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Abstract

As large-scale pre-training models (PLMs) ex-001
pand, efficient fine-tuning becomes crucial for002
rapid adaptation and deployment. We pro-003
pose MOP, a low-rank Mixture of Experts004
(MOE) network for Prompt reparameteriza-005
tion in multi-scenario summarization based on006
prefix-tuning. MOP assigns specific experts007
for summarization in each particular scenario008
and incorporates an efficient knowledge decou-009
pling mechanism. Specifically, Expert weight010
matrices are learned as a sum of Kronecker011
products of shared global and specific local012
weights, capturing general and task-specific013
knowledge. We further decompose global014
weights into low-rank layer-share (LoRL) and015
expert-share (LoRE) weights, enhancing flex-016
ibility and generality. By updating only the017
MOP, our method outperforms strong baselines018
across all scenarios on the MultiSum bench-019
mark, using just 2.93% of a pretrained model’s020
parameters, demonstrating MOP’s effective-021
ness in improving multi- scenarios learning per-022
formance with fewer parameters.023

1 Introduction024

Recently, the rapid development of ever-larger pre-025

trained language models has been pushing the026

boundaries of possibility across various NLP bench-027

marks(Brown et al., 2020a) (Wei et al., 2021) (Sanh028

et al., 2021). For models with large-scale param-029

eters, deploying a separate instance of the model030

for each downstream task, saving and updating031

separate replicas of these separate model param-032

eters would be more time-consuming and space-033

consuming. Multi-task frameworks have been pro-034

posed to use the same model to handle multiple035

tasks(Caruana, 1998) (Wang et al., 2018). In partic-036

ular, there are many scenarios in dialogue summa-037

rization and more business requirements are pro-038

posed in practical applications, such as Take-out,039

Taxi, etc. Therefore, it is of great significance to040

explore multi-task learning for multi-scenario dia- 041

logue summarization. 042

There exist some works for multi-task learning in 043

dialogue summarization. They either rely on addi- 044

tional heavy pre-training and fine-tuning(Sun et al., 045

2022) (Vu et al., 2021), or employ a large number 046

of task-specific non-shared structures and param- 047

eters, which cost grows linearly with the number 048

of tasks (Liu et al., 2018). Some researches have 049

demonstrated that prefix-tuning is a lightweight 050

method (Li and Liang, 2021a) (Liu et al., 2021), 051

which prepends tunable prefix vectors to the keys 052

and values of multi-head attention at each layer, 053

and fixes the original PLM parameters. However, 054

most of them only focus on a single task and can- 055

not outperform full-parameter fine-tuning methods 056

when faced with more challenging tasks like sum- 057

marization. Besides, reparameterizing the prefix 058

via simple MLP structures cannot effectively alle- 059

viate the instability of the model due to the com- 060

plexity of PLMs(Ding et al., 2022). When prefix- 061

tuning is applied in multi-task learning, task inter- 062

ference or negative transfer often occurs(Haddow 063

and Koehn, 2012) (Kokkinos, 2016) (Kendall et al., 064

2017) (Sener and Koltun, 2018), i.e. achieving 065

good performance on one task can hinder perfor- 066

mance on another. How to improve the perfor- 067

mance of the model on multiple tasks while reduc- 068

ing the amount of model parameters and improving 069

the efficiency of model deployment is still an open 070

problem to be explored. 071

In this paper, we aim to train a unified model 072

for multiple scenario-related dialogue summariza- 073

tion tasks from the perspective of parameter ef- 074

ficiency to reduce model deployment and main- 075

tenance. Considering cost constraints and per- 076

formance requirements, we resort to MOE to ex- 077

pand model capacity with nearly constant com- 078

putational overhead (Shazeer et al., 2017a) (Lep- 079

ikhin et al., 2020). We propose MOP, an efficient 080

Multi-task Prompt Reparameterization Network for 081
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multi-scenario summarization, which uses MOEs082

