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ABSTRACT

The multivariate hypergeometric distribution describes the fundamental process of
sampling without replacement from a discrete population of elements divided into
multiple categories. Despite the hypergeometric distribution’s long history, the lit-
erature has not yet addressed the problem of maximum likelihood estimation when
both the size of the total population and its constituent categories are unknown.
Here, we show that this estimation challenge can be solved by maximizing the
hypergeometric likelihood, even in the presence of severe under-sampling. We
extend this approach to capture data generating processes where the ground-truth
high-dimensional distribution is conditional on a continuous latent variable us-
ing the variational autoencoder framework, and validate the resulting model using
simulated datasets. In a practical use case, we demonstrate that our method can
recover the true number of gene transcripts present in a cell from sparse single-cell
genomics data.

1 INTRODUCTION

The classic Pólya urn model (Eggenberger & Pólya, 1923) describes the process of randomly sam-
pling from an urn containing balls of various colors, and is used to illustrate common discrete proba-
bility distributions that form the core building block of many probabilistic machine learning models.
When balls are sampled from the urn with replacement, the distribution of counts of balls of each
color is described by the multinomial distribution, whereas the hypergeometric distribution describes
sampling without replacement. The hypergeometric distribution becomes important to successful
modelling whenever the selection of one element from the distribution affects the probabilities of
selecting subsequent elements (i.e. the counts are not independent), and when the sample size is
significant compared to the population size. The hypergeometric distribution also enables the direct
modeling of category counts, as opposed to category probabilities.

There are many common settings where it is valuable to model count data directly and to capture
the dependence between category counts. For example, in the context of recommender systems and
collaborative filtering, click data, song or movie play counts, and shopping basket item counts can
all be thought of as being sampled without replacement. This is because the magnitude of counts
is typically relatively small, and there is dependence between counts: watching a movie changes
the probability of it being watched a second time, and adding an item to a virtual shopping basket
changes the probability of it being added a second time.

In the field of single-cell genomics, the quantity of gene transcript count data measured at the res-
olution of individual cells is accumulating at an exponential rate. High-throughput experimental
methods inherently sample without replacement, and with careful interpretation this single-cell data
promises to answer important questions in biology and health. Due to the frequent occurrence of
finite, discrete populations in nature, there are many other natural phenomena that can be modelled
using the hypergeometric distribution.

Furthermore, the aforementioned applications are typically characterized by latent structure. Movie
and music choices are driven by an underlying set of preferences, grocery purchases are driven by a
person’s diet and taste, and a cell’s gene transcript counts depend strongly on its cell type. This low-
rank structure induces correlation between features, such as songs of the same genre, and suggests
that a latent-factor model is appropriate.
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Despite the fundamental importance of the hypergeometric distribution, there is currently no effec-
tive way of estimating its parameters in many common settings of interest, including in the presence
of high-dimensional data with intrinsic low-rank structure. In this paper, we describe an as yet unad-
dressed core problem for the hypergeometric distribution, namely performing maximum likelihood
estimation when the number of elements in the overall population and in each constituent category
are all unknown. We present a method for solving this problem, and show that the parameter es-
timation is tractable when there are two or more categories using empirical simulation. We then
extend this approach using the variational autoencoder framework, enabling the estimation of high
dimensional count data generated conditional on a latent variable. Finally, we demonstrate how this
approach can be applied to recover the high number of missing gene transcript counts that are due
to technical limitations of high-throughput single-cell genomics experimental methods.

2 BACKGROUND AND RELATED METHODS

2.1 THE HYPERGEOMETRIC DISTRIBUTION

Consider an urn that contains N balls divided into two categories (colors): N1 balls are white and
N2 = N−N1 are black. Each ball has equal probability of being selected from the urn. If we sample
n < N balls without replacement, obtaining c1 white counts and c2 black counts, the distribution of
counts of the number balls of each color that we obtain is given by the hypergeometric distribution,
whose joint probability mass function is (Moivre, 1711):

P (c1, c2|N1, N2) =

(
N1

c1

)(
N2

c2

)(
N1+N2

c1+c2

) (1)

In general, when we have K categories the joint probability mass function is:

P (c1, . . . , cK |N1, . . . , NK) =

∏K
i=1

(
Ni
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)
(∑K

i=1 Ni∑K
i=1 ci

) (2)

The distribution for K = 2 is often called the univariate hypergeometric distribution, with K >
2 referred to as multivariate, but because in our problem setting there are already two unknown
variables when K = 2, we use the name hypergeometric distribution for any K ≥ 2.

