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ABSTRACT

Neighborhood refinery aims to enhance the neighbor relationships by refining the
original distance matrix to ensure pairwise consistency. Traditional context-based
methods, which encode instances alongside their local neighbors in a contextual
affinity space, are limited in capturing global relationships and are vulnerable to the
negative impacts of outliers in the neighborhood. To overcome these limitations,
we propose a novel Neighbor-aware Geodesic Transportation (NGT) for the neigh-
borhood refinery. NGT first constructs a global-aware distribution for each instance,
capturing the intrinsic manifold relationships among all instances. This is followed
by an optimization transportation process that utilizes the global-aware distribution
within the underlying manifold, incorporating global geometric spatial information
to generate a refined distance. NGT first involves Manifold-aware Neighbor Encod-
ing (MNE) to project each instance into a global-aware distribution by constraining
pairwise similarity with the corresponding affinity graph to capture global relation-
ships. Subsequently, a Regularized Barycenter Refinery (RBR) module is proposed
to integrate local neighbors into a barycenter, employing a Wasserstein term to
reduce the influence of outliers. Lastly, Geodesic Transportation (GT) leverages
geometric and global context information to transport the barycenter distribution
along the geodesic paths within the affinity graph. Extensive evaluations on several
tasks, such as re-ranking and deep clustering, demonstrate the superiority of our
proposed NGT.

1 INTRODUCTION

Neighborhood Refinery (Iscen et al., 2017; Bai et al., 2019; Shao et al., 2023; Chen et al., 2024; Yu
et al., 2023; Luo et al., 2024; Liu et al., 2019) is a critical task in machine learning and computer
vision, which refines the similarity or distance among neighborhood samples by leveraging the
underlying manifold structure. Specifically, given an initial distance matrix obtained from Euclidean
space, neighborhood refinery adjusts the pairwise similarity by ensuring consistent relationships
among instances, resulting in a more informative refined distance matrix. Due to the higher coherence
exhibited by the neighborhood samples obtained from the refined matrix, neighborhood refinery can
be effectively applied to image retrieval tasks (Lee et al., 2022; Radenović et al., 2019; Yang et al.,
2021; Tolias et al., 2016) and self-supervised framework (Dwibedi et al., 2021; Koohpayegani et al.,
2021; Van Gansbeke et al., 2020; Niu et al., 2022) for re-ranking and deep clustering, e.g., the refined
query-to-gallery similarity matrix can be used to rerank initial retrieval results, and high-confidence
pseudo-labels can be generated by the refined distance matrix for providing substantial and diverse
supervisory signals. Despite the importance of neighborhood refinery, it remains a challenging task
to efficiently identify the robust neighbors within the data manifold.

Recently, several innovative methods have been developed to enhance the robustness of neighborhood
refinery, notably through diffusion-based and context-based approaches. To reveal the intrinsic
relationship within the underlying data manifold, diffusion-based methods (Iscen et al., 2017; 2018;
Bai et al., 2019; Zhang et al., 2023; Yang et al., 2019) perform similarity propagation within the
k-nearest neighbor graph. However, the negative impact of outliers inevitably propagates throughout
the graph, leading to a decrease in the discrimination of the resulting similarity matrix used for
neighborhood refinery. In addition, context-based methods (Kim et al., 2022; Yu et al., 2023; Chen
et al., 2024; Zhong et al., 2017; Zhang et al., 2020) are proposed to map the original feature into a
contextual affinity feature space by encoding each instance with its local neighbors. Since consistent
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neighbors are supposed to share high similarity within the contextual affinity space, they are effective
in adjusting the similarity matrix. Despite their effectiveness, these methods do not adequately
capture global relationships, making the feature representation susceptible to neighborhood outliers.
Thus, it is imperative to improve global awareness of the manifold and reduce the impact of outliers
to improve the performance of the neighborhood refinery.

Therefore, a reasonable approach is to construct an affinity graph from the original Euclidean space
to intrinsically capture the data manifold information, in which the global-aware distribution can be
formulated under the constraint of edge weights in a diffusion manner. To comprehensively perceive
the manifold structure, the pairwise distances can be measured by transporting the global-aware
distributions along the affinity graph. Moreover, considering the high consistency within the local
neighbors, the influence of outliers can be further mitigated by integrating the neighbor distributions
into a barycenter. Unlike trivial solutions that simply average neighboring distributions, the Euclidean
distance from the barycenter to local neighbors can be jointly minimized with the Wasserstein
distance (Solomon et al., 2015; Lin et al., 2020; Cuturi & Doucet, 2014) to enhance the perception
of the neighborhood structure. After obtaining the robust barycenter distributions, we incorporate
global geometric spatial information to distinguish instances that are not in the close neighborhood
domain more effectively. This can be achieved by transporting (Cuturi, 2013; Janati et al., 2020)
the global-aware distributions along the geodesic path within the affinity graph, where the resulting
distance can be used for neighborhood refinery.

In this work, we propose a novel Neighbor-aware Geodesic Transportation (NGT) to exploit the
underlying manifold information for neighborhood refinery, consisting of Manifold-aware Neighbor
Encoding (MNE), Regularized Barycenter Refinery (RBR) and Geodesic Transportation (GT). First,
by taking advantage of the diffusion process, Manifold-aware Neighbor Encoding (MNE) embeds
each instance into a manifold-aware feature space. The resulting distributions are regularized by
the affinity weights of a k-nearest neighbor graph constructed from the original Euclidean space,
allowing the global manifold relationships between each instance and the entire dataset to be captured.
Afterward, a Regularized Barycenter Refinery (RBR) is proposed to integrate local neighbors into
a barycenter to mitigate the negative effects of outliers. Formally, the Euclidean distance from
barycenter to local neighbors and the Wasserstein distance serving as a regularization term is jointly
minimized. This approach implicitly considers the pairwise connections between neighborhood
instances, enabling us to obtain more robust and global-aware distributions. Finally, we introduce
Geodesic Transportation (GT) to measure the pairwise distances among distributions by formulating
it as an optimal transport problem. Specifically, distributions are transported along geodesic paths
within the affinity graph, inherently incorporating the geometric and global context information of the
data manifold. To maintain consistency in Euclidean space, we combine the resulting transportation
distance with the original Euclidean distance to perform neighborhood refinery.

The proposed Neighbor-aware Geodesic Transportation (NGT) can be easily adapted to the image
retrieval tasks for re-ranking and the self-supervised framework for deep clustering. Extensive
experiments have shown the superiority of our proposed method. Specifically, NGT achieves the
mAP of 81.1%/91.7% on ROxf(M) and RPar(M) respectively. Moreover, after conducting NGT to
deep clustering tasks, the obtained performance surpasses the top-performs model by 2.4%/1.1%/2.1%
in NMI/ACC/ARI on CIFAR-20 respectively.

2 RELATED WORK

Neighborhood refinery tackles the challenge of identifying semantically similar neighbors for each
sample by considering the distance relationships among all samples in the feature space. This process,
known as re-ranking in the context of image retrieval, serves as a post-processing approach that can
significantly enhance retrieval performance. Similarly, it can also provide richer supervisory signals
for training in deep clustering, improving both feature learning and clustering results.

2.1 RE-RANKING

Image retrieval seeks to identify images with similar content from a large database, while re-ranking
is a training-free technique that improves the overall retrieval performance by refining the initial
ranking list through a second retrieval or optimization process. Existing re-ranking methods can
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be broadly classified into four categories: Query Expansion, learning-based, context-based, and
diffusion-based methods. Query expansion methods (Chum et al., 2007; Gordo et al., 2017; Radenović
et al., 2019; Shao et al., 2023) focus on integrating neighbor image features through various averaging
and weighting strategies to build a more effective query. Meanwhile, learning-based methods involve
approaches utilizing self-attention mechanisms (Ouyang et al., 2021; Gordo et al., 2020) for adjustable
weight aggregation, along with techniques that leverage graph neural networks (Liu et al., 2019; Shen
et al., 2021a) to enhance sample perception across the entire feature space.

The insight that the contextual information captured by k-nearest neighbors can enhance retrieval
performance has prompted the development of context-based re-ranking. Shen et al. (2012); Sarfraz
et al. (2018) update the distance measure using the rank lists of k-nearest neighbors. Additionally, Yu
et al. (2023); Chen et al. (2024); Kim et al. (2022); Zhang et al. (2020); Zhong et al. (2017) encode
each instance into a contextual affinity space to perform neighborhood refinery, ensuring similar
images have higher consistency. Leveraging the intrinsic manifold structure of data, diffusion-based
methods serve as powerful neighborhood refinery techniques. Prominent works (Iscen et al., 2018;
Yang et al., 2019; Luo et al., 2024; Zhang et al., 2023) employ the affinity graph to represent the
underlying data manifold and have shown remarkable performance in image retrieval, while Bai et al.
(2019); Chang et al. (2019); Zhou et al. (2012) further incorporate the hypergraphs to effectively
aggregate higher-order information, leading to better performance.

2.2 DEEP CLUSTERING AND SELF-SUPERVISED LEARNING

Deep clustering seeks to simultaneously learn image representations and conduct clustering in an
integrated manner, while neighborhood refinery can serve as an adaptive module to provide richer
information during the training stage. Over the past few decades, substantial research endeavors
(Metaxas et al., 2023; Cai et al., 2023; Shiran & Weinshall, 2021; Li et al., 2022; 2024) have been
directed towards this task. Recently, driven by self-supervised learning, deep clustering has advanced
significantly. For instance, IDFD (Tao et al., 2021), MoCo (He et al., 2020), SimCLR (Chen et al.,
2020) and ProPos (Huang et al., 2023) leverage pretext tasks and construct contrastive losses for
representation learning, while approaches such as BYOL (Grill et al., 2020) and SwAV Caron et al.
(2020) introduce a non-contrastive paradigm. The incorporation of self-supervised methods has
enriched the learned features and enhanced clustering performance. Building on these approaches,
the supervisory information embedded in neighboring samples has also been utilized to guide feature
learning. Dwibedi et al. (2021); Navaneet et al. (2022); Yu et al. (2023) demonstrate that leveraging
semantically similar neighbor instances can further enhance the robustness and quality of learned
features. Thus, employing neighborhood refinery techniques to effectively identify and aggregate
neighbor information represents an important direction for deep clustering.

