types of descriptive texts on the same
AHs or MLPs, thereby identifying whether and how their
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Figure 5. Empirical density distributions of the cosine similarity between the representations of clean (Green) / backdoor (Red) images
and head-specific prototypes.

functionality has changed. The results of AHs are shown in
Figure 3. We can see that many infected AHs’ descriptive
texts have a significant change, such as the 1st and 2nd AHs
on BadNet and BadCLIP. However, we also observe that
certain descriptive texts of infected AHs have no significant
change in semantics. For example, descriptive texts of the
4th AH on BadNet and BadCLIP are both about color, and
descriptive texts of the 10th AH on BadNet and BadCLIP
are both related to location. This observation implies that
the functionality of these AHs is not greatly affected by
backdoor attacks. As for the results of MLPs in Figure 4,
we found descriptive texts of MLPs in the last five layers
have a distinct semantic difference, while that of MLPs in
other layers have negligible changes in semantics.

Explanation for finding 3. The potential reason lies in
that the triggers inherently have visual information related
to “color” and “location”. Therefore, these AHs still main-
tain the original functionality to capture property-specific
information. On the other hand, the property-specific roles
of these AHs are relatively clear but simple. Note that
many AHs in ViTs generally have no clear property-specific
roles (Gandelsman et al., 2024). This might be because
these AHs commonly collaborate to characterize complex
property-specific roles so that they are easier to be affected
by backdoor attacks compared with the AHs with simple
property-specific roles.

4. Backdoor defense countermeasures
Motivated by the above findings, in this section, we will
design two different countermeasures against backdoor at-
tacks on CLIP, i.e., (i) repairing representations of infected
model components and (ii) detecting (filtering) backdoor

samples. Note that we directly mean-ablate MLPs in the
last five layers for global perturbation-based attacks due to
the decentralization of infected MLPs, and mainly discuss
the countermeasures against local patch-based attacks in the
next.

(i) Repairing representations of infected AHs. Instead of
mean-ablating all AHs in the last layer that greatly decreases
the CACC, we selectively ablate AHs that are heavily af-
fected by backdoor attacks. Specifically, we first construct
head-specific prototypes by averaging representations from
a small proportion of clean validation data {xi}Nv

i=1 where
Nv is the number of validation data. To simplify the math-
ematical notations, we only consider AHs in the last layer
and omit the symbol L. Formally, the h-th head prototype
can be denoted by Ψh = M({Ch

i }
Nv
i=1) where M(·) is the

mean operator and Ch
i is the decoupled representation of

the i-th sample on the h-th AH. What’s more, we denote
Si,h = ϕ(Ψh,C

h
i ) by the cosine similarity between the i-th

sample’s representation on the h-th AH and the correspond-
ing h-th prototype. Intuitively, we consider the AHs with
lower cosine similarity between their representations and
the corresponding head prototypes to be heavily affected
(the distribution difference is shown in Figure 5.). To this
end, we propose the following AH selector for the h-th AH
of the image xi: Φi,h = 1 if Si,h < ϵ else returns zero,
where ϵ is a similarity threshold. In this way, for each im-
age, we detect many infected AHs in the last layer. Then,
we can repair the representations of these selected AHs by
replacing them with corresponding head-specific prototypes.
The analysis of ϵ is shown in Figure 6 in the experiment.

(ii) Detecting backdoor samples by inspecting infected AHs.
After selecting much-infected AHs for each image, another
alternative is identifying (and filtering) potential backdoor
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Table 1. ASR (↓ %) and CACC (↑ %) on ImageNet-1K. “Base-Decomp” indicates the original representation decomposing. “Decomp-Rep”
denotes our method of repairing representations.

Methods
BadNet Blended Label Consistent ISSBA BadCLIP

ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

No Defense 86.09 56.72 99.56 56.62 99.32 56.68 70.12 56.22 99.78 60.73
+ Base-Decomp 88.58 53.71 97.72 53.16 87.67 52.87 73.02 53.32 99.59 56.28
+ Decomp-Rep 21.45 52.25 0.47 45.16 17.50 51.42 6.33 45.68 0.94 56.08

CleanCLIP 54.23 55.32 26.73 54.54 61.34 54.49 53.21 55.30 69.03 55.92
+ Base-Decomp 64.84 50.31 12.45 51.45 66.91 49.65 57.01 51.70 65.69 51.23
+ Decomp-Rep 41.49 49.29 9.58 50.43 27.63 48.78 48.18 48.03 37.09 50.65

Table 2. AUROC (↑) performance on ImageNet-1K, Caltech-101, and Oxford Pets. “Decomp-Det” denotes our method of detecting
backdoor samples. The best result is highlighted in bold.

