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ABSTRACT

In this work, we introduce novel differentiable architectures for solving partial
differential equations (PDEs) using well-known Discrete Hartley Transform. We
incorporate Hartley Neural Operators (HNO) into Physics-Informed Neural Op-
erator Networks (PINOs). Our analysis concentrates on two pivotal PDEs: 1. the
one-dimensional diffusion equation, which holds significance not only in machine
learning but also across a broad spectrum of physical sciences and engineering
disciplines; and 2. the one-dimensional Thermodynamic Energy Equation that is
commonly used in weather data analysis. Our implementation of HNO that em-
ploy real-valued linear transforms into the PINO architecture results in significant
run time improvements. We show that reconstruction loss is lower than other re-
cently introduced operators that may be used for the above PDEs. Importantly,
we find that HNOs naturally satisfy the governing physical laws and equations
specific to the PDEs under consideration. However, our empirical observations
suggest that the benefits of HNO diminishes in certain scenarios where the under-
lying physical conditions at the boundary are less tractable and involve complex
numbers. As an example of a potential failure mode we illustrate that in the case
of the one-dimensional Burger’s equation, traditional Fourier Neural Operators
outperform their Hartley counterparts. Our results indicate that a combination of
neural operators including Fourier and Hartley transforms may be better to effec-
tively address the specific type, and/or context of physical problem at hand.

1 INTRODUCTION

Designing a real-valued Neural Operator for Deep Learning. Fourier Neural Operators (FNOs)
Li et al. (2020), combines Fourier analysis with neural networks to study multi-scale phenomena.
The conventional methodology employed in utilizing neural networks for solving differential equa-
tions often entails the process of discretizing the complete domain into a grid and subsequently
predicting values at each individual grid point. Nevertheless, the scalability of this approach deteri-
orates significantly as the problem dimensionality grows. The approach of Fourier Neural Operators
involves operating directly in the Fourier domain, leveraging its inherent capacity to handle differ-
ential operators. This methodology results in solutions that are both more salable and accurate.

While revolutionary, the FNO framework has certain limitations. For example, consider using
Fourier Transforms to modify neural network representations to solve partial differential equations
(PDEs) with real-valued variables, and solutions that are known a priori to be real valued also. In
such a setting, it is possible that the resulting scheme provides suboptimal solutions unless an ex-
cessively precise resolution is used to eliminate imaginary components appropriately. The Hartley
Transform Hartley (1942), like the Fourier Transform, can transform signals between the time (or
spatial) and frequency domains with the key advantage is that it produces real-valued output for
real-valued input. Therefore, it operates fully over the space of real numbers – so post processing
conversions are not necessary. This is advantageous for real-valued PDEs because it eliminates the
need to use complex numbers inherent to the Fourier Transform. This distinction has proven advan-
tageous in the fields of image processing and the solution of certain partial differential equations in
which the existence of real-valued solutions is guaranteed.
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We introduce the concept of Hartley Neural Operators (HNO), which follows the same inspiration
and framework as FNO while leveraging the advantages of Hartley Transform. While the con-
cept of applyng the Hartley Transform to neural operators has, to our knowledge, not been done
before, the concept of leveraging Hartley transforms for deep learning is nothing new Arenas &
Serrano-Gotarredona (1996). Our study, however, incorporates HNO into neural operator learning
frameworks. Specifically, we apply various combinations of HNO and FNO layers in a neural net-
work to compare solutions of a small sample set of PDEs that are of interest to machine learning
and the physical sciences alike. The first method combined the HNO and FNO layers to evaluate
their potency and collaboration. The second procedure replaced all four layers of the structure with
HNO layers. After rigorous evaluations, both approaches improved performance measures. These
changes shed light on the potential of HNO within the PINO framework and lay the foundation for
further investigation.

Our Contributions. Our key contribution is that we modify and adapt the FNO frameworks using
Hartley Transforms as a drop-in replacement for the Fourier Transform within the neural operator
layer architecture. These Hartley Neural Operators are explored for their potential use and effi-
cacy in this organized framework. We also use a cyclic convolution method, instead of a standard
element-wise multiplication for the HNO layers, which efficiently handles periodic signals and is
computationally advantageous when using the Discrete Hartley Transform (DHT), as it maintains a
consistent signal length without extending boundaries. Otherwise, the convolution theorem for the
Hartley Transform is much more complex than a simple multiplication in the transformed basis.

