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Abstract: Robot foundation models promise versatile control across diverse em-
bodiments. Training a single policy on heterogeneous robot data can acceler-
ate adaptation, reduce per-platform engineering, and improve sample efficiency.
However, realizing this promise is constrained by the high cost of collecting ex-
pert demonstrations at scale. We investigate a path forward by combining offline
reinforcement learning (offline RL) with cross-embodiment learning to leverage
datasets that mix expert and suboptimal trajectories across many morphologies,
and we introduce a new locomotion benchmark that spans 16 simulated robots and
multiple data-quality tiers. Our study confirms the expected benefits, namely that
offline RL can make use of suboptimal data and cross-embodiment pre-training
can speed adaptation to unseen robots. The central result is a failure mode. As
both morphology diversity and the fraction of suboptimal trajectories grow, per-
formance degrades for specific embodiments, particularly when similar morpholo-
gies are underrepresented in the pool. Gradient-level diagnostics trace this nega-
tive transfer to inter-robot gradient conflicts, which indicates that naive joint train-
ing can suppress useful updates. These findings position offline RL combined
with cross-embodiment learning as a promising route toward scalable robot foun-
dation models while highlighting the need for conflict-aware optimization and
embodiment-aware data curation.
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Figure 1: Offline RL + cross-embodiment learning at scale. By pooling demonstrations across
heterogeneous robots, we increase both the amount and diversity of training data; adding suboptimal
(non-expert) trajectories further scales this pool. Offline RL can exploit such mixed-quality data to
learn, whereas imitation learning typically depends on high-quality expert demonstrations.




1 Introduction

A central question in building more general and capable robots is how to leverage learning at scale.
Performance gains from scaling are now well established in NLP and vision: large language models
(LLM) and vision-language models (VLM) pre-trained on web scale, diverse corpora can tackle a
wide range of linguistic and visual tasks [1, 2], and generative models for images, video and music
have achieved unprecedented quality [3, 4].

This momentum is increasingly influencing robotics. By scaling transformer-based architectures and
training on large heterogeneous robot datasets, researchers have proposed ‘robot foundation models’
that address multiple tasks within a single model [5, 6, 7, 8], pointing toward general-purpose control
across tasks and embodiments. However, the main constraint is the data: Compared to the massive
text and image corpora that underlie today’s foundation models, robot data are orders of magnitude
smaller. Collecting manipulation data is time and cost intensive, requiring careful teleoperation,
specialized hardware, and often manual labeling; as tasks and platforms proliferate, this burden is
compounded.

A natural response to this bottleneck is cross-embodiment learning, which pre-trains a single model
on demonstrations gathered from many robot platforms. Pooling heterogeneous data enables the
extraction of more general control primitives, and prior work reports that multi-robot training can
surpass single-robot training [6, 8]. However, most robot foundation models to date rely on imitation
learning, leaving the core cost of acquiring high-quality demonstrations unresolved.

Offline reinforcement learning (offline RL) offers a complementary lever. Beyond expert demon-
strations, offline RL can exploit suboptimal trajectories and improve policies despite variability in
data quality. Indeed, applying offline RL to large datasets rich in suboptimal rollouts has been shown
to outperform behavioral cloning [9].

Combining cross-embodiment learning with offline RL promises to substantially expand the usable
pre-training pool by unifying expert and suboptimal data across embodiments. Nevertheless, this
combination remains underexplored. For example, Nakamoto et al. [10] applied offline RL on two
platforms without analyzing cross-embodiment effects, and Springenberg et al. [11] focused on two
manipulators and toy tasks, leaving open the benefits and challenges of simultaneous pre-training
over many distinct embodiments.

In this work, we present the new benchmark and analysis of pre-training that combines offline re-
inforcement learning (offline RL) with cross-embodiment learning, using data collected from up to
16 distinct robot platforms. Our experiments highlight two main findings. First, the combination
of cross-embodiment pre-training with offline RL outperforms behavioral cloning under conditions
with abundant suboptimal data, while also producing models that can rapidly adapt to unseen robots.
Second, as both the proportion of suboptimal data and the number of robot types increase, perfor-
mance improvements become difficult to achieve for certain robots when using standard offline RL
methods. Furthermore, gradient similarity analysis reveals that inter-robot gradient conflicts are the
primary driver of this negative transfer, underscoring the necessity of conflict-aware optimization
when combining offline RL with cross-embodiment learning.