Methods ImageNet-1K Caltech-101 Oxford Pets AverageBadNet Label Consistent BadCLIP BadNet BadNet
STRIP 0.772 0.803 0.794 0.868 0.891 0.826

SCALE-UP 0.737 0.690 0.632 0.698 0.765 0.704
TeCo 0.827 0.799 0.637 0.689 0.833 0.757

Decomp-Det 0.920 0.924 0.990 0.946 0.940 0.944

samples, i.e., backdoor sample detection (Gao et al., 2019;
Guo et al., 2023). Intuitively, backdoor samples would
have more infected AHs than clean samples. Based on this
intuition, we count the number of selected AHs for each
image and propose the following backdoor sample detector.

Ωi,h =

1, if
∑H

h=1
Φi,h > ζ,

0, otherwise.
(5)

where ζ is a threshold. The pseudo-code of our methods is
shown in Appendix C.

5. Experiment
5.1. Experimental Setup

Backdoor attacks on CLIP. We use five backdoor attacks:
BadNet (Gu et al., 2017), Blended (Chen et al., 2017), Label
Consistent (Turner et al., 2019), ISSBA (Li et al., 2021), and
BadCLIP (Liang et al., 2023). Following the previous work
(Liang et al., 2023; Bansal et al., 2023), we select 500K
image-pairs from CC3M (Sharma et al., 2018) and poison
1,500 pairs of them by the strategies of five backdoor attacks.
Due to the limited storage and computational resources,
we use the open-sourced CLIP model as the pre-trained
clean model and fine-tune it on the poisoned data to obtain
the backdoored CLIP. The details of backdoor attacks are
provided in Appendix D.1. We evaluate our methods on
ImageNet-1K (Russakovsky et al., 2015), Caltech-101 (Fei-
Fei et al., 2004), and Oxford Pets (Parkhi et al., 2012). More
details of these datasets are provided in Appendix B.1.

Comparing methods. For the task of repairing represen-

tations, we use the original backdoored CLIP as the baseline
and compare the defense performance of basic representa-
tion decomposing. Furthermore, our method can be used
in the fine-tuned CLIP by CleanCLIP (Bansal et al., 2023).
The details of CleanCLIP are provided in Appendix D.2. For
the task of detecting backdoor samples, we compare three
detection methods: STRIP (Gao et al., 2019), SCALE-UP
(Guo et al., 2023), and TeCo (Liu et al., 2023b). Implemen-
tation details of these methods can be found in Appendix
D.3.

Evaluation metrics. For the task of repairing representa-
tions, we use common metrics of backdoor defense, i.e.,
attack success rate (ASR), and clean accuracy (CACC).
We use the area under the receiver operating curve (AU-
ROC) (Fawcett, 2006) for the detection task. Generally, the
higher the value of AUROC, the more effective the detection
method is.

Implementation details. We follow Gandelsman et al.
(2024) to decompose image representations and preserve
them for further investigation. In the proposed method, the
value of ϵ is set to 0.0025, 0.002, and 0.001 on ImageNet-
1K, Caltech-101, and Oxford Pets, respectively. The value
of ζ is set to 5. The proportion of clean validation data is
set to 0.2. We use ViT-B/32 as the backbone.

5.2. Experimental Results

The experimental results of repairing representations and de-
tecting backdoor samples are shown in Table 1 on ImageNet-
1K, Table 4 on Caltech-101, and Oxford Pets. From these
tables, we can conclude the following points.
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Table 3. Comparison of different strategies of ablating fixed, random AHs, and reverse-ablation (denoted by “Decomp-Reverse”). “Base-
Decomp” means using the original decomposed representation. “BadNet-C” (“BadNet-O”) means BadNet on Caltech-101 (Oxford pets).

