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ABSTRACT

Recent advancements in state-of-the-art (SOTA) Large Language Model (LLM)
agents, especially in multi-turn dialogue tasks, have been primarily driven by su-
pervised fine-tuning and high-quality human feedback. However, as base LLM
models continue to improve, acquiring meaningful human feedback has become
increasingly challenging and costly. In certain domains, base LLM agents may
eventually exceed human capabilities, making traditional feedback-driven meth-
ods impractical. In this paper, we introduce a novel self-improvement paradigm
that empowers LLM agents to autonomously enhance their performance with-
out external human feedback. Our method, Juxtaposed Outcomes for Simula-
tion Harvesting (JOSH), is a self-alignment algorithm that leverages a sparse re-
ward simulation environment to extract ideal behaviors and further train the LLM
on its own outputs. We present ToolWOZ, a sparse reward tool-calling simula-
tion environment derived from MultiWOZ. We demonstrate that models trained
with JOSH, both small and frontier, significantly improve tool-based interactions
while preserving general model capabilities across diverse benchmarks. Our code
and data are publicly available on GitHub at https://anonymous.4open.
science/r/josh_iclr-C8DE/README.md

1 INTRODUCTION

Large Language Models (LLMs) (Bommasani et al., 2021; Brown et al., 2020; Achiam et al., 2023)
have shown a well-marked ability to follow instructions under various tasks. These advancements
are often attributed to post-training fine-tuning based on human preferences. This includes multi-
turn tool calling tasks where an LLM-based agent must solve a task by interacting with both a user
and a set of tools (or APIs) (Farn & Shin, 2023; Yao et al., 2024a). Further task-specific alignment
for tool-calling tasks can take the form of preference judgments. But these can be expensive to
obtain. Furthermore, there is usually a more ‘crisp’ notion of success for such tasks. Specifically,
was the right tool(s) or API(s) called with the right set of arguments? Ideally, alignment should be
optimized towards these sparse rewards.

In this paper, we propose a self-alignment process JOSH (Juxtaposed Outcomes for Simulation
Harvesting) that can be used to improve a model’s performance on multi-turn tool calling by opti-
mizing for tool/API completion using simulated rollouts of reward-conditioned conversations. We
show that this method is general and can be applied to weak/small or frontier LLMs, though gains
are significantly larger for the former. We also present a new tool calling benchmark, ToolWOZ,
refashioning MultiWoz2.0 (Zang et al., 2020) to train and evaluate multi-turn tool calling effectively.

JOSH utilizes a beam search inspired simulation approach, employing sparse rewards (in this paper
corresponding to successful tool calls) to guide turn-by-turn generation and synthesize preference-
annotated examples. JOSH allows an agent to generate multiple responses at each conversation
turn, exploring various trajectories through a conversation until a sparse reward (goal) is encountered
along some path. Upon reaching a goal, other beam candidates are pruned and further expansion
proceeds only from that point. Once a trajectory achieves all possible goals, all remaining trajecto-
ries are backtracked, logging unsuccessful paths as negative alignment samples and successful paths
as positive ones. This process constructs alignment preference data solely from the model itself.
When used to align that same model, we show it enhances model performance.

Tool use is a critical skill in LLMs (Mialon et al., 2023; Schick et al., 2024); however, there is a large
disparity in tool-using capabilities across different model sizes, especially when involving them in
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Figure 1: Illustration of JOSH, a tool calling simulation-based beam search experience generation
algorithm. A correct path through the conversation can be mapped out (shown in green) by back-
tracking from sparse rewards achieved by the agent. In this scenario, the sparse rewards are repre-
sented by “correct” API calls called by the agent. From backtracking through the tree an “ideal”
path through the conversation is found and training data can be extracted.

multi-turn reasoning (Gao et al., 2024). Furthermore, existing benchmarks either lack a real-world
multi-turn setup (Ruan et al., 2024) or intentionally keep the agent’s dialogue disjoint from under-
lying databases and focus more on tool selection (Huang et al., 2023). To demonstrate JOSH’s
capability to improve a model used in an agentic system through self-alignment, we introduce
a new dataset ToolWOZ. Derived from the task-oriented dialogue (TOD) benchmark MultiWOZ,
ToolWOZ is a multi-turn tool-based simulation environment where an agent model is assessed on
its tool-calling capabilities by calling goal APIs through collaboration with a user simulator. Af-
ter self-alignment using JOSH on the ToolWOZ training set, a meta-llama3-8B-instruct
(Meta-Llama, 2024) model exhibits a 74% increase in Success Rate. Additionally, after JOSH
self-alignment we see gpt-4o beats it’s own baseline to become state-of-the-art on two separate
benchmarks: ToolWOZ and τ -bench (Yao et al., 2024a).

To show that JOSH does not degrade general model performance, we evaluate a trained
meta-llama3-8B-instruct model across three public benchmarks: MT-Bench (Zheng et al.,
2024), τ -bench , and the LMSYS-Chatbot Arena Human Preference Predictions challenge (lin Chi-
ang, 2024; Zheng et al., 2024). Our results confirm that the JOSH aligned model does not regress
relative to its base model, despite its new specialized alignment.

2 JOSH: JUXTAPOSED OUTCOMES FOR SIMULATION HARVESTING

In this section, we detail the two components of JOSH, our method for generating synthetic
preference-annotated training data to enhance tool-driven multi-turn dialogue. We use the terms
“tool” and “API” interchangeably. Our approach for generating conversations uses an agent-
simulator system and involves a turn-level beam search strategy combined with tool/API-calling
reward pruning. Unlike traditional token-level beam search, our method maintains multiple active
multi-turn conversations (trajectories) over sequences of agent turns. From these synthetic conver-
sations we create preference-annotated training instances. This involves extracting both supervised
fine-tuning (SFT) data and preference fine-tuning (PFT) data. The SFT data is derived from the
optimal trajectory (or path) through the conversation tree, while the PFT data includes pairwise
comparisons of good and bad agent turns, facilitating more nuanced model training.

2.1 BEAM SEARCH SIMULATION FOR COLLECTING USER-AGENT CONVERSATIONS

We begin by having the agent A (defined in Section 4.2) interact with a user simulator U (defined
in Section 4.3). A set of goals G = {g1, g2, . . . , gk} is defined where achieving a goal will award
the agent A a sparse reward of value 1

len(Goal Set) to it’s return. Our return uses the Average Reward
formulation (Sutton & Barto, 2018) hence we denote it as AR and refer to it as “Average Reward”.
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Algorithm 1 Beam Search Simulation for Collecting User-Agent Conversations
1: Input parameters: max_depth; branching_factor; max_beam
2: Load: U ← User Simulator; A← Agent; G← Goal Set

∗ U(l) and A(l) run one turn of the user and agent on a leaf node l of a conversation trajectory.

