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Abstract

As large-scale pre-training models (PLMs) ex-
pand, efficient fine-tuning becomes crucial for
rapid adaptation and deployment. We pro-
pose MOP, a low-rank Mixture of Experts
(MOE) network for Prompt reparameteriza-
tion in multi-scenario summarization based on
prefix-tuning. MOP assigns specific experts
for summarization in each particular scenario
and incorporates an efficient knowledge decou-
pling mechanism. Specifically, Expert weight
matrices are learned as a sum of Kronecker
products of shared global and specific local
weights, capturing general and task-specific
knowledge. We further decompose global
weights into low-rank layer-share (LoRL) and
expert-share (LoRE) weights, enhancing flex-
ibility and generality. By updating only the
MOP, our method outperforms strong baselines
across all scenarios on the MultiSum bench-
mark, using just 2.93% of a pretrained model’s
parameters, demonstrating MOP’s effective-
ness in improving multi- scenarios learning per-
formance with fewer parameters.

1 Introduction

Recently, the rapid development of ever-larger pre-
trained language models has been pushing the
boundaries of possibility across various NLP bench-
marks(Brown et al., 2020a) (Wei et al., 2021) (Sanh
et al., 2021). For models with large-scale param-
eters, deploying a separate instance of the model
for each downstream task, saving and updating
separate replicas of these separate model param-
eters would be more time-consuming and space-
consuming. Multi-task frameworks have been pro-
posed to use the same model to handle multiple
tasks(Caruana, 1998) (Wang et al., 2018). In partic-
ular, there are many scenarios in dialogue summa-
rization and more business requirements are pro-
posed in practical applications, such as Take-out,
Taxi, etc. Therefore, it is of great significance to

explore multi-task learning for multi-scenario dia-
logue summarization.

There exist some works for multi-task learning in
dialogue summarization. They either rely on addi-
tional heavy pre-training and fine-tuning(Sun et al.,
2022) (Vu et al., 2021), or employ a large number
of task-specific non-shared structures and param-
eters, which cost grows linearly with the number
of tasks (Liu et al., 2018). Some researches have
demonstrated that prefix-tuning is a lightweight
method (Li and Liang, 2021a) (Liu et al., 2021),
which prepends tunable prefix vectors to the keys
and values of multi-head attention at each layer,
and fixes the original PLM parameters. However,
most of them only focus on a single task and can-
not outperform full-parameter fine-tuning methods
when faced with more challenging tasks like sum-
marization. Besides, reparameterizing the prefix
via simple MLP structures cannot effectively alle-
viate the instability of the model due to the com-
plexity of PLMs(Ding et al., 2022). When prefix-
tuning is applied in multi-task learning, task inter-
ference or negative transfer often occurs(Haddow
and Koehn, 2012) (Kokkinos, 2016) (Kendall et al.,
2017) (Sener and Koltun, 2018), i.e. achieving
good performance on one task can hinder perfor-
mance on another. How to improve the perfor-
mance of the model on multiple tasks while reduc-
ing the amount of model parameters and improving
the efficiency of model deployment is still an open
problem to be explored.

In this paper, we aim to train a unified model
for multiple scenario-related dialogue summariza-
tion tasks from the perspective of parameter ef-
ficiency to reduce model deployment and main-
tenance. Considering cost constraints and per-
formance requirements, we resort to MOE to ex-
pand model capacity with nearly constant com-
putational overhead (Shazeer et al., 2017a) (Lep-
ikhin et al., 2020). We propose MOP, an efficient
Multi-task Prompt Reparameterization Network for



multi-scenario summarization, which uses MOEs
for task-aware prefix learning. Here, each expert in
MOEs is considered to correspond to scenario. It is
worth noting that we design an efficient knowledge
decoupling mechanism, which enables the model
to learn a better representation for each task.

