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ABSTRACT

Large repositories of image-caption pairs are essential for the development of
vision-language models. However, these datasets are often extracted from noisy
data scraped from the web, and contain many mislabeled instances. In order
to improve the reliability of downstream models, it is important to identify and
filter images with incorrect captions. However, beyond filtering based on image-
caption embedding similarity, no prior works have proposed other methods to
filter noisy multimodal data, or concretely assessed the impact of noisy captioning
data on downstream training. In this work, we propose, theoretically justify, and
empirically validate LEMON, a method to automatically identify label errors in
image-caption datasets. Our method leverages the multimodal neighborhood of
image-caption pairs in the latent space of contrastively pretrained multimodal
models to automatically identify label errors. Through empirical evaluations across
eight datasets and ten baselines, we find that LEMON outperforms the baselines
by over 3% in label error detection, and that training on datasets filtered using our
method improves downstream captioning performance by 2 BLEU points.

1 INTRODUCTION

Machine learning datasets used to train and finetune large vision, language, and vision-language
models frequently contain millions of labeled instances (Schuhmann et al., 2021; Li et al., 2022;
Wang et al., 2022a; Changpinyo et al., 2021). Prior work highlights that some instances in such
datasets may be mislabeled (Northcutt et al., 2021b; Luccioni & Rolnick, 2023; Liao et al., 2021;
Beyer et al., 2020; Plummer et al., 2015), as seen in Figure 1. This is especially problematic in
settings such as healthcare, where the reliability of downstream models may depend on the quality of
data used for pretraining (Chen et al., 2024; Liu et al., 2023; Longpre et al., 2023).

This is a plane
from the front

view 

MSCOCO Flickr30k

A boy in red
shirt playing

ball.

CIFAR100CIFAR10

LeopardAutomobile

Figure 1: Samples from
classification and captioning
datasets discovered to be mis-
labeled by our method.

Identifying and correcting label errors in existing datasets at scale
would lead to more reliable and accurate models in the real
world (Zhu et al., 2022; Vasudevan et al., 2022; Liao et al., 2021;
Beyer et al., 2020). However, given the large size of such datasets,
manual detection of errors is practically infeasible. This is evidenced
by the growth of models trained on noisy data with the web (Li et al.,
2022; Wang et al., 2022a; Liu et al., 2024), or with model generated
pseudo-labels (Menghini et al., 2023; Lai et al., 2023).
Machine learning (ML) based approaches to automatically identify-
ing label errors have also been proposed in prior work (Pleiss et al.,
2020; Swayamdipta et al., 2020; Liang et al., 2023; Bahri et al., 2020;
Zhu et al., 2022; Northcutt et al., 2021a). However, we identify two
critical limitations: (1) a majority of such works are unimodal: i.e.,
they only utilize image-based representations and detection strate-
gies, and (2) many of the best-performing approaches depend on
having access to a model already trained on the downstream tasks of
interest (Pleiss et al., 2020; Swayamdipta et al., 2020). We hypoth-
esize that applying a neighborhood-based approach to multimodal
representations in the form of image-text pairs can improve label error detection without requiring
task-specific training, which may be costly and/or domain specific for some datasets.
Additionally, a common assumption made in prior works is that each label is one-of-k classes (Bahri
et al., 2020; Zhu et al., 2022). The vast majority of label error detection methods proposed in prior
works are hence for classification datasets. In contrast, datasets used to train large vision-language
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viewer
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(b)

Figure 2: Outline of LEMON, our proposed method for multimodal label error detection. We
demonstrate LEMON on a real sample from the MSCOCO dataset, where an image of a train (x)
is mislabeled as y = “This is a plane from the front view”. (a) We compute the
simple CLIP similarity dmm(x,y). We then find the nearest neighbors of x in the image space (xnj

)
and compute the distance between the corresponding texts and y to compute the score component sn.
(b) To compute the score component sm, we find the nearest neighbors of y in the text space (ymk

),
and compute the distance between the corresponding images and x.

models contain natural language labels such as image captions (Li et al., 2022; 2023; Wang et al.,
2022a). Methods to filter out instances with noisy labels – e.g., based on the similarity of image
and caption representations – have been utilized in prior work with some success (Li et al., 2022;
Kang et al., 2023) for such datasets. However, to the best of our knowledge, no prior works have
proposed or rigorously compared methods to identify errors in datasets with natural language labels,
or assessed the impact of detection on downstream tasks like image captioning.
In this work, we propose LEMON– Label Error detection using Multimodal Neighbors – a method
for multimodal label error detection, which can be applied to image-text pairs in datasets such as
MSCOCO (Lin et al., 2014). While prior techniques utilize unimodal neighbors for label error
detection, LEMON leverages multi-modal neighborhoods derived using contrastively pretrained
vision-language models such as Contrastive Language-Image Pretraining (CLIP) (Radford et al.,
2021). Specifically, in addition to considering pairwise image-text distances, we also retrieve nearest
neighbors in the image and text space as illustrated in Figure 2. This is motivated about rich
neighborhood geometry in the joint embedding space of multimodal models (Liang et al., 2022;
Schrodi et al., 2024). We then compute distance scores with neighbors in each modality and combine
these into a single score measuring the likelihood of a label error, with the intuition that higher
discordance (or higher distance) with neighbors indicates a higher chance of label error. We validate
the utility of these scores across eight datasets, including one in a healthcare setting, and compare to
over ten baselines.
Our key contributions and findings are as follows:

• We propose LEMON, a novel, theoretically justified multimodal method capable of detecting
label errors in large image-caption datasets (Section 3).

• We show that LEMON outperforms all downstream task-unaware baselines for label error
detection in the classification setting, by up to 3.4% AUROC (Section 6.1).

• We empirically show that LEMON outperforms baselines in three out of four captioning
datasets, by up to 3.9% AUROC (Section 6.1).

• We demonstrate that LEMON improves performance on downstream classification and
captioning models by filtering out data predicted to be label errors. (Section 6.2).

• Finally, we verify that the predictions generated by LEMON are meaningful through a real
world analysis of LEMON on existing datasets without known label errors (Section 6.5).

2 RELATED WORKS

Label Noise Detection Noisy and incorrect labels (Beyer et al., 2020) in training data may lead
to decreased or “destabilized” (Northcutt et al., 2021a; Luccioni & Rolnick, 2023) performance on
downstream tasks (Chen et al., 2023; Northcutt et al., 2021b). Two orthogonal approaches can be
taken to reduce the adverse effects of such labels: developing methods to learn in the presence of
label errors (Cui et al., 2020; Natarajan et al., 2013; Huang et al., 2023), and/or detecting and filtering
out instances with label errors (Zhu et al., 2024). In this work, we focus on the latter approach. Prior
approaches (Swayamdipta et al., 2020; Bahri et al., 2020; Pleiss et al., 2020; Northcutt et al., 2021a;
Liang et al., 2023; Wu et al., 2020; Kim et al., 2021) for automatic label error detection include
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relying on the training dynamics of task-specific downstream models (Swayamdipta et al., 2020) and
neighborhood-based strategies (Bahri et al., 2020; Grivas et al., 2020). Some of these techniques
are fully supervised (Northcutt et al., 2021a; Chen et al., 2023) or unsupervised (Pleiss et al., 2020;
Swayamdipta et al., 2020; Grivas et al., 2020; Bahri et al., 2020), use pre-trained generative models
(Gertz et al., 2024) or are fully training-free approaches (Zhu et al., 2022; Liang et al., 2023). Previous
approaches for label error detection closest to this work includes deep k-nearest neighbor (deep k-NN)
methods using k-NN entropy on vector space embeddings (Bahri et al., 2020; Grivas et al., 2020) and
SimiFeat (Zhu et al., 2022) which employs a local neighborhood-based voting or ranking for noise
identification. In contrast to these methods, our work enhances label noise detection by harnessing
information across multiple data modalities, such as image and text. Finally, though prior works may
have utilized the idea of semantic neighborhoods in multimodal data (e.g. for cross-modal retrieval)
(Thomas & Kovashka, 2020; 2022), we believe we are the first to extend concepts to the task of label
error detection by proposing a novel, theoretically justified score for identifying label errors.

Contrastive Learning Contrastive learning is a representation learning strategy that contrasts
positive and negative pairs of data instances (Chen et al., 2020; Misra & Maaten, 2020; Balestriero
et al., 2023) to learn an embedding space. The core idea is to embed similar data points (positive
pairs) closer together than dissimilar data points (negative pairs) (Schroff et al., 2015; Sohn, 2016;
Oord et al., 2018). In this work, we primarily utilize pre-trained models that use the CLIP loss (where
the pre-training objective is predicting which text caption goes is paired with which image) for jointly
embedding image and text data (Radford et al., 2021).

Image Captioning The goal of image captioning is to describe a given image (Fu et al., 2024)
in natural language. Prior approaches for caption generation have included supervised training of
end-to-end models from scratch (Wang et al., 2022b; Lin et al., 2022; Hu et al., 2023; Xu et al.,
2015; Fu et al., 2024). More recently, vision-language models pretrained on large datasets of noisy
image-caption pairs extracted from the web (Li et al., 2022; 2023; Wang et al., 2022a) – such as
CC12M (Changpinyo et al., 2021) – have been utilized for captioning. Some of the pretraining tasks
include image-text contrastive learning, image-text matching, and/or retrieval (Li et al., 2022), as well
as general purpose text generation conditioned on an input image (Wang et al., 2022a). Given that
datasets for training such large models are noisy (Kang et al., 2023), several steps have been utilized in
prior work to filter out noisy captions during training. The most common strategy involves computing
the similarity between representations of the image and caption text using another pretrained model
(e.g., CLIP) prior to training (Kang et al., 2023). Another approach in training the BLIP (Li et al.,
2022) model is to synthetically generate noisy captions and train a classifier to distinguish between
high quality captions and noisy captions with a cross-entropy loss (Li et al., 2022). To the best of our
knowledge, no previous work has conducted a comprehensive comparison of various strategies for
label error detection in captioning datasets.

Multimodal Neighborhood Methods Previous studies (Li et al., 2021; Thomas & Kovashka,
2020; 2022; Huang et al., 2024; Liang et al., 2022; Cai et al., 2023) have examined the geometry
of neighborhood spaces in multimodal models, often with the goal of improving representation
learning (Huang et al., 2024; Li et al., 2021) or retrieval (Thomas & Kovashka, 2020; 2022). The
closest related work is Thomas & Kovashka (2022), where the authors use the semantic neighborhood
of multimodal models to identify samples with high semantic diversity using text-based neighbors of
neighbors. However, as the objective of their work is different from ours, their proposed discrepancy
and diversity scores would not provide a signal for label error in our setting. We further clarify this in
Appendix B, and will empirically compare against their discrepancy score as a baseline. Although
prior works have utilized the idea of multimodal neighbors in other settings, we believe we are the
first to apply it to the setting of label error detection.

3 LEMON: LABEL ERROR DETECTION USING MULTIMODAL NEIGHBORS

We are given a dataset D = {(x,y)Ni=1} consisting of two modalities x ∈ X and y ∈ Y . For
example, X may represent the set of all natural images, and Y may represent the set of all English
text, or a restricted subset such as {cat,dog, ...}. We assume the existence of, but not access to, an
oracle f∗ : X × Y → {0, 1}, which is able to assign a binary mislabel indicator zi = f∗(xi,yi) to
each sample in D. Here, zi = 1 indicates that the sample is mislabeled, and zi = 0 indicates that the
sample is correctly labeled. Our goal is to output a score s ∈ R with some model s := f(x,y) such
that

AUROC = E(x,y)∼P(·|z=1),(x′,y′)∼P(·|z=0)[1f(x,y)≥f(x′,y′)]

3
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is maximized. Prior works have alternatively aimed to maximize the F1 score, optimizing over a
threshold t:

F1 = max
t∈R

2 · P(z = 1|s ≥ t) · P(s ≥ t|z = 1)

P(z = 1|s ≥ t) + P(s ≥ t|z = 1)

Here, building on prior work for label error detection in unimodal data (Bahri et al., 2020; Zhu et al.,
2022), we propose a method for f based on nearest neighbors, summarized in Figure 2. Suppose
we have a query sample (x,y)1. Define B(x, r) := {x′ ∈ X : dX (x,x′) ≤ r}, the ball of radius
r around x, and B(y, r) similarly. Let rk(x) := inf{r : |B(x, r) ∩ D| ≥ k}, the minimum radius
required to encompass at least k neighbors. Then, we define {xn1

,xn2
, ...,xnk

} := B(x, rk(x))∩D
the top k nearest neighbors of x, and {ym1 ,ym2 , ...,ymk

} := B(y, rk(y)) ∩ D the top k nearest
neighbors of y2. We assume that the neighbors are sorted in order of ascending distance, e.g.
dX (x,xn2) ≥ dX (x,xn1).
If Y is a small discrete set, we could choose d(y,y′) = 1y=y′ . If X or Y are unstructured or high
dimensional, we assume access to multimodal encoders hθ = (hX

θ , hY
θ ), where hX

θ : X → Rd and
hY
θ : Y → Rd. Here, hθ may be a CLIP model (Radford et al., 2021) trained on a large internet

corpus, or, as we show later, it may be sufficient to train hθ from scratch only on D. Then, we
could naturally use simple distance metrics in the embedding space, such as the cosine distance
dX (x,x′) = dcos(h

X
θ (x), hX

θ (x′)) = 1 − hX
θ (x)ThX

θ (x′)

||hX
θ (x)||2·||hX

θ (x′)||2
. Our proposed score is the linear

combination of three terms:
s = f(x,y) = dmm(x,y) + βsn(x,y,D) + γsm(x,y,D), (1)

where β, γ ≥ 0 are hyperparameters. Here, dmm(x,y) := dcos(h
X
θ (x), hY

θ (y)) is the multimodal
distance, which has been shown empirically to provide a meaningful signal in prior label error
detection work (Liang et al., 2023; Kang et al., 2023). We thus use this distance as the basis, and
augment it with two additional terms based on nearest neighbors:

sn(x,y,D) =
1

k

k∑
j=1

dY(y,ynj )e
−τ1,ndX (x,xnj

)e−τ2,ndmm(xnj
,ynj

), (2)

where (xnj ,ynj ) ∈ D, and τ1,n, τ2,n ≥ 0 are hyperparameters. This corresponds to finding the
nearest neighbors of x in X space, then averaging the distance between their corresponding modality
in Y and y. We weight this average with two additional terms. The τ1,n term corresponds to
downweighting neighbors which are far from x. Intuitively, this is useful when k is too large for x
and not all neighbors are relevant, and can be thought of as an adaptive k. The τ2,n term corresponds
to downweighting neighbors which are themselves likely to be mislabeled. If (xnj ,ynj ) is itself
mislabeled, then dY(y,ynj

) would contribute an erroneous signal to whether (x,y) is mislabeled,
and we thus want to downweight those instances.
The third term is analogous to sn, but uses neighbors of y:

sm(x,y,D) =
1

k

k∑
j=1

dX (x,xmj
)e−τ1,mdY(y,ymj

)e−τ2,mdmm(xmj
,ymj

), (3)

where (xmj ,ymj ) ∈ D, and τ1,m, τ2,m ≥ 0 are hyperparameters. Crucially, note that notationally,
xnj

̸= xmj
, and ynj

̸= ymj
. Specifically, ynj

corresponds to the Y modality of nearest neighbors
taken in X space, and ymj

corresponds to the nearest neighbors of y taken in Y space.
We note that our method is a generalization of several prior methods. When β = γ = 0, the method
is equivalent to CLIP similarity (Liang et al., 2023). When β is large, τ1,n = τ2,n = γ = 0, and
d(y,ynj

) = 1y=ynj
, the method is equivalent to Deep kNN (Bahri et al., 2020). An algorithm

outline and high-level description of the method can be found in Appendix C.
Our method contains several hyperparameters: k, β, γ, τ1,n, τ2,n, τ1.m, and τ2,m. When there is
a validation set with known mislabel flags, we perform a grid search over k, and use numerical
optimization methods to search for an optimal value of the remaining hyperparameters which
maximize label error detection performance on this set, which we describe further in Section 5.2. We
refer to our method in this setting as LEMONOPT. We will empirically show that only a few hundred
labeled validation samples may be sufficient to achieve optimal performance in this setting.