3: // Initialize control parameters and data structures
4: AR← 0 // Average reward
5: leaves← [] // Trajectory leaf nodes which will be expanded in beam search
6: depth← 0 // Current trajectory depth

7: while depth≤ max_depth and G ̸= ∅ do
8: // Expand trajectories by running user simulation and agent.
9: leaves = [U(l) ∀l ∈ leaves] // Expand with next user response by running the simulator one step on all leaves.
10: // Expand trajectories by running agent A on all leaves.
11: // Each expansion is a full turn of A including API calls, thoughts and utterances.
12: if len(leaves) ∗ branching_factor ≤ max_beam then
13: leaves = [A(l) ∀l ∈ leaves]
14: end if

15: // Check for goals. If a goal is reached, prune trajectories to retain successful path.
16: for leaf ∈ leaves do
17: // If a goal was reached in leaf
18: if ∃g ∈ G and g ∈ leaf] then
19: // Set leaf as the new root, remove g from Goal Set and update the reward.
20: leaves = [leaf]
21: G.remove(g)
22: AR = AR + 1

len(Goal Set)

23: BREAK
24: end if
25: end for

26: depth← depth + 1
27: end while

We considered several reward structures for the task of agent dialogues, we found that the cumulative
reward method encourages excessive API calls, leading to inefficiency, which is contrary to our aim
of minimal interaction for issue resolution. Per-turn rewards, while potentially speeding up learning,
necessitate costly annotations or the use of a resource-intensive LLM judge, which we reserve for
future exploration. Sparse goal-based rewards, akin to our approach, issue rewards only upon goal
completion, offering feedback at each API call to refine agent behavior in real time. While shaped
rewards might expedite learning by guiding agents with intermediate incentives, they complicate the
reward structure and risk diverting focus from final objectives. By employing an average reward
function with partial sparse rewards, we facilitate efficient task completion without the complexities
of other structures, ensuring goal-oriented and concise dialogues.

We begin with AR = 0. Goals in G can be achieved when A interacts with U in a desired manner.
In this paper, rewards are granted when the agent successfully makes a predefined correct tool or
API call during a conversation. Figure 1 illustrates an example where the goal set G is composed of
multiple correct API calls made within a simulated conversation.

The beam search simulation, in which agent A and user simulator U interact, is detailed in Algo-
rithm 1. The algorithm begins by constructing a tree: the user simulator U initiates the conversation,
and agent A generates branching_factor agent responses with a high temperature to encourage vari-
ability. Each agent turn A(l) – where l is the leaf node of a conversation trajectory – represents a full
response, during which the agent may make API calls or other actions before replying to the user.

Following each agent turn, U generates a response, after which A generates another set of branch-
ing_factor turns for each response from U . This continues until an agent turn achieves a goal g.
In the case of Figure 1, the goal is the “First Correct API Call.” The agent turn that achieves this
goal becomes the new root, g is removed from the goal set G, the Average Reward is increased by

1
len(Goal Set) , and the process repeats. The goal g is removed from the goal set in order to prevent
rewards for duplicate goals. If another turn simultaneously achieves the goal g, it is considered par-
tial credit: it does not follow the ideal path but is not considered a negative example either. When
the number of branches reaches the max_beam size, only one agent response is generated. This
process continues until all the goals in the goal set G are achieved or a maximum number of turns
is reached. Because the beam search is designed to follow paths once goals are hit, this naturally
selects for trajectories where goals are achieved earlier in the conversation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this paper, we branch at the turn level rather than the agent action level, allowing the tree to
grow exponentially with the number of turns rather than individual actions (i.e., utterance, thoughts,
API/tools). Binary trees have a number of 2h−1 leaf nodes where h is the height of the tree, since
JOSH splits at the turn level we can expect t = log2(max_beam) + 1 to be the number of turns t
before JOSH can no longer expand the tree. There are roughly 3 actions a per turn on average, so
the number of branching turns allowed when when action splitting is t = log2(max_beam)+1

3 . Thus
when max_beam = 8 which is used throughout the paper to keep costs reasonable (around $100)
we could perform either t = 4 turns while turn splitting, or t = 4

3 turns when splitting on actions.
While splitting on actions may provide more diversity, over the course of a multi turn dialogue we
can explore more possible paths deep in the tree for the same max_beam when splitting on turns.

2.2 PREFERENCE DATA EXTRACTION

Once Algorithm 1 terminates, we have a tree that resembles Figure 1, from which we can extract
training data for both Supervised Fine-Tuning (SFT) and Preference Fine-Tuning (PFT).

For SFT, training data is created by backtracking up the tree from the final successful turn to the
initial user-simulated utterance. We refer to this as the “ideal path,” illustrated by following the
green agent turns up the tree in Figure 1, starting from the “Second Correct API Call.” This ideal
path corresponds to the best agent turns generated to maximize the number of rewards achieved.
This data can subsequently be used to train models, guiding them to produce responses that are
likely to yield higher rewards. This approach is similar to offline RL with Decision Transformers,
where an optimal path is found by conditioning on the reward (Chen et al., 2021).

For PFT, we use the same tree but additionally take advantage of suboptimal model outputs. We
create pairwise data by backtracking through the tree in the same manner as for SFT data extraction.
At each user turn along the ideal path, we create a (good, bad) agent turn pair. The “good” agent
turn is on the ideal path (green in Figure 1), and the “bad” is the alternative agent turn from that user
utterance. If the alternative agent turn also leads to a reward but is ultimately not part of the ideal
path, it is not used as a negative example. This paper focuses on using pairwise turns, so agent turns
that do not stem from a user turn on the ideal path are not included in the training data.

Preference tuning approaches, such as DPO (Rafailov et al., 2024), require pairwise model gen-
erations. However, since Algorithm 1 creates pairwise turns where the paired turns can contain
different numbers of model generations (e.g., an API call and an agent response), we focus on a
more flexible training approach, KTO (Ethayarajh et al., 2024). KTO works by assigning “upvotes”
to good examples and “downvotes” to bad examples. Thus, we can still extract pairwise data at the
turn level by labeling all agent generations within good turns along the ideal path as upvotes and
the alternative turns as downvotes, without needing model generations to necessarily share the same
context. For easy reference, we suffix SFT and KTO preference-tuned models by -SFT and -KTO,
respectively.

3 TOOLWOZ

In this section, we introduce ToolWOZ, a dataset designed to train and benchmark an agent’s ca-
pabilities in using API tools within a dialogue setting. ToolWOZ features an agent with access to
various API tools that allow it to interact with a real database, engaging in dialogue with a user sim-
ulator. Each conversation in the dataset is grounded in seed goals, which correspond to specific goal
API calls. As illustrated in Figure 2, ToolWOZ significantly simplifies the analysis of task-oriented
dialogue systems compared to earlier DST systems and the MultiWOZ database.

3.1 TOOL-CALLING DATASETS FOR END-TO-END DIALOGUE SYSTEMS

In recent years, task-oriented dialogue systems were typically developed using a pipeline approach
(Ohashi & Higashinaka, 2022; Mrkšić et al., 2016; Zhang et al., 2020). These systems were di-
vided into multiple components where each component was often modeled with a separate machine
learning or natural language processing model, and the datasets used to build these systems, such as
MultiWOZ, were designed accordingly.

4
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Figure 2: MultiWOZ+DST (left) vs.
ToolWOZ+Agent (right) paradigmns
for Task Oriented Dialogue interactions.

Split # of Data Points

Train 6251
Val 793
Test 805
(Official) Test 450

single-domain dialogues 2439
multi-domain dialogues 5410

Table 1: ToolWOZ dataset split sizes.
This paper uses the first 450 conversa-
tion in the ToolWOZ test set as the offi-
cial test set.

However, with the advent of large language models (LLMs), we are witnessing a shift towards more
powerful and reliable end-to-end dialogue systems (Wu et al., 2023a;b), making existing dialogue
datasets for pipeline based approaches no longer sufficient for developing models. Recent research
has emphasized improving and assessing tool-calling capabilities in dialogue systems, which has be-
come a critical proxy for task-solving and goal achievement. We propose transforming MultiWOZ
into a tool-calling benchmark, which can drive the development and evaluation of modern dialogue
systems in the LLM era. Moreover, this approach can be generalized to other existing dialogue
datasets, enabling a more cost-effective way to create benchmarks for next-generation dialogue sys-
tems.