This paper makes the following four contributions:

1. We introduce and analyze the new benchmark that combines offline RL and cross-
embodiment learning, spanning up to 16 robot platforms.

2. We demonstrate that cross-embodiment pre-training with offline RL surpasses behavioral
cloning under suboptimal data conditions and accelerates adaptation to unseen robots.

3. We show that the difficulty of learning in offline RL with cross-embodiment dataset settings
increases with both the proportion of suboptimal data and the number of robot types.

4. We identify inter-robot gradient conflicts as the key factor underlying performance degra-
dation in high suboptimal data regimes, highlighting an important direction for future re-
search.



Our experiments reveal both the benefits and the limits of leveraging offline RL in cross-embodiment
settings. We see this benchmark and analysis as a concrete step toward large-scale training for robot
foundation models.

2 Related Works
2.1 Offline RL

Offline reinforcement learning (RL) seeks to learn a policy that maximizes cumulative reward solely
from a static dataset of interactions, without any further environment access [12]. In contrast to be-
havioral cloning (BC), which imitates logged behavior, offline RL can compose high-value behavior
by stitching together fragments from mixed-quality datasets, often outperforming pure imitation
when demonstrations include both expert and suboptimal trajectories [13, 14]. By optimizing objec-
tives that remain anchored to the data distribution and penalize unsupported actions, these methods
mitigate distribution shift and extrapolation error while still extracting policies that improve on the
average quality of the dataset [13, 14]. In this work, we adopt offline RL as a pre-training paradigm
for robot learning, enabling us to capitalize on broad and imperfect demonstration corpora, espe-
cially suboptimal rollouts that contain recoverable structure, and to furnish strong initial policies for
subsequent foundation-model-style training in robotics.

2.2 Cross-embodiment Learning

Cross-embodiment learning trains a single network on demonstration data from multiple robot mor-
phologies, enabling transfer of control priors across platforms. Since collecting large datasets for
any single robot is costly, requiring expert teleoperation, specialized hardware, and manual labeling,
pre-training on heterogeneous robot data has become a popular strategy to improve sample efficiency
and generalization [5, 6, 7]. However, existing cross-embodiment foundation models rely almost ex-
clusively on imitation learning [5, 6, 7], and there has been little work combining cross-embodiment
pre-training with offline RL. While Nakamoto et al. [10] applied offline RL to data from two robot
platforms, they did not analyze any cross-embodiment effects. Similarly, Springenberg et al. [11]
conducted offline RL on a dataset comprising two manipulators and several toy tasks but did not in-
vestigate the benefits or challenges of learning from many distinct embodiments simultaneously. To
fill this gap, we introduce the new benchmark that systematically combines offline RL with cross-
embodiment learning, analyze the interactions between these paradigms, and propose methods to
mitigate the challenges that arise when pooling heterogeneous and often suboptimal robot data.

3 Experimental setup

3.1 Problem Setting

We study multi-task offline RL in a heterogeneous robotics domain, where each “task” corresponds
to controlling a distinct robot morphology under a common state—action interface. Concretely, let T
denote a finite set of robot platforms (e.g., different quadrupeds, bipeds, hexapods) and let f™°™Ph
T — R% map each task 7 to a morphology descriptor f™°™! Each task 7 € T induces an MDP

M, = (8, A, P:(-|s,0),7-(s,a),7), 1)
where S C RY is the shared observation space (joint angles, velocities, etc.), A C R4a is the

continuous control space, P, (s’ | s,a) is a task-specific environment dynamics, 7, (s, a) is a dense
task-specific reward and v € (0, 1) is discount factor.

We assume access to a pooled offline dataset
N,
D = [ J{(s, a0, 8011,70,de) 11, )
TET

generated by an unknown behavior policy ms(a | s, f™°"P2(7)). Our goal is to learn a single param-
eterized policy g (a | s, f™°"Ph (7)) that maximizes the expected cumulative discounted return over



all tasks R = > >~ 7 ~v'r(s¢, ar), using only D. Rather than providing the policy with a one-hot
task index, we rely on morphology features (size, mass, link lengths, etc.), which we formalized as
the descriptor f™°"Ph(7), In this way, the same policy mg(a | s, f™°"PP(7)) can generalize across
tasks by conditioning on these universal state features.