1One could take, for any i, (x,y) := (x,y)i, D
′ := D \ {(x,y)i}

2We will use a subscript nj to index nearest neighbors in X , and subscript mj for neighbors in Y .
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When there is no labeled validation set available, we will show that our method is fairly robust to these
hyperparameter choices, and that choosing a set of reasonable fixed values for these hyperparameters
yields nearly comparable results. We refer to our method in this setting as LEMONFIX.

4 THEORETICAL ANALYSIS

First, we demonstrate that the embedding models trained via the contrastive multimodal objective are
natural noisy label detectors.
Theorem 4.1 (Contrastive Multimodal Embedding Models Detect Noisy Labels). Let Y = R
and consider a training dataset D. Suppose that ĥX

θ : X → Rd is an embedding function, and
ĥY
θ : Y → Rd is a Lipschitz continuous embedding function with constant LY > 0, meaning that for

all y, y′ ∈ Y , ∥∥∥ĥY
θ (y)− ĥY

θ (y
′)
∥∥∥
2
≤ LY |y − y′|.

For an input x ∈ X and its corresponding positive label y ∈ Y , let η be a random variable drawn from
a normal distribution: η ∼ N (0, σ2). Define a noisy label y′ = y + η. Let dmm(u, v) = ||u− v||2,
which is proportional to

√
dcos(u, v) when ||u||2 = ||v||2 = 1. Then, with probability at least

δ(ϵ) = 1 − 2Φ
(
− ϵ

σ

)
, where ϵ > 0 and Φ is the cumulative distribution function of the standard

normal distribution, the following inequality holds:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LY ϵ.

When LY is small, this means that the score for the mislabeled sample cannot be much lower than
the score for the positive pair with high probability. Thus, we can see that multimodal embeddings
are inherently capable of detecting mislabeled pairs, ensuring the distance between the embeddings
of positive pairs is smaller than that of negative pairs. This motivates the use of dmm in LEMON and
in prior work (Kang et al., 2023; Liang et al., 2023).
Next, we show that our multimodal kNN scores (Equations (2) and (3)) provide a signal for label error.
Suppose there exists a “paraphrase function” H : Y → P(Y), where P denotes the powerset, such
that for a particular sample (x, y) with H(y) = (ȳ1, ȳ2..., ), (x, ȳi) is considered correctly labeled
for all ȳi ∈ H(y). Informally, H outputs the set of all possible captions which correctly describe x.
Similarly define J (x), which outputs the set of images with identical semantics as x.
Assumption 1 (Structure of H, J ):

• Let (x′, y′) be an arbitrary sample. If y′ ̸∈ H(y), then x′ ̸∈ J (x).
• Let (x′, y′) be an arbitrary mislabeled sample. Then, ∀y′′ ∈ H(y′), x′′ ̸∈ J (x′).

Assumption 2 (Distribution of Distances): Let (X,Y ) be a randomly drawn sample.

• ∀ X ′ ̸∈ J (X) : dX (X,X ′)
iid∼N (µ1, σ

2
1) .

• ∀ X̄ ∈ J (X) : dX (X, X̄)
iid∼N (µ2, σ

2
2) .

We empirically validate this assumption in Appendix A.3.

Let Nk(Y ) = {Ym1
, ..., Ymk

} denote the nearest neighbors of Y in the text space. Let 1
k |H(Y ) ∩

Nk(Y )| = ζY , a random variable. Suppose that 1
k |{i : (Xmi

, Ymi
) is mislabeled}| = p is constant

for all samples in the support of (X,Y ).

Let Sm(X,Y ) = 1
k

∑
Ymi

∈Nk(Y ) dX (X,Xmi), which is identical to the proposed Equation (3) with
τ1 = τ2 = 0.
Theorem 4.2 (AUROC of kNN Score). Let (X,Y ) be a randomly selected correctly labeled sample,
and (X ′, Y ′) a randomly selected incorrectly labeled sample. Under Assumptions 1 and 2:

P(Sm(X ′, Y ′) > Sm(X,Y )) = 1− Φ(
−µ

σ
)

where µ = E[ζY ](1−p)(µ1−µ2), σ =

√
E[ζY ](1−p)σ2

2+(2−E[ζY ](1−p))σ2
1

k +Var(ζY )(1− p)2(µ2 − µ1)2,
and Φ is the Gaussian CDF.

This provides an expression for the detection AUROC of the score Sm. The same expression can be
derived for Sn by symmetry.

5
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Lemma 4.3 (Non-random Signal of kNN Score). If the following three conditions hold: (1) p < 1,
(2) E[ζY ] > 0, (3) µ1 > µ2. Then,

P(Sm(X ′, Y ′) > Sm(X,Y )) > 0.5

Under these conditions, Sm, our proposed multimodal neighborhood score, provides a better than
random signal at detecting mislabeled samples. Full proofs can be found in Appendix A.

5 EXPERIMENTS

5.1 DATASETS

We evaluate our method using eight datasets, as shown in Table 1. Four datasets (cifar10,
cifar100, stanfordCars, miniImageNet) are label error detection datasets from the clas-
sification setting. The four remaining datasets are image captioning datasets. For mscoco and
flickr30k, we use the Karpathy split (Karpathy & Fei-Fei, 2015). In the remaining datasets, we
randomly split each dataset into three parts in an 80-10-10 ratio: training or reference set for the
label detection method, validation set for hyperparameter selection, and test set for testing label error
detection performance.

Table 1: Classification and captioning datasets. n is the number of samples. In the main paper,
results shown are for the bolded noise type with 40% noise level for synthetic noise. Performance on
remaining noise types can be found in the appendices.

Dataset n Domain Noise Types
Train Validation Test Image Text

cifar10 40,000 5,000 5,000 Natural images Object labels {human (Wei et al., 2021), sym., asym.}
cifar100 40,000 5,000 5,000 Natural images Object labels {human (Wei et al., 2021), sym., asym.}
miniImageNet (Jiang et al., 2020) 49,419 24,710 24,710 Natural images Object labels {real}
stanfordCars (Jiang et al., 2020) 13,501 6,751 6,752 Car images Car year and model {real}
mscoco (Lin et al., 2014) 82,783 5,000 5,000 Natural images Captions {cat., noun, random}
flickr30k (Young et al., 2014) 29,000 1,014 1,000 Natural images Captions {noun, random}
mmimdb (Arevalo et al., 2017) 15,552 2,608 7,799 Movie Posters Plot summaries {cat., noun, random}
mimiccxr (Johnson et al., 2019) 368,909 2,991 5,159 Chest X-rays Radiology reports {cat., random}

5.1.1 NOISE TYPES

In cifar10 and cifar100, we utilize a dataset collected in prior work (Wei et al., 2021) with
human mislabels (human). We also follow prior work (Zhu et al., 2022) in experimenting with
class symmetric (sym.) and class asymmetric (asym.) synthetic noise. For stanfordCars and
miniimagenet, we use datasets from Jiang et al. (2020), which contain noise from real-world
(real) web annotators .
For the four captioning datasets, we devise several ways to inject synthetic noise of prevalence p. The
simplest way is to randomly select p fraction (random) of the samples and assign their text modality
to be that of another random caption. In datasets where additional metadata is available (mscoco:
object category, mmimdb: genre of movie, mimiccxr: disease label), we can randomly swap the
caption with that of another sample from the same category (cat). Finally, in all captioning datasets
except mimiccxr, we tag each token of each caption with its part-of-speech using SpaCy (Honnibal
& Montani, 2017), and then randomly assign a selected sample’s text modality to be from another
sample with at least one noun in common (noun). Dataset processing details are also in Appendix D.
Our motivation for these noise types is to simulate an array of realistic label corruptions that one
might face in the real world. We recognize that the resulting synthetic dataset may not have exact
noise level p, as e.g. a randomly selected caption may actually be correct for the image, as well as
noise in the base datasets, which we explore in Section 6.5. Unless otherwise stated, results shown in
the main paper are for the bolded noise type in Table 1, with 40% synthetic noise. Additional results
for other noise types can be found in the appendices.

5.2 MODEL SELECTION AND EVALUATION

We run LEMON on each dataset, using the training split of each dataset to compute nearest neighbors.
In classification datasets, we use the discrete metric dY(y,y′) = 1y=y′ . In all other cases and for dX ,
we utilize cosine or euclidean distance computed in the embedding space of a pretrained CLIP model,
selecting the best distance metric on the validation set for LEMONOPT, and keeping the distance as
the cosine distance for LEMONFIX. In mimiccxr, we use BiomedCLIP (ViT-B/16) (Zhang et al.,
2023b), and we use OpenAI CLIP ViT-B/32 (Radford et al., 2021) for all other datasets. A full list of
hyperparameters for our method and the baselines are in Appendix G.
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Table 2: Label error detection performance across classification datasets. We separate AUM, Datamap,
and Confident learning, as they require training a classifier from scratch. Bold denotes best score
within each training approach. A full version of this table with AUPRC can be found in Appendix I.1.

Method cifar10 cifar100 miniImageNet stanfordCars

AUROC F1 AUROC F1 AUROC F1 AUROC F1
AUM 98.3 (0.1) 94.0 (0.1) 92.2 (0.2) 83.8 (0.4) 83.1 (0.2) 75.3 (0.2) 70.5 (2.4) 62.3 (1.2)
Datamap 98.2 (0.1) 93.4 (0.5) 91.8 (0.2) 83.5 (0.6) 85.0 (0.2) 77.0 (0.2) 72.3 (1.8) 64.9 (2.1)
Confident 93.7 (0.4) 92.7 (0.5) 74.1 (1.7) 69.3 (2.0) 70.5 (0.2) 54.7 (0.4) 61.0 (0.5) 43.4 (1.6)

CLIP Logits 95.5 (0.2) 88.0 (0.5) 84.9 (0.7) 75.5 (0.5) 90.0 (0.2) 82.5 (0.2) 68.8 (0.7) 64.9 (0.4)
CLIP Sim. 93.8 (0.1) 86.9 (0.4) 78.5 (0.6) 69.2 (1.3) 89.3 (0.2) 81.3 (0.5) 69.8 (0.6) 61.7 (0.8)
Simifeat-V 90.6 (0.3) 88.0 (0.4) 79.5 (0.0) 73.1 (0.5) 68.2 (0.3) 55.0 (0.5) 63.7 (1.2) 43.7 (1.5)
Simifeat-R 90.7 (0.3) 88.1 (0.5) 79.7 (0.2) 73.6 (0.6) 68.0 (0.3) 54.7 (0.4) 63.5 (1.3) 43.4 (1.6)
Discrepancy 77.1 (1.9) 68.2 (1.9) 66.0 (1.5) 51.9 (1.8) 79.4 (0.3) 69.8 (0.4) 65.7 (0.7) 59.9 (0.4)
Deep k-NN 97.8 (0.1) 92.5 (0.5) 87.4 (0.3) 78.0 (0.3) 83.2 (0.2) 75.2 (0.4) 71.4 (0.6) 65.3 (0.9)
LEMONFIX (Ours) 97.7 (0.2) - 88.9 (0.7) - 89.5 (0.2) - 72.6 (0.7) -
LEMONOPT (Ours) 98.1 (0.0) 93.1 (0.2) 90.8 (0.0) 81.3 (0.2) 90.2 (0.2) 82.3 (0.1) 73.1 (0.5) 67.3 (1.0)

For LEMONOPT, we select the hyperparameter combination that maximizes F1 on a labeled validation
set. We report the AUROC, AUPRC, and F1 for this model. For LEMONFIX, we fix the hyperparame-
ters at the following reasonable values: k = 30, β = γ = 5, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5.
We report AUROC and AUPRC, as the F1 requires additional information to compute a threshold for
the score. We recognize that access to such a validation set as in LEMONOPT may be unrealistic, but
we will empirically show that (1) our method is fairly robust to selection of these hyperparameters,
(2) only a few hundred labeled samples may be sufficient to select these hyperparameters, (3) using
LEMONFIX with the fixed hyperparameter setting described above achieves nearly comparable results,
and (4) hyperparameters optimized on a dataset with synthetic noise may transfer well to real datasets.
We repeat each experiment three times, using a different random seed for the noise sampling (for
human and real noise, we use a different random data split). Performance metrics shown are test-set
results averaged over these three runs, with error bounds corresponding to one standard deviation.