3 METHODOLOGY

The Neighborhood Refinery aims to adjust for better neighborhood relationships by utilizing infor-
mation from the underlying structure of the data manifold. We propose a novel Neighbor-aware
Geodesic Transportation (NGT) (Figure 1). comprising Manifold-aware Neighbor Encoding (MNE),
Regularized Barycenter Refinery (RBR), and Geodesic Transportation (GT) to capture both global re-
lationships and local features. Global relationships refer to interactions across the entire dataset, while
local features reflect immediate connections between closely situated entities. MNE first embeds
each instance into a manifold-aware space under the supervision of an affinity graph constructed from
Euclidean space to enhance the perception of the global manifold structure. After that, to mitigate the
negative effect of outliers, RBR integrates local neighbors into a robust barycenter distribution by
adding a Wasserstein regularization term to constrain the pairwise relationships among neighbors.
Finally, GT transports the distributions along the geodesic path within the affinity graph, combining
geometric and global context information to generate the refined distance matrix.

3.1 MANIFOLD-AWARE NEIGHBOR ENCODING

To address the problem that existing context-based methods cannot capture the global relationships,
Manifold-aware Neighbor Encoding (MNE) aims to project each instance into a manifold-aware
space, in which the corresponding distributions are under the constraint of the original affinity graph
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Figure 1: The framework of Neighbor-aware Geodesic Transportation (NGT). Relative distance
relationships in Euclidean space lack discriminative power, e.g., d(vq, v2) < d(vq, v1) (expected to
be d(vq, v2) > d(vq, v1)). The proposed NGT first encodes features into a manifold-aware space and
then uses Regularized Barycenter Refinery (RBR) to integrate local neighbors into a robust barycenter
distribution. Geodesic Transportation (GT) calculates pairwise distances by propagating distributions
on the nearest neighbor graph, resulting in improved neighbor relationships.

constructed from Euclidean space. Formally, given a batch set X = {x1, x2, . . . , xn} comprising
n images, we can obtain the corresponding d-dimensional features F = {f1,f2, . . . ,fn}. The
pairwise Euclidean distance d(i, j) between images xi and xj can be formulated as:

d(i, j) = ∥fi − fj∥2. (1)

For an image xi, its k-nearest neighbors within the Euclidean space are denoted as N (i, k). The
underlying manifold structure can be represented by an affinity graph G = {V, E} constructed by
the whole dataset, where each element vi in vertices set V corresponds to an image in X , and the
set of edges E denotes the connections between pair of vertices. Therefore, the affinity weights Wij

generated with the Gaussian kernel function is:
Wij = 1

N
ij exp (−d2(i, j)/σ2), (2)

where 1N is an indicator matrix with its element 1N
ij = 1 if j ∈ N (i, k), represents that the affinity

graph is sparse where k-nearest neighbors are connected. And σ is the hyper-parameter.

Compared to the Euclidean space, the manifold-aware space can not only enhance the incorpo-
ration of contextual information but also improve the overall perception of the underlying man-
ifold. Formally, the corresponding sparse features in the manifold-aware space are denoted as
H = {h1,h2, . . . ,hn} ∈ Rn. To determine which elements are suitable for representing the sparse
feature hi, we introduce the k-reciprocal (Qin et al., 2011; Zhong et al., 2017) strategy to identify a
set of related images R(i, k) that are mutually among the top-k nearest neighbors. This approach
ensures robust relevance among neighbors, and the formal definition is as follows:

R(i, k) = {j|(j ∈ N (i, k)) ∧ (i ∈ N (j, k))}. (3)

We set the value of k used for manifold aware feature encoding as k1 to avoid ambiguity, thus for
an image xi, the majority of the elements in hi are zero, except for those indices that belong to the
reciprocal set R(i, k1), where R(i, k1) ⊆ {1, 2, . . . , n} and |R(i, k1)| < n.

To address the problem that existing context-based methods lack the ability to reveal the intrinsic
relationship in the underlying data manifold, we incorporate the diffusion process (Bai et al., 2019;
Luo et al., 2024) to obtain a manifold-aware similarity matrix F for encoding the sparse feature set
H. Specifically, here we adopt the Bidirectional Similarity Diffusion strategy, followed by:

min
F

1

4

n∑
k=1

n∑
i,j=1

(
Wij

( Fki√
Dii

− Fkj√
Djj

)2

+Wij

( Fik√
Dii

− Fjk√
Djj

)2
)
+ µ∥F −E∥2F , (4)
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where D is a diagonal matrix with its i-th diagonal element equal to the summation of the i-th row in
W . The semidefinite matrix E in the regularization term is used to prevent the diffusion similarity F
from being excessively smooth. The choice of E can be a diagonal matrix I or approximated by the
affinity relationship such as (W +W⊤)/2, and the hyper-parameter µ > 0 is a constraint weight.

As demonstrated in Section A, directly solving the closed-form solution to Equation 4 is computa-
tionally expensive. By employing the iterative method described below, the time complexity can be
reduced to O(n3),

F (t+1) =
1

2
αF (t)S̄⊤ +

1

2
αS̄F (t) + (1− α)E, (5)

where α = 1
1+µ and S̄ = (S + S⊤)/2. Through conjugate gradient descent, it can be approximated

more efficiently with fewer iteration steps following Algorithm 1. After the optimal similarity matrix
F is obtained, we can encode the manifold-aware distribution for each images xi as hi = 1

R
i Fi,

where 1R is an indicator for searching reciprocal neighbors, i.e., 1R
ij = 1, if j ∈ R(i, k1). Therefore,

we can transform all original image features F = {f1,f2, . . . ,fn} into manifold-aware distributions
H = {h1,h2, . . . ,hn}, this procedure is named as Manifold-aware Neighbor Encoding.

3.2 REGULARIZED BARYCENTER REFINERY

Despite the global-aware distributions being beneficial in capturing the global underlying manifold,
they still suffer from the problem that the expressiveness is affected by outliers from the neighbor
domain. Since local neighbors exhibit higher consistency, we can integrate neighbor distributions into
a barycenter to enhance the representativeness and mitigate the negative influence of outliers. Unlike
trivial solutions that simply average neighboring distributions together, we aim to consider pairwise
connections among neighborhood instances. To achieve this, we introduce a Wasserstein distance
serving as a regularization term to jointly minimize the Euclidean distance from the barycenter to the
local neighbors.

We therefore give a more general formulation for integrating n distributions into a refined barycenter
a weighted by a set of weights λ = {λ1, λ2, . . . , λn}. Without losing of generality, the sum of λ is
explicitly constrained to 1, i.e.,

∑
s λs = 1. For the case where only the local neighbors of a given

image xi need to be integrated, we can define the indices of its local neighbors as N (i, k2), where
k2 < k1, and explicitly set λs = 0 for s /∈ N (i, k2). The weighted summation of Euclidean distance
and Wasserstein distance is jointly minimized with the following optimization problem,

min
P ,ai

n∑
s=1

(1− ω)λs⟨ai − hs,ai − hs⟩+ ωλs⟨C,Ps⟩),

s.t. Ps1 = ai,P
⊤
s 1 = hs,

(6)

where Ps is a matrix that represents the optimal transport procedure from barycenter a to hs, all the
Ps come together to make up the objective strategies P , and ⟨·⟩ is an inner product operator that
denotes the summation of all the product between corresponding components. ω is the weight used to
balance the contribution of Euclidean distance and Wasserstein distance in computing the barycenter.

In the minimization objective of Equation 6, the first term is the Euclidean distance, and the second
term is the Wasserstein distance induced by the cost matrix C. Formally, the cost matrix C is used
to capture the pairwise relationships between neighboring instances, which can be measured by the
similarity within the Euclidean space or treated uniformly with a 0-1 matrix, i.e., Cij = 1 when
i = j, and Cij = 0 when i ̸= j, to ensure more stable performance in various scenarios. Following
Agueh & Carlier (2011); Cuturi (2013); Cuturi & Doucet (2014); Solomon et al. (2015), an entropy
regularization term H(Ps) =

∑
ij P

s
ij − P s

ij logP
s
ij is added to the Wasserstein distance term in

order to achieve better numerical stability and enable the efficient iterative solution. The entropy
regularized problem is formulated as follows:

min
P ,ai

n∑
s=1

(1− ω)λs⟨ai − hs,ai − hs⟩+ ωλs

(
⟨C,Ps⟩ − εH(Ps)

)
,

s.t. Ps1 = ai,P
⊤
s 1 = hs.

(7)

To solve the minimization problem in Equation 7, we define the Lagrange multipliers for the two
equality constraints as g = {g1, g2, . . . , gn} and r = {r1, r2, . . . , rn} respectively. After that, the
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Lagrangian function L(P ,a, g, r) of the primal entropy regularized minimization problem can be
formulated as:

L(P ,a, g, r) =

n∑
s=1

(1− ω)λs⟨a− hs,a− hs⟩+ λsω
(
⟨C,Ps⟩ − εH(Ps)

)
+ λsω

(
⟨gs,a− Ps1⟩+ ⟨rs,hs − P⊤

s 1⟩
)
.

(8)

The objective function is strictly convex and such that the strong duality holds. Therefore, solving the
primal problem is equivalent to find the maximum value of the following dual Lagrangian function,

D(g, r) = inf
P ,a

L(P ,a, g, r). (9)

By solving the dual problem of maxg,r D(g, r), we can derive the representation of the optimal
solution of each transportation matrix P ∗

s as:

P ∗
s = diag(egs/ε)Kdiag(ers/ε), (10)

and the following relationship can also be established:

diag(egs/ε)Kers/ε + ξ

n∑
s=1

λsgs =

n∑
s=1

λshs, (11)

where K is a variant matrix of C with its element defined as Kij = e−Cij/ε, and operator diag(·)
can transform vector into a corresponding diagonal matrix. Here we substitute ξ = ω

2(1−ω) for the
case of simplicity. As the primal problem is strictly convex, the optimal value can be approximated
following the fixed point theory. The algorithm and derivation procedures are detailed in Appendix
B. To further enhance the numerical stability, we can estimate the optimal solution by solving the
optimization problem that involves the Euclidean distance term and the Wasserstein distance term
separately. The algorithm and derivations are discussed in Appendix C. The resulting barycenter
distributions for each instance are denoted as {a1,a2, . . . ,an}.