2.2 EXISTING MAXIMUM LIKELIHOOD ESTIMATORS

There are two standard maximum likelihood estimation problems that have been investigated for the
hypergeometric distribution.

Known total population size: When the total population size N is known, the object is to estimate the
true number of elements Ni in each constituent category i ∈ 1, . . . ,K. The maximum likelihood
estimator is then essentially the known population size scaled by the sample frequency of each
category, with adjustment to ensure a correct integer solution (Oberhofer & Kaufmann, 1987).

Unknown total population size: In the more complex case, known as the capture-recapture problem
(Darroch, 1958), the total population size is unknown. To estimate the total population, a sample
is first drawn from the underlying distribution. All objects belonging to one of the categories in
this sample are tagged, and all sampled elements are returned to the population. A second sample
is then taken, and the number of tagged samples that reappear allow the estimation of the total
population size using maximum likelihood. This method has found important applications in biology
and ecology. However, it depends on the ability to tag and resample the same population.

Additionally, Tohma et al. (1991) propose a number of options for approximating the estimation of
the parameters of the hypergeometric distribution when the category sizes are unknown, including
an approximation using the likelihood, however they do not maximize the likelihood directly.

2.3 RELATED METHODS

The hypergeometric likelihood has for the most part been neglected in the modern machine learn-
ing context. Sutter et al. (2022) proposed a continuous relaxation of the non-central hypergeomet-
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ric distribution to allow for differentiable sampling using the Gumbel-Softmax trick, and use it to
learn category weights. This method assumes that the number of elements in each category are
known, and therefore that only the category weights are to be estimated. Waudby-Smith & Ram-
das (2020) presented a method for uncertainty quantification when sequentially sampling without
replacement from a finite population, as defined by the hypergeometric distribution, to estimate con-
fidence bounds as new data becomes available. Other parametric distributional assumptions can also
be used to directly model count data, such as the Poisson and negative binomial, and a wide range
of methods have been developed using these.

The multinomial distribution, which is the limiting form of the hypergeometric distribution when
the sample size is negligible relative to the population (N >> n), appears frequently in machine
learning literature. For example, it is often used to model counts indirectly by instead using the
relative frequency of counts. LDA (Blei et al., 2003) uses a hierarchical generative framework to
model the distribution of topics, documents over topics, and word (category) counts from a vocab-
ulary (population) over documents. The distributions over topics and words are multinomial, with
word counts being transformed into their relative frequency in the document. Liang et al. (2018)
use a variational autoencoder with multinomial likelihood applied to collaborative filtering for rec-
ommender systems. The click data and play counts are binarized to accommodate the multinomial
likelihood.

Awasthi et al. (2022) argue for the use of maximum likelihood estimation instead of empirical risk
minimization, showing that it is better at capturing the appropriate inductive bias and that its perfor-
mance is competitive with direct minimization of a target metric.

3 METHOD

Here, we assume that there exists a true discrete population with total number of elements N divided
into K categories. We consider the setting where none of the category sizes are known, and we
wish to estimate them from the data; that is, we do not know any category size Ni, nor the total
population size N =

∑K
i=1 Ni. This scenario has yet to be addressed in the statistics literature, and

we show that maximum likelihood estimation of all unknown population sizes is possible, even in
the presence of severe under-sampling of the underlying distribution to be uncovered (n << N ).