2 NEURAL HARTLEY TRANSFORM

Preliminaries. The continuous Hartley transformation of a function f(t) is mathematically defined
by the following integral transform:

Hf (ω) =

∫ ∞

−∞
f(t) · cas(ωt) dt (1)

where the cas function is defined as the sum of cosine and sine functions involving frequency ω, that
is, cas(ωt) = cos(ωt) + sin(ωt). Similar to the Fourier transform, the Hartley transform has the
unique property that it is involutionary, that is, the inverse is defined by:

f(t) =

∫ ∞

−∞
Hf (ω) · cas(ωt) dω (2)

For transforming discrete signals such as vectors, we discretize the integral in equation 2 as follows.
Given a sequence f [n] of length N , the Discrete Hartley Transform (DHT) Bracewell (1983) is
defined as:

Hk =

N−1∑
n=0

f [n] ·
(
cos

(
2πkn

N

)
+ sin

(
2πkn

N

))
(3)

The Discrete Hartley Transform (DHT) is a linear operation that involves the multiplication of a
vector (x0, · · · , xN−1) ∈ RN by an N × N matrix. In order to obtain the initial value of xn from
Hk, it suffices to perform the Discrete Hartley Transform (DHT) on Hk and afterwards normalize
the output by a factor of (1/N). Thus, the DHT can be considered a self-inverse structure, but
incorporating a normalization/scaling factor.

Though the convolution of the DHT is not as straightforward and elegant as the discrete Fourier
transform (DFT), it is still fairly computationally inexpensive. For the cyclic convolution of vectors,
x and y producing z (all length N ), post-DHT operations become simpler. If X , Y , and Z represent
the DHTs of x, y, and z respectively, then Z can be obtained as,

Zk =
Xk(Yk + YN−k) +XN−k(Yk − YN−k)

2

ZN−k =
XN−k(Yk + YN−k)−Xk(Yk − YN−k)

2
. (4)

Similarities to Wavelet transforms and Discrete Cosine Transforms. Integral transforms such
as the wavelet transform (Grossmann & Morlet, Daubechies (1988)), the Hartley transform, and
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the discrete cosine transform (DCT) Ahmed et al. (1974), analyze and represent data in multiple
domains. Both use basis functions to analyze and represent signals. For multi-resolution signal
analysis, the wavelet transform derives basis functions from a ”mother wavelet” by dilation and
translation Akansu & Haddad (1992). Whereas sinusoidal and cosinusoidal functions are used in
the Hartley transform. Meanwhile, the DCT transforms a signal largely utilizing cosine functions,
making it particularly effective at concentrating signal energy into a few coefficients. DCT is fre-
quently used in image and signal processing, especially for JPEG compression Wallace (1991).
However, DCT has limitations. It may introduce artifacts, specifically ”blocking artifacts”, when
used in high-compression scenarios. Due to its inability to portray crisp transitions or edges, DCT
reduces visual detail. Furthermore, its fixed basis functions are not adaptable, which can impede
optimal signal representation in a variety of settings.

Both wavelet and Hartley transformation formulas utilize integrals of the original signal multiplied
by a kernel (the wavelet function Kaiser (1994) for wavelet transforms and the cas function for Hart-
ley transforms, respectively). The transforms enable practitioners to decompose the frequency or
scale components of a signal, thereby revealing its underlying properties. Signal processing requires
switching between time (or spatial) and frequency (or scale) domains, making these techniques
necessary. Although versatile in storing signals across scales, wavelet transforms have limitations.
Choosing the optimal wavelet function necessitates domain-specific knowledge, making the decision
difficult. A suboptimal selection can reduce the precision of signal representation. Shift variance
and edge effects can also present difficulties. While wavelets excel at capturing transient events, they
may fall short when it comes to recording sinusoidal signals or phase information. Due to its real-
valued structure and coupled sinusoidal and cosinusoidal functions, the representations provided
by Hartley transform are often significantly more robust. Thus, many applications that prioritize
computational performance and clarity may benefit more from the Hartley transform than DCT or
wavelet transforms.