3.2 Environments and dataset

To facilitate cross-embodiment pre-training under an offline RL paradigm, we constructed a new
locomotion dataset within the MuJoCo [15] simulation environment, following the walking tasks
of Bohlinger et al. [16]. Our dataset encompasses 16 distinct robot platforms—nine quadrupeds,
six bipeds, and one hexapod—each trained via Proximal Policy Optimization (PPO) [17]. During
training, we record at each time step the tuple (s, a¢, St41, ¢, di) to capture state, action, next
state, reward and done signals.

For each robot, we curate six variants of 1 M—step datasets, divided by motion direction (forward vs.
backward) and data quality:

* Expert data: 1 M steps collected by rolling out the fully converged PPO policy.

* Expert Replay data: all interaction steps from training start until expert-level performance
(~ 500 M steps in total), uniformly subsampled to 1 M steps to bound dataset size.

* 70% Suboptimal Replay data: 700k steps drawn from the early (suboptimal) phase of
PPO training, mixed with 300k steps from the late (expert-like) phase, totaling 1 M steps.

Each of these Expert, Expert Replay, and 70% Suboptimal Replay is provided in both forward
(advancing) and backward (retreating) variants, yielding a comprehensive benchmark for evaluating
offline RL combined with cross-embodiment learning. See Appendix A for dataset construction
details and Appendix B for reward distributions.

3.3 Network Architecture

In this section, we present our approach to cross-embodiment learning in an offline RL setting. The
central challenge is to train a single network across robots whose state and action dimensions dif-
fer. To address this, we adopt the URMA architecture proposed by Bohlinger et al. [16], which
enables multiple robots to share a single policy and state-value function. Concretely, URMA fac-
torizes each observation into an embodiment-agnostic general part o, and a robot-specific part. For
locomotion, the robot-specific stream is further split into variable-length sets of joint- and foot-level
observations, {0;}jc j(-) and {0y} ye p(r). Descriptor-conditioned attention aggregates each set into
fixed-size latents, which are concatenated with o, to form a morphology-agnostic core representa-
tion. To facilitate offline RL, we further extend URMA by introducing a state—action value function.
Specifically, we encode each action with an action encoder to obtain a latent action vector, which
we then concatenate with the latent representation of the URMA encoder. See Appendix C for
architectural details.

Learning algorithms. Unless otherwise noted, we use Implicit Q-Learning (IQL) [13] as our
offline RL objective for pre-training and evaluation, and train a Behavior Cloning (BC) baseline on
the same pooled data. Both methods share the URMA encoder and policy head; IQL additionally
uses the Q and V critics described above. Training schedules and hyperparameters are provided in
Appendix D.

4 Results

We conducted a series of experiments to systematically evaluate the combination of cross-
embodiment learning and offline reinforcement learning (offline RL) in robotic control. Our evalu-
ation focused on three main questions:



Table 1: Comparison between BC+Cross-Embodiment (CE) and IQL+CE across datasets.

Dataset BC + CE IQL + CE
Expert Forward 63.31+0.23 63.39+0.11
Expert Backward 67.17 +0.03 67.10 £ 0.03
Expert-Replay Forward 49.71 £2.37 54.61 £ 0.26
Expert—Replay Backward 42.87 +2.96 51.86 +3.49
70% Suboptimal Forward 30.52 +6.94 36.62 +2.29
70% Suboptimal Backward 4142 +1.58 38.69 +1.99
Mean 49.17 52.05

1. How does offline RL compare to imitation learning (IL) in cross-embodiment settings,
particularly when training data contains suboptimal trajectories?

2. To what extent does cross-embodiment pre-training improve single-robot fine-tuning?

3. Under what conditions does cross-embodiment learning lead to positive or negative transfer
across robot embodiments?

Experiments were performed on datasets from 16 distinct robots, covering locomotion tasks in both
forward and backward directions. The following sections show results for each research question in
turn.

4.1 Comparison of Imitation Learning and Offline RL

Here, we compare imitation learning, widely used in cross-embodiment training of foundational
robot models, with offline RL. To date, applications of offline RL to robot foundation models
have been rare, owing to the difficulty of learning from unlabeled interaction data; thus, a rigor-
ous evaluation is necessary. Table 1 presents the performance for behavioral cloning (BC) and an
implicit Q-learning (IQL) [13], commonly used offline RL method. On datasets with relatively
uniform behavioral quality (for example, Expert Forward and Expert Backward), BC and offline
RL achieve comparable results. In contrast, on datasets containing predominantly suboptimal tra-
jectories, specifically Expert-Replay Data and 70% Suboptimal Replay Data Forward, offline RL
methods surpass BC. This finding mirrors the results reported on benchmarks like D4RL [18] and
confirms that offline RL remains robust even when datasets include significant suboptimal data in a
cross-embodiment context.