We consider T independent trials, each producing an observed count vector ct = {ct,1, . . . , ct,K},
t ∈ 1, . . . , T . In trial t we draw nt samples, without replacement, from the discrete underlying
population, such that

∑K
i=1 ct,i = nt. The likelihood for the hypergeometric distribution is:

P (c1, . . . , cT |N1, . . . , , NK) =

T∏
t=1
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)
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) (3)

The log-likelihood is:

logP (c1, . . . , cT |N1, . . . , , NK) =
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[
K∑
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log
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The hypergeometric distribution is not part of the exponential family, so it is not clear that a closed-
form maximum likelihood estimator exists, therefore we turn to numerical optimization methods. To
enable continuous optimization, we consider a continuous and differentiable relaxation of the log-
likelihood by replacing the factorials in the binomial coefficient with the gamma function, which is
the extension of the factorial to real-numbered arguments.(

a

b

)
=

a!

b!(a− b)!
(5)

=
Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
(6)

Using this log-likelihood for the parameter set θ = {N1, . . . , NK}, we perform maximum likelihood
estimation obtain the MLE θ̂ ≡ {N̂1, . . . , N̂K} = argmax

θ
log p(c1, . . . , cT |θ).
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The binomial coefficient is not defined if ck > N̂k, which corresponds to the impossible scenario
of sampling more balls of a given color than are present in the urn. To impose the requirement
Nk >= ck, we add a violation penalty Cviol to the negative log-likelihood we seek to minimize, and
we threshold any estimates of N̂k < ck at ck before evaluating the likelihood. We threshold at the
observed sample value ci as opposed to the minimum across all samples mini ci to remain as general
as possible. This is because in the case of multiple distributions we do not know which observation
originates from which underlying distribution, and hence do not know what the correct minimum is.

Cviol =

K∑
i=1

min(0, ci − N̂i) (7)

N̂i ← max(ci, N̂i) i ∈ 1, . . . ,K (8)

In this paper we are interested in modelling scenarios where we have access to many samples drawn
from the same underlying population, but where this population is under-sampled. Specifically, if
N is the total population size, we assume that we observe samples with at most nmax objects drawn
from the ground-truth distribution in each trial, giving a sample fraction nmax/N .

4 TRACTABILITY OF ESTIMATING UNKNOWN CATEGORY SIZES

Using empirical data simulation, we begin by demonstrating that this estimation problem is tractable
in the ideal case where observations are sampled from a single discrete ground-truth distribution and
the number of categories is small (K = 2, 3).

First, we select the true number of objects in each category, N1 and N2, with total N = N1 +N2.
We then generate observations from T trials, where in trial t ∈ 1, . . . , T we sample nt objects from
the true distribution, without replacement. For each trial, we first determine the number of objects
to draw by sampling nt ∼ Uniform(2, nmax), where nmax < N is the maximum number of objects
that can be sampled in any trial. The max sample fraction is defined as fmax = nmax/N .

To demonstrate the typical behavior, we show results for a simulation for the scenario where N1 =
70 and N2 = 30 (N = 100, K = 2, fmax = 0.4), evaluating the negative log-likelihood (NLL)
for all possible combinations of N̂1 and N̂2. Figure 1 shows the resulting loss landscape, where the
minimum NLL value corresponds to the true N1 and N2 values. The lowest NLL region can be seen
to elongated along the line of correct N2/N1 ratio. We note that the difference in NLL between the
minimum and surrounding estimates is small, especially for estimates with the same ratio N1/N2.

Figure 1: Negative log-likelihood landscape for K = 2 and N = 100.

We further investigate the accuracy of the maximum likelihood estimate for a wide range of numbers
of observations T and max sample fractions fmax. As the data is discrete, we use the Manhattan
distance between the true and estimated counts to quantify the estimation error. In Figure 2a, we
see that the location of the minimum NLL converges to the true value as the number of observations
increases, for different levels of under-sampling. As expected, a higher max sample fraction results
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in faster convergence and more accurate estimates, as quantified by lower error for the same number
of samples. We extend this experiment to K = 3 (Figure 2b), where we see that the presence of
more categories reduces the number of observations required to reach zero error. Here we use a
confidence interval of 50% for visual clarity, and the same figure with a 90% confidence interval is
included in Appendix B.

(a) K=2, N = 100 (N1 = 40, N2 = 60) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 2: Maximum likelihood estimate Manhattan error for different numbers of observations at
different max sample fractions (N = 100). 50% confidence interval over 50 random seeds.