Combining HNO with Physics Informed Neural Networks. Physics-Informed Neural Networks
(PINNs) for nonlinear PDEs are recently explored for various reasons Raissi et al. (2019). Compared
to traditional neural networks, PINNs offer better adherence to the laws of physics, efficiency, and
versatility. These naturally led to the development of Physics-Informed Neural Operator Networks
(PINOs) Li et al. (2023), which amalgamate physics principles into neural operator structures, prov-
ing invaluable in areas like fluid dynamics and environmental modeling. The utilization of the Hart-
ley transform in PINO systems has the potential to enhance computational efficiency and strengthen
learning mechanisms. A recent study Rosofsky et al. (2023) introduces a framework for integrat-
ing partial differential equations (PDEs), essential for understanding and simulating many physical
occurrences. The framework includes initial data generation, boundary conditions, and physics-
informed neural operators. Their solutions demonstrate accuracy comparable to the literature. A
primarily focus of theirs is the one-dimensional Burgers’ equation Burgers (1948) - a fundamen-
tal partial differential equation that encompasses the interplay between non-linear advection and
diffusion, which can be written as:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
(5)

Here, we apply the Hartley Neural Operator (HNO) to the one-dimensional Burgers’ equation for
comparison to their work. We also apply the HNO framework to two other PDEs, which are tradi-
tionally real-valued.

Operating on the Diffusion Equation, a key equation in Machine Learning. First, the diffusion
equation Fick (1855), often also known as the heat equation, describes how heat, concentration, and
population density spread through time and space. In Machine Learning applications, PDEs are
used in various ways. For example, Laplacian Eigenmaps smooth or interpolate high-dimensional
data sets using diffusion equation-like constructions ?. Label propagation in graph-based semi-
supervised learning uses the diffusion equation ?. Modeling the ’flow’ of data points in a feature
space helps uncover anomalies and is used in time-series analysis ?. Understanding stochastic gra-
dient descent and other optimization techniques can be done using diffusion equation concepts ?.
The diffusion equation is also extremely versatile in physics due to its being key to understanding
heat transmission between states of matter. In one dimension, this PDE can be written as,

∂u

∂t
= D

∂2u

∂x2
(6)
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Applications to PDEs Useful In Weather Forecasting. Second, the thermodynamic energy equa-
tion Gill (1982) with advection terms and assuming hydrostatic balance - a fundamental concept that
links gravity with vertical pressure gradient force - that simplifies the equation by focusing on verti-
cal forces, which is a good approximation for most meteorological uses. For our choice of diabatic
heating term, we chose a linear function in T to simplify matters.

∂T

∂t
+ w

∂T

∂z
= Q0T +Q1 (7)

Defining Losses. We primarily the methodology used in setting up FNO architectures to our losses:

1. LL2: This loss aligns the model predictions with the training data. It’s calculated as the
relative mean squared error (MSE) between the training data and the model outputs, nor-
malized by the norm of the actual values.

2. Lreconstruction: This loss ensures the model’s adherence to known physical laws, like
PDEs or conservation laws. Defined as the MSE between the breach of the physical prin-
ciple and its ideal value, which here for practicality is the MSE between the residuals and
zero, indicating the physics fit exactly.

Finally, define the Total Loss function as the weighted sum of the loss functions described above:

wL2 × LL2 + wreconstruction × Lreconstruction (8)

Unlike the previous study, we ignore initial condition losses (since their GitHub implementation
has this commented out in their code anyway). We use unity weights for these runs. Both their
studies and ours use experimental weight selection for the loss function rather than hyperparameter
optimization, though our choice of unity is more arbitrary than anything.

Using GRF For Initial Conditions. In the construction of initial conditions, similar to the afore-
mentioned study, Gaussian Random Fields (GRFs) are utilized Gudder (1978). GRFs are a type of
spatially correlated random processes that have played a crucial role in generating realistic initial
conditions for diverse simulations, particularly in the fields of geostatistics and cosmology. The
Matérn function Matérn (1986) is widely used as a covariance function in Gaussian random fields
(GRFs) because of its flexibility to represent various degrees of smoothness in the data. Through
the utilization of the Matérn function within a Gaussian Random Field (GRF) Tilmann Gneiting &
Schlather (2010), it is possible to create spatially consistent formations that possess distinct attributes
dictated by the parameters of the function. The Matérn function is fundamentally responsible for in-
troducing a predetermined degree of smoothness and correlation length to the resulting field, hence
facilitating a deliberate synthesis of spatial data. When employed for the purpose of establishing
initial conditions, this methodology guarantees that the resulting data exhibits statistical qualities
that closely correspond to real-world observations.

