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Abstract

Spatial perception is a crucial component of
intelligence and plays a vital role in under-
standing the physical world. Current multi-
modal large language models (MLLMs) exhibit
promising spatial perception abilities. However,
existing datasets are limited to absolute spatial
perspectives or small-scale, unstructured col-
lections lacking systematic variations in spatial
relationships. This hinders models in under-
standing how rotation affects spatial relations.
To address this issue, we propose ROTATE,
a novel pipeline for synthesizing spatial rela-
tion datasets, and create the ROTATE dataset
with 48K synthetic images, 608K captions, and
250K QA pairs covering both relative and abso-
lute spatial perspectives. To further enhance the
model’s understanding of rotation, we propose
a novel task: Spatial Difference Generation. In
this task, the model must identify and generate
both commonalities and differences in spatial
relationships between paired images. Exper-
imental results show that through three-stage
training, the ROTATE dataset significantly im-
proves the model’s ability to comprehend spa-
tial relationships from both relative and abso-
lute perspectives. Furthermore, incorporating
the Spatial Difference Generation task during
training yields additional improvements in ro-
tation comprehension and increases response
consistency. Dataset and code will be published
after the paper is published.

1 Introduction

Spatial awareness is an innate core capability for all
visually enabled organisms, which underpins their
movement and decision-making in complex envi-
ronments. Consider a house cat hunting a mouse
in a room: the predator does not simply pounce
toward the prey’s current position but rather an-
ticipates the escape route based on the mouse’s
body orientation. This hunting strategy vividly
demonstrates two complementary perceptual per-
spectives: the absolute perspective allows the cat to
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Through the lens of the
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Figure 1: An example of absolute perspective and rela-
tive perspective.

perceive its surroundings for path planning, while
the relative perspective enables it to infer potential
movement trajectories based on the prey’s orien-
tation. As shown in Figure 1, absolute perspec-
tive spatial relationships are centered on the ob-
server and generally do not account for the influ-
ence of the orientation of an object. In contrast,
spatial relationships in the relative perspective are
centered on a specific object in the field of view,
where the orientation of the object significantly
impacts the perceived spatial relationships. This
dual-perspective mechanism holds critical appli-
cation value for systems that require environmen-
tal perception for navigation, such as autonomous
driving systems. For example, the absolute perspec-
tive provides autonomous vehicles with ego-centric
perception of road geometry, lane markings, and
obstacle positions, while the relative perspective
plays an indispensable role in understanding other
traffic participants’ behavioral intentions. The sys-
tem can predict pedestrian crossing intentions from
their body orientation, anticipate lane changes by
detecting adjacent vehicles’ wheel angles, and de-
termine right-of-way at intersections by analyzing
approaching vehicles’ heading angles.

Existing multimodal spatial perception datasets,
such as VG(Krishna et al., 2017), GQA(Hudson
and Manning, 2019), and VSR(Liu et al., 2023),
rely on manual annotations and lack automated
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Figure 2: Overview of ROTATE pipeline.

construction methods, making it difficult to scale
them up. Some datasets, such as Spatial VLM(Chen
et al., 2024a) and SpatialRGPT(Cheng et al., 2024),
adopt automated approaches to build spatially rele-
vant datasets. However, in either computer vision
or multimodal learning, determining the orientation
of objects from real-world images remains a signif-
icant challenge. As a result, these datasets lack spa-
tial relationships from a relative perspective. Since
these datasets extract spatial relationships from
real-world images, neither object orientation nor
camera angles can be manually controlled, leading
to a lack of systematic spatial variation. Synthetic
image-based datasets, such as CLEVR(Johnson
et al., 2017), typically generate images using geo-
metric symmetric shapes or primitives, where ob-
jects inherently lack the notion of directionality.

To address these challenges, we propose the RO-
TATE pipeline. As illustrated in Figure 2, the RO-
TATE pipeline uses Blender(Community, 2018) to
render CAD models from the ModelNet(Wu et al.,
2015) dataset in images containing various spatial
relationships by configuring different orientations
and positions. Each image is paired with a textual
description or QA pair generated using carefully
designed templates. The ROTATE pipeline renders
images in groups of 8 pairs (16 images total). Each
group consists of two subgroups of images captured
by eight cameras from eight different viewpoints.
Crucially, each corresponding image pair contains
identical objects with identical layouts, with only
the orientations of all objects reversed between

the paired images. Using this pipeline, we con-
struct the ROTATE dataset, comprising 48K syn-
thetic images, with 608K captions (covering both
relative and absolute perspectives) and 250K QA
pairs. To further enhance the consistency of the an-
swer, we introduce a novel task: Spatial Difference
Generation (SDG). The SDG task requires models
to identify and describe similarities and differences
in spatial relationships between image pairs from
specified perspectives.