Methods BadNet Label Consistent BadCLIP BadNet-C BadNet-O
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

No Defense 86.09 56.72 99.32 56.68 99.78 60.73 86.04 92.61 91.80 77.46
+ Base-Decomp 88.58 53.71 87.67 52.87 99.59 56.28 90.45 90.51 94.78 76.80
+ Decomp-Rep 21.45 52.25 17.50 51.42 0.94 56.08 4.69 87.95 34.84 75.00

+ Fixed [1, 2, 3] 86.53 49.72 87.71 49.42 99.18 51.78 82.70 88.93 94.38 77.18
+ Fixed [7, 8, 9] 88.68 47.86 88.74 47.51 58.12 50.18 86.84 86.07 92.06 76.12

+ Fixed [10, 11, 12] 88.82 46.72 88.29 46.72 99.57 49.78 90.97 89.64 96.29 40.91
+ Random AHs 72.82 48.30 77.73 46.16 82.34 48.86 70.17 87.34 83.25 68.31

Original Clean - 56.72 - 56.68 - 60.73 - 92.61 - 77.46
+ Decomp-Reverse 47.15 27.85 39.72 32.42 80.54 10.07 32.19 60.51 18.46 70.23

Table 4. ASR (↓%) and CACC (↑%) comparison on Caltech-101
and Oxford Pets. “Base-Decomp” indicates using the original
decomposed representation.

Methods Caltech-101 (accordion) Oxford Pets (samoyed)
ASR CACC ASR CACC

No Defense 86.04 92.61 91.80 77.46
+ Base-Decomp 90.45 90.51 94.78 76.80
+ Decomp-Rep 4.69 87.95 34.84 75.00

CleanCLIP 31.48 89.55 70.65 73.73
+ Base-Decomp 40.76 87.14 73.05 66.21
+ Decomp-Rep 15.51 86.98 32.76 66.51

Basic representation decomposing has little defense effect.
We can see that using the original representation decompo-
sition can not significantly decrease the ASR of backdoor
attacks, and even increase them in some cases (e.g., Bad-
Net on ImageNet-1K). This observation implies backdoor
attacks have little indirect effect on model components since
representation decomposing only considers the direct ef-
fects of model components and neglects all indirect effects.
Meanwhile, using representation decomposing decreases
CACC slightly (i.e., CACC drops by 2%∼3%), which im-
plies that the indirect effects of decomposing have little
effect on generalization.

Decomp-Rep achieves strong defense performance. Based
on the basic representation decomposing, Decomp-Rep fur-
ther repairs representations of heavily infected attention
heads (AHs), which greatly decreases the ASR of backdoor
attacks and maintains the CACC. Specifically, Decomp-Rep
reduces the ASR of BadCLIP, a state-of-the-art backdoor
attack, to near zero while maintaining the CACC, which ver-
ifies the superiority of Decomp-Rep. Besides, we also show
the performance of repairing representations on Caltech-101
and Oxford Pets as shown in Table 4. We can see that our
method also achieves superior performance. This observa-
tion implies that our method is scalable to other datasets.

Decomp-Rep can further improve the defense performance
of CleanCLIP. When using the fine-tuned CLIP by Clean-

CLIP, Decomp-Rep can further reduce the ASR of back-
door attacks. This observation validates the scalability of
Decomp-Rep to existing defense methods (Decomp-Rep is
plug-and-play with these defense methods).

Decomp-Det achieves superior detection performance. We
can see that Decomp-Det achieves superior performance
in all cases by a significant margin. Specifically, the aver-
age AUROC performance of our method exceeds STRIP,
SCALE-UP, and TeCo by 0.118, 0.220, and 0.187, re-
spectively, which validates the superiority of Decomp-Det.
Specifically, we found that Decomp-Det can achieve better
detection performance against powerful backdoor attacks,
e.g., BadCLIP.

5.3. Further analysis on repairing representations

In this section, we further analyze the proposed representa-
tion repairing method by exploring the effects of ablating
different AHs and poisoning clean representations of the
affected representations of selected AHs.

