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ABSTRACT

Unlike standard deep neural networks (DNNs), Bayesian neural networks (BNNs)
formulate network weights as probability distributions, which results in distinctive
representation capacities from standard DNNs. In this paper, we explore the repre-
sentation bottleneck of BNNs from the perspective of conceptual representations.
It is proven that the logic of a neural network can be faithfully mimicked by a
specific sparse causal graph, where each causal pattern can be considered as a
concept encoded by the neural network. Then, we formally define the complexity
of concepts, and prove that compared to standard DNNs, it is more difficult for
BNNs to encode complex concepts. Extensive experiments verify our theoretical
proofs. The code will be released when the paper is accepted.

1 INTRODUCTION

Unlike standard deep neural networks (DNNs), Bayesian neural networks (BNNs) represent network
weights as probability distributions. Therefore, BNNs exhibit distinctive representation capacities
from standard DNNs. Existing studies (Blundell et al., 2015; Gal & Smith, 2018; Kristiadi et al.,
2020; Carbone et al., 2020; Wenzel et al., 2020; Krishnan et al., 2020; Zhang et al., 2022) usually
analyzed BNNs in terms of generalization power, adversarial robustness, and optimization.

Unlike the above studies, this paper focuses on a new perspective to investigate the representation
capacity of BNNs, i.e., which types of concepts are more likely or less likely to be encoded by a
BNN. Specifically, we discover and theoretically prove that BNNs are less likely to encode complex
concepts than standard DNNs.

Representing concepts encoded by a neural network. Mathematically formulating concepts en-
coded by a neural network has been considered as a big problem for decades. Fortunately, Ren et al.
(2021a) have proven that a specific sparse causal graph can faithfully explain the inference logic of
a neural network. In the causal graph, each intermediate node is a causal pattern, which encodes
the AND relationship between a set of input variables. For example, in face recognition, when eyes,
nose, and mouth appear together, they form a causal pattern = {eyes, nose, mouth}. In this way, each
causal pattern can be considered as an interactive concept encoded by the neural network.

More importantly, the following faithfulness and sparsity of using the causal graph to explain a
neural network further guarantee the trustworthiness of using causal patterns to represent concepts
encoded by the neural network. Given an input sample with n variables, there are 2n different ways
to randomly mask input variables. It is proven (Ren et al., 2021a) that we can usually construct
a sparse enough causal graph, which only contains as few as tens of causal patterns (interactive
concepts), such that the causal graph can accurately mimic the output of the neural network on as
many as 2n randomly masked samples.

Specifically, we can further understand an interactive concept (causal pattern) encoded by a neural
network as follows. In fact, the neural network usually does not consider each input variable (e.g., a
patch in an image) to work independently. Instead, the neural network encodes an AND relationship
between a set S of input variables to form an interactive concept for inference, which can be logically
represented as I(S = {eyes, nose, mouth}) = US · exist(eyes) · exist(nose) · exist(mouse), in the above
example of face recognition. If any image patch in the set S = {eyes, nose, mouth} is masked, the
face concept will be deactivated, and a causal effect US is removed from the inference score.
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Figure 1: (Left) The causal graph explanation of a neural network. (Right) The faithfulness of the
causal graph explanation. Specifically, for all 2n masked input samples xS , all outputs v(xS) of a
neural network can be well mimicked by the outputs Y (xS) of the corresponding causal graph.

Conceptual complexity. We define the complexity of an interactive concept S as the number of
variables in the set S, which is also termed the order of the interactive concept, i.e., order(S) =
|S|. Then, a low-order interactive concept represents a relatively simple collaboration among a few
variables, and a high-order interactive concept reflects a relatively complex collaboration among a
large number of variables.

We discover and theoretically prove that compared to standard DNNs, it is more difficult for
BNNs to encode high-order (complex) interactive concepts. Specifically, we progressively prove
this conclusion through the following three steps.

First, it is difficult to theoretically analyze interactive concepts encoded by BNNs, because BNNs
represent network weights as probability distributions. To this end, we demonstrate that we can use a
surrogate DNN model, which is constructed by adding perturbations to both the input and low-layer
features of a standard DNN, to mimic feature representations of a BNN. In this way, we can directly
analyze the surrogate DNN model with feature uncertainty, instead of investigating the BNN with
weight uncertainty.

Second, we theoretically prove that in the surrogate DNN model, high-order interactive concepts are
more sensitive to random perturbations than low-order interactive concepts.

Third, we theoretically prove that the sensitivity makes high-order interactive concepts difficult to
be learned when features are perturbed. In this way, we can conclude that high-order interactive
concepts are also less likely to be learned by the BNN when its weights are perturbed.

In addition, extensive experiments showed that the strength of high-order (complex) interactive con-
cepts encoded by BNNs was weaker than those encoded by standard DNNs, which verified the above
theoretical conclusion.

Potential values of our theoretical proof. This study clarifies the shortcoming of the BNN in
encoding complex concepts, which may explain the inferior performance of the BNN from a new
perspective. Furthermore, it has been found that the complexity (order) of interactive concepts
encoded by a neural network is closely connected with the generalization power (Lengerich et al.,
2022) and adversarial robustness (Ren et al., 2021b) of the neural network. Therefore, our study
sheds new light on further explaining the representation capacity of BNNs.

2 REPRESENTATION BOTTLENECK OF BNNS

Unlike standard DNNs, a BNN represents each weight in the network as a probability distribution,
instead of a fixed value. In this paper, let us limit our study to the scope of classical BNNs, in
which all weightsW are formulated as a Gaussian distribution N (W ;µ,Σ) (Blundell et al., 2015),
and the covariance matrix Σ is a diagonal matrix. All extended versions (e.g., Gal & Ghahra-
mani (2016)) are not discussed. The BNN learns parameters θ = (µ,Σ), and we use qθ(W )
to represent the weight distribution. Let us consider a classification task given the training data
D = {(x(1), y(1)), . . . , (x(n), y(n))}. A typical way of training a BNN (Blundell et al., 2015) is to
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minimize the Kullback-Leibler (KL) divergence between the distribution qθ(W ) and the posterior
distribution p(W |D).
θ∗ = argmin

θ
KL[qθ(W )∥p(W |D)] = argmin

θ
−EW∼qθ(W )[log p(D|W )] + KL[qθ(W )∥p(W )], (1)

where the first term is the classification loss, and the second term is the KL divergence between
qθ(W ) and the prior distribution of weights p(W ), which is usually formulated as a Gaussian distri-
bution N (W ;0, I). In addition, given a testing sample x, the inference of the BNN is conducted as
follows. First, network weights are sampled from the weight distribution qθ(W ) to construct multi-
ple neural networks. Then, each network is used to conduct inference on the sample x, and the final
inference result p(y|x) is computed as the average classification probability of all these networks.

p(y|x) = EW∼qθ(W )[p(y|x,W )] (2)

2.1 REPRESENTING A NEURAL NETWORK BY INTERACTIVE CONCEPTS

• Explaining a neural network as a causal graph. In fact, Ren et al. (2021a) have proven that
the inference logic of a neural network can be represented as a specific sparse causal graph. Given
a trained neural network v and an input sample x = [x1, · · · , xn] with n input variables indexed by
N = {1, . . . , n}, the inference logic of the neural network can be well mimicked by the corresponding
causal graph. As illustrated in Figure 1, the causal graph consists of three layers. The first layer
contains n nodes. Each node indicates whether each input variable xi is present or masked, and the
masking state of xi is denoted by an indicator variable Ai ∈ {0, 1}. The second layer is composed
of all causal patterns in the set Ω ⊆ 2N = {S|S ⊆ N}. Each causal pattern encodes an AND
relationship between input variables in the subset S ⊆ N . Accordingly, each node CS ∈ {0, 1} in the
second layer represents the triggering state of each causal pattern. For example, in face recognition,
only when input variables in the set S = {eyes, nose, mouth} all appear together, the face pattern will
be triggered (CS = 1); otherwise, the face pattern will be deactivated (CS = 0). The third layer
contains a single node Y ∈ R as the output of the causal graph. Therefore, the transition probability
of the specific causal graph can be calculated as

P (CS = 1|A1, A2, . . . , An) =
∏

k∈S
Ak, P (Y |{CS |S ∈ Ω}) = 1(Y =

∑
S∈Ω

CS ·US). (3)

Here, P (CS = 0|A1, A2, . . . , An) = 1 − P (CS = 1|A1, A2, . . . , An). In addition, US ∈ R and 1(·)
denotes the indicator function.
Theorem 1. Given an input sample x with n input variables, let xS denote a masked input sample,
where variables in N \ S are masked and variables in S keep unchanged. It is proven that for each
neural network v, there exists a specific causal graph (parameterized by {US′ |S′ ∈ Ω}), such that
for any arbitrarily masked input sample xS , the output v(xS) of the neural network can be well
mimicked by the output Y (xS) of the causal graph, i.e.,

∃ Ω ⊆ 2N ,∃{US′ |S′ ∈ Ω}, s.t., ∀S ⊆ N, v(xS) = Y (xS) (4)
where Y (xS) denotes the output of causal graph (see Eq. (5)) on the masked sample xS by setting
Ai = 1(i ∈ S). In particular, a special solution of the causal effects US (the causal graph) satisfying
the above equation is the Harsanyi dividend (Harsanyi, 1963), US =

∑
S′⊆S(−1)|S|−|S′|v(xS′).