Baselines We compare our method versus previous state-of-the-art in both the classification and
captioning settings. We additionally adapt several baselines from the classification setting to the
captioning setting. We briefly list the baselines here, and a detailed description is in the Appendix E.

Classification In the classification setting, we experiment with the following baselines which require
training a classifier on the particular dataset: AUM (Pleiss et al., 2020), Datamap (Swayamdipta
et al., 2020), and Confident Learning (Northcutt et al., 2021a), and the following baselines which do
not require classifier training: Deep k-NN (Bahri et al., 2020), SimiFeat (Zhu et al., 2022)-Voting and
Ranking, discrepancy in the image space (Discrepancy) (ΥDIS

X from Thomas & Kovashka (2022))
CLIP Similarity (Kang et al., 2023), and CLIP Logits (Liang et al., 2023; Feng et al.).

Captioning In the captioning setting, we compare our method with LLaVA (Liu et al., 2024)
prompting (v1.6-vicuna-13b), and CapFilt (Li et al., 2022). We note that the latter can be viewed
as an oracle for natural image captioning, as it has been trained in a supervised manner on clean
mscoco data. CLIP Similarity (Kang et al., 2023), Discrepancy (Thomas & Kovashka, 2022),
and Datamap (Swayamdipta et al., 2020) can also be used directly in this setting. Finally, to adapt
classification baselines to captioning, we embed the captions using the corresponding CLIP text
encoder, and then use K-means clustering to assign the text caption into one of 100 clusters. We then
apply Deep k-NN (Bahri et al., 2020) and Confident Learning (Northcutt et al., 2021a), using the
cluster ID as the discretized class.

6 RESULTS

6.1 LEMON OUTPERFORMS BASELINES ON LABEL ERROR DETECTION

Classification In Table 2, we show the performance of LEMON against the baselines for label
error detection on four classification datasets. We find that our method outperforms existing baselines
which do not require classifier training on all classification datasets. Two downstream-task specific
approaches (AUM and Datamap) outperform most training-free models (particularly on cifar10),
but LEMON performs comparably and even outperforms them in two datasets. Similar results are
also observed on the two synthetic error types (see Appendix Table I.2). We find that LEMONFIX

performs almost comparably with LEMONOPT, and still beats almost all baselines.
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Table 3: Label error detection performance on captioning datasets. Bold denotes best (highest) score.
A full version of this table with AUPRC can be found in Appendix I.2.

Method flickr30k mscoco mmimdb mimiccxr

AUROC F1 AUROC F1 AUROC F1 AUROC F1
LLaVA 79.3 (0.8) 65.0 (1.1) 80.3 (0.1) 74.9 (0.3) 58.4 (0.2) 58.5 (0.1) 53.9 (0.5) 28.7 (0.1)
Datamap 54.0 (1.8) 28.2 (2.1) 49.9 (0.7) 28.6 (0.0) 50.1 (0.5) 28.9 (0.3) 50.2 (0.9) 28.9 (0.4)
Discrepancy 73.0 (0.6) 64.7 (1.7) 72.7 (0.3) 67.3 (0.9) 57.4 (0.4) 40.2 (1.7) 60.0 (0.8) 32.8 (2.8)
Deep k-NN 71.1 (0.4) 64.8 (2.7) 76.6 (0.4) 73.2 (0.3) 58.7 (0.7) 44.5 (1.0) 62.9 (0.4) 46.0 (4.4)
Confident 61.6 (0.5) 54.3 (0.8) 66.4 (1.2) 58.9 (1.5) 52.8 (0.8) 53.6 (0.7) 60.2 (0.3) 59.4 (0.1)
CLIP Sim. 94.8 (0.5) 88.1 (0.7) 93.8 (0.2) 87.5 (0.3) 85.1 (0.3) 74.5 (0.3) 64.1 (0.4) 48.6 (3.4)
LEMONFIX (Ours) 93.6 (0.2) - 92.0 (0.1) - 84.3 (0.3) - 66.5 (0.2) -
LEMONOPT (Ours) 94.5 (0.2) 87.7 (0.9) 95.6 (0.2) 89.3 (0.2) 86.0 (0.1) 76.3 (0.1) 70.4 (2.3) 57.0 (1.6)

CapFilt (Supervised Training) 98.6 (0.1) 94.8 (0.5) 99.3 (0.0) 96.2 (0.3) 82.7 (0.7) 71.6 (0.8) 49.2 (0.3) 28.5 (0.0)
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Figure 3: Downstream classification accuracy on
cifar10 (left) and cifar100 (right) with LEMONOPT

with human noise versus the baselines. Note that the noise
prevalence is 40% in both datasets.

Dataset Method B@4 CIDER ROUGE

flickr30k

No Filtering 28.1±1.1 64.6 ±2.6 49.6±0.7
CLIP Sim. 29.7±1.0 71.8 ±1.8 50.7±0.5

LEMONOPT 29.6±0.9 71.2 ±2.0 50.7±0.6
Clean 30.8±0.5 74.1 ±1.2 51.7±0.4

mscoco

No Filtering 35.1 ±0.4 116.7 ±1.5 56.4±0.4
CLIP Sim. 37.9 ±0.4 126.7 ±0.7 58.4±0.3

LEMONOPT 38.4 ±0.2 127.3 ±0.2 58.5±0.1
Clean 38.0 ±0.2 126.9±0.5 58.4±0.2

Table 4: Downstream captioning per-
formance when removing 40% sam-
ples with highest mislabel scores. We
observe that filtering noisy data with
LEMONOPT improves captioning.

Captioning In Table 3, we find that our method outperforms existing neighborhood and similarity-
based baselines on three datasets. In two datasets, our model underperforms an open-sourced fully
supervised model (CapFilt), where the training objective included distinguishing between accurate
and incorrect captions. Results for synthetic error types show similar trends (see Appendix I.2).

Label Error Detection Performance Consistent Across Noise Ranges In Figure I.1, we show the
performance of LEMON versus the CLIP similarity baseline on mscoco and mmimdb, varying the
level of the synthetic noise. We find that LEMON performs better uniformly across noise levels.

Size of Labeled Validation Set In Appendix Figure I.3, we examine how varying the size of the
labeled validation set impacts the performance of LEMONOPT. We find that in all four captioning
datasets, having about 100-500 labeled examples is sufficient to tune hyperparameters in LEMONOPT

to outperform LEMONFIX. In the three datasets where LEMONFIX underperforms the CLIP similarity
baseline, we find again that having 100-500 labeled validation samples is sufficient for tuning
LEMONOPT to perform on par with this baseline.

Robustness to Hyperparameters Here, we test the robustness of our method when there is no
labeled validation set available. First, in Appendix I.4, we visualize the F1 of the selected score when
varying β and γ, keeping all other hyperparameters at their selected optimal values. We find that for
most datasets and noise types, there is a reasonably large space of such hyperparameters, bounded
away from the origin, which achieves close to optimal performance.
Next, we compare the performance of LEMONOPT and LEMONFIX with hyperparameters described
in Section 5.2 across all datasets in Table I.8. We find that when there is no labeled validation set
available, using these hyperparameters results in an AUROC drop of only 1.6% on average (std =
1.3%), with a worst-case AUROC drop of 3.9% across all 18 dataset and noise type combinations.
Thus, even when a labeled validation set is not available, LEMONFIX with reasonable hyperparameter
settings is able to outperform most baselines which do use such information.

6.2 FILTERING MISLABELED DATA IMPROVES DOWNSTREAM PERFORMANCE

Classification To assess the impact of label error detection on the performance of the downstream
classification tasks, we filter out samples from the training set with mislabel scores in the top q
percentile. We vary q, train ViT (Dosovitskiy et al., 2020) models on the filtered dataset, and evaluate
the downstream test accuracy using clean data. We compare the performance of LEMONOPT with
all training-free baselines that produce a continuous score (i.e. all except Simifeat and Confident).
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In Figure 3, we find that training with LEMONOPT filtered samples leads to the highest accuracy on
cifar10 (96.84%), after removing more than 20% of the data. Training with LEMONOPT filtered
samples is also on par with baselines on the other datasets (either outperforming or within 0.5% points
of best baseline) as shown in Appendix I.14. Further, unlike other baselines, LEMoN is consistently
in the top-2 best performing methods across all four datasets. We also show that filtering data in this
manner does not reduce classifier robustness (Appendix I.16).

Captioning We finetune a pre-trained Huggingface checkpoint3 of a transformer decoder condi-
tioned on CLIP image and text tokens – the GenerativeImage2Text (GIT) (Wang et al., 2022a) model
– to generate captions. Note that this model is pre-trained on mscoco, and evaluated on the Karpathy
test split following Wang et al. (Wang et al., 2022a). Given the large size of the model, we use the
parameter-efficient Low-Rank Adaptation (LoRA) (Hu et al., 2021) for all captioning models. We
train models with clean data, noisy captions (No Filtering), and by filtering data detected as being
mislabeled by a label detection method. In Table 4, we compare results of using either our model
or a strong baseline (CLIP Sim.) for filtering data, as measured by the BLEU-4 (Papineni et al.,
2002), CIDER (Vedantam et al., 2015), and ROUGE (Lin, 2004) scores. In all cases, we filtered out
the top-40% percentile of data predicted to be mislabeled (i.e., equal to the expected prevalence of
noisy data). We find that (1) filtering out data predicted to be mislabeled helps recover performance
as compared to training on fully clean data along multiple metrics, and (2) our method performs
comparably to the baseline in improving downstream results, with some marginal improvements over
CLIP Similarity on mscoco.

6.3 ABLATIONS

In Table I.9, we show the performance of our method after ablating each component. We find that
mislabel detection performance almost decreases monotonically as we remove additional components
until we reach the CLIP Similarity baseline. We find that ablating the τ1 and τ2 terms results in
a performance loss of about 1%. In Table I.10, we examine the performance of each of the three
components of our score and their combinations. We find that dmm is the most critical term. Of
the two nearest neighbors terms, we find that sn (nearest image neighbors) is more important in
general, though this is highly dataset dependent, e.g. error detection in mmimdb relies much more on
neighbors in the text space than the image space, while the opposite is true for mscoco.

6.4 EXTERNAL PRETRAINING MAY NOT BE REQUIRED

Table 5: Performance of LEMON for label error detection versus the CLIP similarity baseline on
mimiccxr, when external pretrained models may not be available. BiomedCLIP (Zhang et al.,
2023a) is trained on a large corpus of biomedical image-text pairs. We find that pretraining only on
noisy data from MIMIC-CXR outperforms BiomedCLIP, though pretraining on clean mimiccxr
data (as in CheXzero (Tiu et al., 2022)) does perform better.

Random Noise Cat. Noise
AUROC AUPRC F1 AUROC AUPRC F1

BiomedCLIP Clip Sim. 66.8 (0.8) 54.4 (0.9) 54.3 (1.0) 64.1 (0.4) 51.7 (0.5) 48.6 (3.4)
LEMONFIX (Ours) 69.5 (0.7) 57.8 (1.0) - 66.5 (0.2) 54.8 (0.4) -
LEMONOPT (Ours) 73.1 (0.9) 63.0 (2.0) 63.1 (3.6) 70.4 (2.3) 60.3 (2.3) 57.0 (1.6)

CLIP Pretrain On
Noisy Data

Clip Sim. 78.8 (0.1) 73.4 (0.5) 70.7 (0.5) 76.5 (0.5) 71.2 (0.4) 67.9 (0.7)
LEMONFIX (Ours) 80.5 (0.1) 76.1 (0.5) - 77.0 (0.5) 72.4 (0.3) -
LEMONOPT (Ours) 80.5 (0.1) 76.7 (0.3) 72.8 (0.7) 77.2 (0.8) 72.4 (0.6) 68.7 (0.2)

CheXzero Clip Sim. 90.8 (0.0) 89.5 (0.0) 82.9 (0.2) 88.4 (0.6) 86.4 (0.7) 79.8 (0.7)
LEMONFIX (Ours) 91.4 (0.1) 90.4 (0.0) - 88.4 (0.7) 87.0 (0.6) -
LEMONOPT (Ours) 91.6 (0.3) 90.5 (0.4) 84.4 (0.5) 89.0 (0.3) 87.0 (0.6) 80.9 (0.6)

Medical Images Thus far, all of the results for LEMON (and CLIP Similarity) have utilized CLIP
models which have been pretrained on external datasets (e.g. PMC-15M in the case of BiomedCLIP).
Here, we examine whether this is necessary, or whether we can achieve comparable performance
by pretraining CLIP from scratch only on the noisy data. We select mimiccxr as it has the most
samples out of all captioning datasets. Similar to CheXzero (Tiu et al., 2022), we pretrain a CLIP
ViT B/16 from scratch on the mimiccxr training set with 40% noise. We train this model for 10
epochs with a batch size of 64, and do not do any model selection or early stopping. We then apply
LEMON and the CLIP similarity baseline using this model, for the same noise level and noise type.

3https://huggingface.co/microsoft/git-base
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We present our results in Table 5. Surprisingly, we find that pretraining CLIP only on noisy data from
MIMIC-CXR actually outperforms BiomedCLIP. This could be attributed to the pretraining domain
(chest X-rays and radiology notes) matching the inference domain exactly (Nguyen et al., 2022). As
an upper bound, we evaluate the same methods using CheXzero (Tiu et al., 2022), which has been
pretrained on clean MIMIC-CXR data. We find that, as expected, it far outperforms this baseline.
We conclude that, for large noisy datasets, pretraining a CLIP model from scratch could be a viable
solution, though pretraining on clean data from the same domain is certainly superior.