Defining Hartley Transforms using PyTorch Fast Fourier Transforms. Our investigation re-
quired Fourier transforms to depict the Hartley transform since PyTorch lacks native Hartley Trans-
form capabilities. The Hartley transform (H(u)) is closely related to the Fourier transform (F(u)):
H(u) = Re[F (u)] − Im[F (u)], where Re and Im represent the real and imaginary components
of the Fourier transform. The equation was crucial to our analytical and computational work. We
used PyTorch tools to adapt a Numpy version Panizza (2021) and enhance its multidimensional
functionality.

3 EXPERIMENTS

Setting Up Our Neural Network Architecture to Parallel Recent Work for Comparison. Our
research followed the same structure as Rosofsky et al. (2023). The model is characterized by its
widths, modes, and total layers, with a strong emphasis on Gaussian error linear units (GELUs)
as the activation function Hendrycks & Gimpel (2023). GELUs are preferred in physics-informed
deep learning because they have a non-zero second derivative, making ReLUs less suited. In our
1-D configurations, the FNO structure includes four layers with widths [16, 24, 24, 32] and modes
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LL2 Lreconstruction LTOTAL

HNO 0.6099 0.3726 0.9825
2 HNO, 2 FNO 0.0292 0.0255 0.0547
1 HNO, 3 FNO 0.0217 0.0169 0.0386
FNO 0.0240 0.0255 0.0495

Table 1: Comparison of L2 and reconstruction losses between architectures using combinations
of the standard Fourier Neural Operator method (FNO) and our Hartley Neural Operator (HNO)
substitution.

[15, 12, 9, 9]. The design produces a 128-width, completely linked layer. We optimized our model
on PyTorch using the Adam method with parameters β1 = 0.9 and β2 = 0.999, across 500 epochs,
with an initial learning rate of 0.001.

Is it beneficial to use Swish as an Activation Function in PINO? Strategic use of GELUs com-
bines ReLU with sigmoid functions to provide non-linearity and handle the vanishing gradient issue
in PDE situations. However, another important activation function in this area is Swish, created by
Google Brain Ramachandran et al. (2017), which combines input and sigmoid. Swish overcomes
constraints via ReLU and LeakyReLU. Both GELUs and Swish produce smoother function outputs,
although Swish’s simple architecture may be more computationally efficient. Their performance
depends on the application. GELUs are recommended for physics-informed jobs in Fourier Neural
Operator frameworks, and Swish is versatile. Problem specifics, computational limits, and empirical
outcomes determine the final choice.

Using RK4 with Finite Difference to Obtain Exact Solutions. The Runge-Kutta order 4 (RK4)
method, a popular numerical integration method, was used to solve partial differential equations in
our work (just as Rosofsky et al. (2023) did in their study) in order to have ”ground truth” for what
the exact solutions to the PDEs were to compare the predictions of the neural operator networks we
employed. The complexity of PDEs, which incorporate several independent variables like time and
space, required a two-pronged approach: We first used finite difference methods to discretize the
spatial components of the PDE, turning it into a time-dependent ODE system. The RK4 approach
then was used to integrate the system across time after spatial discretization. Given a 1-dimensional
spatial domain, we set the domain boundaries as xmin = 0 and xmax = 1. The domain is dis-
cretized into Nx = 100 spatial grid points, which provides the spatial resolution of the simulation.
The time step size for advancing the solution is selected as dt = 1 × 10−3, which determines the
temporal resolution and influences the stability of the algorithm. The simulation is run until an end
time tend = 1.0, where we choose these parameters to ensure both stability and efficiency of the
numerical method.