3.3 GEODESIC TRANSPORTATION

After that, the next goal is to devise an efficient distance metric among barycenter distributions
that is capable of integrating global contextual information. Conventional methods often fail to
adequately discern instances outside the immediate neighborhood domain and are unable to fully
exploit geometric information. To overcome these limitations, we focus on transporting distributions
along geodesic paths to compute pairwise distances for neighborhood refinery, which incorporate
geodesic distances into the computation of Wasserstein distance.

First we define the set Ps→t, which contains all the possible path from vertex vs to vt within the
affinity graph G = {V, E}:

Ps→t = {(u1, u2, . . . , uk)|u1 = vs, uk = vt, e[ui, ui+1] ∈ E ,∀ 1 ≤ i < k}, (12)

where each path p in Ps→t is a sequence of of vertex that starting from vs and end with vt, u1 to uk

correspond to vertex in the affinity graph. e[ui, ui+1] denotes the edge between the vertex ui and
ui+1. The geodesic path from vs to vt is also equivalent to the shortest path in the affinity graph,
which can incorporate the topological structure of the data manifold and capture global information.
Moreover, the geodesic distance C ′

st from vs to vt is defined as:

C ′
st = min

p∈Ps→t

∑
eij∈p

Wij , (13)

which can be viewed as the summation of the edge weights along the geodesic path, and all pairs
of shortest distance formulate the geodesic distance matrix C ′. This distance matrix will serve as
the cost matrix in the subsequent discussion. To emphasize its physical significance and maintain
clarity, we adopt the same notation as in the previous section. Besides, the problem of searching for
the geodesic path can be solved efficiently by taking the advantage from Saha & Ye (2024).

To integrate the global correlation capability of optimal transport with the geometric properties of
geodesic distances, we leverage the geodesic path into the transporting process and use it as the
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cost matrix for Wasserstein distance. Given two barycenter distributions ai and aj , to measure the
pairwise distance, we need to solve:

min
P

⟨C ′,P ⟩ − εH(P )

s.t. P1 = ai,P
⊤1 = aj ,

(14)

where matrix P is the optimal transportation matrix from ai to aj . To balance the benefits of optimal
transport distance with computational efficiency, here we also incorporate H(P ) =

∑
ij Pij −

Pij logPij as an entropy regularization term. Such that the solution to the optimal transport problem
can be numerically solved following Sinkhorn-Knopp iterations (Cuturi, 2013; Peyré & Cuturi,
2020). After obtaining the optimal transportation matrix P from ai to aj , the distance between two
distributions can be formulated as:

d′(i, j) = ⟨P ,C ′⟩ =
n∑

k,l=1

PklC
′
kl (15)

Furthermore, to preserve the crucial neighborhood information within the original Euclidean space,
we simultaneously incorporate the original Euclidean distance and the optimal transport-based
distance. The final Geodesic Transportation distance between two distributions can be formulated as:

dGT (i, j) = (1− θ)d′(i, j) + θd(i, j), (16)

where d(i, j) is the Euclidean distance, and θ is the balance weight. All pairwise distances among
barycenter distributions can be calculated in a parallel manner, resulting in a refined distance matrix
that can be used for neighborhood refinery.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Datasets: To verify the effectiveness of our proposed NGT, we conduct experiments on both image
retrieval and deep clustering tasks. For image retrieval, the well-known Oxford5k (Philbin et al.,
2007) and Paris6k (Philbin et al., 2008) datasets have been revisited by Radenović et al. (2018),
referred to as ROxf and RPar respectively. Additionally, the performance on large-scale datasets
with an extra 1 million distractor images, named ROxf+1M and RPar+1M, has also been evaluated.
For deep clustering tasks, the performance is measured on five widely used benchmarks, including
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-20 (Krizhevsky et al., 2009), STL-10 (Coates et al.,
2011), ImageNet-10 (Chang et al., 2017), and ImageNet-Dogs (Chang et al., 2017).

Evaluation Metrics: For image retrieval tasks, the image datasets are categorized into three levels of
difficulty by Radenović et al. (2018), and we employ mean Average Precision (mAP) to measure the
retrieval performance. For deep clustering tasks, we strictly follow Huang et al. (2023); Shen et al.
(2021b); Yu et al. (2023); Li et al. (2021; 2022) to adopt Normalized Mutual Information (NMI),
Accuracy (ACC), and Adjusted Rand Index (ARI) for evaluation.

Implementations: The image descriptors for instance retrieval tasks are extracted by MAC (Tolias
et al., 2016), R-MAC (Tolias et al., 2016), R-GeM (Radenović et al., 2019), DOLG (Yang et al.,
2021), and CVNet (Lee et al., 2022), respectively. For the deep clustering task, we apply our method
to the BYOL (Grill et al., 2020) framework as a post-training stage. Following Li et al. (2021); Tsai
et al. (2020); Huang et al. (2023); Yu et al. (2023), the training details, including the choice of batch
size, hyper-parameters, and backbone architecture, are summarized in Appendix D.

4.2 COMPARISON WITH EXISTING METHODS

Comparison of Image Retrieval: As summarized in Table 1, we evaluate the retrieval performance
with existing re-ranking method, including query expansion methods (AQE (Chum et al., 2007), αQE
(Radenović et al., 2019), DQE (Arandjelović & Zisserman, 2012), AQEwD (Gordo et al., 2017) and
SG (Shao et al., 2023)), context-based methods (STML (Kim et al., 2022), ConAff (Yu et al., 2023)
and CAJ (Chen et al., 2024)), diffusion-based methods (DFS (Iscen et al., 2017), FSR (Iscen et al.,
2018), RDP (Bai et al., 2019), CAS(Luo et al., 2024), GSS (Liu et al., 2019) and EGT (Chang et al.,
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Table 1: Evaluation of the retrieval performances based on R-GeM (Radenović et al., 2019).

Method
Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M
R-GeM (Radenović et al., 2019) 67.3 49.5 80.6 57.4 44.2 25.7 61.5 29.8

AQE (Chum et al., 2007) 72.3 56.7 82.7 61.7 48.9 30.0 65.0 35.9
αQE (Radenović et al., 2019) 69.7 53.1 86.5 65.3 44.8 26.5 71.0 40.2
DQE (Arandjelović & Zisserman, 2012) 70.3 56.7 85.9 66.9 45.9 30.8 69.9 43.2
AQEwD (Gordo et al., 2017) 72.2 56.6 83.2 62.5 48.8 29.8 65.8 36.6
LAttQE (Gordo et al., 2020) 73.4 58.3 86.3 67.3 49.6 31.0 70.6 42.4

ADBA+AQE 72.9 52.4 84.3 59.6 53.5 25.9 68.1 30.4
αDBA+αQE 71.2 55.1 87.5 68.4 50.4 31.7 73.7 45.9
DDBA+DQE 69.2 52.6 85.4 66.6 50.2 29.2 70.1 42.4
ADBAwD+AQEwD 74.1 56.2 84.5 61.5 54.5 31.1 68.6 33.7
LAttDBA+LAttQE 74.0 60.0 87.8 70.5 54.1 36.3 74.1 48.3

DFS (Iscen et al., 2017) 72.9 59.4 89.7 74.0 50.1 34.9 80.4 56.9
FSR (Iscen et al., 2018) 72.7 59.6 89.6 73.9 49.6 34.8 80.2 56.7
RDP (Bai et al., 2019) 75.2 55.0 89.7 70.0 58.8 33.9 77.9 48.0
GSS (Liu et al., 2019) 78.0 61.5 88.9 71.8 60.9 38.4 76.5 50.1
EGT (Chang et al., 2019) 74.7 60.1 87.9 72.6 51.1 36.2 76.6 51.3

SG (Shao et al., 2023) 71.4 53.9 83.6 61.5 49.5 28.8 67.6 35.8
SSR (Shen et al., 2021a) 74.2 54.6 82.5 60.0 53.2 29.3 65.6 35.0
CSA (Ouyang et al., 2021) 78.2 61.5 88.2 71.6 59.1 38.2 75.3 51.0
STML (Kim et al., 2022) 74.1 53.5 85.4 68.0 57.1 27.5 70.0 42.9
ConAff (Yu et al., 2023) 74.5 53.9 88.0 61.4 56.4 30.3 73.9 33.6

NGT (Ours) 81.1 61.6 91.7 75.8 64.5 39.0 81.5 58.8

Table 2: Evaluation of the retrieval performances
based on DOLG (Yang et al., 2021), best in bold.

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar
DOLG 93.4 95.2 81.2 90.1 62.6 79.2

AQE 96.0 95.6 83.5 90.5 67.5 80.0
αQE 96.7 95.7 83.9 91.4 67.6 81.7
SG 97.7 95.7 85.1 91.7 70.3 82.9

CAJ 96.0 94.2 85.8 91.2 71.8 81.3
STML 97.6 95.4 86.0 91.5 70.8 82.3

DFS 87.3 93.6 76.1 90.8 53.5 82.4
RDP 95.7 95.0 87.2 93.0 72.0 84.8
CAS 96.8 95.7 89.5 93.6 76.7 86.7
GSS 98.0 95.3 86.9 90.6 72.9 81.2

ConAff 95.1 93.0 84.6 91.3 66.7 79.9

NGT 99.1 96.1 90.3 95.0 76.5 89.2

Table 3: Evaluation of the retrieval performances
based on CVNet (Lee et al., 2022), best in bold.