Faithfulness of the causal graph. Given a neural network v, Theorem 1 shows the faithfulness of
the corresponding causal graph explanation. Theoretically, given an input sample x with n input
variables, there are as many as 2n different ways of masking input variables in all potential subsets
S ⊆ N , so as to obtain 2n masked samples xS . Theorem 1 proves that for all the exponential number
of arbitrarily masked samples xS , diverse outputs v(xS) of the neural network can be well mimicked
by outputs Y (xS) of the corresponding causal graph. In this way, it is theoretically supported that
the inference logic of the neural network can be faithfully explained as a specific causal graph.

Sparsity of the causal graph. Remark 1 shows that the inference logic of a neural network can
usually be explained by a very sparse causal graph.
Remark 1. Causal effects US of most causal patterns are actually negligible, i.e., |US | ≈ 0, and only
a few salient causal patterns have significant causal effects. Thus, instead of enumerating all subsets
of input variables (∀S ⊆ N), we can find a sparse subgraph, which contains a few causal patterns
with top-ranked causal effects in the set Ω′ ⊆ Ω, |Ω′| ≪ 2n, such that the output of the neural network
can be approximated by the sparse causal graph, i.e., v(xS) ≈ Y (xS |Ω′). The sparsity of the causal
graph is empirically verified in Appendix B.
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• Understanding causal patterns in the causal graph as interactive concepts. The faithfulness
and sparsity of the causal graph guarantee that the logic of a neural network can be well explained
by a relatively small number of causal patterns. Specifically, the transition probability in Eq. (3) of
the causal graph can be rewritten as the following structural causal model (SCM) (Pearl, 2009)

Y (xS) =
∑

S′∈Ω
I(S′), where I(S′) = US′ · CS′(xS) = US′ ·

∏
i∈S′

Ai (5)

The above equation indicates that the output Y (xS) of the causal graph is the sum of causal effects of
all causal patterns, where US denotes the causal effect of the causal pattern S. Each causal pattern, in
particular, indicates an AND relationship between multiple input variables, which can be considered
as an interactive concept memorized by the neural network. For example, the causal pattern S =
{eyes, nose, mouth} can be understood as an interactive concept. Only when eyes, nose, and mouth
co-appear, the interactive concept will be triggered (CS = 1) and make a causal effect I(S) = US

on the output of the causal graph. In contrast, the absence of any input variables will deactivate the
interactive concept and remove the causal effect, i.e., CS = 0 and I(S) = 0.

• Conceptual complexity. Given an interactive concept S, its complexity is defined as the num-
ber of input variables in the set S, which is also termed the order of the interactive concept, i.e.,
order(S) = |S|. In this way, a low-order interactive concept in the causal graph encodes a rela-
tively simple collaboration among a small number of input variables, while a high-order interactive
concept represents a relatively complex collaboration among a large number of input variables.

2.2 APPROXIMATING WEIGHT UNCERTAINTY BY ADDING INPUT PERTURBATIONS

As proven above, a sparse causal graph can well mimic the network output on all 2n arbitrarily
masked input samples, which guarantees the trustworthiness of using interactive concepts to explain
a network. In the following subsections, we further prove that compared to standard DNNs, it
is more difficult for BNNs to encode high-order (complex) interactive concepts, which represent
intricate collaborations between a large number of input variables.

However, unlike standard DNNs, a BNN formulates each weight as a probability distribution, which
boosts the difficulty of theoretically analyzing a BNN. Therefore, the first step of our work is to
add random perturbations to both input variables and low-layer features of a standard DNN, and to
demonstrate that such a perturbed DNN can well approximate feature representations of a BNN, as
a surrogate DNN model. In other words, we demonstrate that introducing uncertainty to weights in
the BNN can be approximated by adding perturbations to input variables and low-layer features.

Let us consider a feed-forward BNN, which has L cascaded linear layers and ReLU layers. Given
an input sample x ∈ RD0 (D0 = n), the feature of the l-th layer h(l) ∈ RDl is computed as follows.

∀ 1 ≤ l ≤ L, h(l) =W (l)(· · ·Φ(1)(W (1)x+ b(1)) · · · ) + b(l), (6)
where W (l) ∈ RDl×Dl−1 and b(l) ∈ RDl denote the weight matrix and bias of the l-th linear
layer, respectively. In the BNN, W

(l)
ij ∼ N (W

(l)
ij , (σ

(l)
ij )

2) is independently sampled from Gaus-
sian distributions. We use µW (l) = [W

(l)
ij ] ∈ RDl×Dl−1 to denote the mean of the weight ma-

trix. Besides, b(l) ∼ N (µb(l) ,Σb(l)), where Σb(l) is a diagonal matrix. The diagonal matrix
Φ(l) = diag(ϕ

(l)
1 , · · · , ϕ(l)

Dl
) ∈ {0, 1}Dl×Dl denotes binary gating states of the l-th ReLU layer.

Therefore, given an input sample x, let us focus on the feature h(l) of the l-th layer in the BNN,
which follows a specific distribution p(h(l)). Then, we construct the surrogate DNN model with
the same architecture as the BNN, and the parameters of this surrogate DNN model ψ are set as
the mean of the weight distribution and the mean of the bias distribution in the BNN, i.e., ψ =
{µW (l) ,µb(l)}

L
l=1. Then, we add perturbations ∆x ∼ N (0,Σ∆x) to input variables and perturbations

∆h(l′) ∼ N (0,Σ
∆h(l′)) to features between the first layer and the (l− 1)-th layer, in order to let the

feature distribution p(h̃(l)|ψ,∆) of the l-th layer in the surrogate DNN model to mimic the feature
distribution p(h(l)) in the BNN. In this way, the objective function of approximation is formulated
as minimizing the following KL divergence.

∀ 1 ≤ l ≤ L, min
∆

KL(p(h(l))∥p(h̃(l)|ψ,∆)). (7)

where ∆ = {Σ∆x,Σ∆h(1) , . . . ,Σ∆h(l−1)} denotes covariance matrices of perturbations added to
input variables and intermediate-layer features of the surrogate DNN model. In addition, Σ∆x and
Σ

∆h(l′) are diagonal matrices.
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Figure 2: Comparison between the feature distribution of the BNN and the feature distribution of the
surrogate DNN model. We randomly selected a feature dimension from each layer of the network.
Each sub-figure compares feature distributions between the BNN and the surrogate DNN model in
the selected dimension. Please see Appendix F.1 for comparison results on tabular datasets.

However, it is difficult to directly optimize Eq. (7). Therefore, we learn ∆ in a layer-wise
manner, as follows. First, we learn the covariance matrix Σ∆x on input variables to match
the first-layer feature of the surrogate DNN model to the first-layer feature of the BNN, i.e.,
minΣ∆x KL(p(h(1))∥p(h̃(1)|ψ,Σ∆x)). Then, we keep Σ∆x fixed, and learn the covariance ma-
trix Σ∆h(1) on the first-layer feature to fit feature distributions of the second layer by minimizing
KL(p(h(2))∥p(h̃(2)|ψ,Σ∆x,Σ∆h(1))). We recursively learn the covariance matrix of the upper layer
by fixing covariance matrices in all lower layers, until the last layer.