Inspired by(Mahabadi et al., 2021), each expert
weight matrix is computed as the sum of Kronecker
products(Zhang et al., 2021) between shared global
weights and local weights defined per MOP. This
enables MOP to aggregate common knowledge
across tasks into global weights and store spe-
cific information in local weights. We also intro-
duce a low-rank sharing mechanism, decomposing
global weights into low-rank layer-share (LoRL)
and expert-share (LoRE) weights, enhancing flexi-
bility in capturing general information. LoRL cap-
tures information common to all layers of the same
expert, while LoRE obtains information shared
by all experts at the same layer. This mechanism
reduces shared parameters, improving efficiency.
Consequently, MOP achieves paramter complexity
of O(d + dyn;q) instead of O(dd,,;4) for regular
prefix-tuning, where the reparameterization matrix
is of size d X dp;q4-

We evaluate our approach on MultiSum, a large-
scale customer-service dialogue summarization
datasets. Experimental results demonstrate that
our MOP is significantly better than all methods.
In particular, it can go far beyond the performance
of the strongest fine-tuning baseline. We further
explore the effectiveness of the MoE network and
the sharing mechanism in the low-rank decomposi-
tion. Additionally, we analyze the trainable param-
eter scale to verify the efficiency. To sum up, the
contributions of this paper are three folds:(1) To
the best of our knowledge, we are the first to pro-
pose a PHM based mixture of experts for prompt
reparameterization to explore multi-scenario sum-
marization. (2) We decompose the share weights
into low-rank layer-share weights and expert-share
weights, which enable flexible and fine-grained
sharing by capturing layer-share information and
expert-share knowledge separately. (3) A plenty of
experiments and qualitative analysis are conducted
to prove the effectiveness of our methods.

2 METHODOLOGY

In this section, we present MOP, a low-rank MOE
network for scenario-conditioned prompt reparam-
eterization. Instead of routing mechanisms, we

assign experts to handle each scenario, which ef-
fectively avoids the problem of load imbalance.
Furthermore, we adopt PHM to reduce redundant
parameters and design an effective low-rank shar-
ing mechanism to achieve the sharing of common
knowledge among different experts.

2.1 Sparse Mixture of Experts

To increase model capacity without a proportional
increase in computational costs, we use the SMoE
to explicitly model the scenario relationships and
learn features relevant to specific scenario(Shazeer
et al., 2017a). The original expert network is imple-
mented as stacked feed-forward networks(FFN):

fk(h) = U(thO'wn)Wup (D

where Wigpwn € R¥X9mid g the down-project
mapping and W, € R"*4 is the up-project map-
ping, o means ReL.U activation function.

PHM Layer To reduce computation overhead
with almost no damage to model performance, we
substitute the parameterized hypercomplex mul-
tiplication (PHM) layer (Mahabadi et al., 2021)
(Zhang et al., 2021) , which is on the basis of Kro-
necker product, for linear FFN layer in SMoE. To
the best of our knowledge, we are the first to ex-
ploit PHM layers for efficient fine-tuning of SMoE
networks. Assume that d and d,,,;4 are both divis-
ible by self-defined hyperparameter p € Z~ and
q € Z~q respectively. Wy, and Wy, of PHM
experts can be computed as the sum of Kronecker
product as follows:

(@)

d ., dmid
where A; € RPXP, B, € Re*"» , C; € R1*
dmid Xé

and D; e R ¢ “a,

2.2 Low-Rank Sharing Mechanism

Considering that each expert needs to deal with
the shared features between different tasks and the
features specific to each task, we define A; and C;
as global matrices, which aggregate shared infor-
mation to reflect task commonality, and B; and D;
are as local matrices, which serve to capture spe-
cific task information. Because low-dimensional
reparameterization can significantly improve the
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Figure 1: Overiew of MOP Reparameterization Network. The reparameterized prefixes are prepended to self-

attention modules of the decoder.

stability of prefix-tuning, we propose to decom-
dmid

d .
pose central matrices, e.g., A; € R»* "% s de-

composed into two low-rank weights I; € R %"
and e; € R~ meZd, where 7 is the rank of the ma-
trix. We name [; as LoRL (Low-rank layer-share)
weight, which is shared by all layers of the same ex-
perts. The e; is named as LoRE (low-rank expert-
share) weight, which is shared by all experts of
the same layer. This low-rank sharing mechanism
can effectively reduce the sharing of parameters
between different experts, which can also greatly
improve the efficiency of the model.