4.2 Effects of Cross-Embodiment pre-training

We now evaluate how cross-embodiment pre-training impacts the performance of single-task fine-
tuning. Figure 2 shows the learning curves for a “leave-one-out” experiment: we pre-train via offline
RL on an Expert Forward dataset excluding one robot, then fine-tune that robot with pre-trained
networks, comparing it to a model trained without cross-embodiment pre-training. The pre-trained
model converges markedly faster. The results show that, for the quadrupedal robot Badger as well as
for the bipedal robots Unitree G1 and Cassie, the network pre-trained via a cross-embodiment dataset
is able to learn an effective policy more rapidly. These results demonstrate that cross-embodiment
learning serves as a highly effective pre-training strategy in offline RL.

4.3 Positive and Negative Transfer in Cross-Embodiment Learning with Suboptimal Data

In this section, we first compare the final performance of models trained on each robot in isola-
tion with models trained via cross-embodiment learning. Table 2 shows the final rewards achieved
by IQL when trained on a cross-embodiment dataset for the Expert Forward and 70% Suboptimal
Replay Forward conditions, along with the rewards obtained by models trained separately on each
robot. In the Expert dataset, the cross-embodiment models learn just as effectively as the single-
robot models.
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Figure 2: Comparison of learning curves between cross-embodiment pre-trained networks and net-
works trained without cross-embodiment pre-training for Badger, Unitree G1, and Cassie.

Table 2: Expert vs. 70% Suboptimal IQL Performance across Robots
Robot Expert Single Expert IQL + CE  70% Single IQL 70% IQL + CE

unitree al 53.76 53.70 14.49 22.24
unitree gol 54.02 54.04 14.50 45.18
unitree go2 53.50 53.52 13.50 52.34
anymal b 49.82 49.75 48.12 47.717
anymal ¢ 44.40 44.46 43.76 42.01
barkour v0 46.49 46.65 46.66 46.59
barkour vb 53.30 53.53 55.06 54.99
badger 52.96 52.90 15.97 45.33
bittle 37.05 37.04 45.75 44.95
unitree hl 54.06 53.45 54.35 0.81
unitree g1l 79.02 78.76 78.48 4.08
talos 108.42 108.40 75.34 9.74
robotis op3 88.98 88.31 102.79 98.16
nao v5 83.81 83.78 61.64 69.71
cassie 79.06 79.14 1.22 1.46
hexapod 76.77 76.83 0.83 0.49
mean 63.46 63.39 42.03 36.62

Next, we analyze training on the 70% Suboptimal Replay Forward dataset, which contains a large
proportion of suboptimal data. Although the average performance of cross-embodiment models falls
below that of the isolated models, certain quadrupedal robots, Unitree Al, Unitree Gol, Unitree
Go2, and Badger, show substantial performance gains. This suggests that positive transfer occurs
among the quadrupeds, likely because they contribute the largest share of data to the dataset.

By contrast, bipedal robots such as Unitree H1 and Unitree G1, which have relatively little
similar-embodiment data in the dataset, suffer pronounced performance degradation under cross-
embodiment learning compared to their isolated counterparts. Because this negative transfer does
not appear when using suboptimal data without cross-embodiment or when training on the Expert
dataset (which contains fewer suboptimal trajectories), we conclude that negative transfer emerges
only when a dataset combines large amounts of suboptimal data with the cross-embodiment training
regime. In the next chapter, we further investigate the causes of this newly observed phenomenon.

Analysis: Gradient Conflicts as a Cause of Negative Transfer. We hypothesize that when sub-
optimal data dominate the training set, simultaneous cross-embodiment learning induces negative
transfer through policy gradients conflicting gradients across robots. In particular, bipedal robots
(e.g., Unitree H1 and Unitree G1) are most affected, since the dataset contains relatively little data
from similarly embodied robots; these gradient conflicts can effectively cancel useful updates and
stall learning.



To quantify this effect, we analyze the actor gradients arising from an AWAC/IQL-style update.[13,
19] For each embodiment 7, we define the actor objective

LI(0) = —E(s.apnp, [w(s, a) logmo(a | s)],  w(s,a) = exp(B(Q(s,a) = V(5))). ()

in which (s, a) denotes the learned state-action value function and V'(s) denotes the learned state-
value function.