Web-Scale Corpus Motivated by this result, we conduct a large scale experiment on the CC3M
dataset (Changpinyo et al., 2021), which contains 2.9 million valid URLs to image-caption pairs. We
pretrain CLIP from scratch on this dataset, then use this CLIP model to filter samples in the original
dataset using LEMONFIX and the CLIP similarity baseline. We select the 1 million samples with
the lowest mislabel scores from each method, and pretrain another CLIP from scratch on this clean
subset. We evaluate the resulting model on zero-shot classification using the VTAB benchmark (Zhai
et al., 2019). We find filtering with LEMoN marginally outperforms the baseline on average zero-shot
accuracy, though both underperform pretraining on the full corpus. Full details are in Appendix I.9.
We additionally conduct an experiment on Datacomp (Gadre et al., 2024) in Appendix I.10

6.5 REAL-WORLD ANALYSIS

We conduct a preliminary study of LEMON on real datasets without known label errors. We run
LEMONFIX and the CLIP similarity baseline on cifar10, cifar100, flickr30k, and mscoco.
As no labeled validation set is available, we use optimal hyperparameters from models previously run
on each dataset with synthetic noise from Section 6.1 (Appendix I.11). For each dataset, we select the
top 200 images from the validation and test splits with the highest mislabel scores. We then manually
annotated each sample to determine whether it was mislabeled. Crucially, during labeling, images
were randomly selected, so the labeler is unaware of whether the candidate image originated from
the baseline or our method. We present the accuracy of each method in Table 6. We find that our
method outperforms the baseline for every dataset, though we recognize that this is a small-scale
study and that many images are ambiguous. Examples of real-world mislabels are also in Figures 1
and I.5. We present a further comparison of our identified error sets in cifar10 and cifar100
with a prior work (Northcutt et al., 2021b) which obtained crowd-sourced labels for these datasets in
Appendix I.13.

7 CONCLUSION

Table 6: We manually label 200 images
from real-world datasets that each method
identifies as the most likely to be mislabeled
and show the percentage (%) of times where
it is actually mislabeled. Numbers in paren-
theses are 95% confidence intervals from a
binomial proportion.

CLIP Sim. Ours

cifar10 5.5 (3.2) 10.0 (4.2)
cifar100 11.0 (4.3) 20.5 (5.6)

flickr30k 32.5 (6.5) 41.0 (6.8)
mscoco 19.5 (5.5) 25.5 (6.0)

In this work, we proposed LEMON, a novel method
that leverages the neighborhood structure of con-
trastively pretrained multimodal embeddings to auto-
matically identify label errors in image datasets with
natural language text labels.
Limitations: Our work has some limitations. For
example, we primarily rely on existing open-sourced
datasets. While some parts of these datasets may have
been used as training data in large pretrained models,
we specifically chose pretrained models that take care
not to include the test sets of such datasets. Further,
we run experiments on a real-world healthcare dataset
(mimiccxr) to verify our results. Second, in our eval-
uations, we assume that there exists an oracle binary
indicator for whether a sample is mislabeled. As we saw in practice, real-world mislabels contain
much more uncertainty and ambiguity, e.g. due to blurry images (Gao et al., 2017; Beyer et al., 2020;
Basile et al., 2021; Gordon et al., 2021; 2022). Evaluating the effectiveness of our score as a measure
of this uncertainty, in the case of a non-binary target, is an area of future work.
Regardless, we believe that our approach is a promising step to automatically detecting and filtering
data mislabels at scale. Through experiments on multiple datasets with synthetic and real-world
noise, we demonstrated LEMON’s effectiveness in detecting label errors and its ability to improve
downstream model performance. Extending such methods to allow for correcting label errors is
another promising area of future work.
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A THEORETICAL RESULTS

A.1 PROOF: THEOREM 4.1

Since ĥY
θ is Lipschitz continuous with constant LY , for any y, y′ ∈ Y , we have:∥∥∥ĥY

θ (y
′)− ĥY

θ (y)
∥∥∥
2
≤ LY |y′ − y| = LY |η| (4)

Let dmm(u, v) = ||u− v||2 be the Euclidean distance. Note that when ||u||2 = ||v||2 = 1 (as in our
experiments), we have that ||u − v||2 =

√
2(1− uT v) =

√
2dcos(u, v), and so the two distances

provide the same ordering of scores. Applying the triangle inequality, we get:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
−

∥∥∥ĥY
θ (y)− ĥY

θ (y
′)
∥∥∥
2
.

When |η| ≤ ϵ, and substituting from Equation (4), it follows that:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LYϵ

Since η ∼ N (0, σ2), the probability that |η| ≤ ϵ is:

P (|η| ≤ ϵ) = 1− 2Φ
(
− ϵ

σ

)
= δ(ϵ),

where Φ is the cumulative distribution function of the standard normal distribution.
Thus, with probability at least δ(ϵ), we have:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LYϵ

When LY is small, this means that the score for the mislabeled sample cannot be much lower than
the score for the positive pair with high probability.

A.2 PROOF: THEOREM 4.2

Suppose that ζY is distributed such that supp(kζY (1 − p)) ⊆ {0, 1, ..., k}. For a correctly labeled
sample (X,Y ), we have that kζY (1− p) of the neighbors are relevant and have correct labels, and so
each contribute dX (X, X̄) to Sm(X,Y ), and all remaining samples are either incorrectly labeled, or
are not relevant to Y , and so each contribute dX (X,X ′). Since Sm(X,Y ) is the sum of iid Gaussians,
it is also a Gaussian, with:

E[Sm(X,Y )] =
1

k

(
E[E[d(X, X̄1) + ...+ d(X, X̄kζY (1−p))|ζ]] + E[E[d(X,X ′

1) + ...+ d(X,X ′
k−kζY (1−p))|ζ]]

)
= E[ζY ](1− p)µ2 + (1− E[ζY ](1− p))µ1

= E[ζY ](1− p)(µ2 − µ1) + µ1

Var[Sm(X,Y )] = E[Var(Sm(X,Y )|ζY )] + Var(E[Sm(X,Y )|ζY ])

= E[
1

k2
Var

(
d(X, X̄1) + ...+ d(X, X̄kζY (1−p)) + d(X,X ′

1) + ...+ d(X,X ′
k−kζY (1−p))|ζY

)
]

+ Var(E[Sm(X,Y )|ζY ])

= E[
1

k

(
ζY (1− p)σ2

2 + (1− ζY (1− p))σ2
1

)
] + Var(ζY (1− p)(µ2 − µ1) + µ1)

=
1

k

(
E[ζY ](1− p)σ2

2 + (1− E[ζY ](1− p))σ2
1

)
+Var(ζY )(1− p)2(µ2 − µ1)

2

Similarly,

S(X ′, Y ′) ∼ N (µ1,
σ2
1

k
)

Putting it all together:

P(Sm(X ′, Y ′)− Sm(X,Y ) > 0) = 1− Φ(
−µ

σ
)
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Figure A.1: Histogram of cosine distances in the CLIP image embedding space

Where µ = E[ζY ](1−p)(µ1−µ2), σ =
√

1
k (E[ζY ](1− p)σ2

2 + (2− E[ζY ](1− p))σ2
1) + Var(ζY )(1− p)2(µ2 − µ1)2,

and Φ is the Gaussian CDF. Note that Var(ζY ) is finite as ζY is bounded by [0, 1].
Setting µ > 0 gives Lemma 4.3.

A.3 EMPIRICALLY VALIDATING ASSUMPTION 2

To empirically validate Assumption 2, we utilize the training sets from the original CIFAR-
10 and CIFAR-100 datasets. As these are classification datasets, we naturally define J as:
x2 ∈ J (x1) ⇐⇒ y1 = y2, i.e. all images with the same label are paraphrases. We encode these
images using the image encoder from OpenAI CLIP ViT-B/32 (Radford et al., 2021), and utilize the
cosine distance as dX . We compute pairwise distance between all 40,000 samples, and categorize
these distances into either x′ ∈ J(x) or x′ ̸∈ J(x). We plot a histogram of these distances in Figure
A.1. Visually, both of these distributions appear to be normal, and we also observe that µ1 > µ2 from
Lemma 4.3. We then run a Shapiro–Wilk test on all four distributions to test for normality, randomly
subsampling to 100 samples, as the Shapiro-Wilk test is not suitable for large sample sizes (Ghasemi
& Zahediasl, 2012). We find that in all four cases, the null hypothesis cannot be rejected (p > 0.05),
and the test statistics are all greater than 0.97, indicating a high degree of normality.

B COMPARISON WITH THOMAS & KOVASHKA (2022)

The goal of Thomas & Kovashka (2022) to identify samples with semantic diversity, which is different
from our goal of identifying mislabeled examples. As such, their proposed scores (i.e. ΥDIS and
ΥDIV ) may not be effective in identifying mislabeled samples. As an example, consider the score
ΥDIS

Y , which computes the similarity between the original caption, and the captions of its second-
degree neighbors in text-space. Given a particular caption, e.g. “This is a plane from the front view”
in Figure 2, it could have second-degree neighbors in text-space that are semantically very similar
to this caption (e.g. “A plane facing the viewer”). However, only computing the distance of these
captions in text space does not provide any signal for whether the image is correctly paired to the
caption. Similarly, the ΥDIV scores also would not necessarily work, as the closeness of neighbors
to each other in either modality do not provide a signal for whether the original sample is mislabeled.
However, the score from Thomas & Kovashka (2022) that would intuitively provide a signal for
mislabeling is ΥDIS

X , which computes second-degree neighbors in text space, then examines simi-
larity between images. This is essentially the sum over dX (x,xmj ) terms in our Equation (3), but
using second-degree neighbors instead of nearest neighbors. In addition, our Equation (3) contains
two additional weighting terms (which we show improve label error performance in our ablation
experiments). Finally, our proposed score contains the sum of two additional terms, which are not
explored in Thomas & Kovashka (2022).

We compare the performance of our method against the ΥDIS
X score in the main paper, and show

performance of all four scores from Thomas & Kovashka (2022) in Appendix I.8.
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C LEMON ALGORITHM

Algorithm 1: LEMON: Label Error Detection Using Multimodal Neighbors

Input: Dataset D = {(xi,yi)}Ni=1, Multimodal encoders hX
θ , hY

θ , Distance functions dX , dY
Hyperparameters: k, β, γ, τ1,n, τ2,n, τ1,m, τ2,m
Output: Scores {si}Ni=1

1 Cache embeddings hX
θ (xi) and hY

θ (yi) for (xi,yi) ∈ D ;

2 Cache dmm(xi,yi) = 1− hX
θ (xi)·hY

θ (yi)

∥hX
θ (xi)∥2∥hY

θ (yi)∥2
for (xi,yi) ∈ D ;

3 for i = 1 to N do
4 Find indices {nj}kj=1 of k nearest neighbors of xi from D \ {(xi,yi)} using dX ; // dX

can use cached hX
θ

5 Find indices {mj}kj=1 of k nearest neighbors of yi from D \ {(xi,yi)} using dY ; // dY
can use cached hY

θ

6 Compute sn,i :=
1
k

∑k
j=1 dY(yi,ynj

)e−τ1,ndX (xi,xnj
)e−τ2,ndmm(xnj

,ynj
);

7 Compute sm,i :=
1
k

∑k
j=1 dX (xi,xmj )e

−τ1,mdY(yi,ymj
)e−τ2,mdmm(xmj

,ymj
);

8 si := dmm(xi,yi) + βsn,i + γsm,i

9 return s;

For each image-caption pair in the dataset, we first compute how similar the image and caption are to
each other using a pre-trained CLIP model (dmm), which gives a basic measure of how well they
match. To compute sm, we compute the nearest neighbors of the caption among other captions in
the dataset. For each neighbor, we look at how similar their corresponding image is to the original
image. The intuition is that if a sample is correctly labeled, the image should be similar to images
of other samples with similar captions. We weight each neighbor based on how close it is to our
original sample and how well-matched the neighboring pairs themselves are. Finally, we repeat this
for nearest neighbors in the image space to get sn. LEMON is then the weighted sum of these three
scores.

Table C.1: Notation and definitions used in Section 3.

Symbol/Notation Meaning

D Dataset consisting of samples (x,y)Ni=1
x,X First modality and its corresponding space (e.g., images)
y,Y Second modality and its corresponding space (e.g., text)
f∗ Oracle function that assigns a binary mislabel indicator zi
zi Mislabel indicator for sample i (zi = 1 if mislabeled, zi = 0 otherwise)

f(x,y) = s Model output score
dX , dY Distance functions in X and Y spaces
B(x, r) Ball of radius r centered at x in X space
B(y, r) Ball of radius r centered at y in Y space
rk(x) Radius such that the ball B(x, r) contains at least k neighbors
xnj Nearest neighbor j in X space
ymj

Nearest neighbor j in Y space
hθ = (hX

θ , hY
θ ) Multimodal encoder mapping X and Y to Rd

dmm(x,y) Multimodal distance between x and y
sn(x,y,D) Score component based on x’s neighbors, see Equation (2).
sm(x,y,D) Score component based on y’s neighbors, see Equation (3).

β, γ Hyperparameters weighting sn and sm
τ1,n, τ2,n, τ1,m, τ2,m Hyperparameters for weighting terms in sn and sm

k Number of nearest neighbors
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D DATA PROCESSING

D.1 CLASSIFICATION

We utilize CIFAR10N (cifar10) and CIFAR100N (cifar100) object detection (Zhu et al., 2022)
datasets for all classification-based experiments. Each image is associated with a label indicating
the primary object present in the image. These datasets contain 50,000 image-label pairs, with a
clean and noisy label available per image. The noisy labels are examples of real human errors within
the dataset. Further, we also generate synthetically noised labels as described in the main text. All
images are resized to 224x224, center cropped, and normalized using mean and standard deviations
corresponding to CLIP during the pre-processing stage. These two datasets are released under the
Creative Commons Attribution-NonCommercial 4.0 license.
For miniImageNet and stanfordCars, we use the “red” datasets from Jiang et al. (2020),
which contain noise from real-world web annotators. We split the full dataset (containing all annota-
tions) into 75%/12.5%/12.5% train/val/test sets, stratifying by the mislabel flag. The annotations are
licensed by Google under CC BY 4.0 license, and the images are under CC BY 2.0 license.
To generate the “text” modality for these classification datasets, we utilize the label name correspond
to each class. For example, class 0 in cifar10 is “airplane”, and this is the caption associated we
associate with all images of that class. In contrast to the caption-based datasets, there will be multiple
k-nearest neighbors in the text modality with zero distance (i.e., with the same class label).