The experimental results demonstrate that while
spatial perception from relative perspectives re-
mains a significant challenge for current multi-
modal models, three-stage training with ROTATE-
synthesized data can substantially enhance this ca-
pability. In particular, without introducing addi-
tional data, our proposed SDG task significantly
enhances both spatial perception accuracy and the
consistency of their spatial reasoning. The contri-
butions of this work can be summarized as follows:

* We propose the ROTATE pipeline, which en-
ables large-scale generation of spatial percep-
tion datasets with systematic spatial variations.
Based on this pipeline, we construct the RO-
TATE dataset.

* We introduce a novel task: Spatial Difference
Generation (SDG), which significantly im-
proves spatial reasoning capabilities and im-
proves the consistency of the answer for spa-
tial perception questions.



2 Related Work

Prior work has extensively explored spatial per-
ception. The VG(Krishna et al., 2017) and
GQA(Hudson and Manning, 2019) datasets con-
struct spatially aware QA pairs through manu-
ally annotated scene graphs, while VSR(Liu et al.,
2023) provides human-labeled captions for three
reference frames. Spatial-MM(Shiri et al., 2024)
and MM-Vet(Yu et al., 2024) collect limited images
and design spatial perception benchmarks based on
them. Since these datasets are based on human
annotation, they inherently incorporate both ab-
solute and relative perspectives. However, their
scalability is constrained by this manual annota-
tion process. The CLEVR(Johnson et al., 2017)
dataset generates synthetic images using geometric
primitives. Due to the symmetric nature of most
primitives lacking directional concepts, CLEVR
excludes relative perspectives. Spatial VLM(Chen
et al., 2024a) and SpatialRGPT(Cheng et al., 2024)
employ existing tools to extract 3D scene graphs
from web-collected images, then generate QA pairs
from these graphs. However, since object orienta-
tion detection remains challenging in real images,
these datasets only consider absolute spatial re-
lationships. With the exception of CLEVR, all
the aforementioned datasets source images from
the Web, resulting in limited systematic variation
in spatial relationships. What’s Up(Kamath et al.,
2023) dataset attempted to address this by manually
arranging objects to capture systematic spatial vari-
ations through photography. However, constrained
by labor-intensive processes and predefined spatial
relationship categories, What’s Up remains limited
in scale and lacks relative spatial relationship data.

3 ROTATE
3.1 Pipeline

The construction of relative-perspective images re-
quires accurate knowledge of the orientations of
objects. Since current techniques cannot reliably
extract object orientations from real-world images,
generating relative spatial relationships from natu-
ral imagery remains infeasible. To address this fun-
damental limitation, we turn to 3D rendering tech-
nology. By systematically adjusting the orientation
and position of 3D models, we achieve controlled
variations in spatial relationships. Crucially, known
object orientations enable precise computation of
relative spatial relationships between any pair of
objects. For reliable orientation information, we se-
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Figure 3: Schematic diagram of 8 cameras.

lect the ModelNet(Wu et al., 2015) dataset, where
all 3D models are pre-aligned with consistent orien-
tation baselines. This fundamental property allows
the deterministic calculation of both absolute and
relative spatial perspectives.

Render: Figure 2 illustrates the detailed work-
flow of the ROTATE pipeline. During the render-
ing of each image group, ROTATE first selects
2-3 object categories from the ModelNet dataset
and chooses one 3D model per category for ren-
dering. We classify ModelNet objects into three
distinct types: (1) objects with inherent directional
properties (e.g., humans, vehicles), (2) objects that
humans typically use in fixed orientations (e.g.,
chairs), and (3) objects without directional con-
cepts (e.g., flower pots) - with the first two cate-
gories collectively referred to as "directional ob-
jects." To ensure that every image can generate
relative perspective data, ROTATE always includes
at least one directional object in each scene. The
pipeline then randomly generates each object’s
position and orientation while performing colli-
sion detection to prevent bounding-box overlaps
between objects. After sequentially applying dif-
ferent colored materials to each model, ROTATE
renders two image subgroups from the 8 camera
angles shown in Figure 3: the first subgroup main-
tains the originally generated orientations, while
the second subgroup applies an additional 180 de-
gree rotation to all object orientations.

Filter: We implemented a rigorous filtering pro-
cess to eliminate images with object occlusion
or recognition ambiguity. Specifically, we used
the InternVL2-26B model as our filtering mecha-
nism. For each candidate image, we systematically
queried the model about the presence of every indi-
vidual object in the scene. Only images in which
InternVL2 confidently confirmed the presence of
all objects were retained in the final dataset.