4 RESULTS

A Hybrid HNO/FNO Approach Gives the Best Results for Burgers’. The first experiment, com-
parisons of the loss values for different architectures of PINO run to solve the one dimensional
Burgers’ equation is shown in Table 1. The outcomes of the losses related to several variations of
PINO, which incorporate varying combinations of Fourier and Hartley layers in their 4-layer archi-
tecture, are presented in Table 1. The table provides a systematic comparison of the effectiveness of
these configurations, bringing valuable insights into the influence of various layer combinations on
the performance of the network. Each row in the table represents a distinct variation of the PINO
algorithm, indicating the specific number of Fourier and Hartley layers that have been included. The
losses associated with each model, which are potentially presented in the following columns, pro-
vide a quantifiable assessment of their correctness or error rate. The Hartley design with four layers
has the most unfavorable loss values among the four variations, whereas the architecture including a
single Hartley layer followed by three Fourier layers demonstrates the most favorable loss outcomes.
Furthermore, as depicted in Figure 1, the comparison between the exact solution (obtained using a
fourth-order Runge-Kutta solver) and the solution predicted by the PINOs with partial Hartley and
partial Fourier layers exhibits a remarkable level of agreement. Notably, the absolute error remains
consistently low as the solution evolves over time.

5



Under review as a conference paper at ICLR 2024

Figure 1: Comparison of Exact vs. Predicted (with absolute error shown) of the 1-D Burger’s
equation with the given initial condition and periodic boundary conditions using 1.) Top Panel:
FNO with 4 layerss; 2.) Middle Top Panel: 1 HNO layer and 3 FNO layers; 2.) Middle Bottom
Panel: 2 HNO layers and 2 FNO layers; 4.) Bottom Panel: HNO with 4 layers.
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activation FNO HNO
LL2 Lreconstruction LL2 Lreconstruction

Heat/Diffusion Eq GELU 0.00126 0.00216 0.00385 0.00214
Heat/Diffusion Eq Swish 0.00116 0.00216 0.00468 0.00214
TDE, Linear Q(T) GELU 0.00457 0.01085 0.04044 0.01069
TDE, Linear Q(T) Swish 0.00472 0.01086 0.04047 0.01069

Table 2: Comparison of L2 and Function error between the standard Fourier Neural Operator method
(FNO) and our Hartley Neural Operator (HNO) substitution.

Figure 2: 1-D diffusion equation results with GELU activation function using a 4-layer FNO archi-
tecture.

Four-Layer HNO Improves Reconstruction Loss for Solving the Diffusion Equation and TDE.
Table 2 displays the comparative reconstruction and L2 losses for the FNO and HNO structures,
using GELU and Swish activation functions. One noteworthy finding derived from the table is the
comparatively reduced reconstruction loss exhibited by the HNO model. This outcome implies
a more advanced level of alignment with the fundamental principles of the Diffusion and TDE
equations. Nevertheless, the aforementioned observation is accompanied with an elevation in L2
losses for the HNO, suggesting a somewhat reduced level of agreement with the empirical data.

FNO Causes Periodic Error, HNO Low Random Error in Diffusion. Figures 2 and 3 offer
significant insights into the performance of the FNO and HNO designs when employed for the
resolution of the Diffusion equation. The evaluation of these structures is conducted under varying
initial conditions, utilizing randomized Gaussian Random Field (GRF) fields. In the context of
the 4-layer FNO, it is worth mentioning that the discrepancy between the precise and projected
observations displays a recurring pattern, a periodicity that diminishes over time, whereas in the
case of the 4-layer HNO, the error is comparatively reduced and demonstrates a greater degree of
randomness as the solution progresses through time.

For TDE with Linear Q(T) FNO Again Causes Periodic Error, while HNO’s Error is Non-
periodic, Both Increase as the Solution Evolves in Time. In addressing the TDE equation, as
illustrated in Figure 4 and Figure 5, we offer a thorough perspective on the outcomes obtained
through the inclusion of a linear diabatic heating component and the utilization of identical random-
ized Gaussian random field (GRF) beginning conditions. It is noteworthy that the absolute error
between the exact and predicted observations exhibits a similar periodicity when the 4-layer FNO

Figure 3: 1-D diffusion equation results with GELU activation function using a 4-layer HNO archi-
tecture.
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Figure 4: 1-D TDE equation, with linear Q results with GELU activation function using a 4-layer
FNO architecture.