• Experiments. We trained BNNs on image datasets and tabular datasets to verify the quality of
using the surrogate DNN model to approximate the feature distribution of the BNN. For image
datasets, we tested BNNs with two architectures. For the MNIST dataset (LeCun et al., 1998), we
constructed a BNN with the architecture of a 5-layer MLP. We also tested a BNN with the LeNet
architecture (LeCun et al., 1998), which was trained on the CIFAR-10 dataset (Krizhevsky et al.,
2009). We used two tabular datasets, including the UCI TV news dataset (termed TV news) and the
UCI census income dataset (termed Census) (Dua & Graff, 2017). We constructed BNNs with an
8-layer MLP architecture for these tabular datasets. All MLPs contained 100 neurons in each hidden
layer. For each BNN, we constructed a corresponding surrogate DNN model. Please see Appendix
E for training details and experimental details. Figure 2 shows that the feature distribution of the
surrogate DNN model well matched the feature distribution of the BNN.

Experimental results showed that the weight uncertainty in a BNN could be well approximated by
adding random perturbations to both input variables and low-layer features.

2.3 HIGH-ORDER INTERACTIVE CONCEPTS ARE SENSITIVE TO PERTURBATIONS

In the above subsection, we have demonstrated that introducing the weight uncertainty in a BNN
is approximately equivalent to adding random perturbations to both input variables and features
of different layers. However, simultaneously adding perturbations to features of multiple layers
significantly boosts the difficulty of analysis. Fortunately, adding perturbations to output features of
the l-th layer can be considered as perturbing input variables of the (l + 1)-th layer. Hence, we can
analyze interactive concepts in a much simpler case that we perturb input variables of a certain layer,
instead of investigating the complex case of simultaneously perturbing features of different layers.

In this subsection, we theoretically prove that high-order interactive concepts are more sensitive to
input perturbations than low-order interactive concepts. To facilitate the proof, given the function of
a network v(x), we first derive the analytical form of causal effect I(S) of an interactive concept.

Lemma 1 (Proof in Appendix A.2). Originally, the causal effect in Eq. (5) is defined as a binary
variable in the causal graph, I(S) ∈ {US , 0}. Given a continuous network function v(x), we can use
the following Taylor expansion to decompose the network output, which extends the causal effect
I(S) to a continuous function. This continuous function well fits the binary states of I(S) on all the
2n masked samples x′ with different masking states, i.e., x′ ∈ {xT |∀T ⊆ N}.

v(x′) =
∑

S⊆N

∑
π∈QS

US,π · J(S,π|x′) ⇒ I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′), (8)

where J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) · x′
i−ri
τ

)πi

denotes a Taylor expansion term of the de-
gree π. Here, π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0}. In addition,
US,π=

τm∏n
i=1 πi!

∂mv(x∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − ri)]

πi , s.t. m =
∑n

i=1 πi. v(x∅) indicates the network
output when we mask all input variables to reference values ri. Moreover, CS(x

′) = I(S|x′)/US .
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In Lemma 1, the reference value ri of the input variable xi is set as follows. Let Ex[xi] denote
the average value of the input variable xi over all input samples, which is usually regarded as a
no-information state of this input variable (Ancona et al., 2019). In this paper, we remove the
information from the input variable xi by pushing xi by a large enough distance τ towards its mean
value. In other words, if xi > Ex[xi], we set the reference value ri = xi − τ ; otherwise, ri = xi + τ .
Here, τ ∈ R is a pre-defined constant. Furthermore, compared to directly setting ri = Ex[xi], the
above setting ensures comparable perturbation magnitudes over different input dimensions.

Based on Lemma 1, we analyze the sensitivity of the causal effect I(S), when we add a small
Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. To simplify the proof, we can ignore
the extremely low probability of large perturbations |ϵi| ≥ τ , because of the small variance σ2.

Let us start with the simplest case in Lemma 1. Since people usually adopt low-order Taylor expan-
sion for approximation in real implementations, we first approximate the causal effect I(S|x′) using
the expansion term of the lowest degree (corresponds to π̂ satisfying ∀i ∈ S, π̂i = 1;∀i ̸∈ S, π̂i = 0).
In this case, the causal effect I(S|x′) is given by I(S|x′) ≈ US,π̂ · J(S, π̂|x′), according to Eq. (8).
Theorem 2 (Proof in Appendix A.3). If we only consider the approximation based on the lowest
degree π̂, then the mean and variance of I(S|x+ ϵ) over different perturbations ϵ are given as

Eϵ[I(S|x+ ϵ)] = US,π̂, Varϵ[I(S|x+ ϵ)] = U2
S,π̂((1 + (σ/τ)2)|S| − 1) (9)

Theorem 2 proves that the variance Varϵ[I(S|x+ ϵ)] increases along with the order |S| of the inter-
active concept in an exponential manner. It indicates that high-order interactive concepts are much
more sensitive to input perturbations than low-order concepts. Furthermore, as mentioned in Section
2.2, since we can add perturbations to a surrogate DNN model to well mimic feature representations
of a BNN, we can consider that high-order interactive concepts encoded by the BNN are much
more sensitive to weight uncertainty in the BNN than low-order concepts.

Furthermore, we can extend Theorem 2 to a more general case, where we use a higher-order Taylor
expansion to represent I(S|x′).
Theorem 3 (Proof in Appendix A.4). Let π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+;∀i ̸∈ S, πi = 0}
denote an arbitrary degree. Then, the mean and the variance of J(S,π|x+ ϵ) over ϵ are given as

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏
i∈S

(1 +
ϵi
τ
)πi ], Varϵ[J(S,π|x+ ϵ)] = Varϵ[

∏
i∈S

(1 +
ϵi
τ
)πi ] (10)

Theorem 4 (Proof in Appendix A.5). Let S′ be an interactive concept extended from the concept S,
i.e., S ⊊ S′. Let us consider expansion terms J(S,π) and J(S′,π′), where the term J(S′,π′) can be
considered being extended from the term J(S,π) with π ≺ π′. I.e., (1) ∀i ∈ S′, π′

i ∈ N+; otherwise,
π′
i = 0. (2) Given π′, ∀j ∈ S, πj = π′

j; otherwise, πj = 0. Then, we have

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
>
∏

i∈S′\S
E2
ϵi [(1 +

ϵi
τ
)π

′
i ],

Eϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S
′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]
<

1∏
i∈S′\S Eϵi [(1 +

ϵi
τ
)π

′
i ]
,

(11)

and it is easy to obtain Eϵi [(1 +
ϵi
τ
)π

′
i ] ≥ 1.

Remark 2. According to Theorem 4, we can obtain that for an arbitrary degree π of the interactive
concept S, Varϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)] increases in an exponential manner along with
|S′ \S| = |S′| − |S|. Therefore, we can roughly consider that Varϵ[J(S,π|x+ ϵ)] increases exponen-
tially w.r.t. the order |S|. Furthermore, according to Lemma 1, I(S|x + ϵ) can be re-written as the
weighted sum of J(S,π|x + ϵ). Since coefficients US,π w.r.t. different S and π are usually chaotic,
we can consider that the sensitivity of I(S|x + ϵ) also grows exponentially along with the order
|S| of the interactive concept S. In addition, Theorem 4 also proves the approximately exponential
decrease of Eϵ[J(S

′,π′|x+ϵ)]/Varϵ[J(S
′,π′|x+ϵ)]

Eϵ[J(S,π|x+ϵ)]/Varϵ[J(S,π|x+ϵ)] along with |S′|−|S|. Similarly, we can obtain that the
relative stability Eϵ[I(S|x+ ϵ)]/Varϵ[I(S|x+ ϵ)] decreases along with the order |S|.

• Conclusions. Both Theorem 2 and Remark 2 tell us that high-order interactive concepts are much
more sensitive to input perturbations. Furthermore, combined with the conclusion in Section 2.2,
we can conclude that high-order interactive concepts encoded by the BNN are much more
sensitive to the weight uncertainty in the BNN than low-order concepts.
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Figure 3: (a) The exponential increase of the average variance V
(s)

noise and (b) the roughly exponential
decrease of the average relative stability K

(s)
noise along with the order s, under perturbations from a

prior distribution1 ϵ ∼ N (0, 0.052 ·I). (c) The exponential increase of the average variance V
(s)

BNN and
(d) the roughly exponential decrease of the average relative stability K

(s)
BNN along with the order s,

under weight uncertainty in the BNN.