Captions and QA pairs: ROTATE employs
carefully designed templates to generate captions
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Figure 4: Examples of Spatial Difference Generation data.

and question-answer pairs for each image. To en-
hance linguistic diversity, we decompose spatial
relation descriptions into three components: the
perspective clause (relative or absolute; see Ap-
pendix A), main object clause (added only in rela-
tive perspectives for objects that humans typically
use in fixed orientations; Appendix B), and spatial
relation (selected from Appendix C based on task)
and recombine them variably. We define two types
of spatial relation: cardinal directions (front, back,
left, right, and their diagonals) and clock directions
(12 hour positions). These underpin two QA task
templates: judgment tasks (verifying spatial cor-
rectness) and prediction tasks (identifying precise
spatial relations).

3.2 Dataeset

Using the ROTATE pipeline, we initially synthe-
sized 10,000 image groups. After filtering, the final
dataset comprises 48K images, 608K captions, and
250K QA pairs. For caption generation, we used
the first 9,000 groups, divided into training and val-
idation sets. The remaining 1,000 groups were allo-
cated for the construction of QA pairs, divided into
training, validation, and test sets. As demonstrated
in Table 1 and Appendix D, the textual distribu-
tions in the ROTATE dataset are well balanced, a
direct result of our carefully designed caption and
QA generation rules. However, we note two impor-
tant filtering effects: (1) While object counts were
randomly selected during rendering, three-object
scenes exhibited higher occlusion rates than two-
object scenes, leading to disproportionate filtering

of three-object images. (2) Three-object images
could still generate questions about two-object rela-
tionships, resulting in significantly more two-object
questions, as shown in Table 2’s comparison with
other multimodal spatial relation datasets.

3.3 Spatial Difference Generation

To further enhance the model’s comprehension of
rotation and improve its consistency in spatial un-
derstanding when only orientation or camera angles
differ, we propose the Spatial Difference Genera-
tion (SDG) task. The SDG task requires the model
to process two similar images as input and identify
both similarities and differences in their spatial re-
lationships, either from relative or absolute perspec-
tives. Specifically, the model must first explicitly
state whether the relationships are similar or dif-
ferent and then generate fine-grained comparisons
of spatial relationships at the object level. Figure
4 illustrates the methodology for constructing the
task dataset. To minimize data collection efforts,
we reuse caption data from the ROTATE dataset. In
ROTATE, images within the same subgroup share
identical relative spatial relationships, while im-
ages from different subgroups but captured from
the same camera viewpoint share identical abso-
lute spatial relationships. By using pairs of images
from either the same subgroup or the same cam-
era viewpoint as input, we systematically organize
their similarities and differences into structured
spatial-difference captions.



ROTATE Modality Viewpoint Task Relation Type Object Numbers
Component Split | Images Text | Relative Absolute | Judgement Prediction | Cardinal Clock 2 3
Captions train 41K 595K 50% 50% - - 100% 100% | 100%  32.43%
val 1K 13K 50% 50% - - 100% 100% | 100%  34.35%
7777777777 train | 5.6K 225K | 51.47% 48.53% | 66.67%  3333% | 50% = 50% | 81.26% 18.74%
QA val 300 12K | 52.63%  47.37% 66.67% 33.33% 50% 50% | 80.67% 19.33%
test 312 13K | 53.87%  46.13% 66.67% 33.33% 50% 50% | 81.23% 18.77%
~ TImages - | - - - - - - - | 67137% 3263%

Table 1: ROTATE dataset distribution. To comprehensively characterize spatial relationships in images, each caption
incorporates both types of spatial relations. Crucially, even when an image contains three objects, it inherently
allows describing spatial relationships between two objects - therefore, every caption contains a section describe the

spatial relationship between paired objects.

. Symmetric  Relative  Systematic
Dataset Images ~ Captions QA Image Viewpoint  Variation
VG* 108K M 1.7M X X X
GQA* 113K 22M X X X
VSR 6940 11K - X X
Spatial-MM 3.1K - 3.1K X X
MM-Vet* 187 - 205 X X X
Spatial VLM 10M - 2B X X X
SpatialRGPT M - 8. "M X X X
What’s up 820 820 - X X
CLEVR 100K - IM X X
ROTATE 48K 608K 250K

Table 2: Comparison of existing multimodal spatial re-
lationship datasets. Dataset with "*" indicates that only
a portion of the dataset is related to spatial relationships