Based on the above formulation, we introduce
MOP, which is a low-rank mixture of experts based
on PHM, the weights of experts in MOP can be
defined as:

p p
Wdown = Z Ai & Bi = Z (lze?) ® Bi

i—1 i—1
q q

Wayp = Zci ® D; = Z (liel) ® D;
i—1 i—1

3)

2.3 MOE for Prompt reparameterization

Prefix-tuning prepends tunable prefix vectors to the
parameters of multi-head attention (i.e. keys and
values) at each Transformer layer. In the original
setting, the prefix vectors P’ of the i-th attention
head in the [-th layer are reparameterized by a two-

layer feed-forward network:
; i — i L
Pl = MLP"(X') = Wi o(W5 (X)) @)

where Wyoyy, € R¥mid 1Y, € RImia*dn and
X' € R™"*? is the randomly initialized embedding
matrix of the prefix X. The prefixes are trans-
formed two times by Eq. 4 to get the expanded
key Pllé and expanded value P‘l}'. Then, they are
concatenated with the original key and value, and
the output of the attention layer is computed as:

A = Attn(Q", concat(PIlé, KY%), concat(P‘l}, 17%4))

)
where Qi € R™*dn Kl ¢ Rm*xdn Vi ¢
R™*4n are original query, key and value, Fig 2(b)
shows the details. For prefix-tuning, there are three
types of attention: the self-attention of encoder, the
self-attention of decoder, and the cross-attention of
decoder. According to the experiments, we choose
to use the MOP instead of MLP in the self-attention
of decoder. While for the remaining two attentions,
we still use the original MLP network. In this
way, the model can perform multi-task learning
in a parameter-efficient form. Figure 1 shows our
overall model framework.

2.4 Training Objective

Given input dialogue context X, parameters of
PLM 4, trainable prefix parameters 6,, the sum-
marization optimization objective is to minimize
the negative log-likelihood of generating the target
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value V for the query Q to attend to.

summary Y = {y;,- - - ,y|Y|}3
[V]

Lnll(979p) = Zlog]P’(y(ﬂX, Y, 7y’i—1) (6)

In training stage, we keep 6 frozen and only opti-
mize 6,,.

3 EXPERIMENTAL SETUP

3.1 Dataset

We collect our dialogue-summary datasets, Mul-
tiSum, from the logs on a large-scale customer
service corpus. The dialogues are between users
and customer service agents, and the summaries
are written by agents. To perform multi-scenario
learning, we choose 5 different business scenar-
ios, including Taxi, Ticket, E-Commerce, Take-out,
Food. The statistics of the data are given in Table 1.
We divide the sizes of training, valid and test set to
8:1:1. To the best of our knowledge, MultiSum is
the first to explore multi-task/domain summariza-
tion generation. We will release our data, code and
pre-trained models after blind review.

3.2 Backbone and Baselines

Considering the deployment cost and model per-
formance, we choose the Chinese generative pre-
training language model T5-pegasus-base as the
backbone network, which takes mT5 as the in-
frastructure and initial weight and pre-trains in a
way similar to PEGASUS. Based on the public

Domains Size Dialog.len | Summ.len
Taxi 31,258 299.49 27.79
Ticket 10,869 204.64 22.60
E-Commerce | 35,795 25591 16.47
Take-out 28,707 | 189.925 42.37
Food 20,824 241.30 27.02

Table 1: Details of MultiSum. "Dialog.len" denotes the
average length of dialogues, "Summ.len" denotes the
average length of summaries.

available pre-trained checkpoints, we conducted
experiments to compare MOP with several gen-
eral multi-task learning baselines and some novel
parameter-efficient proposals:

MTL-vanilla: The standard practice of full-
parameter fine-tuning T5-pegasus-base for multi-
task summarization, which we refer to as MTL-
vanilla(Raffel et al., 2019).

MTL: On the basis of the MTL-vanilla, we
have designed templates manually, which are
the natural language descriptions of conversation
scenes(Brown et al., 2020b). For example, for the
dialogue in the Take-out scenario, we designed
the template as "The conversation comes from the
Take-out business". Similar to MTL-vanilla, we
perform full-parameter fine-tuning on the Multi-
Sum dataset and we refer this kind of multi-task
learning model as MTL.

prefix-tuning: We take T5-pegasus-base
as the backbone network and fine-tune the
model for multi-task learning under prefix-tuning



paradigm(Li and Liang, 2021a), which only tunes
a small number of prefix vectors while keeping the
PLM frozen during training stage. The prefix vec-
tors are initialized in random and all samples share
the prefix vectors with a length of 40.