D.2 CAPTIONING

We preprocess MSCOCO (Lin et al., 2014) and Flickr30k (Young et al., 2014) by using the Karpathy
split (Karpathy & Fei-Fei, 2015), and then selecting one random annotation from the ones available.
For the MMIMDB dataset (Arevalo et al., 2017), we utilize the plot outline as the text, and use the
dataset splits provided. For MIMIC-CXR (Johnson et al., 2019), we use all images in the database
and the provided data splits, and extract the findings and impression sections from the radiology note
for the text modality. Images were normalized and transformed using the same procedure described
above.
For downstream captioning, we use the pre-trained tokenizer and image processor corresponding to
the pre-trained model (GIT (Wang et al., 2022a)) to pre-process image and captions.
Note that flickr30k is available under Flickr terms of use for non-commercial research and/or
educational purposes4. mscoco is available under Creative Commons Attribution 4.0 License.
mmimdb is available for personal and non-commercial use5. Finally, mimiccxr is available under
the PhysioNet Credentialed Health Data License 1.5.06.

E BASELINE METHODS

E.1 CLASSIFICATION

TRAINING-DEPENDENT

AUM (Pleiss et al., 2020): This model assumes access to a classifier that can predict the class that an
image likely belongs to. Then, the margin of difference between the prediction probability from the
trained classifier for the assigned class and the class with the (next) highest probability is computed
and averaged over training epochs. This score is thresholded to identify potential label errors.
Datamap (Swayamdipta et al., 2020): Similar to AUM, this method requires access to a pretrained
classifier. In this baseline, it is assumed that instances with label errors are ‘hard to learn’, and thus
low confidence in prediction throughout training epochs. To produce a single score, we combine the
mean and standard deviation of the probability associated with the assigned class into a single score7.
Confident Learning (Northcutt et al., 2021a) is designed to identify labeling errors in classification
datasets by modeling the relationship between true class labels and noisy ones. It sets thresholds for

4https://shannon.cs.illinois.edu/DenotationGraph/
5https://developer.imdb.com/non-commercial-datasets/
6https://physionet.org/content/mimic-cxr/view-license/2.0.0/
7We experimented with different strategies, and the square root of the product of the mean and (1-standard

deviation) and (1-mean) and standard deviation led to comparable, high validation F1 scores.
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each true-noisy label pair. Using these thresholds, the model employs predicted class probabilities to
rank predictions for each class, filtering out the noisy data.

TRAINING-FREE

CLIP Logits (Liang et al., 2023): CLIP is used as a zero-shot classifier to obtain the softmax-based
probability for the assigned class. This value is then thresholded to identify label errors. Recently,
(Feng et al.) used a similar zero-shot prediction jointly with a semi-supervised training approach for
learning in the presence of label noise.
CLIP Similarity (Kang et al., 2023): The distance (either euclidean or cosine) between image and
text embeddings from CLIP are computed and thresholded.
Deep k-NN(Bahri et al., 2020) The proportion of k nearest neighbors8 with the same label is computed
for each image of interest. Prior works have utilized different representations for obtaining neighbors,
including logits and representations from pre-trained (Zhu et al., 2022) vision models. We find that
pre-trained representations from CLIP outperformed logits from a zero-shot CLIP classifier (Zhu
et al., 2022).
SimiFeat (Zhu et al., 2022) uses nearby features to detect noisy labels under the assumption that
local groups of features share clean or noisy labels. SimiFeat-V (Zhu et al., 2022) uses local voting
and SimiFeat-R leverages ranking to detect noisy labels based on HOC estimator. The binary outputs
produced are used for all score computations. Note that the difference between Simifeat-V and deep
k-NN is in the data processing and augmentation.
Discrepancy (Thomas & Kovashka, 2022) finds second-degree nearest neighbors in the text space,
then computes the average distance of these neighbors to the original sample in image space. We
utilize the same CLIP model to compute semantic distance here as in LEMON.

E.2 CAPTIONING

PRE-TRAINED OR SUPERVISED

LLaVA (Liu et al., 2024): We prompt LLaVA (v1.6-vicuna-13b) with the following prompt: The
proposed caption for this image is "{}". Is this caption correct?
Only answer with "Yes" or "No". We examine the probability distribution over the
first non-special token, and find the likelihood of the token with the highest probability. If the
corresponding token in lower case starts with “yes”, we return 1− this probability as the mislabel
score. Otherwise, we return the probability.
CapFilt (oracle-like): We generate predictions using pre-trained model trained on distinguishing
between high-quality MSCOCO and noisy synthetic captions (Li et al., 2022). This forms an
oracle-like, fully supervised baseline.

UNSUPERVISED

Datamap: We compute the cross-entropy across training epochs and compute the ratio of the mean
and variance in loss across epochs. That is, we expect captioning loss for instances with label errors
to be consistently high. We train captioning models for 3 epochs, with LoRA rank set to 4, and a
maximum length of 1009 for the finetuning task.
Confident Learning: We adapt this approach for dual-modality datasets, such as image-text pairs, by
clustering text embeddings to serve as class labels for noise detection.

DOWNSTREAM-TASK UNAWARE

Deep KNN: We cluster captions similar to confident learning, adapting classification baseline.
CLIP Similarity: This is the same setup as classification.
Discrepancy: This is the same setup as classification.

8Note that this score is not continuous.
9This is longer than captions in the train sets of all datasets except the medical dataset, and we verified that

higher maximum length does not change results.
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F COMPUTE SETUP

We run our experiments on a shared Slurm cluster. Each experiment used one RTX A6000 with 48
GB VRAM, 10 CPU cores of Intel Xeon Ice Lake Platinum 8368, and 50 GB RAM.

G HYPERPARAMETERS IN LABEL ERROR DETECTION

The hyperparameters in each case were selected based on the validation set F1-score. Note that
LEMONFIX does not require hyperparameter tuning. Baseline code is included in the supplementary
material. For SimiFeat-V and -R, we use the official open-sourced implementation directly.

G.1 CLASSIFICATION

The search space for each method:

1. AUM, Datamap: learning rate ∈ {5e− 5, 5e− 6}, training for epochs ∈ {5, 10}10

2. Confident learning: learning rate ∈ {5e − 7, 5e − 6, 5e − 5}, upto 30 epochs with early
stopping with a patience of 10.

3. CLIP Sim.: cosine distance metric, no other hyperparameters
4. CLIP Zero shot: distance metric
5. Discrepancy: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}
6. deep k-NN: k, cosine distance metric
7. Simifeat: we set k = 10 following the original paper (Zhu et al., 2022).

G.2 CAPTIONING

For most baselines requiring a class index–obtained by clustering captions–we set the number of
clusters to be 100.

1. LLaVA: Small amount of prompt tuning. The optimal prompt selected was The
proposed caption for this image is “{}”. Is this caption
correct? Only answer with “Yes” or “No”.’

2. Confident learning: learning rate = 5e − 6, upto 30 epochs with early stopping with a
patience of 10, number of clusters for captions

3. Discrepancy: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}
4. deep k-NN: representation type, k ∈ {1, 2, 5, 10, 15, 20, 30, 50}, distance metric (either

cosine or euclidean)

G.3 OUR METHOD

We search the following hyperparameters for our LEMONOPT:

1. k ∈ {1, 2, 5, 10, 15, 20, 30, 50}
2. Distance metric (either cosine or euclidean)
3. β, γ, τ1,n, τ2,n, τ1,m, τ2,m: We take the hyperparameter set which achieves the best valida-

tion set F1 from these two strategies: (1) Using Scipy’s minimize function, with initial
guess (1, 1, ..., 1), and with no explicit bounds. (2) Using a grid search with the following
grid:

• β ∈ {0, 5, 10, 15, ..., 100}
• γ ∈ {0, 5, 10, 15, ..., 100}
• τ1,n, τ2,n, τ1,m, τ2,m ∈ {0, 1, 5, 10}

G.4 OPTIMAL HYPERPARAMETERS

Optimal hyperparameters for classification datasets can be found in Table G.1, and optimal hyperpa-
rameters for captioning datasets can be found in Table G.2.

10Note that we experiment with training for fewer epochs to avoid memorization, following (Pleiss et al.,
2020).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table G.1: Optimal hyperparameters for methods shown in Table 2. Note that Simifeat, CLIP Sim.,
and LEMONFIX have no tunable hyperparameters.

cifar10 cifar100 miniImageNet stanfordCars

AUM LR = 5E-6
Epochs = 5

LR = 5E-5
Epochs = 5

LR = 5E-6
Epochs = 10

LR = 5E-5
Epochs = 10

Datamap LR = 5E-6
Epochs = 5

LR = 5E-5
Epochs = 5

LR = 5E-5
Epochs = 5

LR = 5E-5
Epochs = 10

Confident
LR=5e-06
Epochs=30
Batch size=128

LR=5e-06
Epochs=30
Batch size=128

LR=5e-06
Epochs=30
Batch size=128

LR=5e-06
Epochs=30
Batch size=128

CLIP Logits Cosine distance Cosine distance Cosine distance Cosine distance

Discrepancy k=20 k=50 k=30 k=20

Deep k-NN k=50
cosine distance

k=20
cosine distance

k=50
cosine distance

k=50
cosine distance

LEMONOPT

k=50
cosine distance
β = 20
γ = 35
τ1,n = 0
τ2,n = 5
τ1,m = 0
τ2,m = 5

k=20
cosine distance
β = 2.14
γ = −0.024
τ1,n = −1.71
τ2,n = 4.85
τ1,m = −0.068
τ2,m = −0.019

k=50
Euclidean distance
β = 0.664
γ = 0.395
τ1,n = 1.91
τ2,n = 1.04
τ1,m = 1.00
τ2,m = 1.35

k=15
Euclidean distance
β = 0.631
γ = 0.431
τ1,n = 0.898
τ2,n = −0.192
τ1,m = 0.0
τ2,m = −0.001

Table G.2: Optimal hyperparameters for methods shown in Table 3. Note that LLaVA, CLIP Sim.
and LEMONFIX have no tunable hyperparameters.

flickr30k mscoco mmimdb mimiccxr

Datamap
Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Discrepancy k=5 k=10 k=10 k=10

Deep k-NN k=50
cosine distance

k=50
cosine distance

k=20
cosine distance

k=50
cosine distance

Confident
LR=5e-06
Epochs=30
Batch size=128
n_cluster=10

LR=5e-06
Epochs=30
Batch size=128,
n_cluster=10

LR=5e-06
Epochs=30
Batch size=128
n_cluster=10

LR=5e-06
Epochs=30
Batch size=16
n_cluster=10

LEMONOPT

k=30
cosine distance
β = 0.092
γ = 0.177
τ1,n = 0.274
τ2,n = 0.074
τ1,m = 0.072
τ2,m = 0.0

k=30
cosine distance
β = 5.324
γ = 11.057
τ1,n = 5.143
τ2,n = 10.498
τ1,m = 7.233
τ2,m = 15.637

k=10
Euclidean distance
β = 1.001
γ = 1.202
τ1,n = 0.983
τ2,n = 1.000
τ1,m = 4.450
τ2,m = 1.080

k=30
cosine distance
β = 5
γ = 10
τ1,n = 5
τ2,n = 10
τ1,m = 5
τ2,m = 10
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H HYPERPARAMETERS IN DOWNSTREAM MODELS

H.1 CLASSIFICATION

We train a Vision Transformer (ViT)-based image classification (Dosovitskiy et al., 2020)11 model
pre-trained on ImageNet-21k (Ridnik et al., 2021) and fine-tuned on ImageNet 2012 (Russakovsky
et al., 2015) with an additional linear layer. We add a linear layer above the classification logits,
with an initial learning rate of 0.01, and learning rate scheduling for 10 epochs, and early stopping
with a patience of 3. For miniImageNet, we use linear probing with just a layer added on top of
the standard ViT classification logits (since the pre-trained task matches the downstream task to an
extent).

H.2 CAPTIONING

The hyperparameter tuning grid for the captioning model12 are: learning rate in {1e − 5, 1e − 4},
batch size: 16, maximum number of epochs: 10. The model checkpoint from the epoch with lowest
validation loss is used for caption generation at test time. For LoRA, we use a rank in {4,16}. For text
generation, we use beam search with 4 beams, following (Wang et al., 2022a). We use the AdamW
optimizer (Loshchilov & Hutter, 2018), with cosine scheduling for learning rate with 1000 warmup
steps.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 LABEL ERROR DETECTION IN CLASSIFICATION SETTINGS

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can
be found in Table I.1.
The performance of all baselines and our method on the two types of synthetic errors are shown in
Table I.2, all at a noise level of 40% (comparable to the amount of error in the noisy CIFAR datasets).

I.2 LABEL ERROR DETECTION IN CAPTIONING SETTINGS

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can
be found in Table I.3.
Results on the remaining synthetic noise types (at 40%) can be found in: flickr30k I.4,
mscoco I.5, mmimdb I.6, and mimic-cxr I.7. Across all datasets and noising types, we find
that our model outperforms other non-oracle/supervised baselines.

I.3 VARYING NOISE LEVEL

We show the AUROC for varying noise levels in Figure I.1.

I.4 ROBUSTNESS TO HYPERPARAMETERS

We show the test-set F1 of LEMON for varying β and γ, keeping all other hyperparameters at
their fixed optimal values, in Figure I.2. In Table I.8, we show the performance of LEMON when
hyperparameters are fixed (at k = 30, cosine distance, β = γ = 5, τ1,n = τ1,m = 0.1, and
τ2,n = τ2,m = 5) versus when they are optimized using a labeled validation set. Note that F1 is not
computed as it requires external information to select a threshold.

I.5 ABLATIONS OF OUR METHOD

Ablations of our method can be found in Table I.9 and Table I.10.

I.6 RUNTIME COMPARISON

We compare the runtime of LEMON with baselines in Table I.11.

11https://huggingface.co/google/vit-base-patch16-224
12https://huggingface.co/microsoft/git-base
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Table I.1: Label error detection performance on classification datasets.