3.4 Training Strategy

As illustrated in Figure 5, we adopt a carefully
designed three-stage training approach using the
ROTATE dataset to progressively improve the spa-
tial understanding of the model and the consistency
of the answers across multimodal inputs. In the
first stage, we train the entire model using image
captions, which provide rich descriptions of object
arrangements and spatial relationships. This stage
enables the model to develop a foundational under-
standing of how objects interact within a scene. To
maintain parameter efficiency while ensuring effec-
tive learning, we employ LoRA(Hu et al., 2021)
for both the language model and the visual encoder,
allowing them to adapt to the multimodal task with
minimal training parameters. Meanwhile, the MLP
layer, which bridges the visual and linguistic modal-
ities, undergoes a full fine-tuning to better align
cross-modal representations. The second stage fo-
cuses on improving the spatial consistency of the
model between images that share identical objects
but differ in their arrangement. To achieve this, we
train the model with the proposed SDG task. In par-
ticular, to minimize additional data overhead, we
repurpose the original captions from the first stage
into SDG-compatible formats through automated

rule-based transformations. During this phase, we
freeze the visual encoder to stabilize the training
and only update the LM and MLP layers, ensuring
that the model hones its spatial differentiation skills
without overfitting to low-level visual features. Fi-
nally, in the third stage, we further fine-tune the
model in QA pairs using the same training protocol
as in the second stage. This phase adapts the model
to downstream spatial QA tasks, reinforcing its
ability to generate accurate and coherent responses
grounded in visual-spatial understanding.
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Table 3: Same direction under different spatial relation-
ship types.

4 Experiement

4.1 Configurations

Models: We trained the InternVL2-8B model us-
ing our proposed three-stage training strategy as
a baseline. To the best of our knowledge, there
are currently no viable training methods for rel-
ative spatial relationships currently exist. There-
fore, for comparison, we fine-tune the InternVL-
8B model using only the ROTATE QA training set.
Furthermore, we evaluated zero-shot performance
across models of varying scales, including open-
source models (InternVL2(Chen et al., 2024b),
Llama3.2(Al@Meta, 2024), LlavaNext(Liu et al.,
2024), Qwen2.5-VL(Bai et al., 2025)) and propri-
etary models (GPT-40(OpenAl et al., 2024)). Ap-
pendix E shows the prompt for the zero-shot exper-



Stage1 Stage2
LM Head LM Head
Oo0oOO0OO0O0OoDo0o0O0o0oOoOoOonO I
InternLM2 Decoder InternLM2 Decoder
VAR A/ »
OO0DDDOD0DOODOD0D0DO0DO0OOd M  OOD0d00000000000OOOOE RA LerA
M+LP \ Embedding MtP Y Embedding
f From the persan's perspective, the car is in front of him. 1‘ f
E Vision Encoder = Vision Encoder g E:‘id\jgesf;‘caels in the
LoRA relationships between
the objects in the two
images are as follow. In
the first image, from the
_____________________________________________ Iy :Jherson'§ per'spe:ni\;eh,
ris in front of him.
Stage3 AN , whil in he second
LM Head ™ oo poin e
u]wju]s[s]w|s[s]s]s[s[a]=][s[s[ss]s[=]= e gt vk
N of him.
InternLM2 Decoder g\x zg \\
3 \
s \
0000000000 O00O0O00OO0OOO terA  LoRa .
Mtp I\ Embedding N [ Image Token
4 From the person's perspective, is the car in front of him? \\ |:| Text Token

v i
Vision Encoder
LoRA

Figure 5: Three stage training strategy. In the first stage, the model is trained on captions to learn spatial relationships
across perspectives. During the second stage, we freeze the visual encoder and employ the SDG task to improve
rotation understanding. Finally, the model is fine-tuned using QA pairs.

iment. All experiments were conducted using four
A100 80GB GPUs. The complete training hyper-
parameters for the three-stage training strategy are
provided in Appendix F.

Metric:We employ accuracy as the primary
metric to evaluate the performance of the model
in different tasks. Furthermore, to assess
whether the model has genuinely acquired spa-
tial knowledge, we introduce two consistency met-
rics: Relationship Type Consistency (RTC) and
Rotation Consistency(RC). Relation-type consis-
tency measures the model’s ability to identify
equivalent directions using different spatial relation
types (e.g., "12 o’clock direction" and "front" rep-
resent the same direction). Specifically, we evenly
divide the circle into 12 and 8 equal sectors, re-
spectively, representing directional ranges through
angular intervals for different types of relationship.
We define two directions as identical when their
angular intervals under a given relationship type
have a non-empty intersection. Table 3 shows the
same direction under different types of spatial re-
lation. This metric is calculated as the proportion
of question pairs that differ only in the required
type of spatial relation, where the model provides
consistent directional answers. Rotation consis-
tency evaluates response invariance across varying
camera viewpoints or object orientations, reflecting

the model’s understanding of rotational transforma-
tions. We quantify this using Normalized Entropy
(NE), where inconsistent responses indicate higher
disorder (greater entropy). The normalization pro-
cess eliminates potential biases caused by varying
the sizes of image groups in the evaluation. The
Normalized Entropy is calculated as Equation 1
when N questions should yield identical answers,
where M denotes the total number of distinct possi-
ble answers, and n; represents the occurrence count
of the i answer:

M ) )
>im1 — v loge ¥
logaoN

To handle cases where the model generates re-
sponses outside our predefined answer set, we treat
each such unique response as a distinct category to
prevent irrelevant answers from lowering the NE
metric.