for task-aware prefix learning. Here, each expert in083

MOEs is considered to correspond to scenario. It is084

worth noting that we design an efficient knowledge085

decoupling mechanism, which enables the model086

to learn a better representation for each task.087

Inspired by(Mahabadi et al., 2021), each expert088

weight matrix is computed as the sum of Kronecker089

products(Zhang et al., 2021) between shared global090

weights and local weights defined per MOP. This091

enables MOP to aggregate common knowledge092

across tasks into global weights and store spe-093

cific information in local weights. We also intro-094

duce a low-rank sharing mechanism, decomposing095

global weights into low-rank layer-share (LoRL)096

and expert-share (LoRE) weights, enhancing flexi-097

bility in capturing general information. LoRL cap-098

tures information common to all layers of the same099

expert, while LoRE obtains information shared100

by all experts at the same layer. This mechanism101

reduces shared parameters, improving efficiency.102

Consequently, MOP achieves paramter complexity103

of O(d + dmid) instead of O(ddmid) for regular104

prefix-tuning, where the reparameterization matrix105

is of size d× dmid.106

We evaluate our approach on MultiSum, a large-107

scale customer-service dialogue summarization108

datasets. Experimental results demonstrate that109

our MOP is significantly better than all methods.110

In particular, it can go far beyond the performance111

of the strongest fine-tuning baseline. We further112

explore the effectiveness of the MoE network and113

the sharing mechanism in the low-rank decomposi-114

tion. Additionally, we analyze the trainable param-115

eter scale to verify the efficiency. To sum up, the116

contributions of this paper are three folds:(1) To117

the best of our knowledge, we are the first to pro-118

pose a PHM based mixture of experts for prompt119

reparameterization to explore multi-scenario sum-120

marization. (2) We decompose the share weights121

into low-rank layer-share weights and expert-share122

weights, which enable flexible and fine-grained123

sharing by capturing layer-share information and124

expert-share knowledge separately. (3) A plenty of125

experiments and qualitative analysis are conducted126

to prove the effectiveness of our methods.127

2 METHODOLOGY128

In this section, we present MOP, a low-rank MOE129

network for scenario-conditioned prompt reparam-130

eterization. Instead of routing mechanisms, we131

assign experts to handle each scenario, which ef- 132

fectively avoids the problem of load imbalance. 133

Furthermore, we adopt PHM to reduce redundant 134

parameters and design an effective low-rank shar- 135

ing mechanism to achieve the sharing of common 136

knowledge among different experts. 137

2.1 Sparse Mixture of Experts 138

To increase model capacity without a proportional 139

increase in computational costs, we use the SMoE 140

to explicitly model the scenario relationships and 141

learn features relevant to specific scenario(Shazeer 142

et al., 2017a). The original expert network is imple- 143

mented as stacked feed-forward networks(FFN): 144

fk(h) = σ(hWdown)Wup (1) 145

where Wdown ∈ Rd×dmid is the down-project 146

mapping and Wup ∈ Rn×d is the up-project map- 147

ping, σ means ReLU activation function. 148

PHM Layer To reduce computation overhead 149

with almost no damage to model performance, we 150

substitute the parameterized hypercomplex mul- 151

tiplication (PHM) layer (Mahabadi et al., 2021) 152

(Zhang et al., 2021) , which is on the basis of Kro- 153

necker product, for linear FFN layer in SMoE. To 154

the best of our knowledge, we are the first to ex- 155

ploit PHM layers for efficient fine-tuning of SMoE 156

networks. Assume that d and dmid are both divis- 157

ible by self-defined hyperparameter p ∈ Z>0 and 158

q ∈ Z>0 respectively. Wdown and Wup of PHM 159

experts can be computed as the sum of Kronecker 160

product as follows: 161

Wdown =

p∑
i=1

Ai ⊗Bi

Wup =

q∑
i=1

Ci ⊗Di

(2) 162

where Ai ∈ Rp×p, Bi ∈ R
d
p
× dmid

p , Ci ∈ Rq×q 163

and Di ∈ R
dmid

q
× d

q . 164

2.2 Low-Rank Sharing Mechanism 165

Considering that each expert needs to deal with 166

the shared features between different tasks and the 167

features specific to each task, we define Ai and Ci 168

as global matrices, which aggregate shared infor- 169

mation to reflect task commonality, and Bi and Di 170

are as local matrices, which serve to capture spe- 171

cific task information. Because low-dimensional 172

reparameterization can significantly improve the 173
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Figure 1: Overiew of MOP Reparameterization Network. The reparameterized prefixes are prepended to self-
attention modules of the decoder.