• Experimental verification. We conducted experiments to verify the above conclusions. To verify
the sensitivity to input perturbations, we added a random perturbation ϵ ∼ N (0, σ2I) to a given input
sample x, where σ2 = 0.052. Then, we used two metrics, V (s)

noise = Ex[E|S|=s[Varϵ∼N (0,σ2I)[I(S|x +

ϵ)]]] and K
(s)
noise = Ex[E|S|=s[|Eϵ∼N (0,σ2I)[I(S|x+ ϵ)]|/Varϵ∼N (0,σ2I)[I(S|x+ ϵ)]]], to measure the

average variance and the average relative stability of the s-order interactive concepts w.r.t. the input
perturbation ϵ. Then, a large value of V

(s)
noise or a small value of K

(s)
noise indicated that the s-order

interactive concepts were sensitive to input perturbations.

Similarly, to verify the sensitivity to weight uncertainty, we sampled different weights W from the
distribution qθ(W ) of the BNN. Then, we used V

(s)
BNN = Ex[E|S|=s[VarW∼qθ(W )[I(S|x,W )]]] and

K
(s)
BNN = Ex[E|S|=s[|EW∼qθ(W )[I(S|x,W )]|/VarW∼qθ(W )[I(S|x,W )]]] to measure the average vari-

ance and the average relative stability of the s-order interactive concepts w.r.t. the weight uncertainty
in the BNN. Therefore, a large value of V (s)

BNN or a small value of K(s)
BNN indicated that the s-order in-

teractive concepts were sensitive to the weight uncertainty. We followed experimental settings in the
experiments paragraph in Section 2.2 to train BNNs. Specifically, we trained BNNs with the MLP
architecture on the MNIST dataset, the TV news dataset, and the Census dataset. We trained BNNs
with the LeNet architecture on the CIFAR-10 dataset. Appendix E introduces how to efficiently
compute I(S|x) on images.

Figure 3 shows that the average variance V
(s)

noise and V
(s)

BNN increased exponentially along with the order
s, while the relative stability K

(s)
noise and K

(s)
BNN both decreased along with the order. This demonstrated

that high-order interactive concepts were much more sensitive to input perturbations and the weight
uncertainty in the BNN, thereby verifying Theorem 2 and Remark 2.

2.4 SENSITIVE INTERACTIVE CONCEPTS ARE DIFFICULT TO LEARN

In the above subsection, we have proven that high-order interactive concepts were much more
sensitive to weight uncertainty in the BNN. Then, the SCM in Eq. (5) and Theorem 1 allow us
to roughly consider a neural network v as a linear function of different interactive concepts, i.e.,
v(x) = Y (x) =

∑
S∈Ω US · CS(x). Then, CS(x) can be considered an input dimension of the linear

function, which indicates whether the input sample x contains the interactive concept S. The coeffi-
cient US can be considered as the strength of the neural network in encoding the interactive concept
S. Because most interactive concepts have negligible coefficients |US | ≈ 0, we can consider that the
neural network only encodes a few interactive concepts S with large absolute values |US |.

Based on the conclusion in Section 2.2, we can roughly consider that training a BNN on normal
samples is equivalent to training a surrogate DNN model on perturbed input samples. Let us consider
a regression problem for analysis. Then, according to Eq. (5), the learning of the BNN on a certain
input sample can be roughly represented as min{US |S∈Ω} L({US}), and the loss is given by

L({US}) = Eϵ
[
(y∗ − v(x+ ϵ))2

]
= Eϵ

[
(y∗ − Y (x+ ϵ))2

]
= Eϵ[(y∗ −

∑
S∈Ω

US · CS(x+ ϵ))2] (12)

where x and y∗ denote the input sample and the ground-truth output, respectively. The continuous
version of CS(x+ ϵ) is formulated in Lemma 1.

1The prior distribution is manually set, rather than being learned using Eq. (7).
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Figure 4: (a) Comparison of the strength of interactive concepts (i) between a trained BNN θ∗ and
the constructed standard DNN ψθ∗ , (ii) between a trained standard DNN ψ∗ and the constructed
BNN θψ∗ . (b) We trained a standard DNN ψ̂ and a BNN θ̂ with the LeNet architecture on the
CIFAR-10 dataset, and compared the strength of interactive concepts between the two networks
when the two networks were trained to have the same training accuracy.

Theorem 5 (Proof in Appendix A.6). Given two random interactive concepts S and S′, let us
assume that CS(x+ ϵ) is independent of CS′(x+ ϵ). Let Eϵ[CS(x+ ϵ)] and Varϵ[CS(x+ ϵ)] denote
the mean and the variance of CS(x+ ϵ) w.r.t. ϵ, respectively. Then, the solution to Eq. (12) satisfies
the following property:

∀ S ∈ Ω, |U∗
S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (13)

Theorem 5 proves that the strength of a network in encoding an interactive concept S, measured by
|U∗

S |, is proportional to the relative stability of the interactive concept |Eϵ[CS(x+ϵ)]/Varϵ[CS(x+ϵ)]|
w.r.t. perturbations ϵ. This indicates that sensitive interactive concepts are more difficult to learn.
The experimental verification of this theorem is shown in Appendix D.

Theorem 6 (Proof in Appendix A.7). Let Amin
S = minS |US | and Amax

S = maxS |US | denote the lower
bound and the upper bound of |US | over all interactive concepts S. Then, we have

Amin
S · |Eϵ[I(S|x+ ϵ)]|

Varϵ[I(S|x+ ϵ)]
≤ |Eϵ[CS(x+ ϵ)]|

Varϵ[CS(x+ ϵ)]
≤ Amax

S · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

(14)

Theorem 6 proves that high-order (complex) interactive concepts have low relative stability w.r.t.
perturbations ϵ. In fact, both Remark 2 and Figure 3 have told us that |Eϵ[I(S|x+ϵ)]/Varϵ[I(S|x+ϵ)]|
significantly decreases along with the order s = |S| of the interactive concept S. Therefore, both
the lower bound and the upper bound of |Eϵ[CS(x + ϵ)]/Varϵ[CS(x + ϵ)]| in Eq. (14) decrease
along with the order s significantly. In this way, we can approximately consider that the strength of
encoding a concept |U∗

S | ∝ |Eϵ[CS(x + ϵ)]/Varϵ[CS(x + ϵ)]| also decreases along with the order of
interactive concepts. In other words, we prove that high-order interactive concepts are more difficult
to be learned under perturbations ϵ. Combining the conclusion in Section 2.2, we also prove that
high-order interactive concepts are more difficult to be learned by the BNN.

3 EXPERIMENTS

In this section, we experimentally verified that compared to standard DNNs, BNNs were less likely
to encode high-order (complex) interactive concepts. Specifically, we constructed three pairs of
baseline networks for comparison.

(1) Given a trained BNN θ∗, we constructed a standard DNN by setting its weights to the mean value
of the weight distribution of the BNN. The standard DNN was denoted by ψθ∗ . Then, we compared
the strength of all high-order interactive concepts between the BNN θ∗ and the standard DNN ψθ∗

without weight/feature uncertainty.

(2) Similarly, given a trained standard DNN ψ∗, we constructed a BNN θψ∗ by setting the mean
value of its weight distribution to the weights of the standard DNN. We set all weight dimensions in
the l-th layer of the BNN to share the same variance σ2

l , where σ2
l was computed as the average of

variances of all weight dimensions in the l-th layer of the previous BNN θ∗. Then, we compared the
strength of high-order interactive concepts between the standard DNN ψ∗ and the BNN θψ∗ .

8
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(3) We trained a standard DNN and a BNN with the same architecture. Then, we compared the
strength of high-order interactive concepts between each pair of standard DNN ψ̂ and the BNN θ̂
when these two networks were trained to have the same training accuracy. We used the training
accuracy to align the learning progress of the two networks for fair comparison.

Specifically, the average strength of the s-order interactive concepts was measured as I
(s)
strength =

Ex[ES⊆N,|S|=s[|I(S|x)|]]. To compute the causal effect I(S|x), we set v(xS) = log p(y=y∗|xS)
1−p(y=y∗|xS)

∈
(−∞,∞), which reflected the confidence of classifying the masked input sample xS into the ground-
truth category y∗. For standard DNNs, p(y = y∗|xS) referred to the classification probability of the
ground-truth category on the masked sample xS . For BNNs, p(y = y∗|xS) was computed according
to Eq. (2), where we sampled ten neural networks from the weight distribution qθ(W ) of the BNN,
and computed the average classification probability over all these networks.