We denote the per-embodiment actor gradient by

gr = VoL7(0), “)
and measure inter-embodiment alignment via the pairwise cosine similarity
Clrry) = (o9 )
||g7'i ||g7'j H

Figure 3a reports, during training, the proportion of pairwise cosine similarities that are negative
(.e., C[r;, ;] < 0) for three datasets: Expert Forward, 30%-suboptimal-replay Forward, and 70%
Suboptimal Replay Forward. As the proportion of suboptimal data increases, the share of neg-
ative cosines increases, indicating more frequent gradient conflicts between robots. This is ex-
pected because suboptimal trajectories increase the approximation and bootstrapping errors and
variances in the learned critics @ and V. These errors alter the importance weights w(s,a) =
exp(B(Q(s,a) — V(s))), thus misaligning the update directions between robots and increasing the
incidence of conflicts. Furthermore, for robots whose performance changed substantially (absolute
reward difference > 10) between cross-embodiment and single robot training in the 70% Subopti-
mal Replay dataset, we plotted the reward difference against their average gradient cosine similarity
with all other robots. A strong positive correlation (r = 0.815) emerged: robots that exhibit positive
transfer have more aligned gradients, whereas those with large negative transfer exhibit greater gra-
dient conflict. These findings confirm that gradient conflicts underlie the negative transfer observed
when applying cross-embodiment learning to datasets rich in suboptimal data.

Next, we examine how gradient conflicts change as the number and diversity of robots increase
(Figure 3b). Using the 70% Suboptimal Forward dataset, we progressively expanded the set of
included robots: a relatively similar group (Unitree Al, Gol, Go2), then all nine quadrupeds, and
finally all 16 robots. As we include more diverse robots, each robot exhibits a higher fraction of
negative pairwise cosine similarities with the others (C' < 0). In other words, greater embodiment
diversity leads to more negative cosine similarities and more frequent gradient conflicts, making
negative transfer more likely. Further distributional analysis is provided in the AppendixE.
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Figure 3: Fraction of negative pairwise gradient cosine similarities. Higher values indicate
stronger gradient conflicts and greater negative-transfer risk.



5 Conclusion

In this work, we presented the new benchmark and analysis of combining offline reinforcement
learning with cross-embodiment learning across up to 16 distinct robot platforms and varying pro-
portions of suboptimal data. Our experiments revealed three main findings. First, offline RL, exem-
plified by IQL, consistently outperforms behavioral cloning in settings where the dataset contains
substantial suboptimal trajectories, confirming its robustness in cross-embodiment contexts. Second,
cross-embodiment pre-training accelerates subsequent fine-tuning on unseen robots, demonstrating
its effectiveness as a strategy for leveraging heterogeneous datasets to improve sample efficiency.
Third, we observed that when both the number of robot types and the proportion of suboptimal
data are high, performance on certain embodiments, especially those with little representation from
similar morphologies, can degrade due to negative transfer.

Through gradient similarity analysis, we identified inter-robot gradient conflicts as a key mechanism
underlying this degradation, establishing a quantitative link between gradient alignment and transfer
outcomes. These insights highlight that while the combination of offline RL and cross-embodiment
learning is a promising route toward scalable robot foundation models, mitigating gradient conflicts,
particularly in the presence of abundant suboptimal data, remains an open challenge. As a priority
for future work, we should develop methods to mitigate inter-robot gradient conflicts; specifically,
we propose investigating optimization algorithms that are robust to such conflicts, embodiment-
aware data-sampling strategies, and multi-task learning approaches that explicitly model and resolve
inter-task competition, with the goal of further unlocking the potential of this paradigm.

6 Limitations

While our study demonstrates the benefits of combining offline RL with cross-embodiment learning,
several limitations remain. First, all experiments were conducted in simulation on locomotion tasks;
we did not evaluate on real-world robot data or deploy learned policies on physical hardware, where
sensing noise, actuation latency, and safety constraints can materially affect performance and data
quality. Second, our benchmark emphasizes locomotion and may not faithfully capture the charac-
teristics of manipulation, which often involves contact-rich dynamics, object-centric observations,
and different data distributions; thus, the extent to which our conclusions transfer to manipulation
remains unclear. Third, although we identify inter-robot gradient conflicts as a driver of negative
transfer, we leave the design and evaluation of mitigation strategies to future work. Addressing
these limitations will be essential to scaling robot foundation models beyond controlled simulation
settings.
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A Dataset Construction Details
This appendix describes how each dataset used in our experiments was constructed.