3.2 CREATING TOOLWOZ

The design of ToolWOZ addresses several limitations commonly observed in traditional dialogue
datasets. One of the key improvements is a shift from indirect metrics like Inform and Success rates
to a more direct one, correct API call metric, which measures whether the system can successfully
invoke the appropriate external tools (e.g., APIs) based on user inputs. Furthermore, the framework
introduces a seamless integration between dialogue and external databases, which helps avoid in-
consistencies between the model’s actions and the database outcomes. This is complemented by the
use of a flexible, goal-oriented user simulator, which allows for repeatable and adaptive interactions
with the TOD model. ToolWOZ stands out in Table 1 as a large, domain-diverse multi-turn dialogue
benchmark grounded in real-world APIs, containing 7,849 scenarios across various task-based do-
mains.

To create ToolWOZ, we developed APIs for the find (which we refer to as search) and book in-
tents within each of the four MultiWOZ domains that have databases: restaurant, hotel, train, and
attraction. Notably, the attraction domain does not include a booking intent. This process yielded
the following set of possible APIs: {search_restaurant, book_restaurant, search_hotel, book_hotel,
search_train, book_train, and search_attraction}. The arguments for each API correspond to the
possible slot values for each domain’s intent, and all arguments are optional. For full API defini-
tions, refer to the Appendix C. Every ToolWOZ conversation contains a list of goal API calls. A
goal API g(x) is considered completed if an agent called function f(y) where x ⊆ y or g(x) and
f(y) return only one result from the database, which is the same. Thus, for each conversation, we
can quantify its success by the percentage of goal APIs that were called by the agent. This provides
a far less gameable notion of correctness as opposed to Inform and Success rate which rely on fuzzy
matching of goal states. Goal APIs in ToolWOZ have a loose ordering to them, an agent must gen-
erally make a correct search call in order to obtain the necessary information to make a booking in
that intent. This simulates real scenarios where agents often need to condition on information from
earlier tool calls to make new ones. Goals can, however, be achieved in any order.

5
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ToolWOZ aligns the dialogue and database by only returns correct results when they closely match
a goal api. This system ensure that failed searches or booking accurately return either an incorrect
result or no result at all. The search and booking algorithms, as well as the rules for cleaning database
results, are detailed in Appendix B. Every MultiWOZ conversation also has a list of user goals. We
use the user goals to create a goal-oriented user simulator that tries to accomplish the listed goals in
order while conversing with the TOD agent. See Section 4.3.

4 EXPERIMENTS

4.1 DATA AND METRICS

We evaluate different systems on ToolWOZ and τ -bench (Yao et al., 2024a). Similar to ToolWOZ,
τ -bench is a recently introduced tool-based multi-turn dialogue LLM benchmark. We only adopt
data from the Retail domain in τ -bench, as it contains both training and test data (Airline domain
only contains test data).

We use Average Reward and 100% API Success Rate as the two key elements of evaluation to
compare models over ToolWOZ. Following (Yao et al., 2024a), we report Pass^1 on τ -bench, which
uses final database states to measure the binary success of a conversation. Note that the metric is
very similar to the 100% API Success Rate, and the major difference is that 100% API Success Rate
considers both Read and Write API calls, while Pass^1 only considers Write APIs. We run τ -bench
results 10 times and take the final Pass^1 score to reduce variance, as discussed in Section 5.1.

4.2 AGENTS

We benchmarked gpt-4o-mini and gpt-4o on both ToolWOZ and τ -bench. We also evalu-
ated gpt-3.5 and meta-llama-3-8B (AI@Meta, 2024) on ToolWOZ. For gpt models, we
explored both Function Calling (Schick et al., 2024) (FC) and ACT/ReACT (Yao et al., 2022) tech-
niques, while for meta-llama-3-8B, we used ReACT for all experiments. The prompt used for
ReACT models on ToolWOZ is detailed in Appendix Table D.

Using goal API calls as sparse rewards, we generated JOSH rollouts for models on ToolWOZ across
926 conversations in the ToolWOZ training set. For models on τ -bench, we generated JOSH rollouts
for all 500 conversations in the Retail domain training set.

On both ToolWOZ and τ -bench, the JOSH rollout process involved a max beam size of 8 and
a branching factor of 2. We do experimentation in section 4.4 to explore other beam sizes. For
meta-llama-3-8B, sampling parameters were set at temperature 1.5, top_k=50, and top_p=0.75
to foster diverse generation. For gpt versions, the temperature was set to 1.0. The average cost of
running JOSH on a meta-llama-3-8B agent was approximately $0.11 per ToolWOZ conversa-
tion, amounting to roughly $102 for all 926 conversations. The average cost of finetuning gpt-4o
on ToolWOZ was between $75 and $200 depending on the prompting approach. For training all
models, we retained only those conversations whose JOSH rollouts achieved 100% success in the
ideal path without errors. For meta-llama-3-8B on ToolWOZ, this resulted in a final filtered
training set of 631 conversations.

From these successful JOSH rollouts, we extracted KTO and SFT data as described in section 2.2.
For training meta-llama-3-8B SFT, the model was trained for 3 epochs with a learning rate
of 2e-5. For meta-llama-3-8B-KTO, the model was trained for 1 epoch with a learning rate
of 5e-7 and a beta of 0.1. The meta-llama-3-8B models were trained using Lora and 4-bit
quantization. We fine-tuned gpt-4o for 3 epochs, with a batch size of 1, and an LR multiplier of
2.

4.3 USER SIMULATORS

We experimented with two types of user simulators, both based on gpt-4o: goal-based and guide,
to assess their impact on the performance and repeatability of evaluating agents on the ToolWOZ test
set. The user simulators were run with a temperature of zero. The goal-based simulator strictly fol-
lows the predefined user goals for each conversation, without access to the human-human transcript
from the dataset. In contrast, the guide simulator references the MultiWOZ transcript and suggests

6
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Agent Avg Reward 100% Success Rate

meta-llama-3-8B 0.63 0.34
meta-llama-3-8B-JOSH-SFT 0.74 0.50
meta-llama-3-8B-JOSH-KTO 0.79 0.59
gpt-3.5-ReACT 0.66 0.44
gpt-4o-mini-ReACT 0.67 0.48
gpt-4o-mini-ReACT-JOSH-SFT-beam-4 0.85 0.72
gpt-4o-mini-ReACT-JOSH-SFT-beam-8 0.85 0.72
gpt-4o-mini-ReACT-JOSH-SFT-beam-16 0.865 0.74
gpt-3.5-FC 0.76 0.58
gpt-4o-mini-FC 0.88 0.76
gpt-4o-mini-FC-JOSH-SFT 0.89 0.78
gpt-4o-ReACT 0.900 0.791
gpt-4o-ReACT-JOSH-SFT 0.914 0.813
gpt-4o-FC 0.919 0.831
gpt-4o-FC-JOSH-SFT 0.922 0.84

Table 2: ToolWOZ test set results. Those with -
JOSH in the model name were trained on JOSH
rollouts using their base model on the first 926 con-
versations in the ToolWOZ training dataset.

Agent Pass^1

gpt-4o-mini-ReACT 16.87
gpt-4o-mini-ReACT-JOSH-SFT 36.34
gpt-4o-mini-ACT 44.60
gpt-4o-mini-ACT-JOSH-SFT 47.65
gpt-4o-mini-FC 50.78
gpt-4o-mini-FC-JOSH-SFT 58.26
gpt-4o-ACT 63.13
gpt-4o-ACT-JOSH-SFT 64.26
gpt-4o-ReACT 54.43
gpt-4o-ReACT-JOSH-SFT 58.43
gpt-4o-FC 65.21
gpt-4o-FC-JOSH-SFT 66.00

Table 3: gpt-4o trained on JOSH roll-
outs on τ -bench Retail. gpt-4o-FC
was the previous state-of-the-art on the
τ -bench Retail test set (Yao et al.,
2024a).

specific quotes from the original dialogue. Detailed prompts for both simulators are provided in
Appendix D. While we primarily report results based on the goal-based simulator, a comparative
analysis of the two simulators is provided in Section 5. For the τ -bench dataset, we were only able
to evaluate the goal-based simulator, as no transcripts are available.