Figure 5: 1-D TDE equation, with linear Q results with GELU activation function using a 4-layer
HNO architecture.

architecture is employed, akin to the case of the diffusion equation. However, this periodicity is not
as pronounced as the solution progresses in time. Conversely, when the 4-layer HNO is utilized, the
absolute error displays less periodicity than the FNO case, is an order of magnitude less than the
FNO case, and displays less randomness than the HNO case in the 1-D diffusion equation. In fact,
the error initially remains relatively low, but as the solution evolves over time, the error begins to
increase.

No Appreciable Difference in Activation Function Choice. As shown in table 2, there was no
appreciable difference in the overall neural network performance when using Swish over GELU,
despite being self-gating and having been shown to work better for certain neural network architec-
tures designed to solve PDEs.

5 DISCUSSION

We undertook a comprehensive adaptation of the PINO framework, originally proposed by Rosof-
sky et al. (2022). Our study’s chief aim was to explore the integration of Hartley Neural Operators
(HNO) within this structure. Upon examining the Burgers’ equation, we found that using HNO re-
sulted in a heightened overall loss compared to its FNO equivalent. Notably, a combined approach
employing both HNO and FNO layers displayed superior performance and a much better fit to the
exact solution, then Rosofsky et al. (2023). Further, our exploration of the Diffusion equation and
the TDE equation, using a linear depiction of the diabatic heating component, revealed subtle dif-
ferences between the two neural operators. The HNO showed a lesser reconstructive loss compared
to the FNO, but there was a minor rise in L2 loss for both.

When analyzing the time-dependent evolution of absolute errors in the diffusion equation, the FNO
four-layer architecture revealed a distinct periodic error trend, whereas the HNO four-layer architec-
ture revealed a more random error trajectory, albeit with an order of magnitude lower discrepancy.
The observed periodicity in FNO error may suggest that the FNO architecture fails to account for
specific data characteristics, such as boundary conditions or periodic patterns. The presence of os-
cillatory error patterns in the Partial Differential Equation (PDE) suggests that the FNO architecture
may be responsive to specific solution frequencies. These results may be ascribed to resonance
phenomena, in which specific frequencies of the partial differential equation’s solutions are either
amplified or attenuated.
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An analogous discrepancy was noted in the context of the TDE PDE with regard to the FNO. The
HNO four-layer architecture initially matched the correct solution, but with time, prediction and
ground truth diverged. The model’s inability to effectively describe the underlying dynamics of
the partial differential equation (PDE), especially over longer time periods, may explain these dis-
parities. The observed divergence and larger L2 loss values may be due to overfitting, numerical
instability, temporal discretization issues, boundary condition errors, or TDE complications with the
selection of a linear diabatic heating term. In our scenario, where a randomized Gaussian random
field (GRF) with a Matérn covariancThat said, however, the HNO still outperformed the FNO in the
TDE solution prediction.

Finally, the choice of activation function between GELU and Swish did not lead to any substantial
differences between either the HNO or FNO four-layer architectures and was not applied to the
hybrid architecture. That said since we were working strictly in one-dimension and using simplified
versions of the PDEs under investigation, solving the fully-fledged PDEs in three-dimensions may
still benefit from such a choice in activation function.

6 CONCLUSION & FUTURE WORK

In conclusion, our research compellingly underscores the profound implications of melding real-
valued transforms, with particular emphasis on the Hartley Transform, into the architecture of neu-
ral operators when grappling with streamlined primitive equations. By embarking on this innova-
tive path, we have illuminated a pioneering methodology adept at decoding pivotal meteorological
PDEs, such as the Thermodynamic Heat Equation. The merger of the Hartley Transform with these
equations not only allows for a more nuanced understanding of atmospheric dynamics but also
bestows upon our models an enhanced level of fidelity, ensuring predictions that resonate closely
with real-world weather phenomena. The juxtaposition of our findings from the 1-D Diffusion and
Thermodynamic Energy Equations with the Burgers’ equation offers a holistic perspective. The
comparative results accentuate that domain-specific PDEs, especially those inherently real-valued
in their solutions, align more harmoniously with real-valued transforms like the Hartley. In stark
contrast, equations like the Burgers’, which might exhibit complex components or behaviors in their
solutions, reveal the nuances and potential limitations of a purely real-valued approach.