Repairing representations of fixed and random AHs.
To further validate the effectiveness of selected AHs
in Decomp-Rep, we also conduct experiments of mean-
ablating different fixed AHs,i.e., [1, 2, 3], [7, 8, 9], and
[10, 11, 12] indicating AHs in the corresponding location of
the last model layer. The experimental results are shown in
Table 3. From the table, we can see that these strategies of
ablating fixed AHs have a limited ability to reduce the ASR
in almost all cases compared with the cases of no defense
and basic representation decomposition. This observation
reveals that the distribution of infected AHs is quite differ-
ent in backdoor images, so we can not simply specify fixed
infected AHs for all backdoor images. This is also why
we use the strategy in Decomp-Rep, which detects heavily
infected AHs for each image. On the other hand, ablating
more random AHs achieves a slightly better performance
in ASR compared with the fixed strategies, but still fails to
reduce the ASR effectively.
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Table 5. Ablation study on ImageNet-1K “w/o All AHs” means ablating all attention heads; “w/o All MLPs” means ablating all MLPs;
“w Abandon” means directly replacing representations with zero values; “w Random Prototypes” means replacing representations with
random values.

Ablation BadNet Blended Label Consistent ISSBA BadCLIP
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

w/o All AHs 1.21 2.10 99.91 2.26 3.01 1.91 97.55 2.11 0.01 2.45
w/o All MLPs 88.87 44.83 0.41 44.56 88.98 44.35 1.94 45.05 99.56 46.05

w Abandon 44.42 51.66 0.48 43.28 34.57 50.64 2.58 43.46 63.19 53.12
w Random Prototypes 0.39 12.87 0.01 0.18 0.02 6.94 0.01 0.10 1.31 35.18

Decomp-Rep 21.45 52.25 0.77 45.25 17.50 51.42 6.33 45.68 25.08 53.72
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Figure 6. Parameter analysis on the value of ϵ.

Reversely poisoning representations of the selected AHs
into clean images. Besides, to further validate the effect of
infected AHs, we design a reverse-engineering experiment
denoted by “Decomp-Reverse” that uses the representations
of selected affected AHs to replace the clean representations
of the same AHs in clean images. The results are shown in
Table 3. From the table, we can see that using the affected
representations of the selected AHs significantly increases
the ASR against various backdoor attacks while reducing
the CACC. This observation indicates that the selected AHs
indeed contain the representation information of triggers
and will construct a connection between clean images and
triggers, thereby greatly increasing the ASR.

5.4. Parameter analysis

Here, we evaluate the value of ϵ in Eq. (5). The results
are shown in Figure 6. We can see that as the value of ϵ
increases, the ASR of backdoor attacks decrease gradually.
This is because more attention heads will be ablated as the
value of ϵ increases. However, the CACC of backdoor at-
tacks also has a large decrease because ablating more falsely
selected AHs degrades the generalization of image repre-
sentations. This observation indicates that we should select
affected AHs for repairing as much as possible. Therefore,
it is very crucial to select the appropriate value of ϵ.

5.5. Ablation Study

Here, we conduct the ablation study to investigate the signif-
icance of each part in our method. The results are shown in
Table 5. “w/o All AHs” means ablating all attention heads.
This ablation makes the ASR of BadNet, Label Consistent,

and BadCLIP reach near zero but has little effect on the
ASR of Blended and ISSBA, meanwhile greatly decreas-
ing the CACC for all backdoor attacks. On the other hand,
“w/o All MLPs” means ablating all MLPs, which makes
the ASR of Blended and ISSBA reach near zero but has
little effect on the ASR of BadNet, Label Consistent, and
BadCLIP, meanwhile slightly decreasing the CACC for all
backdoor attacks. These two cases validate the necessity of
selectively mean-ablating AHs and MLPs. Moreover, we
will conduct an ablation study on the strategy of repairing
representations of infected AHs and MLPs. Specifically,
“w Abandon” means directly replacing representations with
zero values. This strategy has a positive effect on decreasing
the ASR compared with the basic representation decompos-
ing (meanwhile slightly decreasing the CACC), but is still
degraded compared with our strategy of using head-specific
prototypes. “w Random Prototypes” means replacing rep-
resentations with random values followed by a standard
normal distribution. This strategy greatly decreases both
the ASR and CACC of all backdoor attacks, indicating that
these random values destroy the representation informa-
tion. Meanwhile, this observation also indicates that it is
significant to use higher-quality representations to repair
representations of backdoor images. Overall, our selective
ablation of AHs is a significant strategy in Decomp-Rep,
which can effectively eliminate infected AHs and have little
effect on other AHs.