4.4 RESULTS

We outline the results of training three models on JOSH rollouts from their respective base models:
a smaller meta-llama-3-8B model, gpt-4o-mini, and the larger gpt-4o model. We show
that each JOSH trained model variant outperforms their respective baseline variant achieving state-
of-the-art performance on both ToolWOZ and τ -bench. Specifically, we show how training on
JOSH rollouts makes gpt-4o-FC-JOSH-SFT surpass the vanilla gpt-4o-FC on the τ -bench
Retail datasets. Similarly, gpt-4o-FC-JOSH-SFT outperforms the vanilla variant on gpt-4o
on ToolWOZ. It is worth noting that JOSH self-alignment can augment gpt-4o ability on tool
benchmarks, inspite of gpt-4o already having state-of-the-art ability, being ranked within top 3 on
the LM-Sys Chatbot Arena Leaderboard (Chiang et al., 2024) and top 2 on both HELM (Bommasani
et al., 2023) and 5-shot MMLU (Hendrycks et al., 2021).

On ToolWOZ, the meta-llama-3-8B-JOSH-KTO model saw a 74% increase in
100% Success Rate and a 25% increase in Average Reward compared to the baseline
meta-llama-3-8B model, as shown in Table 2. This jump is noticeably even higher than
the meta-llama-3-8B-JOSH-SFT model. The meta-llama-3-8B-JOSH-KTO model
even outperforms both gpt-3.5-ReACT and gpt-3.5-FC.

We see likewise see a large performance jump from the baseline gpt-4o-mini-ReACT model to
it’s JOSH-SFT trained variant, with a 50% increase in 100% Success Rate and a 27% increase in
Average Reward. We explore three beam sizes when doing JOSH using gpt-4o-mini-ReACT
and note that while a maximum beam size of 16 is marginally better than 8 and 4, we choose to use
a beam size of 8 for all other experiments to save cost and efficiency while still taking advantage
of a larger beam size. We also observe that the gpt-4o-FC-JOSH-SFT model outperforms its
baseline to achieve state-of-the-art results on ToolWOZ. We note that as gpt-4o-FC performs
well on ToolWOZ, the headroom for improvement shrinks and thus performance gains from JOSH
is smaller than for other baseline models.

Table 3 tells a similar story on the τ -bench Retail test set. Over three different prompting options,
ACT, ReACT, and FC, gpt-4o sees significant performance jumps when training on JOSH roll-
outs. Notably, gpt-4o-mini-ReACT-JOSH-SFT has a 115% increase over it’s baseline score.
Also, gpt-4o-FC-JOSH-SFT beats its baseline, the previous state-of-the-art model on τ -bench,
gpt-4o-FC. This significant jump in performance for each model can be seen after only being
trained on JOSH rollouts from their respective baselines on the 500 conversations in the τ -bench
Retail training dataset.
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5 ANALYSIS

5.1 AGENT PERFORMANCE STABILITY ACROSS USER SIMULATORS

Dimension Human User Simulator

naturalness 4 4
conciseness 3.98 3.94
redundant 3.59 3.42

(a) Evaluation comparing the goal based user simula-
tor to the ground truth human users from the conver-
sations in MultiWOZ.

Agent (Guide) Avg Reward (Guide) 100% Success Rate

meta-llama-3-8B 0.50 0.26
meta-llama-3-8B-JOSH-SFT 0.55 0.33
meta-llama-3-8B-JOSH-KTO 0.59 0.38

(b) Models trained against goal user simulator on
ToolWOZ run against the guide user simulator on the
ToolWoz test set.

(c) Bootstrap estimation of Standard Deviation
of Average Reward on ToolWOZ using two
types of user simulators and τ -bench

Figure 3: A deeper look at user simulators and their effects on score stability in benchmarks.

In Figure 3c we examined the stability of the ToolWOZ Average Reward metric across two types
of user simulators: goal-based and guide-based. Additionally, we assessed the stability of the τ -
bench Pass^1 metric by measuring the standard deviation of benchmark scores as the number of
conversations increased using the bootstrapping method (Efron, 1992). We observe that all three
benchmarks exponentially reduce in standard deviation as the number of samples increases. Notably,
the ToolWOZ goal simulator has the lowest standard deviation, which drops below 1.5 percentage
points at the 450 samples. Based on this observation, we reduced the ToolWOZ test set to 450
examples, utilizing the goal-based simulator to minimize simulation noise. Additionally, the τ -
bench dataset has a high standard deviation of about 4 percentage points at it’s test set size of 115.
This leads us to run the τ -bench tests 10 times to reduce variability as noted in the previous section.

To evaluate the quality of the goal-based user simulator, we compare it with human users from the
ground truth MultiWOZ conversations, as detailed in Table 3a, across three dimensions: naturalness,
conciseness, and redundancy. This assessment employs LLM-Rubric Hashemi et al. (2024) prompts
using Claude Sonnet 3.5 assigning scores ranging from 1 to 4, with 4 being the highest across all
450 conversations in the ToolWOZ test set. Our findings indicate that both the user simulator and
human users score highly on naturalness. However, the user simulator’s conciseness is slightly
lower than that of human users, attributed to the simulator’s tendency towards verbosity. Lastly,
the redundancy score for the user simulator is lower compared to human users, primarily due to
agent errors prompting the re-request of information. In such cases, the simulator is more inclined
to reiterate information, whereas humans are typically less repetitive with critical information.

To ensure robustness and generalization, we further evaluated the JOSH-trained
meta-llama-3-8B model using rollouts from the goal-based simulator, by testing it against
the guide simulator (as described in §4.3). Table 3b demonstrates that the JOSH-trained models
consistently outperform the baseline meta-llama-3-8B model, regardless of the simulator used.
While the distributions of scores vary between the two simulators (as reflected in Table 3b and
Table 2), the relative ranking of model performance remains unchanged.

5.2 ERROR ANALYSIS

Training on JOSH rollouts additionally led to a large reduction in errors when running the ToolWOZ
test set as shown in Table 4a. The JOSH-KTO trained model saw a 96% decrease in incorrectly for-
matted APIs and a 50% reduction in bad API use (e.g. using nonexistant arguments, using nonex-
istant apis, . . . ). The JOSH-SFT model also sees a large drop in error rates in both categories, but
similar to the reward measurements it does not perform as well as JOSH-KTO.
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Furthermore, we see in Figure 4c that in particular search_attraction and search_train have a high dis-
parity in number of errors between SFT and KTO training. To further investigate this phenomenon,
we measured the frequency of required argument groups for search_train and search_attraction that
the SFT model failed to call.

We observe for search_train that calls with the "arriveBy" argument increases failures from the
base model to the SFT model, unlike KTO where the errors drop significantly. We find that this
phenomenon is due to the SFT model commonly neglecting to include the "departure" parameter
when using the "arriveBy" parameter. The KTO model however avoids this by training on API
calls with too few parameters as negative examples, and generally includes all paramters in it’s api
calls. We observe a similar phenomenon with the search_attraction api, where the SFT model often
neglects to use the "type" argument alongside the "area" argument, and also uses invalid "area"
arguments such as "area = all". Again the KTO model is able to avoid these pitfalls as many apis
with invalid parameters are found in the negative examples.