Dataset Method Training-free AUROC (%) AUPRC (%) F1 (%)

cifar10

AUM
✗

98.3 (0.1) 97.9 (0.1) 94.0 (0.1)
Datamap 98.2 (0.1) 97.6 (0.1) 93.4 (0.5)

Confident 93.7 (0.4) 89.4 (0.6) 92.7 (0.5)

CLIP Logits

✓

95.5 (0.2) 93.9 (0.3) 88.0 (0.5)
CLIP Sim. 93.8 (0.1) 92.4 (0.2) 86.9 (0.4)
Simifeat-V 90.6 (0.3) 87.9 (0.7) 88.0 (0.4)
Simifeat-R 90.7 (0.3) 88.0 (0.4) 88.1 (0.5)

Discrepancy 77.1 (1.9) 70.4 (2.7) 68.2 (1.9)
Deep k-NN 97.8 (0.1) 96.5 (0.2) 92.5 (0.5)

LEMONFIX (Ours) 97.7 (0.2) 96.8 (0.3) -
LEMONOPT (Ours) 98.1 (0.0) 97.4 (0.1) 93.1 (0.2)

cifar100

AUM
✗

92.2 (0.2) 90.0 (0.4) 83.8 (0.4)
Datamap 91.8 (0.2) 89.4 (0.3) 83.5 (0.6)

Confident 74.1 (1.7) 59.3 (2.2) 69.3 (2.0)

CLIP Logits

✓

84.9 (0.7) 80.3 (1.2) 75.5 (0.5)
CLIP Sim. 78.5 (0.6) 72.1 (0.7) 69.2 (1.3)
Simifeat-V 79.5 (0.0) 71.1 (0.8) 73.1 (0.5)
Simifeat-R 79.7 (0.2) 71.1 (0.8) 73.6 (0.6)

Discrepancy 66.0 (1.5) 57.4 (2.3) 51.9 (1.8)
Deep k-NN 87.4 (0.3) 77.9 (1.0) 78.0 (0.3)

LEMONFIX (Ours) 88.9 (0.7) 84.6 (1.1) -
LEMONOPT (Ours) 90.8 (0.0) 87.4 (0.3) 81.3 (0.2)

miniImageNet

AUM
✗

83.1 (0.2) 73.2 (0.5) 75.3 (0.2)
Datamap 85.0 (0.2) 71.9 (0.7) 77.0 (0.2)

Confident 70.5 (0.2) 52.8 (0.3) 54.7 (0.4)

CLIP Logits

✓

90.0 (0.2) 80.9 (0.5) 82.5 (0.2)
CLIP Sim. 89.3 (0.2) 80.8 (0.3) 81.3 (0.5)
Simifeat-V 68.2 (0.3) 53.0 (0.4) 55.0 (0.5)
Simifeat-R 68.0 (0.3) 52.8 (0.3) 54.7 (0.4)

Discrepancy 79.4 (0.3) 65.6 (0.7) 69.8 (0.4)
Deep k-NN 83.2 (0.2) 70.9 (0.6) 75.2 (0.4)

LEMONFIX (Ours) 89.5 (0.2) 81.5 (0.3) -
LEMONOPT (Ours) 90.2 (0.2) 81.4 (1.3) 82.3 (0.1)

stanfordCars

AUM
✗

70.5 (2.4) 42.8 (1.6) 62.3 (1.2)
Datamap 72.3 (1.8) 39.8 (0.5) 64.9 (2.1)

Confident 61.0 (0.5) 33.2 (1.7) 43.4 (1.6)

CLIP Logits

✓

68.8 (0.7) 39.7 (0.9) 64.9 (0.4)
CLIP Sim. 69.8 (0.6) 40.7 (1.0) 61.7 (0.8)
Simifeat-V 63.7 (1.2) 33.7 (1.2) 43.7 (1.5)
Simifeat-R 63.5 (1.3) 33.2 (1.7) 43.4 (1.6)

Discrepancy 65.7 (0.7) 33.1 (0.6) 59.9 (0.4)
Deep k-NN 71.4 (0.6) 42.7 (0.5) 65.3 (0.9)

LEMONFIX (Ours) 72.6 (0.7) 44.9 (1.4) -
LEMONOPT (Ours) 73.1 (0.5) 40.5 (0.5) 67.3 (1.0)
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Figure I.1: Test-set performance of LEMONOPT compared to the CLIP similarity baseline for varying
levels of the synthetic noise.
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Table I.2: Label error detection performance on synthetic errors

AUROC (%) AUPRC (%) F1 (%)

mean std mean std mean std

Dataset Flip Type Method

cifar10

asymmetric

AUM 93.6% 0.6% 86.6% 0.6% 88.9% 0.8%
Confident 96.2% 0.8% 91.3% 1.6% 95.0% 1.0%

CLIP Logits 98.8% 0.2% 97.9% 0.3% 94.3% 0.4%
CLIP Sim. 98.2% 0.2% 97.1% 0.3% 93.4% 0.1%

Datamap 93.6% 0.5% 86.2% 0.8% 88.2% 0.8%
Simifeat-V 69.8% 0.5% 58.4% 0.9% 60.4% 0.7%
Simifeat-R 70.1% 0.5% 58.5% 1.0% 61.1% 0.7%
Deep k-NN 85.2% 0.7% 66.2% 0.9% 81.1% 1.2%
LEMONFIX 97.5% 0.2% 94.8% 0.6% - -
LEMONOPT 98.8% 0.2% 97.8% 0.5% 94.9% 0.3%

symmetric

AUM 99.8% 0.0% 99.7% 0.0% 98.4% 0.2%
Confident 97.6% 0.4% 94.1% 1.3% 96.8% 0.7%

CLIP Logits 98.5% 0.0% 97.9% 0.1% 93.4% 0.1%
CLIP Sim. 97.9% 0.0% 97.1% 0.2% 92.5% 0.3%

Datamap 99.8% 0.0% 99.7% 0.0% 98.3% 0.1%
Simifeat-V 96.6% 0.0% 94.1% 0.1% 94.3% 0.1%
Simifeat-R 96.4% 0.2% 93.8% 0.5% 94.1% 0.3%
Deep k-NN 99.2% 0.1% 98.1% 0.2% 96.7% 0.3%
LEMONFIX 99.5% 0.1% 99.2% 0.1% - -
LEMONOPT 99.6% 0.1% 99.4% 0.1% 97.3% 0.2%

cifar100

asymmetric

AUM 82.4% 2.0% 67.5% 2.6% 75.2% 1.5%
Confident 63.0% 1.9% 48.4% 1.1% 59.0% 1.5%

CLIP Logits 96.6% 0.3% 94.8% 0.5% 90.1% 0.7%
CLIP Sim. 94.7% 0.5% 92.7% 0.7% 87.3% 0.4%

Datamap 74.0% 1.8% 58.7% 2.3% 65.4% 1.5%
Simifeat-V 65.5% 1.5% 52.5% 1.8% 57.3% 1.9%
Simifeat-R 65.3% 1.3% 53.0% 1.6% 56.7% 1.8%
Deep k-NN 63.3% 0.8% 48.3% 1.1% 55.9% 0.6%
LEMONFIX 94.9% 0.3% 92.1% 0.4% - -
LEMONOPT 96.6% 0.3% 95.1% 0.2% 90.0% 0.5%

symmetric

AUM 99.2% 0.3% 99.0% 0.5% 96.0% 1.0%
Confident 88.3% 0.9% 75.3% 1.7% 85.3% 1.2%

CLIP Logits 96.8% 0.1% 95.2% 0.3% 90.7% 0.4%
CLIP Sim. 95.1% 0.3% 93.2% 0.5% 87.6% 0.0%

Datamap 99.2% 0.4% 98.8% 0.7% 95.9% 1.0%
Simifeat-V 91.2% 0.5% 85.0% 1.2% 84.8% 0.7%
Simifeat-R 90.9% 0.6% 84.6% 1.2% 84.5% 0.9%
Deep k-NN 96.7% 0.1% 91.7% 0.3% 92.3% 0.4%
LEMONFIX 98.4% 0.1% 97.7% 0.2% - -
LEMONOPT 99.0% 0.0% 98.7% 0.1% 95.1% 0.1%
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Table I.3: Label error detection performance on captioning datasets.

Dataset Method AUROC (%) AUPRC (%) F1 (%)

flickr30k

LLaVA 79.3 (0.8) 58.5 (0.2) 65.0 (1.1)
Datamap 54.0 (1.8) 38.8 (0.6) 28.2 (2.1)

Discrepancy 73.0 (0.6) 59.2 (1.8) 64.7 (1.7)
Deep k-NN 71.1 (0.4) 52.0 (1.0) 64.8 (2.7)

Confident 61.6 (0.5) 40.6 (0.6) 54.3 (0.8)
CLIP Sim. 94.8 (0.5) 92.8 (0.5) 88.1 (0.7)

LEMONFIX (Ours) 93.6 (0.2) 92.0 (0.2) -
LEMONOPT (Ours) 94.5 (0.2) 92.8 (0.3) 87.7 (0.9)

CapFilt (Oracle) 98.6 (0.1) 98.1 (0.1) 94.8 (0.5)

mscoco

LLaVA 80.3 (0.1) 63.4 (0.3) 74.9 (0.3)
Datamap 49.9 (0.7) 40.3 (0.5) 28.6 (0.0)

Discrepancy 72.7 (0.3) 67.2 (0.4) 67.3 (0.9)
Deep k-NN 76.6 (0.4) 70.3 (0.6) 73.2 (0.3)

Confident 66.4 (1.2) 52.1 (1.2) 58.9 (1.5)
CLIP Sim. 93.8 (0.2) 93.0 (0.4) 87.5 (0.3)

LEMONFIX (Ours) 92.0 (0.1) 91.8 (0.3) -
LEMONOPT (Ours) 95.6 (0.2) 94.6 (0.3) 89.3 (0.2)

CapFilt (Oracle) 99.3 (0.0) 99.1 (0.0) 96.2 (0.3)

mmimdb

LLaVA 58.4 (0.2) 46.4 (0.2) 58.5 (0.1)
Discrepancy 57.4 (0.4) 45.5 (0.9) 40.2 (1.7)

Datamap 50.1 (0.5) 40.0 (0.3) 28.9 (0.3)
deep k-NN 58.7 (0.7) 45.0 (0.5) 44.5 (1.0)
Confident 52.8 (0.8) 41.4 (0.4) 53.6 (0.7)

CLIP Sim. 85.1 (0.3) 77.8 (0.7) 74.5 (0.3)
LEMONFIX (Ours) 84.3 (0.3) 77.7 (0.8) -
LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 76.3 (0.1)

CapFilt 82.7 (0.7) 73.3 (1.2) 71.6 (0.8)

mimiccxr

LLaVA 53.9 (0.5) 42.7 (0.7) 28.7 (0.1)
Datamap 50.2 (0.9) 39.5 (0.9) 28.9 (0.4)

Discrepancy 60.0 (0.8) 50.3 (0.7) 32.8 (2.8)
deep k-NN 62.9 (0.4) 48.0 (0.3) 46.0 (4.4)
Confident 60.2 (0.3) 45.6 (0.3) 59.4 (0.1)

CLIP Sim. 64.1 (0.4) 51.7 (0.5) 48.6 (3.4)
LEMONFIX (Ours) 66.5 (0.2) 54.8 (0.4) -
LEMONOPT (Ours) 70.4 (2.3) 60.3 (2.3) 57.0 (1.6)

CapFilt 49.2 (0.3) 39.3 (0.6) 28.5 (0.0)

Table I.4: flickr30k: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

flickr30k

noun LLAVA 79.3% 0.8% 58.5% 0.2% 65.0% 1.1%
captfilt 98.6% 0.1% 98.1% 0.1% 94.8% 0.5%

Datamap 54.0% 1.8% 38.8% 0.6% 28.2% 2.1%
Deep kNN 71.1% 0.4% 52.0% 1.0% 64.8% 2.7%
Confident 61.6% 0.5% 40.6% 0.6% 54.3% 0.8%

CLIP Sim. 94.8% 0.5% 92.8% 0.5% 88.1% 0.7%
LEMONFIX 93.6% 0.2% 92.0% 0.2% - -
LEMONOPT 94.5% 0.2% 92.8% 0.3% 87.7% 0.9%

random LLAVA 81.3% 1.0% 65.6% 1.4% 72.2% 1.1%
captfilt 99.9% 0.0% 99.8% 0.0% 98.3% 0.2%

Datamap 50.1% 1.5% 40.6% 1.3% 29.6% 0.9%
Deep kNN 81.1% 1.6% 65.3% 1.8% 73.0% 1.0%
Confident 68.5% 1.8% 52.0% 1.5% 66.3% 1.6%

CLIP Sim. 99.5% 0.1% 99.3% 0.1% 96.4% 0.4%
LEMONFIX 99.4% 0.2% 99.3% 0.2% - -
LEMONOPT 99.5% 0.2% 99.4% 0.3% 96.9% 0.8%
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Table I.5: msccoco: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mscoco

cat LLAVA 80.3% 0.1% 63.4% 0.3% 74.9% 0.3%
captfilt 99.3% 0.0% 99.1% 0.0% 96.2% 0.3%

Datamap 49.9% 0.7% 40.3% 0.5% 28.6% 0.0%
Deep kNN 76.6% 0.4% 70.3% 0.6% 73.2% 0.3%
Confident 66.4% 1.2% 52.1% 1.2% 58.9% 1.5%

CLIP Sim. 93.8% 0.2% 93.0% 0.4% 87.5% 0.3%
LEMONFIX 92.0% 0.1% 91.8% 0.3% - -
LEMONOPT 95.6% 0.2% 94.6% 0.3% 89.3% 0.2%

noun LLAVA 79.4% 0.2% 61.3% 0.3% 72.6% 0.2%
captfilt 98.7% 0.2% 98.4% 0.2% 94.9% 0.4%

Datamap 51.2% 1.4% 39.4% 1.4% 27.8% 0.4%
Deep kNN 76.1% 1.3% 68.9% 1.2% 72.3% 1.0%
Confident 64.6% 1.1% 48.4% 1.1% 55.6% 1.9%

CLIP Sim. 92.1% 0.2% 90.5% 0.2% 84.8% 0.7%
LEMONFIX 90.4% 0.5% 89.5% 0.4% - -
LEMONOPT 92.9% 0.5% 91.5% 0.5% 86.1% 0.3%

random LLAVA 82.6% 0.3% 65.1% 0.6% 76.7% 0.2%
captfilt 99.9% 0.0% 99.9% 0.0% 99.1% 0.1%

Datamap 49.9% 0.2% 40.2% 0.3% 28.6% 0.0%
Deep kNN 93.8% 0.2% 85.8% 0.3% 89.2% 0.5%
Confident 83.5% 1.5% 69.4% 2.3% 80.2% 1.6%