It is also clear that additional ablation experiments that isolate and analyze specific neural operator
elements or arrangements within the model architecture can help us understand their effects. An
in-depth investigation of the training process, particularly the periodic error patterns, may be benefi-
cial. In a similar manner, boundary conditions, temporal discretizations, and brain architecture may
explain model efficacy differences. The quality and representativeness of the training data must also
be closely examined, taking into account long-term discrepancies. Different activation functions,
dropout rates, and batch normalization could also be examined in the neural operator’s structure.
The main goal of this ablation research is to identify specific sources of absolute error and high
L2 loss while improving the model’s design and training methods to reduce reconstruction loss and
better fit the exact, numerical solutions.

Future research should aim to further explore the PINO framework, particularly in three dimensions.
Further expanding the utilization to a wider range of intricate partial differential equations (PDEs),
with particular emphasis on the extensive collection of fundamental equations that are vital to nu-
merical weather prediction is also of interest. It would be beneficial, therefore, to employ a Hartley
Neural Operator network to process weather model data with varying resolutions. For example, in
recent studies, it has been demonstrated that Deep Learning models, such as FourCastNet Pathak
et al. (2022), exhibit efficacy as viable options for NWP with the utilization of the Adaptive Fourier
Neural Operator (AFNO) attention mechanism, have the capability to make accurate forecasts with
low-resolution data with up to a maximum of seven days in advance. Future research, which is
already ongoing, will strive to answer the question of whether or not can it do better if we apply the
HNO framework modifications and create an AHNO attention mechanism instead.

As the research landscape continues to evolve, we anticipate that additional applications of the Hart-
ley transform within PINOs specifically, and Neural Operator learning in general will materialize,
contributing innovative resolutions to a diverse set of scientific and engineering challenges.
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A APPENDIX

A.1 HNO SKELETON

The Hartley Neural Operator applies the operations in algorithm 1 and then follows
the same skeleton as Rosofsky et al. (2023), the code for which can be found at
https://github.com/shawnrosofsky/PINO Applications, except that anywhere there is a Fast Fourier
Transform operation taken, we drop in our DHT from Algorithm 1.

A.2 ADDITIONAL FIGURES FROM RESULTS
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Figure 6: Additional 1-D diffusion equation results with GELU activation function using a 4-layer
FNO architecture.
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Algorithm 1 Discrete Hartley Transform and Complex Multiplication
1: function DHT(x)
2: X ← Compute FFT of x
3: return Real part of X minus Imaginary part of X
4: end function
5: function IDHT(X)
6: dims← Dimensions of X
7: n← Product of all dims
8: X ← DHT(X)
9: return X divided by n element-wise

10: end function
11: function COMPL MUL1D(x, y)
12: X ← DHT(x)
13: Y ← DHT(y)
14: Xflip ← Flip and roll x
15: Yflip ← Flip and roll y
16: Yplus ← Y + Yflip
17: Yminus ← Y − Yflip
18: Z ← 0.5× (Element-wise multiply X with Yplus and Xflip with Yminus)
19: return IDHT(Z)
20: end function

Figure 7: Additional 1-D diffusion equation results with GELU activation function using a 4-layer
FNO architecture.
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Figure 8: Additional 1-D diffusion equation results with GELU activation function using a 4-layer
HNO architecture.
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Figure 9: Additional 1-D diffusion equation results with GELU activation function using a 4-layer
HNO architecture.
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Figure 10: Additional 1-D TDE equation, with linear Q results with GELU activation function using
a 4-layer FNO architecture.
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Figure 11: Additional 1-D TDE equation, with linear Q results with GELU activation function using
a 4-layer FNO architecture.
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Figure 12: Additional 1-D TDE equation, with linear Q results with GELU activation function using
a 4-layer HNO architecture.
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Figure 13: Additional 1-D TDE equation, with linear Q results with GELU activation function using
a 4-layer HNO architecture.

20


	Introduction
	Neural Hartley Transform
	Experiments
	Results
	Discussion
	Conclusion & Future Work
	Appendix
	HNO Skeleton
	Additional Figures from results