NE =

ey

4.2 Main Results

Table 4 presents the performance of different mod-
els and training approaches on the ROTATE QA
test set. Current multimodal models show lim-
ited capability in spatial relationship understanding,
where even substantial increases in model scale
yield negligible accuracy improvements. In partic-
ular, models fine-tuned solely on the ROTATE QA



Task Viewpoint Relation Type
Model Judgement IT’rediction Relative pAbsT)lute Cardinal )(;l:OIk Total
GPT-40 53.43 35.08 38.40 57.73 47.74 46.89 | 47.32
 InternVL2-8B | 5233 1977 | 4025 4291 | 4497 3799 | 4148
InternVL2-76B 53.35 28.57 39.96 51.08 48.80 41.38 | 45.09
~ Llama3.2-11B | 5029 852 | 3479 3821 | 3733 3540 | 3637
Llama3.2-90B 52.12 24.46 37.41 49.33 46.36 3945 | 42.90
 LlavaNext-13B | 5000 1195 | 3677 3796 | 3937 3526 | 3732
LlavaNext-34B 53.64 14.33 37.85 43.67 43.42 37.66 | 40.54
- Qwen2.5-VL-7B | 5177 16.64 | 3833 4209 | 4496 3517 | 40.06
Qwen2.5-VL-72B 51.27 29.34 34.26 55.30 42.67 4525 | 43.96
Finetune 56.24 34.31 40.83 58.40 51.87 46.00 | 48.93
Ours 80.53 51.24 52.57 92.02 71.96 69.58 | 70.77

Table 4: Accuracy of multimodal models on ROTATE QA test set. For each column, the highest, the second, and
the third highest figures are highlighted by green , orange and pink backgrounds.

RCx1072 |

Model RTCT Relative Absolute Total
GPT-40 35.72 55.08 54.39 54.75

"~ InternVL2-8B | 1148 | 57.68 5424  56.06
InternVL2-76B 10.53 45.31 42.69 44.08

" Llama32-11B | 1238 | 83.07 7178 7175
Llama3.2-90B 28.80 53.52 44.30 51.17

" LlavaNext-13B | 935 | 6589 6477 6536
LlavaNext-34B 13.52 28.52 26.46 27.55

S Qwen25-VL-7B | 669 | 6810 6433 6632
Qwen2.5-VL-72B | 34.30 32.16 24.85 28.72
Finetune 44.02 57.68 50.88 54.48
Ours 64.90 51.30 11.70 32.64

Table 5: Consistency of multimodal models on ROTATE
QA test set, where RTC represents relationship type
consistency and NE represents Normalized Entropy. For
each column, the highest, the second, and the third
highest figures are highlighted by green , orange and

pink backgrounds.

training set show only marginal improvements over
GPT-40. In contrast, our three-stage training strat-
egy achieves a remarkable 21.84% performance
gain compared to the standalone finetuning. We
comprehensively evaluate the spatial reasoning ca-
pabilities of existing multimodal models through
four key dimensions: task, viewpoint, spatial rela-
tion, and consistency.

Task: Unexpectedly, current multimodal models
perform poorly in both judgment and prediction
tasks. For the judgment task, even after fine-tuning,
the accuracy stays just above 50%, close to ran-
dom guessing. For the prediction task, the fine-

tuned InternVL2-8B model improves significantly
but still falls slightly short of GPT-40, demonstrat-
ing the inherent difficulty of the ROTATE dataset.
However, our three-stage training enables even
smaller models to achieve substantially higher pre-
diction accuracy.

Viewpoint: Current models consistently under-
perform in relative perspective tasks compared
to absolute perspective tasks, regardless of train-
ing. Fine-tuning improves performance primarily
on absolute perspective tasks, with minimal gains
for relative perspective understanding. However,
our three-stage training yields significant improve-
ments for both perspectives. Despite this advance-
ment, there remains a substantial performance gap
between relative and absolute perspectives, con-
firming that understanding relative spatial relation-
ships remains a challenge in the field.

Spatial Relation: The inherent data scarcity
of clock direction expressions (compared to cardi-
nal directions) in daily use leads to systematically
weaker performance on clock direction tasks in
all models. Although fine-tuning improves both
types of representations, it shows limited efficacy
in bridging this performance gap, reducing the dis-
parity in InternVL2-8B from 6.98% to just 5.87%.
In contrast, our three-stage training demonstrates
significantly stronger generalization ability, nar-
rowing the gap to 2.38% and proving particularly
effective in learning low-frequency spatial patterns.