5.3 GENERALIZATION OF JOSH FINE-TUNED MODELS

We evaluated the performance on broader tasks of the meta-llama-3-8B models fine-tuned on
JOSH rollouts from ToolWOZ across two general-purpose benchmarks—MT-Bench and the LM-
SYS Chatbot Arena Human Preference Predictions challenge in Table 4b. MT-Bench evaluates
chatbots’ general knowledge through multi-turn, open-ended questions, while the LMSYS Chatbot
Arena Human Preferences challenge measures models’ human preference ranking capabilities. For
LMSYS, we used the first 1,500 data points as the benchmark.

Method Bad API Use Incorrect API Format

meta-llama-3-8B 0.40 0.25
meta-llama-3-8B-JOSH-SFT 0.24 0.09
meta-llama-3-8B-JOSH-KTO 0.20 0.01

(a) Percentage of conversations with types of API Er-
rors on the ToolWOZ Test Set.

Model MT-Bench LMSYS

meta-llama-3-8B 7.91 0.444
meta-llama-3-8B-JOSH-SFT 7.81 0.452
meta-llama-3-8B-JOSH-KTO 7.92 0.461
gpt-4o-FC 9.10 0.515
gpt-4o-FC-JOSH-SFT 9.12 0.514

(b) MT-Bench and LMSYS benchmark performance.
JOSH rollouts were done on ToolWOZ.

(c) Number of errors caused by ToolWOZ
APIs in the Test set

Figure 4: A Further Look at Model Performance - General Benchmarks and Error Analysis

We compared the baseline meta-llama-3-8B model, meta-llama-3-8B-JOSH-SFT, and
meta-llama-3-8B-JOSH-KTO on both MT-Bench and LMSYS. As shown in Table 4b, fine-
tuning on JOSH rollouts from ToolWOZ did not degrade performance on either benchmark. The
models maintained stable performance on multi-domain, multi-turn dialogues (MT-Bench) and hu-
man preference ranking (LMSYS).

These results demonstrate that fine-tuning on JOSH rollouts preserves the models’ general capabili-
ties. Despite the specific nature of the ToolWOZ training, models adapted to task-oriented dialogue
remain effective on broader large language model tasks, with minimal performance degradation.

6 RELATED WORK

Notably, simulation environments with sparse rewards were used by DeepMind in their AlphaGo
(Silver et al., 2016) and AlphaGo Zero (Silver et al., 2017) works, enabling the two models to
achieve superhuman performance in the game of Go. In the AlphaGo works, Monte Carlo Tree
Search (MCTS) in a self-play simulation environment is used to intelligently explore the space of
next possible moves and long term strategy. Similarly, JOSH treats dialogue as a multi-turn game
where it explores possible directions and while using sparse rewards to identify ideal paths through
a conversation. JOSH rollouts can then be used to train any LLM for multi-turn tool calling tasks.
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With the advent of LLMs (Bommasani et al., 2021; Brown et al., 2020; Achiam et al., 2023) language
agents for multi-turn dialogue have seen a sharp increase in effectiveness. Agent reasoning in the
dialogue setting has been significantly increased by approaches such as Chain of Thought (COT)
(Wei et al., 2022) and ACT/ReACT (Yao et al., 2022) by intelligently scaling inference time compute
to reason about a problem before acting. Additionally, dialogue agent’s function calling (Schick
et al., 2024) abilities have been increased against numerous benchmarks (Patil et al., 2023; Li et al.,
2023; Qin et al., 2023b;a). In contrast with ToolWOZ, however, existing tool calling benchmarks
lack the proper environment set up for multi-turn dialogue with API goal sets that is suitable for
JOSH to run on.

AgentQ (Putta et al., 2024) – a contemporaneous work to this study — is a webagent training and
inference process, has similar motivations of self learning using preference data however it has some
key differences from JOSH. AgentQ uses MCTS, a self-critique mechanism, and online searching
of different pathways, while JOSH is a standalone data extraction algorithm that soley relies on
arbitrary sparse rewards. Additionally, AgentQ uses a test time inference strategy while JOSH purely
extracts training data for finetuning models, a form of offline RL. JOSH focuses on tool calling
multi-turn dialogue while AgentQ is in the domain of navigating web agents. Finally, JOSH training
utilizes 100% successful paths to mitigate overfitting on intermediate rewards, while the AgentQ
approach requires long horizon exploration to gather preference data.

Other works also explore training LLM agents based on rewards. Approaches such as STaR (Ze-
likman et al., 2022), Quiet-STaR (Zelikman et al., 2024), and Iterative Reasoning Preference Opti-
mization (Pang et al., 2024) use downstream rewards based on reasoning to train or preference tune
models for increased performance at test time. However, these approaches are focused on single
turn output performance rather than reasoning in a multi-turn dialogue setting. Some approaches
use rewards to train policies to help TOD systems (Hu et al., 2023; Wu et al., 2023b) or extensive
test-time search (Snell et al., 2024) while JOSH simply produces data to finetune models rather than
make test time changes. In this way JOSH is conceptually similar to Decision Transformers (DTs)
(Chen et al., 2021). DTs is a form of offline RL that generates optimal sequences for fine-tuning by
conditioning on the rewards, whereas JOSH uses these rewards to select optimal simuation rollouts.

Other approaches use search trees to improve the reasoning of models. Namely Tree of Thought
(ToT) (Yao et al., 2024b) and Chain of Preference Optimizaiton (CPO) (Zhang et al., 2024) focus
on optimizing the performance of COT reasoning. CPO extracts preference data from a search tree
exploring COT reasoning, however it uses an LLM to issue rewards at each sentence and is only
applicable to single turn reasoning. On the contrary, JOSH uses sparse rewards in a simulaiton
environment to solve reasoning problems in the multi-step dialogue domain.

The preference tuning paradigm was first proposed as an easier to replicate direct supervised learn-
ing alternative to well-entrenched "RLHF" paradigm (Ziegler et al., 2019) of first learning a reward
model from preferences and then learning a policy using RL-based approaches such as PPO or RE-
INFORCE. Heralded by the first DPO (Rafailov et al., 2024), many variants e.g. RS-DPO (Khaki
et al., 2024) and ORPO (Hong et al., 2024) have emerged. Though early approaches required pair-
wise data with a contrasting good-bad response pair for a prompt, the KTO formulation (Ethayarajh
et al., 2024) enabled learning from unpaired preferences. Since the preference data we collect is
unpaired, we centrally use KTO in this work.

7 CONCLUSIONS

In this work, we devise JOSH, a self-alignment approach which uses sparse rewards to enable agen-
tic models of all sizes to train themselves. We show that training on JOSH rollouts significantly
increases performance on benchmarks assessing multi-turn dialogue and tool-calling ability while
maintaining or improving general model performance. We show JOSH is general an can be applied
to small medium and large models and provide considerable gains in performance. Notably, we il-
lustrate how frontier models can outperform themselves with JOSH to achieve state-of-the-art results
on multiple tool-calling benchmarks. Additionally, we present ToolWOZ, a multi-turn, tool-calling
simulation dataset with sparse rewards to train and evaluate agent LLMs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY

We have open sourced both the ToolWOZ dataset as well as the JOSH class on GitHub (https://
anonymous.4open.science/r/josh_iclr-C8DE/README.md). The JOSH class has
been designed flexibly, and only requires a step function for an agent and a user in order to begin
creating rollouts. The JOSH class also supports a JOSHAgent, JOSHUser, and JOSHRewards base
classes to help jump start research and provide an out of the box working solution that can be iterated
over. We also provide our implementations for custom JOSH agents on τ -bench. Lastly, we support
a parallelized ToolWOZ runner script which allows rapid rollouts of JOSH, fast testing, and supports
both local and gpt models.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. Meta AI Tech Reports, 2024. URL https://github.com/
meta-llama/llama3/blob/main/MODEL_CARD.md.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Rishi Bommasani, Percy Liang, and Tony Lee. Holistic evaluation of language models. Annals of
the New York Academy of Sciences, 1525(1):140–146, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena:
An open platform for evaluating llms by human preference. arXiv preprint arXiv:2403.04132,
2024.