stability of prefix-tuning, we propose to decom-174

pose central matrices, e.g., Ai ∈ R
d
p
× dmid

p is de-175

composed into two low-rank weights li ∈ R
d
p
×r

176

and ei ∈ Rr× dmid
p , where r is the rank of the ma-177

trix. We name li as LoRL (Low-rank layer-share)178

weight, which is shared by all layers of the same ex-179

perts. The ei is named as LoRE (low-rank expert-180

share) weight, which is shared by all experts of181

the same layer. This low-rank sharing mechanism182

can effectively reduce the sharing of parameters183

between different experts, which can also greatly184

improve the efficiency of the model.185

Based on the above formulation, we introduce186

MOP, which is a low-rank mixture of experts based187

on PHM, the weights of experts in MOP can be188

defined as:189

Wdown =

p∑
i=1

Ai ⊗Bi =

p∑
i=1

(lie
T
i )⊗Bi

Wup =

q∑
i=1

Ci ⊗Di =

q∑
i=1

(lie
T
i )⊗Di

(3)190

2.3 MOE for Prompt reparameterization191

Prefix-tuning prepends tunable prefix vectors to the192

parameters of multi-head attention (i.e. keys and193

values) at each Transformer layer. In the original194

setting, the prefix vectors P li of the i-th attention195

head in the l-th layer are reparameterized by a two-196

layer feed-forward network: 197

P li = MLP li(X ′) = W li
upϕ(W

li
down(X

′)) (4) 198

where Wdown ∈ Rd×dmid , Wup ∈ Rdmid×dh , and 199

X ′ ∈ Rn×d is the randomly initialized embedding 200

matrix of the prefix X . The prefixes are trans- 201

formed two times by Eq. 4 to get the expanded 202

key P li
K and expanded value P li

V . Then, they are 203

concatenated with the original key and value, and 204

the output of the attention layer is computed as: 205

Ai = Attn(Qli , concat(P li
K ,K li), concat(P li

V , V
li))

(5) 206

where Qli ∈ Rm×dh ,K li ∈ Rm×dh , V li ∈ 207

Rm×dh are original query, key and value, Fig 2(b) 208

shows the details. For prefix-tuning, there are three 209

types of attention: the self-attention of encoder, the 210

self-attention of decoder, and the cross-attention of 211

decoder. According to the experiments, we choose 212

to use the MOP instead of MLP in the self-attention 213

of decoder. While for the remaining two attentions, 214

we still use the original MLP network. In this 215

way, the model can perform multi-task learning 216

in a parameter-efficient form. Figure 1 shows our 217

overall model framework. 218

2.4 Training Objective 219

Given input dialogue context X , parameters of 220

PLM θ, trainable prefix parameters θp, the sum- 221

marization optimization objective is to minimize 222

the negative log-likelihood of generating the target 223
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(a) MOP (b) Multi-Head Attention

Figure 2: MOP frameweork:(a) in MOP, Wdown and Wup are used to do down projection and up projection,
respectively. They can be calculated as a sum of Kronecker products of a series of global matrices and local matrices.
The global matrix can be divided into two rank-one weights LoRE(low-rank expert-share) and LoRL(low-rank
layer-share), LoRE is shared by all experts at the same level, and LoRL is shared by the same experts across
levels; The local matrix is unique to each expert at each level. This mechanism allows us to achieve highly flexible
adjustment. (b) in each Transformer block, PK , PV generated via MOP are prepended to the original key K and
value V for the query Q to attend to.