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar
CVNet 94.3 93.9 81.0 88.8 62.1 76.5

AQE 94.7 94.4 82.1 90.2 64.4 78.8
αQE 95.8 94.8 95.8 90.9 63.5 80.4
SG 99.0 95.0 86.1 90.6 69.3 80.5
CAJ 97.3 93.9 85.8 88.9 70.0 76.4

STML 98.5 94.9 86.2 90.8 69.3 80.5

DFS 83.5 93.5 70.8 89.8 47.4 79.6
RDP 96.9 94.5 87.8 92.4 71.5 83.3
CAS 97.6 95.0 87.6 92.8 72.7 84.8
GSS 99.0 94.0 87.6 87.1 70.4 76.9

ConAff 98.3 92.4 87.5 90.2 70.3 77.7

NGT 99.2 95.7 89.7 94.3 73.8 87.1

2019)), as well as learning-based methods (LAttQE (Gordo et al., 2020), SSR (Shen et al., 2021a) and
CSA (Ouyang et al., 2021)). It can be observed that the proposed NGT achieves better performance
than the existing methods in all settings. Among all existing methods, ConAff is the most related work
to ours, which uses neighborhood for contextual encoding. Compared to ConAff, the proposed NGT
obtains a 5.7%/9.8% improvement in mAP in ROxf (M) and ROxf (H) with the feature extracted by
DOLG as shown in Table 2. The significant improvement in performance underscores the superiority
of the proposed NGT, and more evaluated comparison results are provided in Appendix E.

Comparison of Deep Clustering: We further conduct a comparison with existing methods on the
task of deep clustering in five datasets and summarize the related results in Table 4. Specifically,
for the two moderate-sized datasets CIFAR-10 and CIFAR-20, the proposed NGT surpasses the
baseline performance of BYOL by 7.8%/7.3% in NMI, respectively. Furthermore, compared to
the best performing contrastive-based ProPos (Huang et al., 2023) and the non-contrastive-based
ConNR (Yu et al., 2023), NGT obtains a 4.6% and 2.4% improvement upon them. Despite that
the clustering performance on the smaller datasets STL-10 and ImageNet-10 nearly approaches
saturation, our method still yields the optimal results, boasting an increasement of 14.2%/4.6% in
NMI compared to the baseline BYOL. On the more challenging ImageNet-Dogs dataset, our method
achieves state-of-the-art performance across two key metrics, indicating that there is still room for
improvement. The results validate the effectiveness of NGT in enhancing the descriptive capabilities
of self-supervised models for deep clustering.
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Table 4: Deep clustering performance on five benchmarks.

CIFAR-10 CIFAR-20 STL-10 ImageNet-10 ImageNet-Dogs
NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

IIC (Ji et al., 2019) 51.3 61.7 41.1 - 25.7 - 43.1 49.9 29.5 - - - - - -
DCCM (Wu et al., 2019) 49.6 62.3 40.8 28.5 32.7 17.3 37.6 48.2 26.2 60.8 71.0 55.5 32.1 38.3 18.2
PICA (Jiabo Huang & Zhu, 2020) 56.1 64.5 46.7 29.6 32.2 15.9 - - - 78.2 85.0 73.3 33.6 32.4 17.9
SCAN (Van Gansbeke et al., 2020) 79.7 88.3 77.2 48.6 50.7 33.3 69.8 80.9 64.6 - - - - - -
NMM (Dang et al., 2021) 74.8 84.3 70.9 48.4 47.7 31.6 69.4 80.8 65.0 - - - - - -
CC (Li et al., 2021) 70.5 79.0 63.7 43.1 42.9 26.6 76.4 85.0 72.6 85.9 89.3 82.2 44.5 42.9 27.4
MiCE (Tsai et al., 2020) 73.7 83.5 69.8 43.6 44.0 28.0 63.5 75.2 57.5 - - - 42.3 43.9 28.6
GCC (Zhong et al., 2021) 76.4 85.6 72.8 47.2 47.2 30.5 68.4 78.8 63.1 84.2 90.1 82.2 49.0 52.6 36.2
TCL (Li et al., 2022) 81.9 88.7 78.0 52.9 53.1 35.7 79.9 86.8 75.7 87.5 89.5 83.7 62.3 64.4 51.6
IDFD (Tao et al., 2021) 71.1 81.5 66.3 42.6 42.5 26.4 64.3 75.6 57.5 89.8 95.4 90.1 54.6 59.1 41.3
TCC (Shen et al., 2021b) 79.0 90.6 73.3 47.9 49.1 31.2 73.2 81.4 68.9 84.8 89.7 82.5 55.4 59.5 41.7
ProPos (Huang et al., 2023) 85.1 91.6 83.5 58.2 57.8 42.3 75.8 86.7 73.7 89.6 95.6 90.6 73.7 77.5 67.5
CoNR (Yu et al., 2023) 86.7 93.2 86.1 60.4 60.4 44.3 85.2 92.6 84.6 91.1 96.4 92.2 74.4 79.4 66.7
DivClust (Metaxas et al., 2023) 72.4 81.9 68.1 44.0 43.7 28.3 - - - 89.1 93.6 87.8 51.6 52.9 37.6

BYOL (Grill et al., 2020) 79.4 87.8 76.6 55.5 53.9 37.6 71.3 82.5 65.7 86.6 93.9 87.2 63.5 69.4 54.8
NGT (Ours) 87.2 93.5 86.7 62.8 61.5 46.6 85.5 92.6 84.6 91.2 96.5 92.3 74.8 78.1 67.6

Table 5: Ablation Results on CIFAR-10 and CIFAR-20.

BYOL LN MNE RBR GT
CIFAR-10 CIFAR-20

NMI ACC ARI NMI ACC ARI

✓ 79.4 87.8 76.6 55.5 53.9 37.6
✓ ✓ 81.9 89.6 78.7 60.7 57.0 42.5
✓ ✓ 83.5 89.5 80.1 61.7 58.3 43.7
✓ ✓ 86.6 93.2 86.2 60.8 57.9 42.7
✓ ✓ 86.7 93.3 86.3 61.3 58.4 43.6
✓ ✓ ✓ 86.7 93.3 86.4 61.9 58.5 43.8
✓ ✓ ✓ 86.7 93.3 86.3 62.5 59.8 45.2
✓ ✓ ✓ ✓ 87.2 93.5 86.7 62.8 61.5 46.6
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Figure 2: The neighborhood purity
curve on CIFAR-10.

Time Complexity Analysis: Our method involves three main components: MNE, RBR, and GT. For
MNE, we approximate the solution to the optimization problem in an iterative manner with Equation 5,
achieving a time complexity of O(n3). Similarly, RBR introduces entropy regularization term to find
the fixed-point relationship for Equation 6, the iterative solution also results in a complexity of O(n3).
The GT module leverages the Sinkhorn-Knopp algorithm to handle the optimal transport problem,
maintaining the same complexity. Consequently, the total time complexity of NGT is O(n3). The
comparisons of time complexity and re-ranking latency conducted on ROxford are shown in Table 6,
our method achieves a latency of 3,360 ms on GPU, demonstrating its outstanding performance. As
for the large-scale datasets, we have implemented a coarse-to-fine re-ranking strategy, where our
method is applied only to re-rank the top-k images in the initial ranking list. Specifically, the latency
remains within 4 seconds when k equals 5,000, underscoring the effectiveness of our method.

4.3 ABLATION STUDY

Effectiveness of each module: We perform several ablation studies to evaluate the effectiveness
of each module in deep clustering tasks, as shown in Table 5, where ‘LN’ indicates the Local
Neighborhood obtained from Euclidean space. When applying MNE alone, the clustering results
exceeded those of LN on both the CIFAR-10 and CIFAR-20 datasets, e.g., outperforms LN by
1.6%/1.0% on CIFAR-10/20 datasets in terms of NMI. When RBR or GT is incorporated with a
traditional context-based feature, a competitive result can be achieved, e.g., RBR and GT improve
the NMI/ACC/ARI from 83.5%/89.5%/80.1% to 86.6%/93.2%/86.2% and 86.7%/93.3%/86.3%,
respectively, verifying the effectiveness of these two modules and their complementarity with MNE.
Involving any of the two modules can provide different extents of enhancement, and the peak
performance is achieved when all the modules are conducted to refine the neighborhood structure.
Moreover, we present the neighbor purity curve during the training stage in Figure 2, the top-k
neighbors returned by our method exhibit higher accuracy compared to LN, further validating the
effectiveness of NGT in identifying informative neighbors

Ablations of MNE: MNE encodes each instance into a sparse distribution, where the dimensions are
determine by k-reciprocal neighbors and the values are assigned with diffusion-based similarity. As
shown in Table 7, we also conduct the Cosine similarity in SCA (Bai & Bai, 2016) and the Gaussian
similarity in Equation 2 to encode the sparse distributions. The diffusion-based similarity outperforms
Cosine and Gaussian similarity by 5.7%/2.5% in mAP on ROxf(H) based on R-GeM, demonstrate its
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Table 6: Analysis of Time Complexity.

Method Time Complexity Re-ranking Latency (ms)

αQE O(n2) 121
DFS O(n3) 2,129
RDP O(n3) 6,018

STML O(n3) 8,384
GSS - > 5 min

NGT O(n3) 3,360

Table 7: Ablations of MNE.

Method
ROxf(M) ROxf(H)

MAC R-MAC R-GeM MAC R-MAC R-GeM

Baseline 34.6 40.2 67.3 14.3 10.5 44.2

Cosine+k-nn 48.5 27.6 53.6 23.6 76.7 55.3
Guassian+k-nn 51.7 27.2 60.1 28.3 80.0 61.2
Diffusion+k-nn 54.9 30.7 62.3 33.0 80.9 64.1
Consine+k-recip 53.3 30.6 58.8 27.0 77.7 58.8
Guassian+k-recip 51.9 27.0 60.4 28.4 80.5 63.0
Diffusion+k-recip 54.9 30.8 62.5 33.4 81.1 64.5
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(a) Ablations of RBR on ROxf(M).
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(b) Ablations of RBR on ROxf(H).
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Figure 3: Ablations of RBR.

Table 8: Ablations of GT.

Method
ROxf(M) ROxf(H)

MAC R-MAC R-GeM MAC R-MAC R-GeM

Baseline 34.6 40.2 67.3 14.3 10.1 44.2

Euclidean 44.6 49.0 71.7 19.6 20.5 51.3
Cosine 51.3 57.4 74.4 26.9 24.9 55.6
Jaccard 52.0 57.8 76.1 28.2 25.3 57.5

GT 54.9 62.5 81.1 30.8 33.4 64.5

Table 9: Effect of parameter θ.