Bradley Efron. Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics:
Methodology and distribution, pp. 569–593. Springer, 1992.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Nicholas Farn and Richard Shin. Tooltalk: Evaluating tool-usage in a conversational setting. arXiv
preprint arXiv:2311.10775, 2023.

Silin Gao, Jane Dwivedi-Yu, Ping Yu, Xiaoqing Ellen Tan, Ramakanth Pasunuru, Olga Golovneva,
Koustuv Sinha, Asli Celikyilmaz, Antoine Bosselut, and Tianlu Wang. Efficient tool use with
chain-of-abstraction reasoning. arXiv preprint arXiv:2401.17464, 2024.

Helia Hashemi, Jason Eisner, Corby Rosset, Benjamin Van Durme, and Chris Kedzie. Llm-rubric: A
multidimensional, calibrated approach to automated evaluation of natural language texts. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 13806–13834, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

11

https://anonymous.4open.science/r/josh_iclr-C8DE/README.md
https://anonymous.4open.science/r/josh_iclr-C8DE/README.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with
odds ratio. arXiv preprint arXiv:2403.07691, 2024.

Zhiyuan Hu, Yue Feng, Yang Deng, Zekun Li, See-Kiong Ng, Anh Tuan Luu, and Bryan Hooi.
Enhancing large language model induced task-oriented dialogue systems through look-forward
motivated goals. arXiv preprint arXiv:2309.08949, 2023.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu, Qihui Zhang, Yixin Liu, Pan Zhou,
Yao Wan, Neil Zhenqiang Gong, et al. Metatool benchmark for large language models: Deciding
whether to use tools and which to use. In The Twelfth International Conference on Learning
Representations, 2023.

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
sampling and direct preference optimization method for alignment of large language models.
arXiv preprint arXiv:2402.10038, 2024.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei
Huang, and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv
preprint arXiv:2304.08244, 2023.

Wei lin Chiang. Lmsys - chatbot arena human preference predictions, 2024. URL https://
kaggle.com/competitions/lmsys-chatbot-arena.

Meta-Llama. Introducing llama3-8b. https://ai.meta.com/blog/meta-llama-3/,
2024. Accessed: April 2024.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented
language models: a survey. arXiv preprint arXiv:2302.07842, 2023.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young. Neu-
ral belief tracker: Data-driven dialogue state tracking. arXiv preprint arXiv:1606.03777, 2016.

Atsumoto Ohashi and Ryuichiro Higashinaka. Post-processing networks: Method for opti-
mizing pipeline task-oriented dialogue systems using reinforcement learning. arXiv preprint
arXiv:2207.12185, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, Huadong Wang, Cheng Qian, Runchu
Tian, Kunlun Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen Zhang, Yining Ye, Bowen Li,
Ziwei Tang, Jing Yi, Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, Yaxi Lu, Weilin Zhao,
Yuxiang Huang, Junxi Yan, Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng Yang, Tongshuang
Wu, Heng Ji, Zhiyuan Liu, and Maosong Sun. Tool learning with foundation models, 2023a.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis, 2023b.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

12

https://kaggle.com/competitions/lmsys-chatbot-arena
https://kaggle.com/competitions/lmsys-chatbot-arena
https://ai.meta.com/blog/meta-llama-3/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, Yongchao Zhou, Jimmy Ba, Yann
Dubois, Chris J Maddison, and Tatsunori Hashimoto. Identifying the risks of lm agents with
an lm-emulated sandbox. In The Twelfth International Conference on Learning Representations,
2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Qingyang Wu, Deema Alnuhait, Derek Chen, and Zhou Yu. Using textual interface to align exter-
nal knowledge for end-to-end task-oriented dialogue systems. arXiv preprint arXiv:2305.13710,
2023a.

Qingyang Wu, James Gung, Raphael Shu, and Yi Zhang. Diacttod: Learning generalizable latent
dialogue acts for controllable task-oriented dialogue systems. arXiv preprint arXiv:2308.00878,
2023b.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024a.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024b.

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang, and Jindong
Chen. Multiwoz 2.2: A dialogue dataset with additional annotation corrections and state tracking
baselines. arXiv preprint arXiv:2007.12720, 2020.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference opti-
mization: Improving chain-of-thought reasoning in llms. arXiv preprint arXiv:2406.09136, 2024.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie Huang, and XiaoYan Zhu. Recent advances
and challenges in task-oriented dialog systems. Science China Technological Sciences, 63(10):
2011–2027, 2020.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

A APPENDIX

B ALGORITHMS

Algorithm 2 Searching Algorithm
1: args← API Arguments
2: d← Domain
3: g ← Goals
4: goal_parameters← g[d][”search”][”parameters”]
5: db_results← List of served database results
6: correct_answer ← None
7: wrong_answer ← None
8: booking_id← None
9: // If there is a goal booking call
10: if ”book” ∈ g[d] then
11: booking_id← g[d][”book”][”unique_id”]
12: end if
13: for result ∈ db_results do
14: if ”book” ∈ g[d]andresult[”unique_id”] == booking_id then
15: correct_answer ← result
16: end if
17: if goal_parameters ̸⊆ result then
18: wrong_answer ← result
19: end if
20: end for
21: if goal_parameters ⊆ api_args then
22: if booking_id then
23: if correct_answer then
24: return correct_answer
25: else
26: if wrong_answer then
27: return wrong_answer
28: else
29: return []]
30: end if
31: end if
32: end if
33: else if args ⊆ goal_parameters then
34: if wrong_answer then
35: return wrong_answer
36: else if booking_idandcorrect_answer then
37: return correct_answer
38: end if
39: end if
40: return db_results[0]

Algorithm 3 Booking Algorithm
1: args← API Arguments
2: d← Domain
3: g ← Goals
4: // If there is a goal booking call
5: if ”book” ∈ g[d] then
6: if g[d][”book”][”unique_id”] == args[”unique_id] then
7: r_values← g[d][”book”][”return”]
8: return {”success” : True, ”return” : r_values}
9: else
10: return {”success” : False, ”return” : None}
11: end if
12: else
13: return {”success” : False, ”return” : None}
14: end if
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C TOOLWOZ API SPECS

D REACT PROMPT
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Table 4: API Specifications for ToolWOZ

API Functions (Part I)

[
{
"type": "function",
"function": {
"name": "book_restaurant",
"description": "Allows you to book a restaurant",
"parameters": {
"type": "object",
"required": [],
"properties": {
"time": {
"type": "string",
"description": "Time the restaurant reservation is at e.g.

↪→ 13:00"
},
"day": {
"type": "string",
"description": "Day of the week the restaurant reservation

↪→ is on e.g. thursday"
},
"people": {
"type": "string",
"description": "Number of people in the restaurant

↪→ reservation e.g. 3"
},
"name": {
"type": "string",
"description": "Name of the restaurant e.g. the river bar

↪→ steakhouse and grill"
}

}
}

}
},
{
"type": "function",
"function": {
"name": "search_restaurant",
"description": "Allows you to search a restaurant",
"parameters": {
"type": "object",
"required": [],
"properties": {
"food": {
"type": "string",
"description": "Type of food served at the restaurant e.g.

↪→ modern european"
},
"pricerange": {
"type": "string",
"description": "Price range the restaurant is in e.g.

↪→ cheap",
"enum": ["cheap", "expensive", "moderate"]

},
"name": {
"type": "string",
"description": "Name of the restaurant e.g. jinling noodle

↪→ bar"
},
"area": {
"type": "string",
"description": "Area the restaurant is located in e.g.