summary Y = {yi, · · · , y|Y |}:224

Lnll(θ, θp) =

|Y |∑
i

logP(y0|X, y1, · · · , yi−1) (6)225

In training stage, we keep θ frozen and only opti-226

mize θp.227

3 EXPERIMENTAL SETUP228

3.1 Dataset229

We collect our dialogue-summary datasets, Mul-230

tiSum, from the logs on a large-scale customer231

service corpus. The dialogues are between users232

and customer service agents, and the summaries233

are written by agents. To perform multi-scenario234

learning, we choose 5 different business scenar-235

ios, including Taxi, Ticket, E-Commerce, Take-out,236

Food. The statistics of the data are given in Table 1.237

We divide the sizes of training, valid and test set to238

8:1:1. To the best of our knowledge, MultiSum is239

the first to explore multi-task/domain summariza-240

tion generation. We will release our data, code and241

pre-trained models after blind review.242

3.2 Backbone and Baselines243

Considering the deployment cost and model per-244

formance, we choose the Chinese generative pre-245

training language model T5-pegasus-base as the246

backbone network, which takes mT5 as the in-247

frastructure and initial weight and pre-trains in a248

way similar to PEGASUS. Based on the public249

Domains Size Dialog.len Summ.len
Taxi 31,258 299.49 27.79
Ticket 10,869 204.64 22.60
E-Commerce 35,795 255.91 16.47
Take-out 28,707 189.925 42.37
Food 20,824 241.30 27.02

Table 1: Details of MultiSum. "Dialog.len" denotes the
average length of dialogues, "Summ.len" denotes the
average length of summaries.

available pre-trained checkpoints, we conducted 250

experiments to compare MOP with several gen- 251

eral multi-task learning baselines and some novel 252

parameter-efficient proposals: 253

MTL-vanilla: The standard practice of full- 254

parameter fine-tuning T5-pegasus-base for multi- 255

task summarization, which we refer to as MTL- 256

vanilla(Raffel et al., 2019). 257

MTL: On the basis of the MTL-vanilla, we 258

have designed templates manually, which are 259

the natural language descriptions of conversation 260

scenes(Brown et al., 2020b). For example, for the 261

dialogue in the Take-out scenario, we designed 262

the template as "The conversation comes from the 263

Take-out business". Similar to MTL-vanilla, we 264

perform full-parameter fine-tuning on the Multi- 265

Sum dataset and we refer this kind of multi-task 266

learning model as MTL. 267

prefix-tuning: We take T5-pegasus-base 268

as the backbone network and fine-tune the 269

model for multi-task learning under prefix-tuning 270
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paradigm(Li and Liang, 2021a), which only tunes271