Next, in Figure 3 we show that the maximum likelihood estimate can be obtained using gradient
descent with the hypergeometric negative log-likelihood objective. We generate samples as before,
and perform gradient descent using Adam with a learning rate of 0.1 and using a zero-initialization
for the count parameters N̂i. We can see that the accuracy increases and the variance of the estimate
decreases with increasing number of samples. We can also see that increasing the number of cate-
gories from two (Figure 3a) to three (Figure 3b) improves the rate of convergence of the estimate
and reduces the final error for the same number of samples. This provides evidence that the bias
of the maximum likelihood estimator decreases with increasing K. Additional experiments with
different fmax are included in Appendix B.

(a) K=2, N = 100 (N1 = 30, N2 = 70) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 3: Maximum likelihood estimate Manhattan error per training epoch for different numbers
of trials (N = 100, max sample fraction 0.4). The apparent increase in error following an initial
decrease occurs because we measure absolute error, and this behavior corresponds to the estimate
approaching and overshooting the true value. The estimates are more accurate when more trials are
available, and exhibit a higher rate of convergence with larger K (right). 50% confidence interval
over 20 random seeds.

5 VARIATIONAL AUTOENCODER WITH HYPERGEOMETRIC LIKELIHOOD

We extend our method to allow for the estimation of a high-dimensional distribution that is condi-
tional on a continuous latent variable, allowing it to capture a continuous mixture of count distri-
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butions. This modelling assumption is essential when the true distribution is considerably under-
sampled, leading to sparsity, and so information needs to be shared between similar observations
to successfully model the data. For example, collaborative filtering for movie recommendation was
one successful approach to the Netflix Prize. Movie recommendation is challenging because each
individual provides ratings for few movies, but this can be overcome by leveraging patterns across
many individuals with similar tastes. The variational autoencoder (VAE) (Kingma & Welling, 2014)
is a powerful framework for performing efficient estimation of the generative distribution parameters
in the presence of a continuous latent variable and big data.

Following the VAE framework, we assume a data generating process where a latent variable z is
first drawn from a prior distribution p(z), then a count vector c is generated from the conditional
hypergeometric likelihood p(c|z). Note again that we are using the continuous relaxation of the
hypergeometric distribution, so the generated c are continuous. The marginal hypergeometric like-
lihood that we are interested in, p(c) =

∫
p(c|z)p(z)dz, is intractable. We approximate the true

unknown posterior for the latent variable p(z|c) with the variational distribution qϕ(z|c), param-
eterized by a deep feed-forward neural network with parameters ϕ. Similarly, we represent the
parameters of conditional hypergeometric likelihood pθ(c|z) with another neural network with pa-
rameters θ. We choose a factorized multivariate Gaussian as the prior p(z) over the latent variable.
We optimize the variational lower bound augmented by the violation penalty:

L(θ, ϕ; ct) = −DKL(qϕ(z|ct)||p(z)) + log pθ(ct|z) +
K∑
i=1

max(0, ci − N̂i) (9)

The first term is the KL divergence between the true and approximate posterior, the second term is
the log-likelihood, and the third term is the violation penalty.

To generate a simulated dataset, we first specify M different count distributions over K ≥ 2 features
(categories). We sample an equal number of count vectors c from each count distribution, where the
number of counts per trial is drawn independently from nt ∼ Uniform(nmin, nmax).

We specifically simulate two ground-truth distributions over K = 1000 categories, where one dis-
tribution is composed of 10, 000 total counts and the other 30, 000. These distributions are gen-
erated from two randomly sampled probability vectors of length K, which we then multiply by
the total desired number of counts. Finally, we round each count down to the nearest integer to
obtain a discrete distribution. We simulate 100, 000 total observations, where for each we sample
nt ∼ Uniform(100, 5000) counts, resulting in observations with at most 60% and 20% of the total
number of elements for the two distributions, respectively. We implement early stopping by ending
the model training when the validation negative log-likelihood enters a plateau.

Figure 4 shows the trajectory of count estimates over the course of training, demonstrating conver-
gence of the estimates to their correct total populations. We emphasize that despite the model not
known the true number of distributions, and therefore not having access to the labels of the obser-
vations, it is correctly able to learn a latent space that perfectly separates the two sets of samples.
Note that both distributions are sampled to the same nmax, so this disinction is not due simply to
differences in total observed counts for each distribution

Figure 5 compares the distribution of observed and estimated counts, with 5a showing that our
method is able to recover the original population sizes despite high sparsity (false zero counts) and
under-sampling. For the two ground-truth distributions with different N , the estimates are shifted
away from the observed distribution and approach the true values. We see that the variance of the
estimate is higher when the under-sampling is more drastic (20% vs 60%). Figure 5b shows the
original and estimated count distributions for the top three categories by mean ground-truth count,
again showing that the estimates approach the ground-truth values.