θ 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ROxf(M) 80.8 80.8 81.0 81.1 81.4 81.6 81.9 82.0
ROxf(H) 63.8 64.2 64.6 64.5 64.5 64.3 64.1 63.5

Table 10: Effect of parameter k2.

k2 2 3 4 5 6 7 8 9

ROxf(M) 77.6 78.9 78.2 80.2 80.0 81.1 80.6 80.2
ROxf(H) 58.2 59.6 59.6 60.9 61.3 64.5 63.2 62.4

effectiveness in capturing global-aware information. Moreover, we also encode the distributions with
k-nn neighbors, experiments indicate that mutual information brought by k-reciprocal neighbors can
result in a more stable performance.

Ablations of RBR: RBR aims to integrate the local neighbor distributions into a robust barycenter.
The concept of utilizing neighborhoods to enhance robustness has been early discussed by Chum
et al. (2007), which simply averages the local neighbors (NGT-AQE). Compare with the baseline that
only use the instance-aware distribution for neighborhood refinery, NGT-AQE surpass baseline by
4.6%/2.2% in mAP on R-GeM. After applying our proposed RBR, the mAP further increase from
75.4%/57.6% to 81.1%/64.5% in mAP on R-GeM respectively. This validates that our proposed RBR
can effectively integrate the neighbor information.

Ablations of GT: GT measures the pairwise distance between distributions through transporting
them along the geodesic path. To verify its effectiveness, we conduct Euclidean, Cosine and Jaccard
metric to compute the pairwise distance between distributions for comparison. As shown in Table 8,
the superior retrieval performance is achieved by GT, surpass the second best Jarccard distance by
5.0%/7.0% on R-GeM,which validates its capability to capture geometric information and provide a
more robust distance measure for neighborhood refinery.

Analysis of hyper-parameter: The balance weight θ in Equation 16 aims to maintain the important
relationship within the Euclidean space for neighborhood refinery. The results in Table 9 validate that
a θ value around 0.5 yields robust outcomes. For the parameter k2 used to integrate local neighbors
into a barycenter, superior performance of 81.1%/64.5% on R-GeM is achieved when k2 = 7 as
shown in Table 10, which indicates that its selection should both ensure the quantity and quality of
neighborhoods. More analysis of other hyper-parameters µ, σ, k1 and ω are exhibited in Appendix E.

5 CONCLUSION

Searching for the most informative neighbors within the data manifold is a crucial problem in the
field of machine learning and computer vision. In this paper, we propose a novel Neighbor-aware
Geodesic Transportation strategy to address the problem, which consists of Manifold-aware Neighbor
Encoding, Regularized Barycenter Refinery and Geodesic Transportation. Extensive evaluations on
several tasks, such as re-ranking and deep clustering, demonstrate the superiority of our proposed
NGT. In future work, we will leverage intermediate properties of the transport process to reduce
unnecessary computations, thereby improving the efficiency of the neighborhood refinery algorithm.
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A BIDIRECTIONAL SIMILARITY DIFFUSION PROCESS

Given a set of feature embeddings, a sparse adjacency graph can be constructed by connecting
the nearest neighbors with weighted edges, which contains the deeper manifold information. The
Bidirectional Similarity Diffusion Process is designed to mine such manifold information by utilizing
the adjacent weights to constrain the similarity between neighbors in a diffusion manner. Different
from Bai et al. (2019); Yang et al. (2013); Zhou et al. (2012), we do not take the higher order
information into consideration. Since our goal is to encode each instance into a sparse feature in the
manifold space by assigning each item with a diffusion-based weight and the approximation may be
influenced by outliers, using direct neighbors to regularize the weights is more robust than exploring
the hypergraph. Intuitively, we introduce a reverse smooth term to maintain the symmetry of the
similarity matrix. Specifically, both the forward and reverse part of similarity, i.e., Fki and Fkj , Fik

and Fjk, are constrained close with the same affinity weight Wij . In this section, we will extend the
optimization problem into a matrix form and demonstrate it can be solved in an iterative way. The
objective function is defined as follows:

min
F

1

4

n∑
k=1

n∑
i,j=1

(
Wij

( Fki√
Dii

− Fkj√
Djj

)2

+Wij

( Fik√
Dii

− Fjk√
Djj

)2
)

︸ ︷︷ ︸
smoothness

+µ∥F −E∥2F︸ ︷︷ ︸
regularization

,
(17)

where the left side of the expression is referred to as the smoothness term and the right side is named
as the regularization term. Specifically, in the regularization term, E is introduced to restrict F from
being excessively smooth, the choice of E could be a diagonal matrix I or approximated by the
adjacent relationship like (W +W⊤)/2. For the convenience of the following derivation, a new
identity matrix I is added, such that the smoothness term turns into:

1

4

n∑
k,l=0

n∑
i,j=0

(
WijIkl

( Fki√
Dii

− Flj√
Djj

)2

+ IklWij

( Fik√
Dii

− Fjl√
Djj

)2
)
. (18)

To help refine the optimization problem into a matrix format, we introduce the vectorization operator
vec(·) which can stack the columns in a matrix one after another to formulate a single column
vector, and the kronecker product ⊗ which combines two matrices to produce a new one. By taking
advantage of these two transformations, define the kronecker product W(1) = W ⊗I , D(1) = D⊗I
for the former part, and W(2) = I ⊗W , D(2) = I ⊗D for the latter part. The corresponding items
between the original and matrix formation are associated with the newly defined corner markers
α ≡ n(i − 1) + k, β ≡ n(j − 1) + l, γ ≡ n(k − 1) + i and δ ≡ n(l − 1) + j. In addition to
this, define the normalized matrix as S = D−1/2WD−1/2, S(1) = S ⊗ I and S(2) = I ⊗ S. The
following facts can be easily established:

1. vec(F )α = Fki and vec(F )β = Flj ; vec(F )γ = Fik and vec(F )δ = Fjl.

2. W(1)
αβ = WijIkl, D(1)

αα = Dii and D(1)
ββ = Djj ; W(2)

γδ = IklWij , D(2)
γγ = Dii and

D(2)
δδ = Djj .

3.
∑n2

β=1 W
(1)
αβ = D(1)

αα and
∑n2

α=1 W
(1)
αβ = D(1)

ββ ;
∑n2

δ=1 W
(2)
γδ = D(2)

γγ and
∑n2

γ=1 W
(2)
γδ = D(2)

δδ

since
n2∑
β=1

W(1)
αβ =

n∑
j=1

Wij

n∑
l=1

Ikl = Dii

n2∑
α=1

W(1)
αβ =

n∑
i=1

Wij

n∑
k=1

Ikl = Djj

n2∑
δ=1

W(2)
γδ =

n∑
l=1

Ikl

n∑
j=1

Wij = Dii

n2∑
γ=1

W(2)
γδ =

n∑
k=1

Ikl

n∑
i=1

Wij = Djj

4. S(1) = (D(1))−1/2W(1)(D(1))−1/2 and S(2) = (D(2))−1/2W(2)(D(2))−1/2 since

S(1)αβ = SijIkl = D
−1/2
ii WijD

−1/2
jj Ikl S(2)γδ = IklSij = IklD

−1/2
ii WijD

−1/2
jj

= D
−1/2
ii WijIklD

−1/2
jj = D

−1/2
ii IklWijD

−1/2
jj

= (D(1)
αα)

−1/2(W(1))αβ(D(1)
ββ )

−1/2 = (D(2)
γγ )

−1/2W(2)
γδ (D

(2)
δδ )

−1/2
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Substituting the above transformations into the smoothness term, such that Equation 18 can be
reformulated into the matrix format as below:

1

4

n2∑
α,β=1

W(1)
αβ

(vec(F )α√
D(1)

αα

− vec(F )β√
D(1)

ββ

)2

+
1

4

n2∑
γ,δ=1

W(2)
γδ

(vec(F )γ√
D(2)

γγ

− vec(F )δ√
D(2)

δδ

)2

=
1

4

n2∑
α,β=1

W(1)
αβ

vec(F )2α

D(1)
αα

+
1

4

n2∑
α,β=1

W(1)
αβ

vec(F )2β

D(1)
ββ

− 1

2

n2∑
α,β=1

vec(F )α
W(1)

αβ√
D(1)

ααD(1)
ββ

vec(F )β

1

4

n2∑
γ,δ=1

W(2)
γδ

vec(F )2γ

D(2)
γγ

+
1

4

n2∑
γ,δ=1

W(2)
γδ

vec(F )2δ

D(2)
δδ

− 1

2

n2∑
γ,δ=1

vec(F )γ
W(2)

γδ√
D(2)

γγD(2)
δδ

vec(F )δ

=vec(F )⊤
(
I− 1

2
(D(1))−1/2W(1)(D(1))−1/2 − 1

2
(D(2))−1/2W(2)(D(2))−1/2

)
vec(F )

=vec(F )⊤
(
I− 1

2
S(1) − 1

2
S(2)

)
vec(F ).

(19)

Basically, the regularization term is equivalent to the l2-norm of vec(F−E), combine the smoothness
and regularization term together, the objective function Equation 17 can be rewritten into:

min
F

vec(F )T
(
I− 1

2
S(1) − 1

2
S(2)

)
vec(F ) + µ∥vec(F −E)∥22. (20)

Lemma 1 Let A ∈ Rn×n, the spectral radius of A is denoted as ρ(A) = max{|λ|, λ ∈ σ(A)},
where σ(A) is the spectrum of A that represents the set of all the eigenvalues. Let ∥ · ∥ be a matrix
norm on Rn×n, given a square matrix A ∈ Rn×n, λ is an arbitrary eigenvalue of A, then we have
|λ| ≤ ρ(A) ≤ ∥A∥.

Lemma 2 Let A ∈ Rm×m, B ∈ Rn×n, denote {λi,xi}mi=1 and {µi,yi}ni=1 as the eigen-pairs of
A and B respectively. The set of mn eigen-pairs of A⊗B is given by

{λiµj ,xi ⊗ yj}i=1,...,m, j=1,...n.

Suppose the objective in Equation 20 that needs to be minimized is J . To prove that J is convex,
it is equivalent to show that its Hessian matrix H is positive. To get started, we first consider the
matrix D−1W , whose induced l∞-norm is equal to 1, i.e., ∥D−1W ∥∞ = 1, since the i-th diagonal
element in matrix D equal to the sum of the corresponding i-th row in matrix W . Lemma 1 gives
that ρ(D−1W ) ≤ 1. As for the matrix S = D−1/2WD−1/2 we are concerned about, since we
can rewrite it as D1/2D−1WD−1/2, thus it is similar to D−1W , i.e., S ∼ D−1W . Which implies
that the two matrices share the same eigenvalues, such that ρ(S) ≤ 1. By applying Lemma 2, we can
conclude that both the spectral radius of the kronecker product S(1) = S ⊗ I and S(2) = I ⊗S is no
larger than 1, i.e., ρ(S(1)) ≤ 1, ρ(S(2)) ≤ 1.