MTL-prompt: Prompt-tuning is proposed by
Lester et al(Lester et al., 2021). , which prepends
a sequence of soft prompt tokens to the input and
only tunes the soft prompt for adaptation. We set
the prompt length to 40, which is shared by all
samples for multi-domain learning.

HyperFormer++: We compare our method with
HyperFormer++ (Karimi Mahabadi et al., 2021),
the state-of-the-art adapter-based method for multi-
task learning, which use HyperNetwork to generate
adapters for each task and add them after the feed-
forward modules.(Houlsby et al., 2019)

HyperPrefix: HyperPrefix is a fresh approach
proposed recently(Zhang et al., 2022). On the ba-
sis of prefix-tuning and hypernetwork, it uses a
shared hypernetwork that takes trainable hyper-
embeddings as input and outputs weights as prefix
vectors. Since the position and task information
have been considered in the embedding stage, this
method can conduct multi-domain learning in a
lightweight way.

We use the ROUGE metrics(Li and Liang,
2021b) to quantitatively evaluate the performance
of models. ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) evaluates the n-gram over-
lap in the generated summary against the reference.
We report F-1 scores of ROUGE-1 (R-1), ROUGE-
2 (R-2) and ROUGE-L (R-L) on MultiSum.

3.3 Implementation Details

Our models are built on T5-pegasus-base (220M)
and use jieba as the tokenizer to tokenize the input
dialogue. During prefix reparameterization, we
set d = 768, d,,;q = 128 for all the experiments.
For MOE network, following the recipe from (Chi
et al., 2022), we set the number of experts to 5. For
model training, we set maximum number of epochs
as 50 and use early stopping to prevent over-fitting.
For multi-task learning, we combine the training
data of all tasks with temperature mixing (we set
the temperature as 2). We save a checkpoint every
1000 steps and report results on a single checkpoint
with the highest average validation performance
across all tasks. Appendix will provide the detailed
hyperparameters for MOP training.

3.4 Main Results

Table 2 presents the results of our experiments
on MultiSum, where we treat each business sce-
nario as a separate task and train a joint model for
multi-task learning. We compare our approach with
some strong full-parameter fine-tuning summariza-
tion models and some parameter-efficient baselines,
including HyperFormer++ and HyperPrefix. Our
results show that MTL with additional auxiliary in-
formation achieves higher ROUGE scores on most
scenarios compared to MTL-vanilla, at the cost of
increased parameter quantity. Prefix-tuning and
MTL-prompt perform worse than full-parameter
fine-tuning, due to the lack of effective strategies
for adapting to complex multi-scenario summa-
rization and the difficulty of achieving good per-
formance with limited parameters. Recent works
have attempted to conduct multi-task learning in
a parameter-effective way, such as combining hy-
pernet with prefix-tuning or adapter, which have
shown promising results. Compared to the best
performing hyper-based model, our model im-
proves by 7.73%, 10.57%, 8.27% for Ticket do-
main, 5.13%, 8.28%, 5.45% for Food domain,
3.49%, 4.38%, 3.62% for Taxi domain, 2.88%,
3.87%, 3.01% for Take-out domain and 3.69%,
4.89%, 4.20% for E-Commerce domain. Relative
to MTL-vanilla , our model improves by 9.28%,
13.28%, 9.89% for Ticket domain, 8.67%, 16.55%,
8.50% for Food domain, 1.82%, 3.66%, 1.85% for
Taxi domain, 2.89%, 5.29%, 1.88% for Take-out do-
main and 6.24%, 8.12%, 5.48% for E-Commerce
domain. In addition, our MOP still has higher
ROUGE scores than strong baseline MTL in all
scenarios . All results suggest that the performance
of our model reaches new state-of-the-art.

4 QUALITATIVE ANALYSIS

We design a series of experiments to verify the
effectiveness of our proposed framework compared
to existing methods.