a small number of prefix vectors while keeping the272

PLM frozen during training stage. The prefix vec-273

tors are initialized in random and all samples share274

the prefix vectors with a length of 40.275

MTL-prompt: Prompt-tuning is proposed by276

Lester et al(Lester et al., 2021). , which prepends277

a sequence of soft prompt tokens to the input and278

only tunes the soft prompt for adaptation. We set279

the prompt length to 40, which is shared by all280

samples for multi-domain learning.281

HyperFormer++: We compare our method with282

HyperFormer++ (Karimi Mahabadi et al., 2021),283

the state-of-the-art adapter-based method for multi-284

task learning, which use HyperNetwork to generate285

adapters for each task and add them after the feed-286

forward modules.(Houlsby et al., 2019)287

HyperPrefix: HyperPrefix is a fresh approach288

proposed recently(Zhang et al., 2022). On the ba-289

sis of prefix-tuning and hypernetwork, it uses a290

shared hypernetwork that takes trainable hyper-291

embeddings as input and outputs weights as prefix292

vectors. Since the position and task information293

have been considered in the embedding stage, this294

method can conduct multi-domain learning in a295

lightweight way.296

We use the ROUGE metrics(Li and Liang,297

2021b) to quantitatively evaluate the performance298

of models. ROUGE (Recall-Oriented Understudy299

for Gisting Evaluation) evaluates the n-gram over-300

lap in the generated summary against the reference.301

We report F-1 scores of ROUGE-1 (R-1), ROUGE-302

2 (R-2) and ROUGE-L (R-L) on MultiSum.303

3.3 Implementation Details304

Our models are built on T5-pegasus-base (220M)305

and use jieba as the tokenizer to tokenize the input306

dialogue. During prefix reparameterization, we307

set d = 768, dmid = 128 for all the experiments.308

For MOE network, following the recipe from (Chi309

et al., 2022), we set the number of experts to 5. For310

model training, we set maximum number of epochs311

as 50 and use early stopping to prevent over-fitting.312

For multi-task learning, we combine the training313

data of all tasks with temperature mixing (we set314

the temperature as 2). We save a checkpoint every315

1000 steps and report results on a single checkpoint316

with the highest average validation performance317

across all tasks. Appendix will provide the detailed318

hyperparameters for MOP training.319

3.4 Main Results 320

Table 2 presents the results of our experiments 321

on MultiSum, where we treat each business sce- 322

nario as a separate task and train a joint model for 323

multi-task learning. We compare our approach with 324

some strong full-parameter fine-tuning summariza- 325

tion models and some parameter-efficient baselines, 326

including HyperFormer++ and HyperPrefix. Our 327

results show that MTL with additional auxiliary in- 328

formation achieves higher ROUGE scores on most 329

scenarios compared to MTL-vanilla, at the cost of 330

increased parameter quantity. Prefix-tuning and 331

MTL-prompt perform worse than full-parameter 332

fine-tuning, due to the lack of effective strategies 333

for adapting to complex multi-scenario summa- 334

rization and the difficulty of achieving good per- 335

formance with limited parameters. Recent works 336

have attempted to conduct multi-task learning in 337

a parameter-effective way, such as combining hy- 338

pernet with prefix-tuning or adapter, which have 339

shown promising results. Compared to the best 340

performing hyper-based model, our model im- 341

proves by 7.73%, 10.57%, 8.27% for Ticket do- 342

main, 5.13%, 8.28%, 5.45% for Food domain, 343

3.49%, 4.38%, 3.62% for Taxi domain, 2.88%, 344

3.87%, 3.01% for Take-out domain and 3.69%, 345

4.89%, 4.20% for E-Commerce domain. Relative 346

to MTL-vanilla , our model improves by 9.28%, 347

13.28%, 9.89% for Ticket domain, 8.67%, 16.55%, 348

8.50% for Food domain, 1.82%, 3.66%, 1.85% for 349

Taxi domain, 2.89%, 5.29%, 1.88% for Take-out do- 350

main and 6.24%, 8.12%, 5.48% for E-Commerce 351

domain. In addition, our MOP still has higher 352

ROUGE scores than strong baseline MTL in all 353

scenarios . All results suggest that the performance 354

of our model reaches new state-of-the-art. 355

4 QUALITATIVE ANALYSIS 356

We design a series of experiments to verify the 357

effectiveness of our proposed framework compared 358

to existing methods. 359

4.1 Effect of Sparse Mixture of Experts 360

To shed light on how the MOP benefits multi- 361

scenario dialogue summarization, we peek into the 362

MOP by visualizing the generated prefix vectors. 363

Here, the prefix vectors are mapped to the 2D pro- 364

jections via PCA. We use the same 5000 examples 365

which are randomly selected from MultiSum Ddev. 366

Fig 3 shows the visualization of the prefix vec- 367

tors parameterized through MOP and Fig 4 is the 368
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Models
Taxi Ticket E-Commerce Take-out Food Average

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L
MTL-vanilla 52.61 38.36 49.14 41.22 31.16 39.79 41.75 25.64 38.99 36.25 23.50 34.69 48.05 32.29 46.29 43.98 30.19 41.78
MTL 51.83 38.72 48.49 42.99 33.92 41.64 43.10 26.86 39.77 36.03 24.56 34.60 51.14 36.30 49.04 45.02 32.07 42.71
prompt-tuning 45.49 31.67 42.37 30.59 20.25 29.29 36.38 20.69 33.55 32.19 20.63 30.85 37.84 24.70 36.60 36.50 23.59 34.53
prefix-tuning 50.49 36.54 47.14 40.01 30.32 38.67 42.29 25.72 38.87 34.31 22.71 32.52 48.10 32.56 46.09 43.04 29.57 40.66
HyperFormer++ 51.99 37.74 48.61 41.41 30.90 39.84 42.84 26.45 39.67 36.03 23.43 34.20 49.02 33.74 46.98 44.26 30.46 41.86
HyperPrefix 51.78 38.09 48.30 41.82 31.92 40.38 42.77 26.43 39.47 36.25 23.82 34.31 49.66 34.76 47.63 44.46 31.00 42.02
MOP (ours) 53.58 39.76 50.04 45.05 35.29 43.72 44.35 27.72 41.12 37.30 24.75 35.34 52.21 37.63 50.22 46.50 33.03 44.09

w/o low-rank 52.88 39.26 49.51 43.35 33.83 42.10 42.38 26.08 39.31 38.04 25.00 36.29 50.42 35.73 48.46 45.41 31.98 43.13

Table 2: ROUGE scores of all models for multi-scenario summarization on MultiSum.