CLIP Sim. 99.5% 0.1% 99.4% 0.1% 97.6% 0.1%
LEMONFIX 99.5% 0.2% 99.4% 0.1% - -
LEMONOPT 99.6% 0.1% 99.5% 0.1% 97.9% 0.1%

Table I.6: mmimdb: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mmimdb

cat

LLAVA 58.4% 0.2% 46.4% 0.2% 58.5% 0.1%
captfilt 82.7% 0.7% 73.3% 1.2% 71.6% 0.8%

Datamap 50.1% 0.5% 40.0% 0.3% 28.9% 0.3%
Deep kNN 58.7% 0.7% 45.0% 0.5% 44.5% 1.0%
Confident 52.8% 0.8% 41.4% 0.4% 53.6% 0.7%

CLIP Sim. 85.1% 0.3% 77.8% 0.7% 74.5% 0.3%
LEMONFIX 84.3% 0.3% 77.7% 0.8% - -
LEMONOPT 86.0% 0.1% 79.4% 0.6% 76.3% 0.1%

noun

LLAVA 59.1% 0.3% 44.2% 0.6% 55.2% 0.2%
captfilt 79.9% 0.1% 66.2% 0.4% 70.0% 0.3%

Datamap 50.3% 0.4% 37.2% 0.7% 28.0% 1.5%
Deep kNN 61.4% 0.1% 44.2% 0.3% 45.3% 4.1%
Confident 52.1% 2.2% 38.0% 1.3% 50.3% 1.6%

CLIP Sim. 82.8% 0.4% 72.8% 0.5% 72.7% 0.4%
LEMONFIX 82.1% 0.4% 72.7% 0.6% - -
LEMONOPT 84.4% 0.2% 75.9% 1.2% 75.2% 0.1%

random

LLAVA 58.5% 0.8% 46.7% 0.5% 58.5% 0.1%
captfilt 84.9% 0.4% 76.4% 0.7% 73.6% 0.2%

Datamap 50.6% 0.2% 40.4% 0.4% 29.3% 0.6%
Deep kNN 62.1% 0.5% 47.3% 0.3% 50.0% 0.6%
Confident 52.9% 1.8% 41.5% 0.9% 54.1% 2.1%

CLIP Sim. 88.1% 0.1% 82.0% 0.2% 78.2% 0.9%
LEMONFIX 87.6% 0.1% 81.9% 0.3% - -
LEMONOPT 89.4% 0.3% 84.1% 0.8% 80.1% 0.4%
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Table I.7: mimiccxr: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mimiccxr

cat

LLAVA 53.9% 0.5% 42.7% 0.7% 28.7% 0.1%
captfilt 49.2% 0.3% 39.3% 0.6% 28.5% 0.0%

Datamap 50.2% 0.9% 39.5% 0.9% 28.9% 0.4%
Deep kNN 62.9% 0.4% 48.0% 0.3% 46.0% 4.4%
Confident 60.2% 0.3% 45.6% 0.3% 59.4% 0.1%

CLIP Sim. 64.1% 0.4% 51.7% 0.5% 48.6% 3.4%
LEMONFIX 66.6% 0.2% 54.8% 0.4% - -
LEMONOPT 70.4% 2.3% 60.3% 2.3% 57.0% 1.6%

random

LLAVA 50.8% 0.4% 40.6% 0.2% 57.1% 0.0%
captfilt 50.8% 0.4% 40.5% 0.7% 28.6% 0.0%

Datamap 51.1% 0.9% 40.7% 0.5% 28.8% 0.2%
Confident 61.1% 0.7% 46.3% 0.5% 60.7% 0.5%

CLIP Sim. 66.8% 0.8% 54.4% 0.9% 54.3% 1.0%
LEMONFIX 69.5% 0.7% 57.8% 1.0% - -
LEMONOPT 73.1% 0.9% 63.0% 2.0% 63.1% 3.6%

Table I.8: We show the AUROC and AUPRC of LEMON when we search for the optimal hyper-
parameters using a labeled validation set (LEMONOPT) and when we use fixed hyperparameters
(LEMONFIX: k = 30, cosine distance, β = γ = 5, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5). The
mean gap in AUROC is -1.6 (1.3), and the mean gap in AUPRC is -1.6 (2.2). Note that F1 is not
computed as it requires external information to select a threshold.

AUROC AUPRC
Dataset Noise Type LEMONOPT LEMONFIX Gap LEMONOPT LEMONFIX Gap

cifar10
asymmetric 98.8 (0.2) 97.5 (0.2) -1.4 (0.1) 97.8 (0.5) 94.8 (0.6) -3.0 (0.1)

real 98.1 (0.0) 97.7 (0.2) -0.5 (0.2) 97.4 (0.1) 96.8 (0.3) -0.5 (0.2)
symmetric 99.6 (0.1) 99.5 (0.1) -0.2 (0.1) 99.4 (0.1) 99.2 (0.1) -0.2 (0.1)

cifar100
asymmetric 96.6 (0.3) 94.9 (0.3) -1.8 (0.0) 95.1 (0.2) 92.1 (0.4) -3.0 (0.2)

real 90.8 (0.0) 88.9 (0.7) -1.8 (0.7) 87.4 (0.3) 84.6 (1.1) -2.8 (0.9)
symmetric 99.0 (0.0) 98.4 (0.1) -0.7 (0.1) 98.7 (0.1) 97.7 (0.2) -1.0 (0.1)

miniImageNet human 90.2 (0.2) 89.5 (0.2) -0.7 (0.2) 81.4 (1.3) 81.5 (0.3) 0.0 (0.1)

StanfordCars human 73.1 (0.5) 72.6 (0.7) -0.7 (0.1) 40.5 (0.5) 44.9 (1.4) 4.3 (0.7)

flickr30k
noun 94.5 (0.2) 93.6 (0.2) -0.9 (0.3) 92.8 (0.3) 92.0 (0.2) -0.8 (0.1)

random 99.5 (0.2) 99.4 (0.2) -0.0 (0.1) 99.4 (0.3) 99.3 (0.2) -0.1 (0.2)

mimiccxr
cat 70.4 (2.3) 66.5 (0.2) -3.9 (2.1) 60.3 (2.3) 54.8 (0.4) -5.5 (1.9)

random 73.1 (0.9) 69.5 (0.7) -3.6 (0.2) 63.0 (2.0) 57.8 (1.0) -5.1 (1.0)

mmimdb
cat 86.0 (0.1) 84.3 (0.3) -1.6 (0.3) 79.4 (0.6) 77.7 (0.8) -1.7 (0.2)

noun 84.4 (0.2) 82.1 (0.4) -2.3 (0.3) 75.9 (1.2) 72.7 (0.6) -3.2 (0.8)
random 89.4 (0.3) 87.6 (0.1) -1.8 (0.4) 84.1 (0.8) 81.9 (0.3) -2.2 (0.8)

mscoco
cat 95.6 (0.2) 92.0 (0.1) -3.6 (0.1) 94.6 (0.3) 91.8 (0.3) -2.8 (0.1)

noun 92.9 (0.5) 90.4 (0.5) -2.5 (0.2) 91.5 (0.5) 89.5 (0.4) -2.0 (0.3)
random 99.6 (0.1) 99.5 (0.2) -0.1 (0.0) 99.5 (0.1) 99.4 (0.1) -0.1 (0.0)

Table I.9: Performance of our method after ablating various components. We find that mislabel
detection performance almost decreases monotonically as we remove additional components, with the
exception of two metrics on mmimdb where one ablation is statistically comparable to the original
method.

mmimdb mscoco

AUROC AUPRC F1 AUROC AUPRC F1
LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 76.3 (0.1) 95.5 (0.1) 94.5 (0.3) 89.3 (0.3)
−τ1 85.3 (0.3) 78.2 (1.1) 75.4 (0.5) 94.6 (0.3) 93.8 (0.4) 88.0 (0.5)
−τ2 85.4 (0.6) 77.1 (2.4) 75.4 (0.2) 94.7 (0.3) 93.6 (0.5) 87.7 (0.8)
−τ1, τ2 85.4 (0.2) 78.1 (0.7) 75.2 (0.3) 94.7 (0.3) 93.8 (0.5) 88.0 (0.8)
−sn 86.1 (0.3) 79.6 (0.5) 76.1 (1.1) 94.6 (0.3) 93.6 (0.5) 87.5 (0.6)
−sm 85.3 (0.3) 77.9 (0.7) 75.5 (0.4) 94.9 (0.2) 94.0 (0.4) 89.0 (0.6)
−sn, sm (CLIP Sim.) 85.1 (0.3) 77.8 (0.7) 74.5 (0.3) 93.8 (0.2) 93.0 (0.4) 87.5 (0.3)
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(b) cifar10, symmetric noise
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(e) cifar100, symmetric noise
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(f) cifar100, real noise
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(g) mscoco, random noise
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(k) flickr30k, noun noise
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Figure I.2: F1 of our method for varying β and γ, keeping all other hyperparameters their fixed
optimal values.
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Table I.10: AUROC of label error detection for each component of our score. We find that dmm is
the most critical component of the score. Of the two nearest neighbor terms, we find that sn (nearest
image neighbors) is the more important term for most datasets.

cifar10 cifar100 miniImageNet stanfordCars flickr30k mscoco mmimdb mimiccxr

dmm (CLIP Sim.) 93.8 (0.1) 78.5 (0.6) 89.3 (0.2) 69.8 (0.6) 94.8 (0.5) 93.8 (0.2) 85.1 (0.3) 64.1 (0.4)
sm 79.3 (2.8) 65.4 (2.0) 80.8 (0.3) 66.0 (0.9) 76.3 (1.8) 75.8 (0.3) 60.1 (0.4) 59.0 (0.6)
sn 98.1 (0.0) 88.4 (0.1) 84.3 (0.2) 72.8 (0.7) 71.4 (1.6) 76.5 (0.5) 55.1 (0.3) 57.9 (2.1)
dmm + sm 92.5 (0.5) 81.3 (1.1) 89.6 (0.2) 69.7 (0.5) 95.0 (0.5) 94.6 (0.3) 86.0 (0.4) 64.5 (0.6)
sn + sm 98.0 (0.2) 88.8 (0.2) 84.5 (0.4) 72.8 (0.7) 83.5 (0.5) 86.1 (0.6) 67.6 (0.9) 63.6 (0.6)
dmm + sn 98.2 (0.1) 90.8 (0.1) 89.9 (0.3) 73.9 (0.7) 94.9 (0.3) 94.9 (0.2) 85.3 (0.3) 66.4 (2.4)
dmm + sn + sm (LEMON) 98.1 (0.0) 90.8 (0.0) 90.2 (0.2) 73.1 (0.5) 94.5 (0.2) 95.6 (0.2) 86.0 (0.1) 70.4 (2.3)

Table I.11: Average per-sample runtime (miliseconds) of each method for label error detection.
Standard deviation across 3 random data seeds are shown in parentheses.

cifar10 cifar100 miniImageNet stanfordCars mscoco flickr30k mimiccxr mmimdb

LEMON 10.1 (0.5) 9.6 (0.5) 7.8 (1.6) 11.0 (2.0) 18.8 (1.8) 35.9 (1.2) 52.2 (2.7) 21.1 (1.4)
CLIP Sim. 1.8 (0.0) 1.8 (0.0) 2.7 (0.4) 3.5 (0.5) 20.3 (0.0) 15.6 (0.0) 16.8 (0.0) 30.5 (0.0)
Deep kNN 7.0 (1.3) 5.1 (0.1) 8.7 (1.2) 6.0 (0.1) 19.9 (0.9) 10.6 (1.2) 47.1 (12.7) 20.5 (1.9)
Datamap 37.6 (0.2) 37.5 (0.3) 37.7 (1.6) 37.2 (0.3) 39.7 (0.1) 38.1 (4.8) 41.4 (1.3) 62.6 (9.5)
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I.7 VARYING VALIDATION SET SIZE

In Figure I.3, we examine the effect of varying validation set size (by random subsampling) on
LEMONOPT.
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Figure I.3: Test-set AUROC of mislabel detection with varying size of the labeled validation set for
LEMONOPT. Note that LEMONFIX and CLIP Sim. do not have any hyperparameters and as such do
not rely on a labeled validation set.

I.8 EMPIRICAL COMPARISON WITH THOMAS & KOVASHKA (2022)

In Table I.12, we compare the performance of LEMONOPT against the four scores proposed in Thomas
& Kovashka (2022), using the datasets and noise types shown in Table 1.

Table I.12: Comparison of label error detection performance of LEMoN versus baselines from
Thomas & Kovashka (2022).