4.1 Effect of Sparse Mixture of Experts

To shed light on how the MOP benefits multi-
scenario dialogue summarization, we peek into the
MOP by visualizing the generated prefix vectors.
Here, the prefix vectors are mapped to the 2D pro-
jections via PCA. We use the same 5000 examples
which are randomly selected from MultiSum D g,,.
Fig 3 shows the visualization of the prefix vec-
tors parameterized through MOP and Fig 4 is the



Models Taxi Ticket E-Commerce Take-out Food Average
R1 R2 RL |R1 R2 RL |RI R2 RL |RI R2 RL |RI R2 RL |[R1 R2 RL
MTL-vanilla 52.61 3836 49.14 | 4122 31.16 39.79 | 41.75 25.64 38.99 | 36.25 23.50 34.69 | 48.05 3229 4629 | 43.98 30.19 41.78
MTL 51.83 3872 4849 | 42.99 3392 41.64 | 43.10 2686 39.77 | 36.03 24.56 34.60 | 51.14 3630 49.04 | 4502 3207 4271
prompt-tuning | 4549 31.67 4237 | 30.59 20.25 2929 | 36.38 20.69 33.55|32.19 20.63 30.85 | 37.84 2470 36.60 | 36.50 23.59 34.53
prefix-tuning 5049 36.54 47.14 | 40.01 3032 38.67 | 4229 2572 38.87 | 3431 2271 3252 |48.10 3256 46.09 | 43.04 29.57 40.66
HyperFormer++ | 51.99 37.74 48.61 | 4141 3090 39.84 | 42.84 2645 39.67 | 36.03 2343 3420 | 49.02 3374 4698 | 4426 3046 41.86
HyperPrefix 5178 38.09 4830 | 41.82 31.92 4038 | 42.77 2643 3947 | 3625 23.82 3431 | 49.66 3476 47.63 | 4446 31.00 42.02
MOP (ours) 5358 39.76 50.04 | 45.05 35.29 43.72 | 44.35 27.72 4112 | 37.30 24.75 35.34 | 5221 37.63 50.22 | 46.50 33.03 44.09
wlo low-rank | 52.88 39.26 49.51 | 4335 33.83 42.10 | 42.38 26.08 39.31 | 38.04 2500 36.29 | 5042 3573 4846 | 4541 3198 43.13
Table 2: ROUGE scores of all models for multi-scenario summarization on MultiSum.
Model R-1 R-2 R-L
[ [ MOP(ours) 4650 33.03 44.09
“ .| B R w/o LoRL 4548 3194 43.12
1 w/o LoRE 4529 31.81 42.94
e -
g ; " w/o LoORL & LoRE | 44.75 31.45 42.41
w ¢ ¢

(a) layer12 (b) Layer10

Figure 3: Visualization of prefix representations repa-
rameterized by MOPs.

awe

(a) layer12 (b) Layer10

Figure 4: Visualization of prefix representations repa-
rameterized by MLP.

visualization of MLP. We can see that the prefix
vectors generated by MOP present a more sparse
distribution in space, and we can also observe the
clustering. While the M LP-reparameterized pre-
fix vectors still reside in a narrow subset of the
entire space. Previous work (Su et al., 2022) has
proved that congestion in the representation space
(anisotropic distrbution) will lead to the degenera-
tion of neural language models, which is because
that the model devotes most attention to a small
part local features while ignoring other global aux-
iliary information. Conversely, MOPs disperse the
prefix vectors in a relatively sparse space, which
encourages the model to obtain global features,
identify specific information, which is beneficial
to multi-task learning. Specifically, the dispersed
prefix vectors enable the model to capture a wider
range of information and avoid overfitting to spe-
cific tasks. Overall, the design of MOPs promotes
the model’s ability to achieve feature differentia-

Table 3: Average F1 scores on 5 domains of MultiSum
dataset."LoRL" denotes low-rank layer-share weights
and "LoRE" means low-rank expert-share weights, "w/o
LoRL and LoRE" means the removal of low-rank shar-
ing mechanism.

tion, and improve its performance in multi-task
learning.

4.2 Effect of the Sharing Mechanism

Table 3 shows the effect of two sharing mecha-
nisms, i.e., LoRL and LoRE. We remove LoRL
and LoRE one-by-one from our model. As we can
see, the removal of the LoRL makes the R-1, R-2,
and R-L drop by 3.03, 1.09, 0.97 points, which sug-
gests that low-rank layer-share features can effec-
tively accumulate the "layer inherent knowledge"
by allowing all layers of the same expert to mod-
ify according to optimization objectives. Besides,
after we get rid of the LoRE, R-1, R-2, and R-3
drop by 1.21, 1.23, 1.15 points respectively, which
demonstrates that low-rank expert-share features
can effectively obtain the common features among
experts, so as to realize the communication across
experts. After removing the LoRE, the connection
between experts would be interrupted, our experts
will work in complete isolation, making it unable
to perform multi-scenario sharing well. Finally,
we remove the LoRL and LoRE at the same time,
which leads to 44.75%, 31.45%, and 42.41% for
R-1, R-2, and R-L.