A.1 Expert Dataset

The Expert dataset was collected using an expert model that can walk almost perfectly according to
a given command. For each robot, we independently trained a PPO policy to convergence and used
it to generate data. Starting from the environment’s default initial state, we sampled actions from
the Gaussian distribution predicted by the trained policy to log trajectories. For the Forward dataset,
we issued a command to walk forward at 1 m/s; for the Backward dataset, we issued a command to
walk backward at 1 m/s.

A.2 Expert Replay Dataset

The Expert Replay dataset contains interaction data collected from the beginning of training up to
the point at which the model can walk according to the given command (e.g., move forward at
1 m/s for the Forward condition). Storing all PPO interaction data is impractical due to PPO’s low
sample efficiency, which would result in extremely large data volume and step counts. We therefore
constructed a uniformly thinned 1 M-step dataset via the following procedure:

(1) Environment selection and full logging. Among the 48 parallel environments used for train-
ing, we selected one and fully recorded all rollouts (approximately 10 M steps) in that environment,
thereby capturing trajectories from the initial exploration phase through to near convergence.

(2) Extract data up to just before convergence. From the saved logs, we reconstructed episode
boundaries and computed each episode’s return and length. We then applied a moving average to
episode returns and identified the first point at which performance reached 90% of the final perfor-
mance. Data up to just before this point were retained as the candidate set, while the subsequent
steps, during which performance increases only slowly toward full convergence, were omitted.

(3) Uniform thinning to 1 M steps. If the total number of steps in the candidate set exceeded 1 M,
we down-sampled by discarding episodes at equal intervals with respect to cumulative steps. This
preserved the overall distribution while reducing the dataset to approximately 1 M steps.

Using this shared procedure, we created the replay datasets for all robots. For the Forward datasets
of Unitree A1, Gol, and Go2, the default PPO hyperparameters led to local optima. To encourage
exploration and avoid such local optima, we trained these policies with an increased policy entropy
coefficient, entropy_coef = 0.1, and used the resulting data.
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A.3 X% Suboptimal Dataset

The X % Suboptimal dataset is constructed so that X % of the data are suboptimal. In particular, the
70% Suboptimal dataset used in our experiments contains a relatively large proportion of suboptimal
trajectories. Whereas the Replay dataset samples evenly from early to late training phases, the X %
Suboptimal dataset is formed by sampling X % from the early training phase and 100 — X% from
the late training phase.

B Dataset Details

Figure 4 overlays histograms of the total reward per episode for the Forward datasets, comparing the
three data quality levels used throughout the paper: Expert Forward, Expert Replay Forward, and
70% Suboptimal Forward.

Overall, three consistent patterns emerge: (i) Expert datasets are sharply concentrated at higher
returns, indicating that most episodes achieve near-target performance; (ii) Expert Replay exhibits a
broad spread that reflects a mixture of early failures and late competent behavior accumulated during
training; (iii) 70 % Suboptimal shifts mass toward lower returns, with many episodes clustered near
the low-reward region.Notably, while the 70 % Suboptimal dataset contains only a small fraction of
high-return episodes, those episodes tend to be considerably longer; when weighting by time steps,
they account for approximately 30% of all steps. We observe qualitatively similar distributions for
the Backward datasets.

These distributional differences clarify why offline RL tends to outperform pure imitation when
suboptimal data are abundant: objectives that reweight actions by estimated advantages can discount
low-quality behaviors while still leveraging recoverable structure present in Replay and Suboptimal
corpora.
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Figure 4: Overlaid histograms of per-episode total reward (x-axis) vs. episode proportion (y-axis) for
Forward datasets across all robots. Each panel corresponds to a robot; colors denote Expert, Expert
Replay, and 70% Suboptimal. Expert concentrates at high returns, Replay spans a wide range, and
70% Suboptimal places substantial mass on low returns. Vertical solid line: median; vertical dashed
lines: 25th and 75th percentiles.
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C Architecture Details