↪→ centre"
}

}
}

}
},

]
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Table 5: API Specifications for ToolWOZ

API Functions (Part II)

[
{
"type": "function",
"function": {
"name": "search_hotel",
"description": "Allows you to search a hotel",
"parameters": {
"type": "object",
"required": [],
"properties": {
"name": {
"type": "string",
"description": "The name of the hotel e.g. hamilton lodge"

},
"area": {
"type": "string",
"description": "The area the hotel is located in e.g.

↪→ north",
"enum": ["west", "east", "centre", "south", "north"]

},
"parking": {
"type": "string",
"description": "Whether the hotel offers free parking e.g.

↪→ yes",
"enum": ["yes", "no"]

},
"pricerange": {
"type": "string",
"description": "What the price range of how expensive the

↪→ hotel is e.g. moderate",
"enum": ["moderate", "expensive", "cheap"]

},
"stars": {
"type": "string",
"description": "The number of stars the hotel has e.g. 4",
"enum": ["0", "1", "2", "3", "4"]

},
"internet": {
"type": "string",
"description": "Whether or not the hotel has free internet

↪→ e.g. yes",
"enum": ["yes", "no"]

},
"type": {
"type": "string",
"description": "Whether to reserve a hotel or guesthouse.

↪→ e.g. guesthouse",
"enum": ["hotel", "guesthouse"]

}
}

}
}

}
]
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Table 6: API Specifications for ToolWOZ

API Functions (Part III)

[
{
"type": "function",
"function": {
"name": "search_attraction",
"description": "Allows you to search an attraction",
"parameters": {
"type": "object",
"required": [],
"properties": {
"type": {
"type": "string",
"description": "The type or theme of the attraction e.g.

↪→ boat"
},
"name": {
"type": "string",
"description": "The name of the attraction e.g. sheep’s

↪→ green and lammas land park fen causeway"
},
"area": {
"type": "string",
"description": "The area where the attraction is e.g.

↪→ centre",
"enum": ["west", "east", "centre", "south", "north"]

}
}

}
}

}
]
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Table 7: API Specifications for ToolWOZ

API Functions (Part IV)

[
{
"type": "function",
"function": {
"name": "book_train",
"description": "Allows you to book a train",
"parameters": {
"type": "object",
"required": [],
"properties": {
"people": {
"type": "string",
"description": "The number of people or seats to book on

↪→ the train e.g. 3"
},
"trainID": {
"type": "string",
"description": "ID for the train the tickets are for e.g.

↪→ TR2048"
}

}
}

}
},
{
"type": "function",
"function": {
"name": "search_train",
"description": "Allows you to search a train",
"parameters": {
"type": "object",
"required": [],
"properties": {
"leaveAt": {
"type": "string",
"description": "Time the train will leave from the

↪→ departure area e.g. 08:45"
},
"destination": {
"type": "string",
"description": "Destination area of the train e.g.

↪→ cambridge"
},
"day": {
"type": "string",
"description": "Day of the week the train will run e.g.

↪→ tuesday"
},
"arriveBy": {
"type": "string",
"description": "Time the train will arrive at the

↪→ destination e.g. 12:30"
},
"departure": {
"type": "string",
"description": "Departure area of the train e.g. london

↪→ liverpool street"
}

}
}

}
}

] 19
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Table 8: ReACT Prompt for ToolWOZ. Examples are written by hand anecdotally and not taken
from the training dataset. Under this setup, the agent will first craft a Plan, then either optionally
call an API or SPEAK to the customer. Speaking to the customer ends the agent’s turn.

You are a customer service agent helping a user.

# General Instructions
You have three commands you can use: PLAN, APICALL, and SPEAK
Always start with a PLAN message, then always end your turn with either a SPEAK or APICALL mes-
sage.
Your output must include PLAN and APICALL or PLAN and SPEAK.
Each command must be on it’s own line. Each line must start with a command.
You must always use commands or else your output will be invalid. Always end your turn with a SPEAK
or APICALL message.
Remeber not to use any of the commands unless you are issuing the command.
You MUST finish each command by saying <COMMAND_END>
Remember: After each command, say only <COMMAND_END>

Here is a description of how you should use each command:
## PLAN
Think step by step of what command you will use next and broadly what you should do or say.
Write the plan as an internal thought.
- PLAN should only contain a plan about what you will do. Keep it conscise, the user will never see your
plan, instead use SPEAK to communicate with the customer.
- NEVER use PLAN to send a message to the customer.
- You MUST use the apis available to you to gather information. NEVER use your own knowledge, you
will be penalized.
- think step by step
- Note: The customer cannot see any PLAN, APICALL, or APIRETURNs
- Be thorough but breif, use logic and reasoning to decide what to do next.
- After recieving an APIRETURN ERROR, write out the API Definition from API Examples in PLAN so
you can format the call correctly!
- The SPEAK command ends your turn, so make any APICALLs you need before using SPEAK

## SPEAK
- Always use this command to send a message to the user. This is the only way to talk to the user.
- PLAN will NEVER be sent to the customer.
- Using SPEAK will end your turn, so make any APICALLs you need before using SPEAK

## APICALL
- output the name of the api call you’d like to call. You will have the chance to call more apis if you would
like, so call one at a time.
- ONLY output a json dictionary, NEVER output any additional text (example: APICALL {...} <COM-
MAND_END>)
- Waiting for a response is automatic, NEVER output text relating to waiting for an api response.
- APICALLs and whatever they return are not visible to the customer.
- Use search api calls to search a database and use book api calls to book results from the search.
- NEVER output an api return, it will be given to you after you call APICALL.
- If an APICALL fails, you should try other options. NEVER call the same api more than once, espcially
if it didn’t work the first time.
- After recieving an APIRETURN ERROR, write out the API Definition from API Examples in PLAN so
you can format the call correctly!
- If a parameter is an "enum", those are the ONLY options you can use for that parameter. All other inputs
are invalid.

You have the following apis available to you. These are the only apis you have:
### APICALL Specific Instructions
Given a conversation, an api definition, and an example of the api definition filled in, output a valid json
dictionary after APICALL and no additional text.

!!! IMPORTANT: You MUST use context clues from the Input to figure out what to assign to each
parameter. Never add extra parameters !!!

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

You MUST fill in the parameters based off of the conversation. If a parameter is irrelivant, ALWAYS
leave it blank.

### API Definitions
Never add more parameters to the following apis.
HERE ARE THE APICALLs THAT ARE AVAILABLE TO YOU (with example values filled in):
#### API Examples
{example_filled}

Use the conversation to fill in the api definition. You don’t have to use all of the parameters if you don’t
know them. Don’t add any new parameters!

If you do not know a parameter, its fine to not include it in the api call.
All parameters are optional.
Note the apicall must be a valid json dictionary with ’name’ and ’parameters’ keys.
’name’ should be a string with the api name. Must be one of the following names ["book_restaurant",
"search_restaurant", "book_hotel", "search_hotel", "book_attraction", "search_attraction",
"book_train", "search_train"]
’parameters’ should also be a valid json dictionary with each key being an argument. All arguments are
optional, if you don’t want to include an argument, do not include it as a key in the ’parameters’ dictionary.