4.3 Robustness Analysis

Prefix-tuning is sensitive to the initialization of
the prefix, particularly random initialization. Fig
5 shows the robustness of MOP, MOP w/o low-
rank, and prefix-tuning. We conduct experiments



Hm prefix-tuning
MOP wj/o low-rank
. MOP

AVG Var(E-06)
HFNWRUUONO®

R1-Var

R2-Var RL-Var
Figure 5: Average variance of F1 scores on MultiSum.
"w/o low-rank" means the removal of low-rank decom-
position.

Model #Total  Trained R-L
params params
MTL-vanilla 1.000 100% 41.78
prefix-tuning 1.027 2.734% | 40.66
prompt-tuning | 1.001 0.112% | 31.54
HyperFormer++ | 1.023 2.320% | 41.86
MOP (ours) 1.025 2.514% | 44.09

Table 4: Proportion of different models’ trainable pa-
rameter quantity to MTL-vanilla and their average F1
scores on MultiSum.

on three models with three different random seeds
in the same setting. The low-rank decomposition
significantly enhances the robustness and stability
of MOP for initialization, as evidenced by the much
lower average variance of F1 scores compared to
prefix-tuning and MOP without low-rank. In ad-
dition, we find the average variance of MOP w/o
low-rank is also slightly lower than that in prefix-
tuning. We contribute this reduction of sensitivity
to initialization to the strong learning ability of
SMOE structure. The experiment proves that our
MOP has high robustness.

4.4 Parameter Scale of Models

In this section, we compare the number of param-
eters of MOP with other baseline multi-domain
joint models. Taking the parameter quantity of T5-
pegasus-base (275M) as a reference, we show the
proportions of total parameter quantity and train-
able parameter quantity of each method and their
average ROUGE scores on the 5 domains of Mul-
tiSum (Food, Ticket, Taxi, Take-out, E-Commerce)
in Table 4. Among the parameter efficient meth-
ods, prompt-tuning only tunes the continues vectors
prepended before input embeddings and require the
least trainable parameters, only 0.112%, but its per-
formance is more than poor. prefix-tuning, Hyper-
Former++ and our MOP greatly reduce the storage

space of the model with frozen PLM and a small
number of trainable parameters, which are applied
to each layer of the model and contribute to a trade-
off between performance and parameter quantity.
Additionally, our method, achieves better results
with fewer parameters compared with prefix-tuning
and also greatly outperforms full-parameter fine-
tuning model. Specifically, our MOP performs
5.55% better on R-L than MTL-vanilla, using only
2.51% of its parameters. In addition, we compare
MOP with the state-of-the-art lightweight multi-
task learning model HyperFormer++. Please note
that our model takes into account the total num-
ber of all experts’ parameters when calculating the
trainable parameters. Even so, the number of pa-
rameters of our MOP is only slightly higher than
that of HyperFormer++, and the performance of
our method is superior. All these points show our
MOP has achieved a better trade-off between pa-
rameter efficiency and performance.

4.5 Impact of Prefix Length

We set different lengths of continuous prefix vec-
tors to test the performance of MOP and prefix-
tuning on MultiSum dataset and report their aver-
age F1 scores. As shown in Fig 6, among these
setting candidates, we find 40 is the best length to
make the F1 scores of two models reach the peak.
Before reaching the optimal length, we observe that
the performance of the model shows a positive cor-
relation with the length of prefix. We attribute this
phenomenon to the insufficient trainable parame-
ters. Moreover, we find the increase of the prefix
length has a greater impact on improving the per-
formance of our MOP model, which indicates that
MOP has stronger learning ability. When exceed-
ing the optimal length, the trainable parameters
of the model reach saturation, at this point the in-
crease of length will increase burden of the model,
and eventually cause the decline of the model per-
formance, while this degradation is less obvious in
MOP model, which proves the robustness of our
model.