The Hessian matrix H of Equation 20 is 2(µ+1)I− S̄(1) − S̄(2), where 2S̄(1) = S(1) + (S(1))⊤ and
2S̄(2) = S(2) + (S(2))⊤. Since we have µ > 0 and ρ(S) ≤ 1, such that the eigenvalue of H is larger
than 0, which means the Hessian matrix H is positive-definite and the objective function is convex.
To find the optimal result of Equation 20, we can take the partial derivative of vec(F ):

∇vec(F )J = (2I− S̄(1) − S̄(2))vec(F ) + 2µ(vec(F −E)). (21)

The optimal solution F ∗ is the root to the equation when the above partial derivative is equal to 0, we
can solve the optimal solution as

vec(F ∗) =
2µ

µ+ 1

(
2I− 1

µ+ 1
S̄(1) − 1

µ+ 1
S̄(2)

)−1

vec(E). (22)

A simpler result can be obtained by substituting α with 1
µ+1 , that is:

F ∗ = (1− α)vec−1
(
(I− αS̄)−1vec(E)

)
. (23)
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Lemma 3 Let A ∈ Rm×n, X ∈ Rn×p and B ∈ Rp×q respectively, then

vec(AXB) = (B⊤ ⊗A)vec(X).

Utilizing the relationship given by Lemma 3, we could put all the matrices in Equation 21 into the
vec(·) operator. Additionally, set the derivative to be 0 and we can obtain that:

2F − F S̄ − S̄F + 2µ(F −E) = 0. (24)

By making some small changes to the above formula, the optimum result F ∗ is actually the solution
to the following Lyapunov equation:

(I − αS̄)F + F (I − αS̄) = 2(1− α)E. (25)

Directly solving this equation incurs a significantly high time complexity, but we can approximate
the optimal solution at a lower cost in an iterative manner. Next, we will prove that the optimal result
can be infinitely approached by the following iterative function:

F (t+1) =
1

2
αF (t)S̄⊤ +

1

2
αS̄F (t) + (1− α)E, (26)

where S = D−1/2WD1/2, and S̄ = (S + S⊤)/2. By applying Lemma 3, we can add a vec(·)
operator on both side and rewrite the iteration process as:

vec(F (t+1)) =
1

2
α(S̄ ⊗ I)vec(F (t)) +

1

2
α(I ⊗ S̄)vec(F (t)) + (1− α)vec(E)

= αS̄vec(F (t)) + (1− α)vec(E).

(27)

Suppose the iteration starts from an initial value of F (0), e.g., F (0) can be equal to the diagonal
matrix I or the regularization matrix E. Recursively bringing the current value into the iterative
formula, we can obtain a new expression below that F (t+1) is only related to the initial value F (0),
normalized matrix S̄ and regularization matrix E, rather than dependent on the previous value F (t).
In formal terms, the value of matrix F after t-th iterations can be express as:

vec(F (t)) = (αS̄)tvec(F (0)) + (1− α)

t−1∑
i=0

(αS̄)ivec(E). (28)

Lemma 4 Let A ∈ Rn×n, then limk→∞ Ak = 0 if and only if ρ(A) < 1.

Lemma 5 Given a matrix A ∈ Rn×n and ρ(A) < 1, the Neumann series I + A + A2 + · · ·
converges to (I −A)−1.

Since we have already shown that the spectral radius of S̄ is no larger than 1, by taking advantage of
these above two lemmas, we can easily demonstrate that the following two expressions hold true:

lim
t→∞

(αS̄)t = 0, (29)

lim
t→∞

t−1∑
i=0

(αS̄)i = (I− αS̄)−1. (30)

Therefore, the iteration induce to

vec(F ∗) = (1− α)(I− αS̄)−1vec(E). (31)

By taking the inverse operator vec−1(·) on both side, we can obtain that

F ∗ = (1− α)vec−1
(
(I− αS̄)−1vec(E)

)
. (32)

The above expression is identical to Equation 23, which implies that the time complexity of solving
the Lyapunov equation in Equation 25 can be receded to O(kn3), where k represents the number
of iterations and n denotes the dimension of matrix. Inspired by Iscen et al. (2017; 2018), the
convergence rate can be further accelerated with the conjugate gradient method. In other words, the
solution to the equation can be estimated with fewer iterations following Algorithm 1. Specifically,
starts from an initial estimation F (0), the iteration in the Bidirectional Similarity Diffusion Process
will cease when the maximum count maxiter is reached or the norm of the residue is less than a
predefined tolerance δ.
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Algorithm 1 Bidirectional Similarity Diffusion Process

Input: initial estimation F (0), normalized kronecker matrix S̄, identity matrix I with the same
dimension, max number of iterations maxiter, parameter α, tolerance δ.

1: initialize P (0) and R(0) with 2(1− α)E − (I − αS̄)F (0) − F (0)(I − αS̄)
2: denote ft = vec(F (t)), rt = vec(R(t)), pt = vec(P (t))
3: for t = 0, 1, . . . ,maxiter do

4: compute parameter αt =
r⊤t rt

2p⊤
t (I− αS̄)pt

5: refresh ft+1 = ft + αtpt

6: update residue rt+1 = rt − 2αt(I− αS̄)pt

7: if ∥rt+1∥ < δ then
8: return F ∗ = vec−1(f)
9: end if

10: compute parameter βt =
r⊤
t+1rt+1

r⊤
t rt

11: refresh pt+1 = rt+1 + βtpt

12: end for
Output: F ∗ = vec−1(f).

B REGULARIZED BARYCENTER REFINERY

Denote a collection containing n distributions as H = {h1,h2, . . . ,hn} ∈ Rn, the goal of Regular-
ized Barycenter Refinery is to find a balance centroid a of these distributions, where the weight of
each distribution contributes to the calculation is given by a set λ = {λ1, λ2, . . . , λn}. Without loss
of generality, we explicitly restrict that the summation of λs is equal to 1, i.e.,

∑
s λs = 1. Inspired

by Peyré & Cuturi (2020); Vallender (1974); Cuturi (2013), we aim to find a center that minimizes the
weighted Wasserstein distance to the distributions in the collection. In our construction, the manifold
structural information is embedded in an adjacency graph, through which the distributions in the set H
are encoded. In order to fully incorporate the manifold information when computing the Wasserstein
center, we can design a cost matrix C shared by all the distributions based on the graph structure.
Alternatively, it is also feasible to choose a simple 0-1 matrix as the cost matrix, i.e., Cij = ∥δi− δj∥,
which can offer a stable performance in different situations. However, solely minimizing the weighted
sum of Wasserstein distance may overlook certain dimensions that are crucial for some distributions
in H. To address this issue, we introduce an additional Euclidean distance term between the center
and the distribution set H as a constraint, the weighted sum of Wasserstein distance and Euclidean
distance are jointly minimized, weighted by ω and 1−ω respectively. Thus, the optimization function
to the Regularized Barycenter Refinery problem is presented as:

min
P ,a

n∑
s=1

λs

(
ω⟨C,Ps⟩+ (1− ω)⟨a− hs,a− hs⟩

)
s.t. Ps1 = a,P⊤

s 1 = hs,

(33)

where the inner product operation ⟨·⟩ denotes the summation of all the multiplication between
corresponding components, and the operands can be either vectors or matrices. For an element hs in
the distribution set H, there exists a transport strategy (Vallender, 1974) from a to it, denoted as Ps,
and all the strategies come together to make up the collection P as mentioned in Equation 33. Unless
specified, all the matrix (vector) divisions, exponential, and logarithm operations proposed below are
element-wise. Following Cuturi (2013); Agueh & Carlier (2011); Cuturi & Doucet (2014); Solomon
et al. (2015), an entropy regularization term H(Ps) =

∑
ij P

s
ij −P s

ij logP
s
ij weighted by ε is added

to the Wasserstein distance term, then the objective function turns into:

min
P ,a

n∑
s=1

ωλs

(
⟨C,Ps⟩ − εH(Ps)

)
+ (1− ω)λs⟨a− hs,a− hs⟩

s.t. Ps1 = a,P⊤
s 1 = hs.

(34)

In the objective function described above, the former and latter parts represent the entropy-regularized
Wasserstein distance and the Euclidean distance constraint respectively. And the optimal result
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a is referred to as the regularized weighted barycenter. Define the Lagrange multipliers as g =
{g1, g2, . . . , gn} and r = {r1, r2, . . . , rn} for the two equation constraints. Such that the Lagrangian
function L(P ,a, g, r) of the entropy regularized minimization problem in Equation 34 can be
represented as:

L(P ,a, g, r) =

n∑
s=1

λsω
(
⟨C,Ps⟩ − εH(Ps) + ⟨gs,a− Ps1⟩+ ⟨rs,hs − P⊤

s 1⟩
)

+ (1− ω)λs⟨a− hs,a− hs⟩.
(35)

Characterize the optimal value of the primal problem as a function of the Lagrange multipliers, the
corresponding dual Lagrangian function D(g, r) is defined as:

D(g, r) = inf
P ,a

L(P ,a, g, r).

Given the strong convexity of the primal problem, the principle of strong duality holds, ensuring
equivalence between the optimal solutions of the primal and dual problems. This enable us to solve
the following maximization problem to find the optimal result to the original objective function:

max
g,r

D(g, r) = max
g,r

inf
P ,a

L(P ,a, g, r). (36)

By substituting the Lagrangian function in Equation 35 into the dual problem, we can obtain:

max
g,r

min
P ,a

n∑
s=1

ωλs

(
⟨C,Ps⟩ − εH(Ps) + ⟨gs,a− Ps1⟩+ ⟨rs,hs − P⊤

s 1⟩
)

+ (1− ω)λs⟨a− hs,a− hs⟩

=max
g,r

n∑
s=1

ωλs

(
⟨gs,hs⟩+min

P
⟨C,Ps⟩ − εH(Ps)− ⟨gs,Ps1⟩ − ⟨rs,P⊤

s 1⟩
)︸ ︷︷ ︸

L1
s(Ps)

+min
a

ω⟨
n∑

s=1

λsgs,a⟩+ (1− ω)

n∑
s=1

λs⟨a− hs,a− hs⟩︸ ︷︷ ︸
L2

s(Ps)

.