Examples:
## Example 1
Input:
user: Hi I’d like to see if the hamilton loge up north which has parking, 4 stars, internet, moderate
pricerange and a guesthouse is available?
Output:
PLAN I will look up a hotel using search_hotel. The parameters will be a guesthouse called hamilton
lodge up north with parking, 4 stars, moderate pricerange,
and internet. <COMMAND_END>APICALL {"name": "search_hotel", "parameters": {"name": "hamil-
ton lodge", "area": "north", "parking": "yes", "pricerange": "moderate", "stars": "4", "internet": "yes",
"type": "guesthouse"}} <COMMAND_END>

## Example 2
Input:
user: Can I try to book a hotel for this weekend?
Output:
PLAN In order to book the hotel using the ’book_hotel’ api, I will need to ask the customer how many
people will be coming. <COMMAND_END>SPEAK Sure! How many people will be coming? <COM-
MAND_END>

## Example 3
Input:
user: Hmmm that date isn’t going to work for me, can we try to look for a taxi tomorrow?
Output:
PLAN I do not know what day tomorrow is, I will ask the user. <COMMAND_END>SPEAK Sure!
What day is tomorrow? <COMMAND_END>

## Example 4
Input:
user: can you check the trains on tuesday?
assistant: PLAN I’m going to look for trains on tuesday <COMMAND_END>APICALL {"name":
"search_train", "parameters": {"leaveAt": "", "destination": "", "day": "tuesday", "arriveBy": "", "de-
parture": ""}} <COMMAND_END>
user: APIRETURN []
Output:
PLAN It seems there are no trains leaving tuesday, I will tell the customer. <COMMAND_END>SPEAK
It seems there are no trains leaving tuesday, does any other day work for you? <COMMAND_END>

## Example 5
Input:
user: so I want a train leaving at 8am
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assistant: PLAN I will find a train leaving at 8am by using the search_train api call <COM-
MAND_END>APICALL {"name": "search_train", "parameters": {"leaveAt": "08:00", "destination":
"", "day": "", "arriveBy": "", "departure": ""}} <COMMAND_END>
user: APIRETURN []
assistant: PLAN There are no trains that leave at 8am, I will tell the customer. <COM-
MAND_END>SPEAK Sorry, but there are no trains leaving at 8am. Are there any other times you’d
like to look for? <COMMAND_END>
user: Sure how about 9am?
Output:
PLAN I will look up a train using the search_hotel api. The parameters will be parking and high pricer-
ance. <COMMAND_END>APICALL {"name": "search_train", "parameters": {"leaveAt": "09:00",
"destination": "", "day": "", "arriveBy": "", "departure": ""}} <COMMAND_END>

## Example 6
Input:
user: so I want a train leaving at 8am with 4 stars
assistant: PLAN I will find a train leaving at 8am with 4 stars by using the search_train api call <COM-
MAND_END>APICALL {"name": "search_train", "parameters": {"leaveAt": "08:00", "destination": "",
"day": "", "arriveBy": "", "departure": "", "stars": "4"}} <COMMAND_END>
user: APIRETURN ERROR
Output:
PLAN The api failed, I will double check the api definition by writing it out. definition: {"name":
"search_train", "parameters": {"leaveAt": "", "destination": "", "day": "", "arriveBy": "", "departure":""}.
I used a "stars" parameter which is invalid. Let me redo the api with the correct parameters <COM-
MAND_END>APICALL {"name": "search_train", "parameters": {"leaveAt": "08:00", "destination":
"", "day": "", "arriveBy": "", "departure": ""}} <COMMAND_END>

## Example 7
Input:
user: I want a restaurant in the north
assistant: PLAN I will search for a restaurant in the north area using the search_restaurant api call <COM-
MAND_END>APICALL {"name": "search_restaurant", "parameters": {"food": "", "pricerange": "",
"name": "", "area": "north"}} <COMMAND_END>
user: APIRETURN [{...}, {...}, ...]
assistant: PLAN There are multiple options returned, I will inform the customer and ask them if theres
any other constraints they are looking for. <COMMAND_END>SPEAK Ok, I found a lot of restaurants
in the north, is there anything else you want? <COMMAND_END>
user: Yes I also want it to have room service
Output:
PLAN I will look up a hotel using the search_restaurant api. The parameters are north area and room
service. <COMMAND_END>APICALL {"name": "search_restaurant", "parameters": {"food": "",
"pricerange": "", "name": "", "area": "north"}} <COMMAND_END>

## Example 8
Input:
user: Wow what a pretty day!
Output:
PLAN The user commented on what a pretty day it is. I will reply that I agree. <COM-
MAND_END>SPEAK You’re right, it is so pretty! <COMMAND_END>

## Final Output
Input:

Table 9: Goal based user simulator prompt

SYSTEM:
You’re a customer talking to a travel agent.
You have the following goals you want to accomplish in the conversation (don’t relay them all at once to
the agent):
{goals}

Discuss with the agent to try and accomplish each one of your goals in order.
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If the agent fails at an action, check other goals for a backup plan
Relay information piecemeal to the agent to encourage conversation.
EXCEPTION: Make sure you’ve communicated all the neccessary information for that intent before pro-
ceeding with a booking.
ALL of your listed goals must be fufilled in order for you to agree to a booking.
DO NOT say <span class=’emphasis’> or </span> to the agent.
When you want to end the conversation say END_CONVERSATION
Always say END_CONVERSATION to hang up!
USER:
REMEMBER: You are a customer talking to a travel agent.
When you want to end the conversation say END_CONVERSATION
Always say END_CONVERSATION to hang up!
Try to address your next goal or finish the current goal you’re focusing on.
Note: if you are looking for a "place to stay", don’t refer to it as a hotel unless the goals explicitly state
you are looking for a type <span class=’emphasis’>hotel</span>.
Don’t relay all the information about your goal to the agent at once.
ABOVE ALL ELSE, it is critical ALL of your listed goals are fufilled in order for you to agree to a
booking. Double check each of your requirements and tell the agent if one is not met. If you’re not sure,
double check.
EXCEPTION: Make sure you’ve communicated all the neccessary information for that intent before pro-
ceeding with a booking.
If the agent fails at an action, check other goals for a backup plan.
Remeber, you are the customer.
CUSTOMER:

Table 10: Guide based user simulator prompt

USER:
You are a coach giving tips to a user simulator trying to replicate a conversation as consistently as possible.
The user simulator is in the middle of a conversation, give it advice on what to do in the next turn.
Consistency means that over multiple runs, the user simulator should behave in the exact same way, it is
your job to try and help it stay on the same trajectory every run.
###### Grounding Goals and Conversation #########
Customer goals:
goals
The following is the source conversation the user simulator is trying to replicate:
{goal_convo}
###################################################
######## CURRENT (real) Conversation #######################
This is the CURRENT conversaiton the user simulator is having:
{current_convo}
Use your best judgement if the conversation is not going well, it’s possible the agent is not good enough
and you need to end the conversation. End the conversation by putting END_CONVERSATION after
your quote.
Keep in mind the Customer goals all must be communicated in order to give the agent enough information
to properly search and book.
It is critical you give consistent advice over multiple iterations of the same conversation. The best way to
do that is to ground your response in the source conversation and providing quotes whenever possible.
Please write breif advice on what the user simulator should say in order to keep it consistent and aligned
with the source conversation. Write this advice to the user simulatior, referring to it as "you". No yapping.:
Example:
Advice:
The user should ...
Suggested quote:
"Hello, how can I help you?"
Advice:
The conversation should be ended
Suggested quote:
"Thanks, goodbye" END_CONVERSATION
Output:
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E EFFECT OF CHANGING THE USER LLM BEHIND MULTIWOZ

We do a restricted pair of experiments ablating for the user LLM behind MultiWOZ used for evaluation at test
time, to check whether the JOSH aligned models still maintain their advantage over the vanilla Llama3-8B-
instruct one. We use gpt-4-turbo as the alternative user LLM.

The results are indeed positive. We find that JOSH-KTO gets average return 0.72 compared to 0.498 for the
vanilla model.
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