(a) layer12 (b) Layer10

Figure 3: Visualization of prefix representations repa-
rameterized by MOPs.

(a) layer12 (b) Layer10

Figure 4: Visualization of prefix representations repa-
rameterized by MLP.

visualization of MLP. We can see that the prefix369

vectors generated by MOP present a more sparse370

distribution in space, and we can also observe the371

clustering. While the M LP-reparameterized pre-372

fix vectors still reside in a narrow subset of the373

entire space. Previous work (Su et al., 2022) has374

proved that congestion in the representation space375

(anisotropic distrbution) will lead to the degenera-376

tion of neural language models, which is because377

that the model devotes most attention to a small378

part local features while ignoring other global aux-379

iliary information. Conversely, MOPs disperse the380

prefix vectors in a relatively sparse space, which381

encourages the model to obtain global features,382

identify specific information, which is beneficial383

to multi-task learning. Specifically, the dispersed384

prefix vectors enable the model to capture a wider385

range of information and avoid overfitting to spe-386

cific tasks. Overall, the design of MOPs promotes387

the model’s ability to achieve feature differentia-388

Model R-1 R-2 R-L
MOP(ours) 46.50 33.03 44.09
w/o LoRL 45.48 31.94 43.12
w/o LoRE 45.29 31.81 42.94

w/o LoRL & LoRE 44.75 31.45 42.41

Table 3: Average F1 scores on 5 domains of MultiSum
dataset."LoRL" denotes low-rank layer-share weights
and "LoRE" means low-rank expert-share weights, "w/o
LoRL and LoRE" means the removal of low-rank shar-
ing mechanism.

tion, and improve its performance in multi-task 389

learning. 390

4.2 Effect of the Sharing Mechanism 391

Table 3 shows the effect of two sharing mecha- 392

nisms, i.e., LoRL and LoRE. We remove LoRL 393

and LoRE one-by-one from our model. As we can 394

see, the removal of the LoRL makes the R-1, R-2, 395

and R-L drop by 3.03, 1.09, 0.97 points, which sug- 396

gests that low-rank layer-share features can effec- 397

tively accumulate the "layer inherent knowledge" 398

by allowing all layers of the same expert to mod- 399

ify according to optimization objectives. Besides, 400

after we get rid of the LoRE, R-1, R-2, and R-3 401

drop by 1.21, 1.23, 1.15 points respectively, which 402

demonstrates that low-rank expert-share features 403

can effectively obtain the common features among 404

experts, so as to realize the communication across 405

experts. After removing the LoRE, the connection 406

between experts would be interrupted, our experts 407

will work in complete isolation, making it unable 408

to perform multi-scenario sharing well. Finally, 409

we remove the LoRL and LoRE at the same time, 410

which leads to 44.75%, 31.45%, and 42.41% for 411

R-1, R-2, and R-L. 412

4.3 Robustness Analysis 413

Prefix-tuning is sensitive to the initialization of 414

the prefix, particularly random initialization. Fig 415

5 shows the robustness of MOP, MOP w/o low- 416

rank, and prefix-tuning. We conduct experiments 417
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Figure 5: Average variance of F1 scores on MultiSum.
"w/o low-rank" means the removal of low-rank decom-
position.