We followed experimental settings in the experiments paragraph in Section 2.2 to train the net-
works. Specifically, we trained standard DNNs and BNNs with the MLP architecture on the TV
news dataset, the Census dataset, and the MNIST dataset. We trained standard DNNs and BNNs
with the LeNet architecture on the CIFAR-10 dataset. Appendix E introduces how to efficiently
compute I(S|x) on images. Figure 4 shows that the strength of high-order interactive concepts of
BNNs was much weaker than that of standard DNNs in all comparisons. This verified that BNNs
were less likely to encode high-order (complex) interactive concepts than standard DNNs.

4 RELATED WORK

Analyzing the representation capacity of BNNs. Many studies investigated the representation
capacity of BNNs from different perspectives. Gal & Smith (2018) and Carbone et al. (2020)
proved that BNNs were robust to adversarial attacks. Kristiadi et al. (2020) proved that BNNs could
mitigate the over-confidence problem in standard ReLU networks. Wenzel et al. (2020) considered
that the poor performance of BNNs was due to the inappropriate prior distribution of weights in
the BNN, and a series of studies (Wu et al., 2019; Krishnan et al., 2020; Fortuin et al., 2022)
found that using carefully-designed prior distributions of weights could improve the performance of
the BNN. Zhang et al. (2022) also showed that adding adversarial perturbations to weights during
training could improve the performance of the BNN. Besides, Foong et al. (2020) proved that using
either fully-factorized Gaussian distributions or dropout operations to approximate the posterior
distribution of a BNN would lead to inaccurate uncertainty estimation of the network prediction.
Unlike previous studies, we focus on the conceptual representation of BNNs, and theoretically prove
that BNNs are less likely to encode complex interactive concepts than standard DNNs.

Using causality to explain neural networks. Causality was first proposed to investigate the causal
structure between a set of variables (Pearl, 2009; Hoyer et al., 2008). Then, in recent years, many
studies used causality as a new perspective to explain neural networks. Some studies proposed to
improve existing attribution methods by considering manually defined causal relationship between
input variables (Frye et al., 2020; Heskes et al., 2020; Wang et al., 2021). Similarly, Alvarez-Melis
& Jaakkola (2017) proposed a causal framework to study the causal relationship between inputs and
outputs of a sequence-to-sequence model, and Harradon et al. (2018) used a causal model to identify
salient features in a CNN. Unlike previous studies, Ren et al. (2021a) first proved the faithfulness
of using a sparse causal graph to explain the inference logic of a neural network. Thus, we further
use causal patterns in the causal graph to investigate interactive concepts encoded by a BNN.

5 CONCLUSIONS

In this paper, we have investigated the bottleneck of the BNN in representing interactive concepts of
different complexities. We have shown that the inference logic of a neural network can be faithfully
represented using the causal structure between the network output and many interactive concepts.
Then, we have theoretically proven that BNNs are less likely to encode complex interactive concepts
than standard DNNs. This study has provided a new perspective of explaining the inferior perfor-
mance of a BNN, and has clarified the shortcoming of the BNN in encoding complex concepts.
Furthermore, we have conducted experiments to verify our proofs.
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REPRODUCIBILITY STATEMENT

We have provided the proof for all theoretical results in Appendix A. We have also provided exper-
imental details in the experiments paragraph in Section 2.2 and also Appendix E. The code will be
released when the paper is accepted.
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A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1 IN THE MAIN PAPER

Theorem 1. Given an input sample x with n input variables, let xS denote a masked input sample,
where variables in N \ S are masked and variables in S keep unchanged. It is proven that for each
neural network v, there exists a specific causal graph (parameterized by {US′ |S′ ∈ Ω}), such that
for any arbitrarily masked input sample xS , the output v(xS) of the neural network can be well
mimicked by the output Y (xS) of the causal graph, i.e.,

∃ Ω ⊆ 2N ,∃{US′ |S′ ∈ Ω}, s.t., ∀S ⊆ N, v(xS) = Y (xS)

where Y (xS) denotes the output of causal graph (see Eq. (5)) on the masked sample xS by setting
Ai = 1(i ∈ S). In particular, a special solution of the causal effects US (the causal graph) satisfying
the above equation is the Harsanyi dividend (Harsanyi, 1963), US =

∑
S′⊆S(−1)|S|−|S′|v(xS′).

In fact, Ren et al. (2021b) have provided proofs of Theorem 1. Specifically, they proved that
when the causal effect US of the causal graph is measured by the Harsanyi dividend, i.e., US =∑

S′⊆S(−1)|S|−|S′|v(xS′), the output of the specific causal graph Y (xS) can well mimic the output
of a DNN v(xS) on all potential masked samples xS , i.e., ∀S ⊆ N, v(xS) = Y (xS).

Proof. According to the SCM in Eq. (5), we have Y (xS) =
∑

S′∈Ω US′ · CS′(xS) =
∑

S′⊆S US′ .
Hence, we only need to prove that ∀ S ⊆ N, v(xS) =

∑
S′⊆S US′ . Specifically,∑

S′⊆S

US′ =
∑
S′⊆S

∑
L⊆S′

(−1)|S
′|−|L|v(xL)

=
∑
L⊆S

∑
S′⊆S:S′⊇L

(−1)|S
′|−|L|v(xL)

=
∑
L⊆S

|S′|∑
s′=1

∑
S′⊆S:S′⊇L,|S′|=s′

(−1)s
′−|L|v(xL)

=
∑
L⊆S

v(xL)

|S|−|L|∑
m=0

(|S|−|L|
m

)
(−1)m = v(xS)

(15)

A.2 PROOF OF LEMMA 1 IN THE MAIN PAPER

Lemma 1 Originally, the causal effect in Eq. (5) is defined as a binary variable in the causal
graph, I(S) ∈ {US , 0}. Given a continuous network function v(x), we can use the following Taylor
expansion to decompose the network output, which extends the causal effect I(S) to a continuous
function. This continuous function well fits the binary states of I(S) on all the 2n masked samples
x′ with different masking states, i.e., x′ ∈ {xT |∀T ⊆ N}.

I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′), (16)

where J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) · x′
i−ri
τ

)πi

denotes a Taylor expansion term of the de-
gree π. Here, π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0}. In addition,
US,π=

τm∏n
i=1 πi!

∂mv(x∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − ri)]

πi , s.t. m =
∑n

i=1 πi. v(x∅) indicates the network
output when we mask all input variables to reference values ri. Moreover, CS(x

′) = I(S|x′)/US .

Proof. Let us denote the continuous function on the right of Eq.(16) by Ĩ(S|x′), i.e.,

Ĩ(S|x′) =
∑

π∈QS

US,πJ(S, π|x′) (17)

We need to prove that the continuous function Ĩ(S|x′) well fits the binary variable I(S|x′) on all the
2n masked samples x′. i.e., Ĩ(S|x′) = I(S|x′) ∈ {US , 0}, ∀x′ ∈ {xT |∀T ⊆ N}.
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We prove this theorem by two steps. (i) In the first step, we prove that ŨS
def
= Ĩ(S|x) on the given sam-

ple x also satisfies the faithfulness requirement in Theorem 1. Furthermore, Grabisch & Roubens
(1999) and Ren et al. (2021b) has proven that the Harsanyi dividend US = I(S|x) is the unique
metric to satisfy Theorem 1. Therefore, we can obtain that ŨS = US . (ii) In the second step, we
prove that on all the 2n masked samples x′ ∈ {xT |∀T ⊆ N}, Ĩ(S|x′) = I(S|x′) ∈ {US , 0}.

Proof of Step 1. We aim to prove that ŨS = Ĩ(S|x) =
∑

π∈QS
US,πJ(S, π|x) also satisfies Theorem

1. Specifically, for an arbitrary masked sample xT , let us consider the Taylor expansion of v(xT )
which is expanded at x∅. Then, we have

∀T ⊆ N, v(xT ) =

∞∑
π1=0

∞∑
π2=0

· · ·
∞∑

πn=0

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂xπn

n
·

n∏
i=1

[(xT )i − ri]
πi (18)

where π ∈ {[π1, . . . , πn]|∀i ∈ N, πi ∈ N} denotes the degree vector of Taylor expansion terms,
and m =

∑n
i=1 πi. In addition, ri denotes the reference value of the input variable xi.

According to the definition of the masked sample xT , we have that ∀i ∈ T , (xT )i = xi and ∀i ̸∈ T ,
(xT )i = ri. Hence, ∀i ̸∈ T, [(xT )i − ri]

πi = 0. Then, among all Taylor expansion terms, only
terms corresponding to degrees π in the set P = {[π1, . . . , πn]|∀i ∈ T, πi ∈ N;∀i ̸∈ T, πi = 0}
may not be zero. Therefore, Eq. (18) can be re-written as follows.