Encoder (URMA). We split each observation into general o, and robot-specific streams. For
locomotion, the latter is subdivided into joint- and foot-level sets {0, } ;e 7(r)> {0y } fe p(r) With per-
item descriptors d;, d;. Descriptors and observations are encoded by MLPs f, : R — R and
fo R —RL4. URMA uses descriptor-conditioned attention that gates each latent dimension:

o 2452)
Zjoints = sz7 i = u +€d f’l/J(Oj)' (6)
e 27)
Lq

In the same way, we obtain Zgee, from {o;, ds}, and finally form a single latent vector by concate-
nation z = concat [0g, Zjoints, Zteet | -

Actor Network. A core MLP hy maps the encoder output to an action latent:
Zaction = he(?). (7)

Per joint, the action head decodes Gaussian parameters from the tuple (encoded descriptor, joint
latent, action latent) and samples an action:

aj ~ N(Mu(dtjv Zactiona Zj), Uu(d{;))7 d(; = gw(dj)
Here p,, and o, are MLPs.

State value network. The state value network use the encoder and predicts a state value from the
latent:

Ve(z) = ve(2), ®)
implemented as an MLP (e.g., [512, 256, 128]).

State-action value network For offline RL, we add an action encoder f, : R4 —RLa and form
a joint latent for Q):

Za = fala),  QY(2,a) = ¢{F(concat[z, z,]), ke {1,2}. )

To accommodate heterogeneous action sizes, we feed f, a zero-padded action vector ¢ € R%max
(padded to the maximum action length across robots).

Joints

Foots

— Repeat j H
-m j— -
2 Foots _’D
URMA
j_’ D Action

oy

(a) URMA encoder. Descriptor-conditioned attention aggregates (b) State—action value network: The
joint/foot latents into a fixed-size embedding. action latent vector is concatenated
with other latent vectors.

Figure 5: Model overview: (a) URMA encoder; (b) State-action value network.

D Hyperparameters and Training Details

This appendix summarizes the hyperparameters and training procedures used for reproducibility.
Unless otherwise noted, values are shared across all robots.
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D.1 IQL and BC Hyperparameters for Training

Hyperparameters for IQL and BC are listed below.

Table 3: IQL and BC hyperparameters (common)

Parameter IQL BC
Discount factor 0.99 -
Value expectile Texp 0.7 -

Policy temperature (AWAC) 3.0 -
Target network EMA Tiyee 0.005 -

Batch size per robot 256 256
Learning rate 3e-4 3e-4
Offline updates le5 1e5
Max grad norm 0.5 0.5

D.2 PPO Hyperparameters for Dataset Generation

Representative PPO hyperparameters used for dataset collection (consistent with Appendix A).

Table 4: PPO hyperparameters (dataset collection)

Parameter Value
Total batch size / update 522240 (48 envs x 10880 steps)
Minibatch size 32640

SGD epochs per update 10
Learning rate (init — final)  0.0004 — 0.0 (linear anneal over 100M steps)

Entropy coefficient 0.00r0.1
Discount factor vy 0.99
GAE )\ 0.9

Clip range (PPO ¢) 0.1

Max gradient norm 5.0
Parallel environments 48

E Detailed analysis of gradient conflicts

We further analyze gradient conflicts by collecting the pairwise cosine similarities C|[r;, ;] for all
robot pairs and training steps, and aggregating them into histograms (see Figure 6). Two consistent
trends emerge:

(i) Effect of suboptimal data. As the proportion of suboptimal trajectories increases, the fraction
of pairs with C' < 0 grows. Moreover, within the negative region (C' < 0), the share of values
close to —1 increases with the proportion of suboptimal data, indicating a stronger misalignment per
update and a higher probability of negative transfer. Consistently, the mean cosine C' decreases as
the suboptimal fraction increases. Overall, these results show that increasing suboptimal data makes
gradient conflicts both more frequent and more severe.

(ii) Effect of embodiment diversity. As we include more and more diverse embodiments, the frac-
tion of pairs with C' < 0 increases, while the share of strongly aligned pairs (large positive C)
diminishes. The mean cosine C also gradually declines as the embodiment diversity increases. To-
gether, these effects indicate that greater embodiment diversity amplifies gradient conflicts, thereby
increasing negative transfer and making positive transfer less likely.
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(a) Varying suboptimal-data proportion. (b) Varying embodiment diversity.

Figure 6: Histograms of pairwise cosine similarities C[7;, 7;] aggregated over training. In both
settings—(a) higher suboptimal-data ratios and (b) greater embodiment diversity—the fraction with
C < 0 increases; within C' < 0, mass concentrates at more negative values. Solid lines indicate the
mean C.
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