Model #Total
params

Trained
params R-L

MTL-vanilla 1.000 100% 41.78
prefix-tuning 1.027 2.734% 40.66

prompt-tuning 1.001 0.112% 31.54
HyperFormer++ 1.023 2.320% 41.86

MOP (ours) 1.025 2.514% 44.09

Table 4: Proportion of different models’ trainable pa-
rameter quantity to MTL-vanilla and their average F1
scores on MultiSum.

on three models with three different random seeds418

in the same setting. The low-rank decomposition419

significantly enhances the robustness and stability420

of MOP for initialization, as evidenced by the much421

lower average variance of F1 scores compared to422

prefix-tuning and MOP without low-rank. In ad-423

dition, we find the average variance of MOP w/o424

low-rank is also slightly lower than that in prefix-425

tuning. We contribute this reduction of sensitivity426

to initialization to the strong learning ability of427

SMOE structure. The experiment proves that our428

MOP has high robustness.429

4.4 Parameter Scale of Models430

In this section, we compare the number of param-431

eters of MOP with other baseline multi-domain432

joint models. Taking the parameter quantity of T5-433

pegasus-base (275M) as a reference, we show the434

proportions of total parameter quantity and train-435

able parameter quantity of each method and their436

average ROUGE scores on the 5 domains of Mul-437

tiSum (Food, Ticket, Taxi, Take-out, E-Commerce)438

in Table 4. Among the parameter efficient meth-439

ods, prompt-tuning only tunes the continues vectors440

prepended before input embeddings and require the441

least trainable parameters, only 0.112%, but its per-442

formance is more than poor. prefix-tuning, Hyper-443

Former++ and our MOP greatly reduce the storage444

space of the model with frozen PLM and a small 445

number of trainable parameters, which are applied 446

to each layer of the model and contribute to a trade- 447

off between performance and parameter quantity. 448

Additionally, our method, achieves better results 449

with fewer parameters compared with prefix-tuning 450

and also greatly outperforms full-parameter fine- 451

tuning model. Specifically, our MOP performs 452

5.55% better on R-L than MTL-vanilla, using only 453

2.51% of its parameters. In addition, we compare 454

MOP with the state-of-the-art lightweight multi- 455

task learning model HyperFormer++. Please note 456

that our model takes into account the total num- 457

ber of all experts’ parameters when calculating the 458

trainable parameters. Even so, the number of pa- 459

rameters of our MOP is only slightly higher than 460

that of HyperFormer++, and the performance of 461

our method is superior. All these points show our 462

MOP has achieved a better trade-off between pa- 463

rameter efficiency and performance. 464

4.5 Impact of Prefix Length 465

We set different lengths of continuous prefix vec- 466

tors to test the performance of MOP and prefix- 467

tuning on MultiSum dataset and report their aver- 468

age F1 scores. As shown in Fig 6, among these 469

setting candidates, we find 40 is the best length to 470

make the F1 scores of two models reach the peak. 471

Before reaching the optimal length, we observe that 472

the performance of the model shows a positive cor- 473

relation with the length of prefix. We attribute this 474

phenomenon to the insufficient trainable parame- 475

ters. Moreover, we find the increase of the prefix 476

length has a greater impact on improving the per- 477

formance of our MOP model, which indicates that 478

MOP has stronger learning ability. When exceed- 479

ing the optimal length, the trainable parameters 480

of the model reach saturation, at this point the in- 481

crease of length will increase burden of the model, 482

and eventually cause the decline of the model per- 483

formance, while this degradation is less obvious in 484

MOP model, which proves the robustness of our 485

model. 486

4.6 Case Study 487

Fig1 in appendix A shows two examples from Mul- 488

tiSum, For example one from Take-out domain, 489

summary generated by MTL omits the final solu- 490

tion, i.e. merchant refund. Prefix-tuning gener- 491

ates incorrect solution, distorts the fact that cus- 492

tomers do not accept red envelopes. These factual 493

errors significantly affect the quality of the sum- 494

7



Figure 6: Average F1 scores of MOP and prefix-tuning
with different lengths of the continuous prefix on Multi-
Sum.