∀T ⊆ N, v(xT ) =
∑
π∈P

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂xπn

n
·
∏
i∈T

(xi − ri)
πi (19)

We find that the set P can be divided into multiple disjoint sets as follows, P = ∪S⊆TQS , where
QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+;∀i ̸∈ S, πi = 0}. Then, we can derive that

∀T ⊆ N, v(xT ) =
∑
S⊆T

∑
π∈QS

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂xπn

n
·
∏
i∈S

(xi − ri)
πi

=
∑
S⊆T

∑
π∈QS

τm∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂xπn

n

∏
i∈S

(δi)
π

︸ ︷︷ ︸
termed US,π

·
∏
i∈S′

(δi
xi − ri

τ
)πi

︸ ︷︷ ︸
termed J(S,π|x)

,
(20)

where τ ∈ R is a pre-defined constant and δi = sign(xi − ri). Then, Eq. (20) can be re-written as,

∀T ⊆ N, v(xT ) =
∑

S⊆T
ŨS (21)

i.e., {ŨS |S ⊆ N} also satisfies the faithfulness requirement in Theorem 1. Moreover, Grabisch &
Roubens (1999) and Ren et al. (2021b) has proven that the Harsanyi dividend US = I(S|x) is the
unique metric to satisfy Theorem 1. Therefore, we can obtain that ŨS = US .

Proof of Step 2. We aim to prove that for a specific interactive concept S, I(S|x′) = Ĩ(S|x′) holds
for all the 2n masked samples x′ ∈ {xT |∀T ⊆ N}. Specifically, for the interactive concept S, let us
divided all masked samples xT into two groups, (i) {xT |S ⊆ T} and (ii) {xT |S ̸⊆ T}. According
to the SCM in Eq. (5), we can obtain that

I(S|xT ) = US · 1(S ⊆ T ) =

{
US , if S ⊆ T ;

0, if S ̸⊆ T.
(22)

According to the definition of Ĩ(S|x′), it is easy to obtain that when S ⊆ T , Ĩ(S|xT ) = ŨS = US ;
otherwise, Ĩ(S|xT ) = 0. Then, Lemma 1 holds.

A.3 PROOF OF THEOREM 2 IN THE MAIN PAPER

Theorem 2. If we only consider the approximation based on the lowest degree π̂, then the mean and
variance of I(S|x+ ϵ) over different perturbations ϵ are given as

Eϵ[I(S|x+ ϵ)] = US,π̂, Varϵ[I(S|x+ ϵ)] = U2
S,π̂((1 + (σ/τ)2)|S| − 1) (23)

Proof. If we only consider Taylor expansion term of the lowest degree, then I(S|x′) ≈ US,π̂ ·
J(S, π̂|x′), where J(S, π̂|x′) =

∏
i∈S sign(x′

i − ri) · x′
i−ri
τ .

14
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Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. In this way, we have

I(S|x+ ϵ) ≈ US,π̂ · J(S, π̂|x+ ϵ)

J(S, π̂|x+ ϵ) =
∏
i∈S

sign(xi + ϵi − ri) ·
xi + ϵi − ri

τ

=
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi − ri
τ

+ sign(xi + ϵi − ri) ·
ϵi
τ

) (24)

According to the setting of the reference value in Section 2.3, we have ∀i ∈ S, xi−ri ∈ {−τ, τ}. In
Section 2.3, we have assumed that the variance of the perturbation ϵ is small, so that we can ignore
the extremely low probability that the perturbation is large such that |ϵi| ≥ τ . In this way, we have
sign(xi + ϵi − ri) = sign(xi − ri), and we can obtain

J(S, π̂|x+ ϵ) =
∏
i∈S

(
sign(xi − ri) ·

xi − ri
τ

+ sign(xi − ri) ·
ϵi
τ

)
=

∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

) (25)

⇒ Eϵ[J(S, π̂|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)]

Varϵ[J(S, π̂|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)] (26)

Since sign(xi − ri) ∈ {−1, 1}, we have 1 + sign(xi − ri) · ϵi
τ ∼ N (1, (σ/τ)2),∀i ∈ S.

Proposition 1. If random variables X1, X2, · · · , Xk are independent of each other, then
E[X1X2 · · ·Xk] =

∏k
i=1 E[Xi], and Var[X1X2 · · ·Xk] =

∏k
i=1(E[Xi]

2 + Var[Xi]
2) −∏k

i=1 E[Xi]
2.

According to the above proposition, we have

Eϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

1 = 1

Varϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

(
12 + (σ/τ)

2
)
−

∏
i∈S

12

=
(
1 + (σ/τ)

2
)|S|

− 1

(27)

Therefore,

Eϵ[I(S|x+ ϵ)] ≈ Eϵ[US,π̂ · J(S, π̂|x+ ϵ)] = US,π̂

Varϵ[I(S|x+ ϵ)] ≈ Varϵ[US,π̂ · J(S, π̂|x+ ϵ)] = U2
S,π̂

((
1 + (σ/τ)

2
)|S|

− 1

)
(28)

A.4 PROOF OF THEOREM 3 IN THE MAIN PAPER

Theorem 3. Let π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0} denote an arbitrary
degree. Then, the mean and the variance of J(S,π|x+ ϵ) over ϵ are given as

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏
i∈S

(1 +
ϵi
τ
)πi ], Varϵ[J(S,π|x+ ϵ)] = Varϵ[

∏
i∈S

(1 +
ϵi
τ
)πi ] (29)
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Proof. According to Lemma 1, given an arbitrary input sample x′, we have

J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) ·
x′
i − ri
τ

)πi

(30)

Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. In this way, we have

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi + ϵi − ri
τ

)πi

=
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi − ri
τ

+ sign(xi + ϵi − ri) ·
ϵi
τ

)πi
(31)

According to the setting of the reference value in Section 2.3, ∀i ∈ S, xi − ri ∈ {−τ, τ}. In Section
2.3, we have assumed that the variance of the perturbation ϵ is small, so that we can ignore the
extremely low probability that the perturbation is large such that |ϵi| ≥ τ . In this way, sign(xi +
ϵi − ri) = sign(xi − ri), and we can obtain

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi − ri) ·

xi − ri
τ

+ sign(xi − ri) ·
ϵi
τ

)πi

=
∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi
(32)

⇒ Eϵ[J(S,π|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi

] (33)

Since ∀i ∈ S, ϵi is independent of each other, according to Proposition 1 and Eq. (33), we have

Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)πi
]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)πi
])2

(34)

Since sign(xi − ri) ∈ {−1, 1}, we have Eϵi

[(
1 + sign(xi − ri) · ϵi

τ

)k]
= Eϵi

[(
1 + ϵi

τ

)k]
,∀k ∈

N+. Therefore, we obtain

Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)πi
]

= Eϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 +

ϵi
τ

)πi
])2

= Varϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]
.
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A.5 PROOF OF THEOREM 4 IN THE MAIN PAPER

Theorem 4. Let S′ be an interactive concept extended from the concept S, i.e., S ⊊ S′. Let us
consider expansion terms J(S,π) and J(S′,π′), where the term J(S′,π′) can be considered being
extended from the term J(S,π) with π ≺ π′. I.e., (1) ∀i ∈ S′, π′

i ∈ N+; otherwise, π′
i = 0. (2) Given

π′, ∀j ∈ S, πj = π′
j; otherwise, πj = 0. Then, we have

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
>
∏

i∈S′\S
E2
ϵi [(1 +

ϵi
τ
)π

′
i ],

Eϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S
′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]
<

1∏
i∈S′\S Eϵi [(1 +

ϵi
τ
)π

′
i ]
,

(35)

and it is easy to obtain Eϵi [(1 +
ϵi
τ
)π

′
i ] ≥ 1.

Proof. According to Theorem 3, we have

Varϵ[J(S
′,π′|x+ ϵ)] = Varϵ

[∏
i∈S′

(
1 +

ϵi
τ

)π′
i

]

= Varϵ

∏
i∈S

(
1 +

ϵi
τ

)π′
i ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //S ⊊ S′

= Varϵ


∏
i∈S

(
1 +

ϵi
τ

)πi

︸ ︷︷ ︸
A

∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

︸ ︷︷ ︸
B

 //∀i ∈ S, π′
i = πi

= Varϵ[AB]

= (E2
ϵ[A] + Varϵ[A])(E2

ϵ[B] + Varϵ[B])− E2
ϵ[A]E2

ϵ[B]

//A and B are independent; Proposition 1

= E2
ϵ[A]Varϵ[B] + E2

ϵ[B]Varϵ[A] + Varϵ[A]Varϵ[B]

> E2
ϵ[B]Varϵ[A] + Varϵ[A]Varϵ[B]

(36)

Therefore, we can prove the first equality as follows.