Consistency: We evaluate the consistency by
examining the agreement of the answer (regard-
less of correctness) to assess whether the modes



establish conceptual connections. Table 5 presents
the consistency of the type of relation(RTC) and
the consistency of rotation(RC). The RTC metric
reveals that most models, except GPT-40, Qwen?2.5-
VL-72B, and Llama3.2-90B, fail to recognize the
relationship between the two spatial representation
methods. Even these three large-scale models show
limited alignment capability. Training significantly
improves this understanding, enabling better rep-
resentation alignment. Unexpectedly, fine-tuning
only marginally boosts relative spatial consistency
while failing to enhance rotation consistency in
relative perspectives. However, our three-stage
training effectively improves rotation consistency,
though gains in relative perspectives remain sub-
stantially lower than in absolute perspectives, high-
lighting the persistent challenge of relative spa-
tial reasoning. InternVL2-76B, LLava-Next-34B,
and Qwen2.5-VL-72B demonstrate exceptionally
high rotation consistency scores. However, sta-
tistical analysis of their responses reveals severe
answer biases that artificially inflate these metrics.
Under relative perspective conditions, InternVL2-
76B produces "left-back" responses 54% of the
time; LLaVA-Next-34B shows a 50.3% bias to-
ward "right" answers, with this preference in-
creasing to 89.9% for "10 o’clock” responses in
clock-direction tasks; Qwen2.5-VL-72B generates
"front"/"back" responses in less than 1% of cases.
These extreme biases elevate rotation consistency
metrics without indicating a genuine understanding
of how rotation affects spatial relationships.

4.3 Ablation

Consistency
Strategy Accuracy RTCT RCx102]
0-shot 41.48 11.48 56.06
S3 48.93 44.02 54.48
S1+S3 56.64 42.46 54.61
Ours 70.77 64.90 32.64

Table 6: The ablation experiment results of the three-
stage training strategy. S3: only uses the third-stage
training model, that is, only uses question answer pairs
for fine-tuning. S1+S3: the first and third stages, which
involve training with caption first and then fine-tuning
with question answer pairs.

As evidenced by Table 11, the incorporation of
captions during training improves the accuracy of
the model, but does not improve consistency. The

subsequent introduction of the SDG task yields
significant improvements in both accuracy and con-
sistency metrics. This demonstrates that caption-
based training solely boosts predictive accuracy
without fostering understanding of either (1) the re-
lationships between different spatial relation types
or (2) rotation’s impact on spatial relationships.
Crucially, the SDG task achieves these advanced
comprehension capabilities without requiring addi-
tional training data. This phenomenon potentially
reveals a fundamental limitation in current multi-
modal model training paradigms: Although large-
scale caption training effectively enhances multi-
modal comprehension and facilitates knowledge ac-
quisition, it does not allow models to systematically
organize these discrete knowledge components into
a unified cognitive framework. In contrast, the
SDG task artificially constructs inter-knowledge re-
lationships through comparative learning, thereby
enabling the model to establish an integrated knowl-
edge system. Remarkably, this architectural im-
provement achieves substantial performance gains
without requiring additional training data. In ad-
dition, contrastive learning also introduces com-
parative information. As detailed in Appendix G,
we conducted experiments replacing the SDG task
with contrastive learning. Our findings reveal that
contrastive learning is not suitable for current gen-
erative multimodal models and fails to deliver per-
formance improvements. This limitation may be
closely tied to the fundamental differences in task
objectives between contrastive learning and next to-
ken prediction task, and the computational resource
requirements involved.

5 Conclusion

In this paper, we present ROTATE, a novel pipeline
for batch synthesis of multimodal spatial percep-
tion data. Using this pipeline, we construct the
ROTATE dataset and propose a new Spatial Dif-
ference Generation task(SDG). Our experimental
results demonstrate that while spatial understand-
ing from relative perspectives remains challeng-
ing for current multimodal models, our three-stage
training protocol using the ROTATE dataset yields
significant improvements in spatial perception ca-
pabilities.Furthermore, the SDG task enhances the
model’s spatial perception capability without re-
quiring additional data, while also improving re-
sponse consistency across varying viewpoints and
different spatial representation methods.



Limitations

Due to constraints in our rendering capabilities,
synthesized images lack photorealism and could be
improved in several aspects, such as incorporating
more realistic material textures and detailed back-
ground environments. Furthermore, existing spatial
perception datasets suffer from three critical limi-
tations: (1) their small scale, (2) inconsistent defi-
nitions of spatial relationships across datasets, and
(3) the lack of explicit annotations distinguishing
between relative and absolute perspectives. Con-
sequently, evaluations on these datasets provide
a limited reference value to assess model perfor-
mance.