mary. For example two, both summaries generated495

by MTL and prefix-tuning include the error mes-496

sage of "punishing the driver", which shows that497

summaries generated by these two methods fail to498

comprehensively cover all important information.499

Compared to the above two models, our method500

generates summaries with similar events and faith-501

ful descriptions compared with the gold summary.502

In example one, MOP accurately shows the "mer-503

chant refund" scheme, and in example 2, our504

method reflects the relevant content of "don’t pun-505

ish the driver". This indicates that summaries gen-506

erated by MOP are more reliable, thanks to the507

effectiveness of MoE and efficient low-rank shar-508

ing mechanism.509

5 RELATED WORK510

Multi-scenario Dialogue Summarization Multi-511

task learning jointly optimizes models on several512

tasks(Vandenhende et al., 2020). By sharing repre-513

sentations between these tasks, we enable model to514

generalize better on each task. Particularly, multi-515

scenario summarization is a kind of multi-task516

learning(Wang et al., 2021), which trains model on517

mixed multi-scenario data to achieve good perfor-518

mance in each scenario. Despite efforts on design-519

ing models for improved joint learning(Kokkinos,520

2016) (Misra et al., 2016) (Rosenbaum et al., 2017),521

the scope of this study is rather limited. For in-522

stance, in the LLM area, fine-tuning large-scale523

language models with full parameters is still the524

mainstream paradigm.(Raffel et al., 2019) (Zhang525

et al., 2019). Our work explores a lightweight ap-526

proach tomulti-scenario summarization, effectively527

addressing the issue of over-parameterization and528

filling a gap in relevant research. 529

Prompt learning for Text Generation The 530

idea of prompt learning is first proposed in 531

GPT3(Brown et al., 2020a), where it guides a large 532

language model to different tasks by prepending 533

task-related natural languague description. Prefix- 534

tuning(Li and Liang, 2021a) extends this idea to 535

continuous tokens. It prepends trainable continu- 536

ous tokens (prefix) to the input and hidden stats of 537

each Transformer layer. Each prefix is drawn from 538

a newly initialized trainable matrix P, while other 539

parameters of the PLM remain unchanged during 540

training. To further simplify prompt-tuning, Lester 541

et al(Lester et al., 2021). proposes a strategy that 542

only adds soft prompts to the input layer. While 543

prompt-based methods show promise for adapting 544

PLMs, challenges remain. Prefix-tuning is sensi- 545

tive to initialization and unstable during training. 546

To address these issues, we conduct multi-scenario 547

summarization using prefix-tuning, stabilize the 548

training process through inherent bias representa- 549

tion in multi-task learning, and introduce low-rank 550

decomposition to enhance robustness. 551

Prompt learning with MoE Numerous studies 552

have shown that models with more parameters typ- 553

ically yield better performance. To increase model 554

capacity without added computational overhead, 555

exploring scaling properties with MoE, introduced 556

by (Jacobs et al., 1991), is a promising direction. 557

There have been many existing works that com- 558

bine MoE and PLMs for research(Shazeer et al., 559

2017b) (Fedus et al., 2021) (Lepikhin et al., 2021) 560

(Lewis et al., 2021). However, few of them fo- 561

cus on parameter-efficient MoE. Also, there are 562

few works that attemp to combine the MoE with 563

prompt learning. 564

6 CONCLUSION 565

In this paper, We propose a lightweight low-rank 566

MOE network for Prompt reparameterization in 567

multi-scenario summarization, which integrates 568

MoE into the prefix reparameterization process 569

and achieves expert integration. Our proposed 570

low-rank sharing weights (LoRL and LoRE) en- 571

able cross-layer and cross-expert knowledge shar- 572

ing, effectively reducing the number of parameters 573

while improving performance. Experimental re- 574

sults demonstrate that our model outperforms all 575

strong baselines and achieves significant progress 576

in multi-scenario summarization. 577
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7 Limitations578

Our work still has certain limitations.579

First, although we designed an effective MOP580

mechanism, the performance of the joint model581

trained on multiple scenarios still has a gap com-582

pared to models fine-tuned for each specific sce-583

nario. This suggests that interference still exists584

due to the differences in data distribution across585

scenarios.586

Second, reparameterizing prompts using a mix-587

ture of experts network reduces the number of train-588

able parameters, but it inevitably increases the de-589

ployment cost of the mixture of experts’ parame-590

ters.591

Finally, our mixture of experts reparameteriza-592

tion network can be applied to various parameter-593

efficient fine-tuning methods. We only explored594

reparameterizing prompts using a mixture of ex-595

perts network, and further experiments are needed596

to verify the role of the mixture of experts network597

in other parameter-efficient fine-tuning methods.598
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Figure 1: Case study for two examples from MultiSum dataset. We present the dialogue context, ground truth, MTL
prediction, prefix-tuning prediction and our MOP prediction.
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