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
=

Varϵ[AB]

Varϵ[A]

> E2
ϵ[B] + Varϵ[B]

> E2
ϵ[B]

= E2
ϵ

 ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i


=

∏
i∈S′\S

E2
ϵi

[(
1 +

ϵi
τ

)π′
i

]
//ϵi is independent of each other; Proposition 1

(37)
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Furthermore, we have

Eϵ[J(S
′,π′|x+ ϵ)] = Eϵ

[∏
i∈S′

(
1 +

ϵi
τ

)π′
i

]

= Eϵ

∏
i∈S

(
1 +

ϵi
τ

)π′
i ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //S ⊊ S′

= Eϵ

∏
i∈S

(
1 +

ϵi
τ

)πi ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //∀i ∈ S, π′
i = πi

= Eϵ[AB]

(38)

and also

Eϵ[J(S,π|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]
= Eϵ[A]. (39)

Therefore, we have
Eϵ[J(S

′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]
=

Eϵ[AB]

Eϵ[A]
= Eϵ[B]. (40)

Then, we can prove the second inequality as follows.

Eϵ[J(S
′,π′|x+ ϵ)]/Varϵ[J(S

′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]

=
Eϵ[B]

Varϵ[AB]/Varϵ[A]

<
Eϵ[B]

E2
ϵ[B]

=
1

Eϵ[B]

=
1

Eϵ

[∏
i∈S′\S

(
1 + ϵi

τ

)π′
i

]
=

1∏
i∈S′\S Eϵi

[(
1 + ϵi

τ

)π′
i

]

(41)

Moreover, we can prove that Eϵi [(1 + ϵi
τ )

k] ≥ 1,∀k ∈ N+, i.e., E[Xk] ≥ 1, where X ∼
N (1, (σ/τ)2).

For a random variable following a Gaussian distribution X̃ ∼ N (µ̃, σ̃2), Willink (2005) proved the
following property:

E
[
X̃k+1

]
= µ̃E

[
X̃k

]
+ kσ̃2E

[
X̃k−1

]
(42)

Now let us consider X ∼ N (1, (σ/τ)2). We have E
[
Xk+1

]
= E

[
Xk

]
+ k(σ/τ)2E

[
Xk−1

]
. By

induction, it is easy to prove that E[Xk] ≥ E[X] = 1.

A.6 PROOF OF THEOREM 5

Theorem 5. Let us assume that CS(x + ϵ) is independent of CS′(x + ϵ) for each pair of (S, S′).
Let Eϵ[CS(x + ϵ)] and Varϵ[CS(x + ϵ)] denote the mean and the variance of CS(x + ϵ) w.r.t. ϵ,
respectively. Then, the solution to Eq. (12) satisfies the following property:

∀ S ∈ Ω, |U∗
S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (43)
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Proof. Let p = |Ω|. Let C(x + ϵ) = [CS1
(x + ϵ), · · · , CSp

(x + ϵ)]⊤ denote the vector of all
CS(x + ϵ), S ∈ Ω, and let U = [US1

, · · · , USp
]⊤ denote the vector of all coefficients US , S ∈ Ω.

To further simplify the notation, we simply use C to denote the random vector C(x+ ϵ). Besides,
since we assume that each dimension of the vector C(x + ϵ) is independent of each other, we can
use Eϵ[C] = [α1, · · · , αp]

⊤ ∈ Rp and Varϵ[C] = diag(β2
1 , · · · , β2

p) ∈ Rp×p to denote the mean
vector and covariance matrix of the random vector C(x + ϵ), respectively. We prove this theorem
in three steps.

Step 1. We first prove that the optimal solution to Eq. (12) is given by

∀1 ≤ i ≤ p, U∗
Si

=
1

detM
det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mp) (44)

where M = Eϵ[C]Eϵ[C]⊤ + Varϵ[C], ρ = y∗Eϵ[C], and Mj denotes the j-th column of the
matrixM .

We can rewrite the objective function in Eq. (12) as

min
U

Eϵ[(y
∗ −U⊤C(x+ ϵ))2] (45)

To minimize the loss L = Eϵ[(y
∗ −U⊤C)2], we set the gradient of the loss w.r.t U to zero, i.e.,

∇UL = Eϵ[2C(U⊤C − y∗)]

= 2Eϵ[CC
⊤U − y∗C]

= 2Eϵ[CC
⊤]U − 2y∗Eϵ[C]

= 2(Eϵ[C]Eϵ[C]⊤ +Varϵ[C])U − 2y∗Eϵ[C] = 0

(46)

⇒ (Eϵ[C]Eϵ[C]⊤ +Varϵ[C])U = y∗Eϵ[C] (47)

Let M = Eϵ[C]Eϵ[C]⊤ + Varϵ[C], and ρ = y∗Eϵ[C]. By Cramer’s rule, we can obtain the
solution to Eq. (47):

∀1 ≤ i ≤ p, U∗
Si

=
1

detM
det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mp)

whereMj denotes the j-th column of the matrixM .

Step 2. We prove that for the optimal solution U∗, we have

∀1 ≤ i, j ≤ p,
|U∗

Si
|

|U∗
Sj
|
=

|Eϵ[CSi
(x+ ϵ)]/Varϵ[CSi

(x+ ϵ)]|
|Eϵ[CSj (x+ ϵ)]/Varϵ[CSj (x+ ϵ)]|

(48)

SinceM = Eϵ[C]Eϵ[C]⊤ +Varϵ[C], we can obtain the j-th column ofM as

Mj = αjEϵ[C] + Vj (49)

where Eϵ[C] = [α1, · · · , αp]
⊤, and Vj = [0, · · · , β2

j , · · · , 0]⊤.

According to the conclusion in Step 1, we have

|U∗
Si
| = | 1

detM
| · | det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mj−1,Mj ,Mj+1, · · · ,Mp)| (50)

|U∗
Sj
| = | 1

detM
| · | det(M1, · · · ,Mi−1,Mi,Mi+1, · · · ,Mj−1,ρ,Mj+1, · · · ,Mp)| (51)
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We know that exchanging the rows or columns of a matrix only changes the sign of the determinant
of the matrix, but does not change the absolute value of the determinant. Therefore, we have

|U∗
Si
| = | 1

detM
| · | det(Mj ,ρ,M1, · · · ,Mi−1,Mi+1, · · · ,Mj−1,Mj+1, · · · ,Mp)|

= | 1

detM
| · | det(Mj ,ρ,Mothers)| //LetMothers denote the third to the last column

= | 1

detM
| · | det(αjEϵ[C] + Vj , y

∗Eϵ[C],Mothers)| //Eq. (49)

= | 1

detM
| · | det(αjEϵ[C], y∗Eϵ[C],Mothers)︸ ︷︷ ︸

=0

+det(Vj , y
∗Eϵ[C],Mothers)|

//The determinant is 0 if two columns are linearly dependent

= | 1

detM
| · | det(Vj , y

∗Eϵ[C],Mothers)|

= | 1

detM
| · | det



0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αi αiα1 · · · αiαp

...
β2
j y∗αj αjα1 · · · αjαp

...
0 y∗αp αpα1 · · · αpαp + β2

p


|

= | 1

detM
| · |det


β2
j y∗αj αjα1 · · · αjαp

0 y∗αi αiα1 · · · αiαp

0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αp αpα1 · · · αpαp + β2

p

 | //Exchange rows

= | αi

detM
| · | det


β2
j y∗αj αjα1 · · · αjαp

0 y∗ α1 · · · αp

0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αp αpα1 · · · αpαp + β2

p

 | //Extract out αi

= |
αiβ

2
j

detM
| · | detM ′|,

(52)
where

M ′ =

 y∗ α1 · · · αp

y∗α1 α1α1 + β2
1 · · · α1αp

· · ·
y∗αp αpα1 · · · αpαp + β2

p

 . (53)

Similarly, we can prove that

|U∗
Sj
| = | αjβ

2
i

detM
| · | detM ′|. (54)

Therefore, we have

∀1 ≤ i, j ≤ p,
|U∗

Si
|

|U∗
Sj
|
=

|αi/β
2
i |

|αj/β2
j |

=
|Eϵ[CSi

(x+ ϵ)]/Varϵ[CSi
(x+ ϵ)]|

|Eϵ[CSj (x+ ϵ)]/Varϵ[CSj (x+ ϵ)]|
.