References
Al@Meta. 2024. Llama 3 model card.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shi-
jie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu,
Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei
Wang, Wei Ding, Zheren Fu, Yiheng Xu, and 8 others.
2025. Qwen2.5-vl technical report. arXiv preprint
arXiv:2502.13923.

Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter,
Dorsa Sadigh, Leonidas Guibas, and Fei Xia. 2024a.
Spatialvim: Endowing vision-language models with
spatial reasoning capabilities. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 14455-14465.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye,
Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, and 1 others. 2024b.
How far are we to gpt-4v? closing the gap to com-
mercial multimodal models with open-source suites.
arXiv preprint arXiv:2404.16821.

An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo,
Ruihan Yang, Jan Kautz, Xiaolong Wang, and Sifei
Liu. 2024. Spatialrgpt: Grounded spatial reasoning
in vision-language models. In NeurIPS.

Blender Online Community. 2018. Blender - a 3D
modelling and rendering package. Blender Founda-
tion, Stichting Blender Foundation, Amsterdam.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Drew A. Hudson and Christopher D. Manning. 2019.
Gga: A new dataset for real-world visual reason-
ing and compositional question answering. In
2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 6693-6702.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross
Girshick. 2017. Clevr: A diagnostic dataset for com-
positional language and elementary visual reason-
ing. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), page 1988—1997.
IEEE.

Amita Kamath, Jack Hessel, and Kai-Wei Chang. 2023.
What‘s “up” with vision-language models? inves-
tigating their struggle with spatial reasoning. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
9161-9175, Singapore. Association for Computa-
tional Linguistics.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin
Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A.
Shamma, Michael S. Bernstein, and Li Fei-Fei.
2017. Visual genome: Connecting language and
vision using crowdsourced dense image annota-
tions. International Journal of Computer Vision,
123(1):32-73.

Fangyu Liu, Guy Emerson, and Nigel Collier. 2023.
Visual spatial reasoning.  Transactions of the
Association for Computational Linguistics, 11:635-
651.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024. Llava-
next: Improved reasoning, ocr, and world knowledge.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, and 401 others. 2024. Gpt-4o0
system card. Preprint, arXiv:2410.21276.

Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin
Yu, Reza Haf, and Yuan-Fang Li. 2024. An em-
pirical analysis on spatial reasoning capabilities of
large multimodal models. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 21440-21455, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao.
2015. 3d shapenets: A deep representation for
volumetric shapes. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1912-1920.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2024. MM-vet: Evaluating large multimodal
models for integrated capabilities. In Proceedings
of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 57730-57754. PMLR.



https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
http://www.blender.org
http://www.blender.org
http://www.blender.org
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/cvpr.2017.215
https://doi.org/10.1109/cvpr.2017.215
https://doi.org/10.1109/cvpr.2017.215
https://doi.org/10.1109/cvpr.2017.215
https://doi.org/10.1109/cvpr.2017.215
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://doi.org/10.18653/v1/2023.emnlp-main.568
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1007/s11263-016-0981-7
https://doi.org/10.1162/tacl_a_00566
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.18653/v1/2024.emnlp-main.1195
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2015.7298801
https://proceedings.mlr.press/v235/yu24o.html
https://proceedings.mlr.press/v235/yu24o.html
https://proceedings.mlr.press/v235/yu24o.html

A Template for Viewpoint

Listing 1: Template for relative viewpoint.

'relative_prefix': [

] ’

"from [AJ\'s perspective',

'looking from [AJ\'s point of view',

"from [AJ\'s viewpoint',

"from [AJ\'s point of view',

'looking from [A]\'s perspective',

"according to [AJ\'s view',

"in [AJ\'s line of sight',

"through [AJ\'s perspective',

"from [AJ\'s vantage point',

'aligned with [AJ\'s gaze',

"following [A]\'s line of sight',

"in the direction [A] is facing',

"through the lens of [A]\'s
perspective',

'with [AJ\'s forward focus',

'seen as if standing in [AJ\'s
position',

'relative to [A]\'s front',

Listing 2: Template for absolute viewpoint.

"absolute_prefix': [

] )

'from the perspective of the camera
itself',

'in terms of a purely objective
angle',

"through the lens of the camera',

'from the absolute viewpoint that
the camera records',

'viewed directly from an absolute
standpoint',

'seen directly from this position',

'seen directly from the image\'s
perspective’',

'viewed precisely as the image shows

'as observed from the angle
presented in the image',
'in view as the image frames it'

B Template for Main Object

Listing 3: Template for main object.

'used_directed_prefix': [

] )

"if someone is [V] [A]"',
'while someone is [V] [A]l',
'as a person [V] [Al',
'when a person is [V] [A]l',
"if a person is [V] [A]'

C Template for Spatial Relationship

Listing 4: Example template for captions with two ob-
jects.