4.6 Case Study

Figl in appendix A shows two examples from Mul-
tiSum, For example one from Take-out domain,
summary generated by MTL omits the final solu-
tion, i.e. merchant refund. Prefix-tuning gener-
ates incorrect solution, distorts the fact that cus-
tomers do not accept red envelopes. These factual
errors significantly affect the quality of the sum-
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Figure 6: Average F1 scores of MOP and prefix-tuning
with different lengths of the continuous prefix on Multi-
Sum.

mary. For example two, both summaries generated
by MTL and prefix-tuning include the error mes-
sage of "punishing the driver", which shows that
summaries generated by these two methods fail to
comprehensively cover all important information.

Compared to the above two models, our method
generates summaries with similar events and faith-
ful descriptions compared with the gold summary.
In example one, MOP accurately shows the "mer-
chant refund" scheme, and in example 2, our
method reflects the relevant content of "don’t pun-
ish the driver". This indicates that summaries gen-
erated by MOP are more reliable, thanks to the
effectiveness of MoE and efficient low-rank shar-
ing mechanism.

S RELATED WORK

Multi-scenario Dialogue Summarization Multi-
task learning jointly optimizes models on several
tasks(Vandenhende et al., 2020). By sharing repre-
sentations between these tasks, we enable model to
generalize better on each task. Particularly, multi-
scenario summarization is a kind of multi-task
learning(Wang et al., 2021), which trains model on
mixed multi-scenario data to achieve good perfor-
mance in each scenario. Despite efforts on design-
ing models for improved joint learning(Kokkinos,
2016) (Misra et al., 2016) (Rosenbaum et al., 2017),
the scope of this study is rather limited. For in-
stance, in the LLLM area, fine-tuning large-scale
language models with full parameters is still the
mainstream paradigm.(Raffel et al., 2019) (Zhang
et al., 2019). Our work explores a lightweight ap-
proach tomulti-scenario summarization, effectively
addressing the issue of over-parameterization and

filling a gap in relevant research.

Prompt learning for Text Generation The
idea of prompt learning is first proposed in
GPT3(Brown et al., 2020a), where it guides a large
language model to different tasks by prepending
task-related natural languague description. Prefix-
tuning(Li and Liang, 2021a) extends this idea to
continuous tokens. It prepends trainable continu-
ous tokens (prefix) to the input and hidden stats of
each Transformer layer. Each prefix is drawn from
a newly initialized trainable matrix P, while other
parameters of the PLM remain unchanged during
training. To further simplify prompt-tuning, Lester
et al(Lester et al., 2021). proposes a strategy that
only adds soft prompts to the input layer. While
prompt-based methods show promise for adapting
PLMs, challenges remain. Prefix-tuning is sensi-
tive to initialization and unstable during training.
To address these issues, we conduct multi-scenario
summarization using prefix-tuning, stabilize the
training process through inherent bias representa-
tion in multi-task learning, and introduce low-rank
decomposition to enhance robustness.

Prompt learning with MoE Numerous studies
have shown that models with more parameters typ-
ically yield better performance. To increase model
capacity without added computational overhead,
exploring scaling properties with MoE, introduced
by (Jacobs et al., 1991), is a promising direction.
There have been many existing works that com-
bine MoE and PLMs for research(Shazeer et al.,
2017b) (Fedus et al., 2021) (Lepikhin et al., 2021)
(Lewis et al., 2021). However, few of them fo-
cus on parameter-efficient MoE. Also, there are
few works that attemp to combine the MoE with
prompt learning.

6 CONCLUSION

In this paper, We propose a lightweight low-rank
MOE network for Prompt reparameterization in
multi-scenario summarization, which integrates
MoE into the prefix reparameterization process
and achieves expert integration. Our proposed
low-rank sharing weights (LoRL and LoRE) en-
able cross-layer and cross-expert knowledge shar-
ing, effectively reducing the number of parameters
while improving performance. Experimental re-
sults demonstrate that our model outperforms all
strong baselines and achieves significant progress
in multi-scenario summarization.



7 Limitations

Our work still has certain limitations.

First, although we designed an effective MOP
mechanism, the performance of the joint model
trained on multiple scenarios still has a gap com-
pared to models fine-tuned for each specific sce-
nario. This suggests that interference still exists
due to the differences in data distribution across
scenarios.

Second, reparameterizing prompts using a mix-
ture of experts network reduces the number of train-
able parameters, but it inevitably increases the de-
ployment cost of the mixture of experts’ parame-
ters.