(37)

We can first solve the minimization objective function denoted as L1
s(Ps) and L2

s(Ps) within the
max-min optimization problem. Replace H(Ps) with its definition for the first one, we can derive:

L1
s(Ps) = ⟨C,Ps⟩+ ε

∑
i,j

P s
ij(logP

s
ij − 1)− ⟨gs,Ps1⟩ − ⟨rs,P⊤

s 1⟩. (38)

This is a convex function and the first order condition gives that:

∂L1
s(Ps)

∂P s
ij

= Cij + ε logP s
ij − gs

i − rsj = 0. (39)

Through rearranging the above equation, we can obtain:

P ∗
s = diag(egs/ε)Kdiag(ers/ε), (40)

where K is a variant matrix of C with its element defined as Kij = e−Cij/ε, and operator diag(·) can
create diagonal matrices based on the given vectors. Additionally, for the simplicity of the following
discussion, define the vector us = egs/ε and vs = ers/ε. Incorporate the above relationship into
Equation 38, it can be concluded that:

L1
s(P

∗
s ) = −ε

∑
i,j

P s∗
ij . (41)

The second minimization problem can be directly solved with its optimal result represented as:

a =

n∑
s=1

λs

(
hs −

ω

2(1− ω)
gs

)
. (42)
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Algorithm 2 Regularized Barycenter Refinery

Input: the collection of n distributions {h1,h2, . . . ,hn} and their weights {λ1, . . . , λn}, the cost
matrix C and its variant K = e−C/ε, iteration tolerance δ, balance weight ω, denote ξ = ω

2(1−ω) ,
and define ⊘ as an element-wise division for vector.

1: initialize {u1,u2, . . . ,un}, {v1,v2, . . . ,vn} and a(0) with 1 vector.
2: for t = 0, 1, . . . ,maxiter do
3: for s = 1, 2, . . . , n do
4: v

(t+1)
s = hs ⊘K⊤u

(t)
s

5: end for
6: a(t+1) =

∑
s λs(hs − εξ logu

(t)
s )

7: if ∥a(t+1) − a(t)∥ ≤ δ then
8: return a
9: end if

10: for s = 1, 2, . . . , n do
11: u

(t+1)
s = a(t+1) ⊘Kv

(t+1)
s

12: end for
13: end for
Output: the regularized weighted barycenter a.

Substitute P ∗ and a back into Equation 37, it becomes:

max
g,r

n∑
s=1

ωλs

(
⟨rs,hs⟩ − ε

∑
i,j

eg
s
i /εKije

rs
j/ε

)
− ω2

4(1− ω)

〈 n∑
s=1

λsgs,

n∑
s=1

λsgs
〉

+ ω
〈 n∑
s=1

λsgs,

n∑
s=1

λshs

〉
− (1− ω)

〈 n∑
s=1

λshs,

n∑
s=1

λshs

〉
+ (1− ω)

n∑
s=1

λs⟨hs,hs⟩.
(43)

With fixed g, the first order condition with respect to rsj gives that:

hs
j −

∑
i

eg
s
i /εKije

rs
j/ε = 0, (44)

by simplifying the representation with us and vs and reorganizing the equation provided above, we
can obtain the following relationship:

diag(vs)K
⊤us = hs. (45)

With fixed r, the first order condition with respect to gs
i gives that:∑

j

eg
s
i /εKije

rs
j/ε +

ω

2(1− ω)

∑
s

λsg
s
i =

∑
s

λsh
s
i , (46)

denote ξ = ω
2(1−ω) for the sake of simplification, replace the exponential components with us and vs

and we can obtain that:

diag(us)Kvs =

n∑
s=1

λs(hs − εξ logus). (47)

Following Algorithm 2, the numerical solutions can be obtained in an iterative manner.

C APPROXIMATE REGULARIZED BARYCENTER REFINERY

The Algorithm 2 may suffers from the drawback of numerical instability in certain situations. To
address this issue, we propose an approximate solution to find the regularized weighted barycenter.
Firstly, the optimization objective a in Equation 33 is relaxed to a weighted sum of a1 and a2, i.e.,
a = ωa1 + (1− ω)a2. The optimal transport strategies from a1 to the distribution set H is denoted
as P , and the objective function to the Approximate Regularized Weighted problem is defined as:

min
P ,a1,a2

n∑
s=1

ωλs

(
⟨C,Ps⟩ − εH(Ps)

)
+ (1− ω)λs⟨a2 − hs,a2 − hs⟩

s.t. Ps1 = a1,P
⊤
s 1 = hs.

(48)
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Since a1 and a2 are independent to each other, such that we can separately optimize the values of a1

and a2. When solving the optimization function involving a2, we can obtain that a2 =
∑

s λshs.
And when solving the optimization problem involving the weighted sum of regularized Wasserstein
distance with respect to a1, the optimization objective can be expressed as:

min
P ,a1

n∑
s=1

λs

(
⟨C,Ps⟩ − εH(Ps)

)
s.t. Ps1 = a1,P

⊤
s 1 = hs.

(49)

Similar to Section B, the Lagrangian function for the entropy regularized optimization problem in
Equation 49 is defined as:

L(P ,a1, g, r) =

n∑
s=1

λs

(
⟨C,Ps⟩ − εH(Ps) + ⟨gs,a1 − Ps1⟩+ ⟨rs,hs − P⊤

s 1⟩
)
, (50)

where g and r are the Lagrangian multipliers for the two equation constraints respectively. Since
the objective function is strictly convex and such that the strong duality holds. Solving the primal
problem is equivalent to finding the maximum value of the following dual Lagrangian function:

D(g, r) = inf
P ,a1

L(P ,a1, g, r). (51)

Substitute the definition of L(P ,a1, g, r) into the dual Lagrangian function D(g, r), and the maxi-
mize objective function can be reorganized as:

max
g,r

min
P ,a1

n∑
s=1

λs

(
⟨C,Ps⟩+ εH(Ps) + ⟨gs,a1 − Ps1⟩+ ⟨rs,hs − P⊤

s 1⟩
)

=max
g,r

n∑
s=1

λs

(
⟨gs, bs⟩+min

P
⟨C,Ps⟩+ εH(Ps)− ⟨gs,Ps1⟩ − ⟨rs,P⊤

s 1⟩
)

+min
a1

〈 n∑
s=1

λsgs,a1

〉
.

(52)

The second minimization objective leads to
∑

s λsgs = 0, otherwise, there exists an a1 such that the
optimal value becomes −∞. Similar to Equation 38, we can define:

Ls(Ps) = ⟨C,Ps⟩+ ε
∑
i,j

P s
ij(logP

s
ij − 1)− ⟨gs,Ps1⟩ − ⟨rs,P⊤

s 1⟩. (53)

The first order condition of Ls(Ps) gives that:

P ∗
s = diag(egs/ε)Kdiag(ers/ε). (54)

where K, defined as K = e−C/ε, is a variant matrix of C. The operator diag(·) can transform a
vector into a corresponding diagonal matrix. Similar to Section B, define us = egs/ε and vs = ers/ε

for the simplicity of discussion, substitute P ∗
s into Ls(Ps), we can obtain:

Ls(P
∗
s ) = −ε

∑
i,j

P s∗
ij . (55)

The optimization question is then transformed into:

max
g,r

n∑
s=1

λs

(
⟨rs,hs⟩ − ε

∑
i,j

eg
s
i /εKije

rs
j/ε

)
s.t.

n∑
s=1

λsgs = 0.

(56)

Define the Lagrangian function of problem 56 as:

L(g, r, b) =
n∑

s=1

λs

(
ε
∑
i,j

eg
s
i /εKije

rs
j/ε − ⟨rs,hs⟩

)
− ⟨b,

n∑
s=1

λsgs⟩. (57)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 3 Approximate Regularized Barycenter Refinery

Input: the collection of n distributions {h1,h2, . . . ,hn} and their weights {λ1, . . . , λn}, the cost
matrix C and its variant K = e−C/ε, iteration tolerance δ, balance weight ω, and define ⊘ as an
element-wise division for vector.

1: initialize {u1,u2, . . . ,un}, {v1,v2, . . . ,vn} and a
(0)
1 with 1 vector.

2: compute a2 =
∑

s λshs

3: for t = 0, 1, . . . ,maxiter do
4: for s = 1, 2, . . . , n do
5: v

(t+1)
s = hs ⊘K⊤u

(t)
s

6: end for
7: a

(t+1)
1 =

∏
s(Ksv

(t+1)
s )λs

8: if ∥a(t+1)
1 − a

(t)
1 ∥ ≤ δ then

9: return a = ωa1 + (1− ω)a2

10: end if
11: for s = 1, 2, . . . , n do
12: u

(t+1)
s = a

(t+1)
1 ⊘Kv

(t+1)
s

13: end for
14: end for
Output: the approximate regularized weighted barycenter a = ωa1 + (1− ω)a2.

With fixed g, the first order condition with respect to rsj gives that:

∂L(g, r, b)
∂rsj

= λs

∑
i

eg
s
i /ϵKije

rs
j/ϵ − λsh

s
j = 0. (58)

The above equation can be simplified with us and vs, such that the following relationship holds:

diag(vs)K
⊤us = hs. (59)

With fixed rs, the first order condition with respect to gs
i gives that:

∂L(g, r, b)
∂gs

i

= λs

∑
j

eg
s
i /εKije

rs
j/ε − λsbi = 0. (60)

By utilizing the constraint that Ps1 = a1, we can derive:

diag(us)Kvs = b = a1. (61)

Additionally, notice that the constraint
∑

s λsgs = 0 holds. By replacing gs with ε logus, we can
obtain that:

n∑
s=1

ελs log
a1

Kvs
= 0, (62)

such that the following relationship can be concluded:

a1 =
∏
s

(Kvs)
λs . (63)

The numerical solution of a1 can be derived in an iterative manner following Algorithm 3, while the
optimal value of a2 can be directly solved. Finally, the approximate regularized weighted barycenter
can be obtained by a = ωa1 + (1− ω)a2.