6. Conclusion
In this paper, we present a comprehensive empirical study
of how backdoor attacks affect CLIP. Our empirical find-
ings reveal the attack preference of backdoor attacks on
model components, the difference in the locations of in-
fected components, and the different effects of backdoor
attacks on the functionality of infected components. In-
spired by these findings, we propose to repair representa-
tions of infected components or filter backdoor samples.
Experimental results validate the empirical findings and the
effectiveness of our methods. We hope that our findings
can motivate more researchers to design effective defense
methods against backdoor attacks on CLIP.
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A. Related Works
In this section, we briefly review backdoor attacks and defenses on supervised learning and CLIP, and interpret works on
CLIP’s image representations.

Backdoor attacks and defenses on supervised learning. Backdoor attacks are serious security threats to machine learning
systems (Li et al., 2022; Carlini & Terzis, 2022; Xu et al., 2022; Chen et al., 2021; Tao et al., 2024). Early research on
backdoor attacks focused on designing a variety of triggers that satisfy the practical application scenarios, mainly including
invisible stealthy triggers (Chen et al., 2017; Turner et al., 2019; Li et al., 2021; Doan et al., 2021; Nguyen & Tran, 2021;
Gao et al., 2023; Souri et al., 2022) and physical triggers (Chen et al., 2017; Wenger et al., 2021). To defend against these
attacks, researchers proposed a series of defense methods at different stages of developing models, i.e., data cleaning in the
pre-processing stage (Tran et al., 2018; Zeng et al., 2023; Liu et al., 2023a; Qi et al., 2023), robust anti-backdoor training
(Chen et al., 2022; Zhang et al., 2022; Huang et al., 2023), mitigation in the post-training stage (Min et al., 2023; Wang et al.,
2024; Zhu et al., 2024b; Min et al., 2024; Wang et al., 2023; Xiang et al., 2022), and test-time detection in the inference
stage (Shi et al., 2023; Mo et al., 2024; Guo et al., 2023; Liu et al., 2023b; Feng et al., 2023). Recently, researchers have
paid much attention to the backdoor security of vision transformers and proposed customized backdoor attack and defense
methods based on the characteristics of vision transformers (Yuan et al., 2023; Doan et al., 2023; Subramanya et al., 2024;
Zheng et al., 2023).

Backdoor attacks and defenses on CLIP. As multimodal models achieve significant development, researchers have paid
much attention to the backdoor security on multimodal models (Walmer et al., 2022; Han et al., 2024; Liang et al., 2024;
Zhu et al., 2024a; Yang et al., 2023c; Zhu et al., 2024c; Xun et al., 2024; Huang et al., 2025; Bai et al., 2024; Hu et al., 2025;
Singh et al., 2024; Yang et al., 2023a). Pioneer (Carlini & Terzis, 2022) disclosed that multimodal contrastive learning is
susceptible to backdoor attacks. Furthermore, BadCLIP (Liang et al., 2023) designed a dual-embedding framework for
backdoor attacks on CLIP by making visual trigger patterns approximate the textual target semantics in the embedding space.
To defend against backdoor attacks, RoCLIP (Yang et al., 2023b) proposed robust multimodal contrastive learning during the
pertaining stage by modifying images’ captions. CleanCLIP (Bansal et al., 2023) aimed to fine-tune the backdoored CLIP by
using an additional unimodal self-supervised loss. TIJO (Sur et al., 2023) focused on trigger inversion to reverse-engineer
the triggers in both modalities. TA-cleaner (Xun et al., 2024) proposed to select a few samples for positive and negative
subtext generation at each epoch, and align the subtexts to the images to strengthen the text self-supervision.

Interpreting CLIP’s image representations. Although CLIP’s powerful visual representation ability has achieved
impressive performance on many downstream tasks, there is still a limited understanding of what information is encoded in
CLIP’s representations. To better understand CLIP, there were a few works that attempt to interpret visual contents by text
representations, such as providing text descriptions for image regions in which a neuron is active (Hernandez et al., 2022),
projecting model features into a bank of text-based concepts (Yuksekgonul et al., 2023), and studying entanglement in CLIP
between images of words and natural images (Materzyńska et al., 2022). Specifically, recent work (Gandelsman et al., 2024)
had a further exploration of CLIP’s image representations by decomposing them into text-explainable directions that are
attributed to specific attention heads and image locations. Similarly, INViTE (Chen et al., 2024) presented a framework for
interpreting ViT’s latent tokens with text explanations.