6 APPLICATION TO SINGLE-CELL GENOMICS

The detailed measurement of the contents of individual cells promises to vastly improve our under-
standing of fundamental biology. In recent years, the advancement of high-throughput techniques
in the field of single-cell genomics has enabled the collection of large numbers of gene transcripts
from individual cells, resulting in vast count matrices. Each cell has a finite population of transcripts
that can be captured - on the order of one hundred thousand to a million - and a transcript can only
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Figure 4: Vertical binning of the estimated total counts per observation vs training epochs. Black
lines are true total counts for the two distributions. The final estimate recovers the ground-truth
population sizes for both distributions.

(a) Total counts per observation.
(b) Counts for a subset of features (categories) for
distribution 1 (left column) and 2 (right column).

Figure 5: Histograms comparing the observed (blue) and estimated (orange) counts to the ground-
truth underlying distribution. Our model estimate shifts the count distributions away from zero and
close to ground-truth value (dashed line).

be captured once prior to sequencing. It is accepted that the main source of technical noise in this
data is due to under-sampling (Kuo et al., 2023), leading to the well-known phenomenon of dropout
(inflated occurrence of zeros in the final count matrix). This technical noise hinders our ability to
draw meaningful scientific conclusions from these experiments.

The hypergeometric distribution is well-suited to modelling this capture process, as the number of
captured gene transcripts in an experiment is significant relative to the total population size, and
capture occurs without replacement, leading to dependence between gene feature counts. The high-
dimensional distribution of gene transcript counts can be effectively represented by latent variable
models Lopez et al. (2018), as individual genes are often members of co-expression networks which
result in highly correlated counts. We therefore use our VAE approach with the hypergeometric
likelihood, with genes as categories, in order to recover the true gene transcripts counts in each cell
from the sparse, under-sampled count data.

Because there is typically no way of knowing the true number of transcripts of each gene in a given
cell, we focus on what is known as a spike-in experiment, which does provide a ground-truth. In the
experiment we consider (Ziegenhain et al., 2022), a known concentration of a solution of synthetic
RNA is placed in small wells, and human cells are individually placed in a subset of the wells.
After the transcripts present in these wells are captured and sequenced, we obtain experimental
counts corresponding to both the human RNA (for which the original amount is unknown) and the
synthetic RNA (original amount is known). The wells that did not have cells in them should have
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an equal amount of the synthetic RNA across measurements, so we can therefore use the measured
counts of synthetic RNA in empty and cell-containing wells as a ground-truth reference to evaluate
our estimated human gene transcript counts.

Dataset: The SPIKE dataset consists of counts for 43k genes (categories) across 1126 observations.
Of these, 181 observations contain a mixture of synthetic RNA and human kidney cells (labelled
“HEK293T”), and the remainder 945 contain only the synthetic RNA (labelled “empty”).

Figure 6 compares the distribution of measured counts in this dataset for one specific synthetic RNA
(#12) in the empty and HEK293T measurements. This exemplifies the stochastic under-sampling
that occurs, as we expect the true counts should be identical across all samples (approximately 4000
for this particular spike-in RNA). It is also clear that the presence of human RNA significantly
lowers the amount of synthetic RNA that is captured, which supports the assumption that there is
dependence between counts, i.e. a transcript is captured at the cost of another.

Figure 6: Measured counts for synthetic spike-in RNA #12 with and without human cells present.
Red dashed line is ground-truth count (ideally all measurements should be equal).

We train our VAE model with hypergeometric likelihood on the SPIKE dataset to recover the true
count matrix. We use the top 10,000 genes (categories) by mean transcript count, for computational
efficiency and because many genes are not expressed in this celltype. Model and training hyperpa-
rameters are given in Appendix A. Summary results of the final estimated count matrix are shown
in 7.