D NEIGHBOR-AWARE GEODESIC TRANSPORTATION FOR DEEP CLUSTERING

The proposed neighborhood refinery method NGT can also be applied to the deep clustering task
in an online manner. Given a batch of images B sampled from the whole dataset, each of them will
pass through two sets of random augmentations, denoted as t ∼ T and t′ ∼ T ′. Following the
training procedure defined in BYOL (Grill et al., 2020), the two sets of the augmentation images are
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encoded with the online network Fo(·) and target network Ft(·) respectively. Moreover, an additional
non-linear predictor is cascaded behind the online network, then this branch is formally defined as
q(Fo(·)).
The self-supervised learning framework proposed in BYOL is a non-contrastive learning approach,
which aims to enforce the similarity between a referenced feature and its corresponding feature
from the other augmentation views. Such that it can be viewed as instance-aware concordance
discrimination approach, which can be formulated as:

LI = − E
xi∈B

[⟨q(Fo(t(xi))),Ft(t
′(xi))⟩], (64)

where ⟨·⟩ is the inner product operator to calculate cosine similarity, the over-clustered representation
is bootstrapped via the stop-gradient and momentum updating mechanism, which outperforms the
contrastive based self-supervised method significantly.

Although BYOL has demonstrated its superiority as a pre-training task for enhancing network
representations for downstream tasks, there is still room to improve its discriminative power by
incorporating the diverse positive samples from local neighborhood. Such that the instance-aware
concordance framework can be adapted to the group level. Based on this idea, previous works
(Dwibedi et al., 2021; Koohpayegani et al., 2021; Van Gansbeke et al., 2020; Niu et al., 2022)
further enhance the consistency between instance and neighbors to improve the capability of the
self-supervised framework. The group-aware concordance can be formally defined as:

LG = − E
xi∈B

[ E
xj∈N (xi)

[⟨q(Fo(t(xi))),Ft(t
′(xj))⟩]], (65)

where the N (xi) denotes the set of neighborhood samples of xi within the Euclidean space. Since
k-nearest neighbors may unavoidably include negative samples in the computation of group-aware
loss, this error could accumulate throughout the training process. Thus exploiting the robust neighbors
(Yu et al., 2023; Dwibedi et al., 2021) from the data manifold constructed by the batch of image
features can help improve the quality of neighborhoods and provide a more precise supervision signals.
Intuitively, the original k-nearest neighbors can be replaced with our proposed NGT neighborhood,
such that the the negative influence can be mitigated with the precise neighboring information brought
by NGT. Similar to previous neighbor guided self-supervised learning strategy, our algorithm consists
of two parts, the first t0 epochs for instance-aware pre-training and the rest epochs for group-aware
concordance training with NDT to find refined neighborhood, the overall loss is formulated as:

Ltotal = 1(t < t0)LI + 1(t ≥ t0)LG. (66)

For the deep clustering tasks, the performance are measured on five widely used benchmarks,
including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-20 (Krizhevsky et al., 2009), STL-10 (Coates
et al., 2011), ImageNet-10 (Chang et al., 2017), and ImageNet-Dogs (Chang et al., 2017). Where
CIFAR-10 and CIFAR-20 are moderate scale dataset both containing 60,000 images. Following the
settings in Huang et al. (2023); Yu et al. (2023), we resize the images to the scale of 32 × 32 for
CIFAR-10 and CIFAR-20, 96× 96 for STL-10 and ImageNet-10, 224× 224 for ImageNet-Dogs.

We strictly follow Huang et al. (2023); Shen et al. (2021b); Yu et al. (2023); Li et al. (2021; 2022) to
perform fair comparison. Specifically, we conduct the same augmentation strategies and adopt the
stochastic gradient optimizer and the cosine decay learning schedule with first 50 epochs for warming
up. The entire network is trained for 1000 epochs, with the initial 800 epochs utilizing standard BYOL
loss LI , followed by the remaining 200 epochs employing LG, which incorporates our proposed
method. In order to enhance training efficiency and mitigate the potential error accumulations, we
employ a straightforward 0-1 matrix to calculate the Geodesic Transportation distance. For the
architecture, we use ResNet-18 on CIFAR-10 and CIFAR-20 and ResNet-34 on the rest of datasets
for a fair comparison, The base learing rate is 0.05 and batchsize we use is 128 for CIFAR-10 and 64
for others, which is smaller than the existing methods. The select the hyper parameter of k1 = 10
and k2 = 4 for the first four datasets, and k1 = 25 and k2 = 8 for the challenging ImageNet-Dogs
with many categories that are not easy to distinguish. We train the model with 4 GTX 3090 GPU,
the performance converges within 200 epochs of training, which takes about 4 hours. During the
evaluation procedure, the labels of features encoded by the target encoder are assigned by k-means to
validate the clustering performance for a fair comparison.
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E EXTENDED EXPERIMENT

In this section, we provide more experiments on image retrieval tasks based on MAC and R-MAC
proposed by Tolias et al. (2016), as well as some extra analysis of hyper-parameters based on
R-GeM (Radenović et al., 2019) and CVNet (Lee et al., 2022).

Table 11: Evaluation of the retrieval performance
based on MAC, best in bold.

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar
MAC 47.2 69.7 34.6 55.7 14.3 32.6

AQE 54.4 80.9 40.6 67.0 17.1 45.2
αQE 50.3 77.8 37.1 64.4 16.3 43.0
kNN 56.6 79.7 41.6 66.5 17.4 44.5
DFS 54.6 83.8 40.6 74.0 18.8 58.1

AQEwD 52.8 79.6 39.7 65.0 17.3 42.9

SG 46.1 75.9 36.1 60.4 16.6 38.8
RDP 59.0 85.2 45.3 76.3 21.4 58.9
GSS 60.0 87.5 45.4 76.7 22.8 59.7

STML 61.4 86.8 46.7 76.9 22.3 59.5
ConAff 65.5 88.7 50.1 79.3 25.6 62.4

NGT 71.4 90.4 54.9 81.1 30.8 65.8

Table 12: Evaluation of the retrieval performance
based on R-MAC, best in bold.

Method
Easy Medium Hard

ROxf RPar ROxf RPar ROxf RPar
R-MAC 61.2 79.3 40.2 63.8 10.1 38.2

AQE 69.4 85.7 47.8 71.1 15.9 47.9
αQE 64.9 84.7 42.8 70.8 11.4 47.8
kNN 70.6 84.6 48.9 70.2 16.0 46.1
DFS 70.0 87.5 51.8 78.8 20.3 63.5

AQEwD 70.5 85.9 48.7 70.7 15.3 46.9

SG 60.1 84.9 42.7 68.4 16.5 45.4
RDP 73.7 88.8 54.3 79.6 22.2 61.3
GSS 75.0 89.9 54.7 78.5 24.4 60.5

STML 71.8 88.7 53.2 78.2 23.4 58.8
ConAff 77.6 88.0 56.4 80.0 27.5 61.3

NGT 84.3 90.0 62.5 82.9 33.4 68.4

Table 13: Effect of ω, based on R-GeM.

ω 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6

ROxf(M) 81.3 81.4 81.1 81.2 81.1 81.0 80.9 80.7
ROxf(H) 63.0 63.6 64.5 64.6 64.5 64.3 64.0 63.5

Table 14: Effect of µ, based on R-GeM.

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ROxf(M) 81.0 81.1 81.1 80.8 80.8 80.7 80.7 80.7
ROxf(H) 64.2 64.5 64.3 63.6 63.6 63.4 63.3 63.2

Table 15: Effect of σ, based on R-GeM.

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ROxf(M) 80.5 81.2 81.1 80.6 80.2 79.7 79.4 79.1
ROxf(H) 63.8 63.8 64.5 63.8 62.5 61.5 60.8 60.4

Table 16: Effect of ω, based on CVNet.

ω 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6

ROxf(M) 88.9 89.0 89.3 89.2 89.1 89.0 88.9 88.8
ROxf(H) 72.9 73.1 73.8 73.7 73.4 72.9 72.9 72.7

Table 17: Effect of µ, based on CVNet.

µ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ROxf(M) 89.0 89.3 89.4 89.5 89.6 89.6 89.6 89.6
ROxf(H) 73.4 73.8 73.9 74.0 74.2 74.1 74.2 74.2

Table 18: Effect of σ, based on CVNet.

σ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ROxf(M) 89.0 88.9 89.3 89.1 88.9 88.7 88.7 88.6
ROxf(H) 73.4 73.3 73.8 73.5 72.9 72.5 72.3 72.1

Table 19: Summary of the datasets.

Dataset Split # Samples # Classes Image Size

CIFAR-10 Train+Test 60,000 10 32× 32
CIFAR-20 Train+Test 60,000 20 32× 32

STL-10 Train+Test 13,000 10 96× 96
ImageNet-10 Train 13,000 10 96× 96

ImageNet-Dogs Train 19,500 15 96× 96
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Figure 4: Effect of k1, based on the image fea-
tures extracted by R-GeM (Radenović et al.,
2019). We plot the effect of similar hyper-
parameters used for diffusion in the same fig-
ure, and the comparative results indicate that
our method demonstrates higher stability.
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Figure 5: Quantitative analysis of the Manifold-aware Neighborhood Encoding strategy. In each
query, the top row denotes the cosine similarity weight for encoding the original feature into a
nonlinear space, and the bottom row represents the weight obtained by the bidirectional similarity
diffusion strategy. The weights are sorted in reverse order, and we can observe that MNE can filter
out important samples and assign them with higher weights.

(a) t-SNE visualization of original feature. (b) t-SNE visualization of MNE feature.

Figure 6: The t-SNE visualization of the original feature space and the MNE feature space. Compared
with the original image feature, MNE can achieve better clustering performance and reduce the effect
of outliers, resulting in a higher retrieval result.
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Figure 7: Convergence analysis of MNE. The
residual represents the Frobenius norm of the
target matrix for two iterations.
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Figure 8: Convergence analysis of RBR. The
residual represents the F-norm of the target ma-
trix for two iterations.
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