B. Details of datasets
B.1. Evaluation Datasets

In this paper, we evaluate attack success rates and clean accuracy on three downstream datasets: ImageNet-1K (Russakovsky
et al., 2015), Caltech-101 (Fei-Fei et al., 2004), and Oxford Pets (Parkhi et al., 2012). The target classes on ImageNet-1K,
Caltech-101, and Oxford Pets are “banana”, “accordion”, and “Samoyed” respectively. Besides, we select clean image-text
pairs from CC3M (Sharma et al., 2018) to fine-tune the backdoored CLIP. Here, we will introduce the details of these
datasets.

• ImageNet-1K consists of 1,000 classes and over a million images, making it a challenging dataset for large-scale image
classification tasks.

• Caltech-101 contains 101 object categories and 1 background category with 40 to 800 images per category, which are
both commonly used for testing model performance on fine-grained classification and image recognition tasks.

• Oxford Pets is a 37-category pet dataset with roughly 200 images for each class created by the Visual Geometry Group
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A ball A bamboo
Abandoned factory space
Abandoned spaces
A barbed wire design
A barcode
A basket
A beam
A beautiful photo
A belt
A bicycle
A blade
A blade (of a fan or a saw)
A blade (of grass or a knife)
A blanket
A blurry image
A bolt
A bonnet
A book
A bookmark
A boot
A bottle
A bowl
A bracelet
A branch
A breeze
A brick
A brush
Abstract acrylic painting
Abstract artwork with concentric circles
Abstract artwork with cross-hatching
Abstract artwork with splatter paint
Abstract artwork with swirls
Abstract composition
Abstract expressionist artwork
Abstract form
Abstract geometric patterns
abstract geometric shapes
abstract graffiti
Abstract oil painting
Abstract patterns
Abstract reflections

A low-resolution image
A magnet
A magnolia
A marbled texture
A marsh
A mask
A maze
A meadow
A meandering river
A megaphone
A meteor
A microphone
A mirror
A modular structure
Ancient and weathered artifact
Ancient and weathered stone carving
Ancient and weathered stone structure
Ancient castle walls
Ancient historical site
Ancient ruins
Ancient temple ruins
An equilateral hexagon
An equilateral pentagon
An equilateral triangle
Angry facial expression
An illustration of an animal
An image capturing an interaction
between subjects
An image of a Accountant
An image of a Aerospace Engineer
An image of a Animal Trainer
An image of a Arborist
An image of a Archaeologist
An image of a Architect
An image of a Art Historian
An image of a Artist
An image of a Astronomer
An image of a Athlete
An image of a Attorney
An image of a Auto Mechanic
An image of a Ballet Dancer

A droplet in motion
advanced artificial intelligence
advanced biotechnology
advanced drone technology
advanced renewable energy
advanced robotics
advanced robotic technology
advanced space exploration
advanced transportation
advanced transport system
Adventurous explorations
Advertisment
A earring
Aerial landscape photography
Aerial perspective
Aerial view
Aerial view of a bay
Aerial view of a bustling metropolis
Aerial view of a cityscape
Aerial view of a coastal area
Aerial view of a construction site
Aerial view of a coral reef
Aerial view of a countryside
Aerial view of a desert oasis
Aerial view of a farmland
Aerial view of a hamlet
Aerial view of a harbor
Aerial view of a inlet
Aerial view of a marketplace
Aerial view of a mountain range
Aerial view of an agricultural field
Aerial view of an archaeological site
Aerial view of a natural landscape
Aerial view of an industrial area
Aerial view of an island
Aerial view of an ocean coastline
Aerial view of an urban skyline
Aerial view of a paradise
Aerial view of a promenade
Aerial view of a river or stream
Aerial view of a serene countryside