Step 3. Based on Step 2, we can directly prove that for the optimal solution U∗, we have
∀S ∈ Ω, |U∗

S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (55)
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Figure 5: Histograms of the relative strength of causal effects for the 5-layer MLPs trained on the
Census dataset and the TV new dataset.

A.7 PROOF OF THEOREM 6

Theorem 6. Let Amin
S = minS |US | and Amax

S = maxS |US | denote the lower bound and the upper
bound of |US | over all interactive concepts S. Then, we have

Amin
S · |Eϵ[I(S|x+ ϵ)]|

Varϵ[I(S|x+ ϵ)]
≤ |Eϵ[CS(x+ ϵ)]|

Varϵ[CS(x+ ϵ)]
≤ Amax

S · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

Proof. According to the SCM in Eq. (5), we can obtain that I(S|x) = US · CS(x). Hence, we have

|Eϵ[I(S|x+ ϵ)]| = |US | · |Eϵ[CS(x+ ϵ)]|, Varϵ[I(S|x+ ϵ)] = U2
S ·Varϵ[CS(x+ ϵ)],

Therefore,
|Eϵ[CS(x+ ϵ)]|
Varϵ[CS(x+ ϵ)]

= |US | ·
|Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

Then, let Amin
S = minS |US | and Amax

S = maxS |US | denote the lower bound and the upper bound of
the absolute value |US | over all interactive concepts S, we have

Amin
S · |Eϵ[I(S|x+ ϵ)]|

Varϵ[I(S|x+ ϵ)]
≤ |Eϵ[CS(x+ ϵ)]|

Varϵ[CS(x+ ϵ)]
≤ Amax

S · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

B SPARSITY OF THE CAUSAL GRAPH EXPLANATION

In this section, we empirically verified the sparsity of the causal graph explanation mentioned in Sec-
tion 2.1. To this end, given an input sample, we computed causal effects US of all 2n causal patterns.
In the computation of the causal effects, we followed the setting of the reference value in Ren et al.
(2021a). Furthermore, we computed the relative strength of causal effects as |US |/maxS′ |US′ | to
normalize the strength of causal effects to [0,1]. We trained 5-layer MLPs on the Census dataset and
the TV news dataset. Figure 5 shows the histogram of the relative strength of all causal effects on
different input samples. We discovered that causal effects of most causal patterns were close to zero,
and only a few causal patterns had large absolute value of causal effects. This verified the sparsity
of the causal graph.

C MORE DISCUSSION ON RELATED WORKS

Interactions. Interactions in game theory is closely related to the quantification of causal effects
of each causal pattern. Grabisch & Roubens (1999) first proposed the Shapley interaction index,
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Figure 6: Experimantal verification of Theorem 5. Different colors indicate different random seeds,
when we randomly sampled the mean value and the standard deviation of CSi(x+ ϵ) ∼ N (µi, σ

2
i )

from the uniform distribution U(0.5, 1). We can see that the absolute value |U∗
S | was proportional to

|Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]|, which verified our theorem.

and Lundberg et al. (2018) later used this index to explain tree ensembles. Janizek et al. (2021)
explained the pairwise feature interaction in DNNs, while Sundararajan et al. (2020) proposed the
Shapley Taylor interaction index to quantify interactions among multiple input variables. Peebles
et al. (2020) and Tsang et al. (2018) restricted interactions to achieve feature disentanglement. Song
et al. (2019) and Lian et al. (2018) proposed special network architectures to automatically learn
feature interactions. Unlike previous studies, we follow Ren et al. (2021a) to represent the inference
logic of neural network as a specific sparse causal graph, and define interactive concepts based on
the framework of causality.

D EXPERIMENTAL VERIFICATION OF THEOREM 5

To verify Theorem 5, we conducted experiments on a linear regression problem on the following
dataset. Specifically, we used a 30-dimensional vector C ∈ R30 to denote the vector of all CS(x+
ϵ), S ∈ Ω, and used U ∈ R30 to denote the vector of all coefficients US , S ∈ Ω to be learned. Each
dimension of the vector C followed a normal distribution N (µi, σ

2
i ), and was independent of each

other. The mean value µi and the standard deviation σi of the normal distribution was randomly
sampled from a uniform distribution U(0.5, 1). Then, we trained this linear model according to Eq.
(12). Figure 6 shows that the absolute value of the coefficient |U∗

S | was proportional to |Eϵ[CS(x+
ϵ)]/Varϵ[CS(x+ ϵ)]|, which verified Theorem 5.

E EXPERIMENTAL DETAILS

Training settings. We trained standard DNNs and BNNs with the same architectures on two image
datasets and two tabular datasets. For image datasets, we trained standard DNNs and BNNs with
two architectures. On the MNIST dataset, we trained a standard DNN and a BNN with the 5-layer
MLP architecture. On the CIFAR-10 dataset, we trained a standard DNN and a BNN with the LeNet
architecture. On the two tabular datasets, including the UCI TV news dataset (termed TV news)
and the UCI census income dataset (termed census), we trained standard DNNs and BNNs with the
8-layer MLP architecture. All MLPs contained 100 neurons in each hidden layer. For the training of
BNNs, the prior distribution of network weights was set to N (W ;0, I), and the number of Monte
Carlo sampling of network weights was set to 1. All standard DNNs and BNNs were trained using
the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.001. The 5-layer MLPs (standard
DNN and BNN) on the MNIST dataset was trained for 50 epochs. The LeNet (standard DNN and
BNN) on the CIFAR-10 dataset was trained for 300 epochs. The 8-layer MLPs (standard DNN and
BNN) on tabular datasets were trained for 200 epochs.

Implementation details for the calculation of I(S). Since the computational cost of I(S) was
intolerable for image datasets, we applied a sampling-based approximation method to calculate US .
For the CIFAR-10 dataset (32× 32 pixels on each image), we uniformly split each input image into
8 × 8 patches. Furthermore, we random sampled 12 patches from the central 6 × 6 region (i.e., we
did not sample patches that were on the edges of an image), and considered these patches as input
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Figure 7: More visualization results of MLP-5 on the MNIST dataset.

variables for each image. The remaining 52 patches were set to the reference value. Similarly, for
the MNIST dataset (28× 28 pixels on each image), we uniformly split each input image into 7× 7
patches, and randomly sampled 12 patches from the central 5× 5 region.

Implementation details of the reference value. Let Ex[xi] denote the mean value of the i-th input
dimension over all input samples in the dataset. Then, given an input sample x, the reference value
is set as follows.

ri =

{
xi − τ, xi > Ex[xi]
xi + τ, xi < Ex[xi]

where τ ∈ R is a constant. We set τ = 0.5 on all datasets (including the TV news dataset, the
Census dataset, the MNIST dataset, and the CIFAR-10 dataset). In our experiments, we assume
that input samples have been normalized as follows. First, we subtract the mean value of each input
dimension over the whole dataset from the input sample. Second, we divide each dimension of the
input sample by the standard deviation of this input dimension over the whole dataset. In this way,
input samples have zero mean and unit variance on each dimension over the whole dataset, i.e.,
∀i ∈ N,Ex[xi] = 0.

Implementation details of the experiment in Section 2.2. In Section 2.2, we minimized the KL
divergence between the feature distribution in the surrogate DNN model and the feature distribu-
tion in the BNN. The feature distributions in the surrogate DNN model and in the BNN were not
Gaussian distributions. Therefore, the KL divergence between the feature distributions did not have
a close-form formula. To facilitate the optimization, we simply used two Gaussian distributions to
approximate the feature distributions in the surrogate DNN model and in the BNN, and optimized
the KL divergence between the two Gaussian distributions. Besides, we did not consider the depen-
dency between different feature dimensions to simplify the computation.

F MORE EXPERIMENTAL RESULTS

F.1 MORE VISUALIZATION RESULTS FOR EXPERIMENTS IN SECTION 2.2

In this subsection, we provided more visualization results to show that the feature distribution of the
surrogate DNN model could well approximate the feature distribution of the BNN.
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Figure 8: More visualization results of LeNet on the CIFAR-10 dataset.
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Figure 9: More visualization results of MLP-8 on the Census dataset.
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Figure 10: More visualization results of MLP-8 on the TV news dataset.
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