Finally, our mixture of experts reparameteriza-
tion network can be applied to various parameter-
efficient fine-tuning methods. We only explored
reparameterizing prompts using a mixture of ex-
perts network, and further experiments are needed
to verify the role of the mixture of experts network
in other parameter-efficient fine-tuning methods.
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Example one: dialogue in the Take-out scenario

UXTEEAX AR, SHRITRATE T, HRIETE/\TREXAREE, XELEBHF. (Whyis this flower so dirty? | ordered it in
advance. | spent 70 or 80 yuan to buy it for my girlfriend. How can | take it.)

A: BAETHER. HELE. FEREEREREILBRUL? NERIFAET —THERTEFNE. (Understand . For you. May | show you the
red envelope for compensation? Xiaomei just looked at it. It's really bad.)

U: AAJRE. RAUFIZRZE KM, (Impossible. Tell the merchant to take it back.)

A: INERBEREIFE—T. EFERNEXDAGRIFTHEEBBTUIEZD? (Xiaomei applies for it for you. Do you think it is acceptable to apply
for compensation for you here?)

U: A, iBE. (No.Refund.)

A: $FH, NEREERAIE—T. (Ok, Xiaomei will apply for it for you.)

Generate Summary

Ground Truth: BFFRREMMR, REMBLOTEZ, REFTEZ, HREMBRK, ZHEMNEIAT (The customer said that the
flowers were very dirty, comforted and explained that the red envelope was not accepted, the recharge card was not accepted, the merchant
automatically refunded, comforted and agreed.)

T5-pegasus-base: RITLB#, WMELE, TN, FEFTIAF. (Appease and apologize, compensate for the red envelope, do not
approve, do not approve the recharge card.)

Prefix-tuning: LB, *MELIE, FIAR, FEFIATA, 45X, (Appease and apologize, compensate for red packets, do not approve,
recharge card approval, and close the case.)

LAD: EFIEIF, R, IMELE, AR, REFRTIAF, HHRIBFK, AF. (LAD: customer complaints, appeasement and apology,

compensation for red envelopes, non-recognition, non-recognition of recharging cards, refund of merchants, recognition.)

Example two: dialogue in dache scenario

U: XMTESEFRTTE AL TG #RABEHIX4%. (How can the actual payment of this order exceed the estimated cost so much.)

A: NEXDFESEZELAEE, BEPRRESENOLERT BRI ERRNIEERLITIER. (Xiaomeineeds to check
with you a few questions. Have you changed the destination orally with the driver or assigned the route to the driver in the midway.)

U: RAEM, ZERBHIEITIE. (No, | haven't talked to the driver.)

A: FERZSEHERE RN RNGEE T SBEMBHNM. REFEXHE, NEABRERSRREEHRMAKAE1-70T/E R AZIKER
TRERIEAMEITELI B AT AND, (Verify the track in person because the driver bypassed the road, which caused the cost to exceed. Look at this,
Xiaomei will refund part of your operation to your original payment account within 1-7 working days. Can | help you apply for compensation for
the red packet of taxi.)

U: AJLL. (Sure.)

A: EEETFENFNHITRIFLTG. (Do you think it is necessary to complain and punish the driver.)

U: 87, BERIT, ARBLAS. (Forgetit, just refund the money. It's not easy for others.)

A: FHEIEEROSIEAIEMR S T4FB . (Well, thank you very much for your understanding and support.)

Generate Summary

Ground Truth: #&SEAEEIMLEE, SMBRAMELBATEIN, RERSRET . (Verify that the track driver detours, and punish the
driver with some refunds, compensation and red packets. The passenger said that it was okay.)

T5-pegasus-base: 1ZSERIMILZEHE, ATIRIM, #MELE, TAT . (Verify the driver's detour, punish the driver, compensate for the red packet,
and approve.)

Prefix-tuning: AXSERINLLERE, BCATRMEM, LFIEM, FMELIE, AT . (Verify the driver's detour, change to the estimated price, punish
the driver, compensate for the red packet, and approve.)

LAD: #%SERINSREE, IR, iMEAR, RERRAALFIFN. (Verify that the driver detours, refunds part of the money and
compensates for the red packet. The passenger said that the driver should not be punished.)

Figure 1: Case study for two examples from MultiSum dataset. We present the dialogue context, ground truth, MTL
prediction, prefix-tuning prediction and our MOP prediction.
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