An image of a Engineer
An image of a entree
An image of a face
An image of a family
An image of a Farmer
An image of a Fashion Designer
An image of a Film Director
An image of a Financial Analyst
An image of a Firefighter
An image of a Flight Attendant
An image of a Florist
An image of a Gardener
An image of a Graphic Designer
An image of a Gymnast
An image of a Hair Stylist
An image of a head
An image of a IT Specialist
An image of a Journalist
An image of a Judge
An image of a king
An image of a lake
An image of a Landscaper
An image of a Lawyer
An image of a Librarian
An image of a main course
An image of a Marine Biologist
An image of a Mechanic
An image of a Musician
An image of a Music Producer
An image of Andorra
An image of a Novelist
An image of a Nurse
An image of a Swimmer
An image of a Systems Analyst
An image of a Teacher
An image of a Veterinarian
An image of a Waiter/Waitress
An image of a Welder
An image of a Writer
An image of a Zoologis
Tranquil atmospheres
Time-worn beauty

Figure 7. Examples of used text descriptions.

at Oxford. The images have large variations in scale, pose, and lighting. All images have an associated ground truth
annotation of breed, head ROI, and pixel-level trimap segmentation.

• CC3M1 is a dataset consisting of about 3.3M images annotated with captions. In contrast with the curated style of
other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and
therefore represent a wider variety of styles. More precisely, the raw descriptions are harvested from the Alt-text HTML
attribute associated with web images.

B.2. Text descriptions

To characterize the functionality of model components, we employed TEXSPAN proposed by (Gandelsman et al., 2024).
The algorithm needs a pool of candidate text descriptions. Specifically, they prompted ChatGPT (GPT-3.5) to produce
image descriptions. The prompt was “Imagine you are trying to explain a photograph by providing a complete set of image
characteristics. Provide generic image characteristics. Be as general as possible and give short descriptions presenting
one characteristic at a time that can describe almost all the possible images of a wide range of categories. Try to cover as
many categories as possible, and don’t repeat yourself. Here are some possible phrases: “An image capturing an interaction
between subjects”, “Wildlife in their natural habitat”, “A photo with a texture of mammals”, “An image with cold green
tones”, “Warm indoor scene”, “A photo that presents anger”. Just give the short titles, don’t explain why, and don’t combine
two different concepts (with “or” or “and”). Make each item in the list short but descriptive. Don’t be too specific.” This
process resulted in 3498 sentences as shown in Figure 7.

1https://huggingface.co/datasets/pixparse/cc3m-wds
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Figure 8. Mean-ablation on model components. Figures (a)-1/2, (b)-1/2, and (c)-1/2 show the CACC of forward, backward, and separate
ablation on AHs/MLPs, respectively. Figures (d)-1/2 show the layer-wise MMD on AHs and MLPs, respectively. Dashed lines indicate
the baseline CACC of backdoor attacks. Best viewed in color.

C. Pseudo-code of our proposed method

Algorithm 1 Our methods of repairing representations or filtering backdoor samples

Input: a backdoored CLIP {Ṽ(·), T̃ (·)}, similarity threshold ϵ, detection threshold ζ , test data Xtest, validation data Xval;
1: Construct head-specific prototypes Φh on the validation data Xval;
2: Construct MLP-specific prototypes Φm on the validation data Xval;
3: for xi in Xtest do
4: if Blended or ISSBA then
5: Replace the representations of the last five MLPs with MLP-specific prototypes;
6: else
7: Use the detector Ψ in Eq. (5) to find infected attention heads;
8: Count the number of infected attention heads and use the detector ω;
9: Replace the representations of selected AHs with those of head-specific prototypes;

10: end if
11: end for
12: Calculate ASR, CACC, or AUROC;
13: Output the metrics.

D. Detailed settings
D.1. Detailed settings of backdoor attacks

In the experiment, we use five backdoor attacks: BadNet (Gu et al., 2017), Blended (Chen et al., 2017), Label Consistent
(Turner et al., 2019), ISSBA (Li et al., 2021), and BadCLIP (Liang et al., 2023). Here, we introduce these methods in detail.

• BadNet2 is a seminal work on backdoor attacks in deep learning, generating poisoned examples by stamping a small
patch randomly into images and altering their labels to the target class. We set the patch size to 16 pixels.

• Blended enhances the stealthiness of backdoor attacks from the perspective of the trigger. It implements an invisible
backdoor attack by blending the trigger with the original images linearly, thus evading human detection. The blending
ratio for the trigger is 0.2.