AUROC AUPRC F1

ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y LEMONOPT

cifar10 77.1 (1.9) 48.2 (1.2) 50.3 (1.9) 45.0 (1.9) 98.1 (0.0) 70.4 (2.7) 41.2 (1.1) 41.6 (1.6) 38.9 (2.1) 97.4 (0.1) 68.2 (1.9) 29.2 (0.4) 29.2 (0.4) 29.2 (0.4) 93.1 (0.2)
cifar100 66.0 (1.5) 49.4 (1.1) 49.9 (1.4) 49.7 (1.9) 90.8 (0.0) 57.4 (2.3) 39.2 (0.7) 39.9 (1.2) 39.3 (0.8) 87.4 (0.3) 51.9 (1.8) 29.4 (1.4) 32.5 (5.5) 29.4 (0.4) 81.3 (0.2)
miniImageNet 79.4 (0.3) 47.4 (0.5) 64.6 (0.2) 48.0 (0.5) 90.2 (0.2) 65.6 (0.7) 32.5 (0.0) 46.3 (0.2) 32.7 (0.8) 81.4 (1.3) 69.8 (0.4) 28.0 (2.3) 55.8 (2.3) 27.0 (0.9) 82.3 (0.1)
stanfordCars 65.7 (0.7) 50.8 (1.1) 51.9 (0.9) 50.1 (0.5) 73.1 (0.5) 33.1 (0.6) 23.3 (0.7) 24.5 (0.8) 23.4 (0.2) 40.5 (0.5) 59.9 (0.4) 20.6 (1.3) 25.3 (5.6) 20.6 (1.4) 67.3 (1.0)
flickr30k 73.0 (0.6) 53.3 (1.4) 49.9 (2.9) 52.9 (0.2) 94.5 (0.2) 59.2 (1.8) 37.1 (1.8) 33.7 (2.4) 37.0 (0.8) 92.8 (0.3) 64.7 (1.7) 26.2 (0.8) 27.4 (1.7) 26.1 (1.0) 87.7 (0.9)
mimiccxr 60.0 (0.8) 49.6 (0.4) 50.0 (1.3) 49.1 (1.3) 70.4 (2.3) 50.3 (0.7) 39.3 (0.5) 39.8 (1.2) 39.6 (0.7) 60.3 (2.3) 32.8 (2.8) 28.5 (0.0) 28.5 (0.0) 28.5 (0.0) 57.0 (1.6)
mmimdb 57.4 (0.4) 49.8 (0.4) 48.6 (0.4) 50.0 (0.5) 86.0 (0.1) 45.5 (0.9) 40.1 (0.4) 38.9 (0.5) 40.1 (0.5) 79.4 (0.6) 40.2 (1.7) 28.6 (0.1) 29.1 (0.5) 28.9 (0.6) 76.3 (0.1)
mscoco 72.7 (0.3) 48.5 (0.8) 52.9 (0.8) 48.7 (0.3) 95.6 (0.2) 67.2 (0.4) 39.1 (0.5) 42.3 (1.0) 39.3 (0.1) 94.6 (0.3) 67.3 (0.9) 29.7 (0.1) 29.0 (0.2) 28.9 (0.4) 89.3 (0.2)

I.9 REAL-WORLD WEB SCALE CORPUS (CC3M)

We conduct an experiment of LEMONFIX on CC3M (Changpinyo et al., 2021), a large web-scraped
dataset of images and annotations, where we demonstrate the utility of LEMON filtered data on CLIP
pretraining. We download CC3M, which contains 2.9 million valid URLs to image-caption pairs. We
then pretrain a CLIP model (ViT-B/16) from scratch on this dataset for 20 epochs, with a batch size
of 128, and using a cyclic learning rate scheduler with a learning rate of 10−4.
We then use this CLIP model as the basis to compute distances for LEMONFIX, using the reasonable
hyperparameters from the main paper: k = 30, cosine distance, τ1,n = τ1,m = 0.1, and τ2,n =
τ2,m = 5. We then select the 1 million samples with the lowest mislabel scores, filtering out the
1.9 million samples most suspected to be mislabels. We pre-train another CLIP model from scratch
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Table I.13: Performance of each method on the Datacomp (Gadre et al., 2024) small benchmark
from the filtering track. As of 2024/11/14, only 9.96M images (“Data Available”) out of 12.8M are
accessible. We compare the performance of LEMONOPT versus the CLIP score baseline after filtering
to 3.5M images.

Method ImageNet ImageNet Dist. Shifts VTAB Retrieval Avg (38 datasets)

Data Available
(9.96M Samples)

LEMONFIX 0.045 0.053 0.188 0.116 0.168
CLIP score 0.043 0.049 0.177 0.119 0.160

From Gadre et al. (2024)
(12.8M Samples)

No filtering 0.025 0.033 0.145 0.114 0.132
Basic filtering 0.038 0.043 0.150 0.118 0.142
Text-based 0.046 0.052 0.169 0.125 0.157
Image-based 0.043 0.047 0.178 0.121 0.159
LAION-2B filtering 0.031 0.040 0.136 0.092 0.133
CLIP score 0.051 0.055 0.190 0.119 0.173
Image-based + CLIP score 0.039 0.045 0.162 0.094 0.144

on this subset using the same architecture and setup as above. We evaluate the resulting model on
zero-shot classification using the VTAB benchmark (Zhai et al., 2019), and compare it with CLIP
models trained using data filtered to 1 million examples using the CLIP similarity baseline, and the
original unfiltered model.
In Table I.9, we find that LEMONFIX marginally outperforms the CLIP similarity baseline on average
zero-shot accuracy, though both underperform pretraining on the full corpus. One likely explanation
of this is that although a large proportion of images in the CC3M dataset are technically “mislabelled”
in that the caption is not a precisely correct description of the image, some substrings of these noisy
captions may, on aggregate, contain useful word associations which the model learns, and thus may
be useful to downstream tasks.
We examine images of images selected to be mislabels by our method in Figure I.4. We find that our
method identifies images that are completely mislabeled – one cause of which is images changing
after they have been indexed. In addition, our method also identifies samples which are ambiguous or
imprecise.

I.10 REAL-WORLD WEB SCALE CORPUS (DATACOMP)

We conduct an experiment of LEMONFIX on Datacomp (Gadre et al., 2024). We use the small
dataset from the filtering track, which originally consisted of 12.8M images. As these images are
accessed directly from the web, only 9.96M images were able to be downloaded as of 2024/11/14. We
apply LEMONFIX to this dataset using OpenAI CLIP ViT-L/14 embeddings provided by Datacomp.
We select the 3.5M images with lowest mislabel scores, and use the default hyperparameters from
Datacomp to train a CLIP model, and evaluate it on the same 38 zero-shot classification datasets. We
compare with filtering using only the CLIP score (equivalent to CLIP Sim.) to the same number of
images. In Table I.13, we find that given the available images, LEMONFIX outperforms the baseline
on average, and on three of four individual evaluations. However, neither method outperforms the
scores reported in the original paper due to their dataset being larger.

I.11 HYPERPARAMETERS USED FOR REAL-WORLD

We show the hyperparameters used for the real-world experiment in Table I.15. We use k = 30, cosine
distance, and these hyperparameters, which originate from a hyperparameter search on synthetically
noised data. We note that flickr30k has some negative hyperparameters, which we attribute to
overfitting to a relatively small validation set during hyperparameter selection.

I.12 EXAMPLES OF DETECTED REAL LABEL ERRORS

We show additional examples of label errors in Figure I.5.
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Table I.14: Zero-shot accuracy (%) of various CLIP models on the VTAB benchmark (Zhai et al.,
2019). CLIP models (ViT-B/16) are pretrained from scratch on a subset of CC3M (Changpinyo
et al., 2021) which has been filtered to 1 million samples using LEMONFIX and the CLIP similarity
baseline, using a version of CLIP pretrained on the entire dataset.

CLIP Sim. LEMONFIX Unfiltered
caltech101 28.25 28.99 51.43
cifar100 11.02 6.79 18.65
clevr_closest_object_distance 18.11 22.58 25.76
clevr_count_all 12.98 12.65 12.05
dmlab 14.78 16.22 16.62
dsprites_label_orientation 2.44 1.34 1.98
dsprites_label_x_position 3.06 3.20 3.13
dsprites_label_y_position 3.11 2.89 3.20
dtd 6.60 3.94 12.34
eurosat 14.37 22.07 9.93
flowers 6.11 5.19 6.83
food101 4.94 5.31 9.02
pets 7.63 4.69 8.23
sun397 13.89 14.22 24.02
svhn 7.80 12.35 8.00

Average 10.34 10.83 14.08

fresh milk in the glass on colour
background, illustration

a very young baby girl playing with toys
in a white studio portrait of a stock photo

homes for sale and luxury real estate
including horse farms and property in

the areas
tangled tree roots on a forest trail

a park covered in yellow leaves and
lined with tall trees turning bright yellow

during an autumn day

face of people -- stock
photo #

begin your exercise with a
jump rope easy and funny

evil looking person sitting
atop a hay bale royalty - free

Figure I.4: Sample images and captions from CC3M which have been identified as mislabeled by
LEMONFIX.
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Table I.15: Hyperparameters used for the real-world experiment. We use k = 30, cosine distance, and
the hyperparameters below, which originate from a hyperparameter search on synthetically noised
data.

β γ τ1,n τ2,n τ1,m τ2,m

cifar10 20 10 0 5 0 5
cifar100 15 0 0 5 0 0
mscoco 5.324 11.057 5.143 10.498 7.233 15.637
mmimdb 15 5 5 10 5 10
flickr30k 0.092 -0.177 -0.274 -0.074 -0.072 0.000
mimiccxr 5 10 5 10 5 10

This is a plane from the
front view 

MSCOCO

The emu is sitting in the
dirt near a metal fence.

A WOMAND IN ALL BLACK
BEHIND TO WHITE DOGS

A small house stands in
a small constraining

carriage.

Are you coming with me
for a cup of coffee?

Flickr30k

A young girl celebrating her team
after winning world series in the

world finals held in texas.

A boy in red shirt
playing ball.

The policeman car driving
down the street.

CIFAR100CIFAR10

Leopard

Bus

Lobster

Camel

Automobile

Airplane

Horse

Deer

Figure I.5: Example images in each dataset identified by our method to be mislabels, and labeled as
errors by a human annotator.
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I.13 COMPARISON WITH NORTHCUTT ET AL., 2021 (NORTHCUTT ET AL., 2021B)

In Northcutt et al., 2021 (Northcutt et al., 2021b), the authors utilized confident learning (Northcutt
et al., 2021a) to identify suspected errors in the test sets of cifar10 and cifar100. They then
obtained 5 human labels for each suspected error using Amazon Mechanical Turk, and confirmed
the image to be a mislabel if at least 3 of 5 workers stated so. This amounts to 54 confirmed
mislabels in cifar10 (out of 221 suspected), and 585 confirmed mislabels in cifar100 (out
of 1650 suspected). In this section, we compare the performance of LEMONFIX versus the CLIP
similarity baseline on this set. As this set is a subset of the images identified to be mislabels by
confident learning, we are not able to compare our model performance with confident learning itself.
In addition, this presents a pessimistic view (lower bound) of the performance of our method, as there
are many images identified by LEMON which are mislabeled, but were not selected by confident
learning in (Northcutt et al., 2021b). We demonstrate examples of these images in Figure I.6.
In Table I.16, we compare the performance of LEMONFIX with the CLIP similarity baseline on the
error set from Northcutt et al., 2021 (Northcutt et al., 2021b). First, we compute the mean ranking
of all error set samples as ranked by each method, out of 10,000 test-set samples. We find that our
method ranks error set samples higher on average than the baseline, though the variance is large.
Next, we subset to the top |CL Set| ranked samples for each method, and compute the percentage
of which are actually in the error set. We note that this precision metric is upper bounded by the
precision of the reference method (confident learning). Again, we find that LEMONFIX outperforms
the baseline, and is able to identify more actual label errors than CLIP similarity at this threshold.

CIFAR10

CIFAR100

idx = 3309
label = deer

idx = 4175
label = cat

idx = 7524
label = cat

idx = 5031
label = camel

idx = 5681
label = seal

idx = 9269
label = pear

Figure I.6: Demonstrative examples of mislabeled samples in cifar10 and cifar100 which have
been identified by our method in the top |CL Set|, but was not identified by confident learning in
Northcutt et al., 2021 (Northcutt et al., 2021b) and thus was not a part of their error set.

Table I.16: Comparison of LEMONFIX (Ours) with the CLIP similarity baseline on the human labeled
error set from Northcutt et al., 2021 (Northcutt et al., 2021b). In this prior work, the authors used
confident learning to identify |CL Set| candidate label errors in cifar10 and cifar100, |Error
Set| of which are confirmed to be mislabels by Mechanical Turkers. Mean Ranking denotes the
average ranking of all error set samples as ranked by each method. Precision @ Top |CL Set| involves
taking the top |CL Set| samples as ranked by each method, and computing the percentage of which are
in the error set. Note that each dataset’s test set consists of 10,000 samples. Numbers in parentheses
represent one standard deviation.

Mean Ranking Precision @ Top |CL Set|
Dataset |CL Set| |Error Set| LEMONFIX CLIP Sim. Oracle LEMONFIX CLIP Sim.
cifar10 275 54 1269.7 (1905.1) 2681.0 (2507.1) 19.64% 6.55% 1.45%
cifar100 2235 585 2357.5 (1981.5) 3642.1 (2719.5) 26.17% 14.41% 10.16%
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I.14 DOWNSTREAM CLASSIFICATION WITH LABEL ERROR DETECTION-BASED FILTERING

Here, we show the impact of filtering out different proportions of the training data based on label
error predictions, and obtaining test performance.

I.14.1 AVERAGE ACCURACY
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Figure I.7: Downstream classification performance.
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Figure I.8: Downstream accuracy on stanfordCars, and miniImageNet.

I.15 AREA UNDER TEST ERROR VS % DATA RETAINED CURVE

We compute the area under the test error (i.e., 1-accuracy) vs % data retained curve in Table I.17.
Note that the minimum data retained is 20% (i.e., the minimum amount of data required for training
the downstream model).
On both cifar10 and cifar100, we observe that LEMON performs the best in terms of AUC
(i.e., lowest test error). On stanfordCars and miniImageNet, Deep k-NN performs better.
However, the gap in performance is low between LEMONOPT and the best method (less than 0.9% on
stanfordCars and 1.2% on miniImageNet).

Table I.17: Area under the curve: test error vs % data retained for all four classification datasets.
Lower is better, and bold denotes best method.

Method cifar10 cifar100 stanfordCars miniImageNet

CLIP Sim. 5.85 18.41 46.81 26.02
CLIP Logits 5.56 17.07 47.34 25.48
Discrepancy 8.45 20.82 48.30 30.03
Deep k-NN 5.34 17.74 46.19 24.69
Ours 4.98 16.60 46.29 25.95
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I.16 OUT-OF-DOMAIN ROBUSTNESS

We report the test performance on an Out-of-Domain (OOD) dataset CIFAR-10C (Hendrycks &
Dietterich, 2018), when models are trained on the cifar10 noisy train set, and validated and tested
with clean data with early stopping. The CIFAR-10C dataset contains 19 corruptions applied to
the cifar10 test set, with varying severity of corruption. Then, robustness is measured as the
average test top-1 class accuracy performance on the CIFAR-10C dataset (across all corruption types
and severities), following prior work (Diffenderfer et al., 2021). We see that: highest robustness is
obtained when the proportion of data retained in the train set = 60%, which matches the degree of
noise in the dataset. Thus, this implies that filtering out atypical samples using LEMoN increases
robustness to image corruptions.
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Figure I.9: Downstream accuracy on CIFAR-10C, averaged across all corruption types.
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