Figure 7a shows the maximum likelihood estimate for the total number of counts per observation
(the sum of the estimated count matrix rows). The authors estimate the true total amount of synthetic
RNA per observation as approximately 30,000, which closely aligns with our model estimate. The
unknown total amount of RNA in the human kidney cells is estimated by our model to have a median
of 260,000. Note that the number of observations available in this dataset is very small compared
to typical single-cell datasets (without ground-truth), and this estimate would likely be even more
accurate and have a lower variance with a larger number of observed cells. 7b shows the estimated
counts specifically for spike-in #12, whose ground-truth value is approximately 4000. We can see
that although the initial distribution of this synthetic RNA’s counts have a significantly different
mean in the empty and cell-containing observations, our model produces an estimate near the true
value, and brings both distributions into alignment. These results are similar across other spike-in
RNA. These results show that we are to recover the known ground-truth distribution of synthetic
RNA that has been corrupted by the stochastic capture process, and this allows us to learn new
information about the unknown distribution of RNA counts in the human kidney cells.

7 CONCLUSION

We propose a method for estimating the unknown category sizes of a discrete distribution of el-
ements that is sampled without replacement, using a continuous relaxation of the hypergeometric
likelihood. Through empirical data simulation we show that the maximum likelihood estimate is
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(a) Total counts (b) Spike-in #12 counts

Figure 7: Histograms of the number of measured counts when only synthetic RNA is present (top)
and when both synthetic RNA and human RNA (from kidney cells) are present (bottom). The
original (measured) distribution is in grey, and the red dashed line shows the ground-truth amount
of synthetic RNA #12.

accurate with sufficient observations, over a range of maximum sample fractions. We show that our
approach can be extended to model a distribution that is conditional on a continuous latent variable
using the variational autoencoder framework. We address gene transcript count sparsity, an emerg-
ing obstacle in the field of single-cell genomics, and show that our method is able to recover the
true number of transcripts in a cell. Due to the prevalence of finitely sampled discrete populations
in biology and beyond, we expect this method can be successfully used in many other application
domains.

8 FUTURE WORK

In this work we demonstrated the value of our approach using single-cell genomics data, however
there are a number of other applications that could likely benefit from the same approach. In par-
ticular, we expect collaborative filtering applications for music, movies, and shopping cart data to
be promising applications. However, the evaluation metric will need to be modified in the absence
of a direct ground-truth for comparison. While the violation penalty we presented is simple and
effective, other methods such as bounded optimzation may result in faster convergence. Although
we performed experiments using a variety of fmax, it would be valuable to gain a better understand-
ing of how to detect if fmax (max counts sampled vs total number of counts) is too low for a new
dataset, particularly if we do not have good prior knowledge of the expected magnitude of counts.
Finally, while our empirical experiments have shown promising results, we hope future research will
develop a better theoretical understanding of the log-likelihood for the continuous relaxation of the
hypergeometric distribution.
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A HYPERPARAMETERS

Table 1: Experiment hyperparameters

Parameter Simulated SPIKE

# features 1000 10,000
Encoder layers 64, 64 128, 128
Decoder layers 128, 128 256, 256
Latent space dimension 4 16
Learning rate 0.01 0.01
Batch size 500 563
Violation penalty min/max 5,50 1,100

B ADDITIONAL FIGURES

(a) K=2, N = 100 (N1 = 40, N2 = 60) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 8: Maximum likelihood estimate Manhattan error for different numbers of observations at
different max sample fractions (N = 100). 90% confidence interval over 50 random seeds.

(a) K=2, N = 100 (N1 = 30, N2 = 70) (b) K=3, N = 100 (N1 = 50, N2 = 30, N3 = 20)

Figure 9: Maximum likelihood estimate Manhattan error per training epoch for different numbers
of trials (N = 100, max sample fraction 0.4). 90% confidence interval over 20 random seeds.
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(a) fmax = 0.2 (b) fmax = 0.6 (c) fmax = 0.8

Figure 10: Maximum likelihood estimate Manhattan error per training epoch for different numbers
of trials and different fmax (K = 3, N = 100, N1 = 50, N2 = 30, N3 = 20). 50% confidence
interval over 20 random seeds.
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