• Label Consistent enhances the stealthiness of backdoor attack from the perspective of the label. It employs generative

2https://github.com/THUYimingLi/BackdoorBox
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models or adversarial perturbations to selectively poison images associated with the target class.

• ISSBA3 introduces an invisible attack that creates sample-specific triggers by encoding an attacker-specified string into
benign images using an encoder-decoder network.

• BadCLIP4 proposes a backdoor attack on CLIP, which optimizes visual trigger patterns in a dual-embedding guided
framework to make the attack undetectable. For BadCLIP, we employ the same parameter settings specified in the original
paper.

For these backdoor attacks, we utilize the AdamW optimizer with an initial learning rate of 1e-5, applying cosine scheduling
over a total of five epochs with a batch size of 128.

D.2. Detailed settings of CleanCLIP

CleanCLIP5 (Bansal et al., 2023) defends against backdoor attacks in multimodal contrastive learning by optimizing the
integration of multimodal contrastive and unimodal self-supervised losses using a limited amount of clean data. Note that
the backbone of the visual encoder in CleanCLIP is ResNet-50. In this paper, we use the vision transformer (ViT-B/32) as
the visual encoder. We adapted the parameters used in the original paper to our case. Specifically, we randomly selected
10,0000 image-text pairs from CC3M as the fine-tuning data. The learning rates were set to 5e-6 for BadNet, Blended, and
BadCLIP, and 3e-6 for Blended and ISSBA on ImageNet-1K. The batch size was 64. The fine-tuning epoch was 10. Note
that we did not blindly reduce attack success rates by adjusting the learning rates, but maintained clean accuracy of the
fine-tuned model.

D.3. Detailed settings of detection methods

In the experiment, we compare three backdoor detection methods: STRIP (Gao et al., 2019), SCALE-UP (Guo et al., 2023),
and TeCo (Liu et al., 2023b). Here, we introduce these methods in detail.

• STRIP6 is the first black-box TTSD method that overlays various image patterns and observes the randomness of the
predicted classes of the perturbed input to identify poisoned samples. In our experiments, for each input image, we use
64 clean images from the test data for superimposition.

• SCALE-UP7 is also a method for black-box input-level backdoor detection that assesses the maliciousness of inputs by
measuring the scaled prediction consistency (SPC) of labels under amplified conditions, offering effective defense in
scenarios with limited data or no prior information about the attack.

• TeCo8 modifies input images with common corruptions and assesses their robustness through hard-label outputs, ultimately
determining the presence of backdoor triggers based on a deviation measurement of the results. In our experiments,
considering concerns about runtime, we selected “elastic transform”, “gaussian noise”, “shot noise”, “impulse noise”,
“motion blur”, “snow”, “frost”, “fog”, “brightness”, “contrast”, “pixelate”, and “jpeg compression” as methods for
corrupting images. The maximum corruption severity was set to 6.

E. Details of TEXTSPAN
The objective of TEXTSPAN (Gandelsman et al., 2024) is to find descriptive texts of a candidate text pool for the model
component. To this end, TEXTSPAN employs a greedy algorithm to identify a set of m descriptions for each head that can
span its output space 9.

• (1) It first constructs a matrix C(l,h) denoted by the head outputs for head (l, h), and a matrix T , which contains the
representations of the candidate descriptions {ti}Mi=1 projected onto the span of C.

3https://github.com/yuezunli/ISSBA
4https://github.com/LiangSiyuan21/BadCLIP
5https://github.com/nishadsinghi/CleanCLIP
6https://github.com/garrisongys/STRIP
7https://github.com/JunfengGo/SCALE-UP
8https://github.com/CGCL-codes/TeCo
9https://github.com/yossigandelsman/clip_text_span
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• (2) In each iteration, the algorithm calculates the dot product between each row of T and the head outputs C, identifying
the row with the highest variance, T [j∗] (the first ”principal component”).

• (3) It then removes the contribution of this component from all rows and repeats the process to discover the next
components. This projection ensures that each new component contributes variance orthogonal to the previous ones.

F. Limitation
We present two limitations of our investigation. First, the representation decomposing ignores the indirect effects of
model components on the representation, e.g., information flow from early layers to deeper ones, which may loss some
generalization information compared with the original representation. Second, we focus on qualitatively characterizing the
change in the functionality of attention heads caused by backdoor attacks, which may require certain quantitative metrics.
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