"directed': {
'"location': {
‘left': ['[B] is on the left
side of [A]l', 1,

'right': ['we can confirm [B] is
positioned on [AJ\'s right
side'],

3
'clock': ['[B] is located at [AJ\'s
[X] o\'clock', 1]

'used_directed': {
'"location': {
'left': ['[B] is on his left
side', 1,

'right': ['[B] is positioned to
his right', 1,

3
'clock': ['[B] is positioned at [X]
o\'clock', 1]

Listing 5: Example template for qa pairs with three
objects.

"true_or_false': {

'question': {
'left': ['is [B] to the left of
(ci1', 1,

'clock': ['is [B] located at the
[X] o\'clock position
relative to [C]', 1],

}
"answer': {

"left': {

"true': ['[B] is indeed to
the left of [C]', 1,
'false': ['[B] is not on the

left side of [C1', 13},
'clock': {
"true': ['[B] is indeed at [
X1 o\'clock position',
]!
'false': ['[B] is not at the
[X] o\'clock position',
13,
3
3
'predict': {
'question': {

'location': ['what direction is
[B] relative to [C]1', 1,

'clock': ['what is the
approximate clock position
of [B] relative to [C]', 1]

}7
"answer': {

‘left': ['[B] is on the left
side of [C]', 1,

‘clock': ['[B] would appear to
be around [X] o\'clock
relative to [C]', 1],

3
}
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D Answer Distribution

QA Split Yes No
train 50% 50%
val 50% 50%
test 50% 50%

Table 7: Distribution of answers for the judgment task.

QA Split  Left Right Front-Left Front-Right
train 12.95% 12.93% 11.16% 11.80%
val 11.21% 10.92% 10.20% 16.92%
test 10.50% 10.46% 10.18% 11.30%

QA Split  Front Back  Back-Left Back-Right
train 14.07% 14.20% 11.80% 11.08%
val 11.70% 11.50% 17.50% 10.05%
test 17.37% 17.46% 11.16% 11.58%

Table 8: Distribution of answers for cardinal directions.

QA Split 1 2 3 4
train 9.02% 71.11% 8.89%  8.55%
val 13.10% 6.67% 8.26% 6.77%
test 12.28% 551% 5.74%  9.10%
QA Split 5 6 7 8
train 6.76% 9.64% 9.10%  7.10%
val 6.72%  793% 13.68% 6.62%
test 7.56% 10.69% 11.90% 5.79%
QA Split 9 10 11 12
train 892% 855% 6.78%  9.58%
val 8.60% 696% 6.62% 8.07%
test 584% 8.40%  6.63% 10.55%

Table 9: Distribution of answers for clock directions.

E Zero-shot prompt

Listing 6: Prompt for zero-shot experiments.

[IMAGE] I will ask you a question. If
the question requires a yes/no judgment,
answer strictly "Yes” or "No"”. For
short-answer questions: if the answer is
a direction, use only one of these:
front, back, left, right, front-left,
back-left, front-right, back-right. If
the answer is a clock position, use the
format "[X] o'clock” where [X] is a
number (1-12) or its English word (e.g.,
"2 o'clock” or "two o'clock”). Provide
only the answer without explanations.
Question: [QUESTION]
Answer:

11

F Experimental Hyperparameters

Stagel Stage2  Stage3
Batch size 64 64 32
Micro batch size 4 1 4
Max token num 1024 1536 512
Total step 5000 5000 10000
Optimizer AdamW
LR schedule Linear warmup cosine decay
LR 4e-5
Min LR 2e-5
Warm up start LR 3e-5
Weight decay 0.05
Warm up step 100

Table 10: Experiemental hyperparameters for each stage.
The hyperparameters that are the same in all three stages
will only be displayed once. LR: Learning Rate

G Contrastive Learning

Consistency
Strategy  Accuracy RTCT RCx10-2 ]
0-shot 41.48 11.48 53.93
S3 48.93 44.02 54.48
S1+S3 56.64 42.46 54.48
contrastive 55.12 41.79 53.86
Ours 70.77 64.90 32.51

Table 11: The ablation experiment results of the three-
stage training strategy with comparative learning. S3:
only uses the third-stage training model, that is, only
uses question answer pairs for fine-tuning. S1+S3: the
first and third stages, which involve training with caption
first and then fine-tuning with question answer pairs.

We also experimented with replacing the second-
stage SDG task with contrastive learning, inves-
tigating whether this approach could improve the
model’s consistency in spatial relationship under-
standing. As shown on the left side of Figure 4,
we leverage the inherent correlations in spatial re-
lationships among image groups within the RO-
TATE dataset to construct positive and negative
samples for our contrastive learning task, where
each data instance consists of four images (similar
to those in Figure 4) representing two subgroups
captured from two different camera angles. For
relative perspective conditions, positive samples
are images from the same subgroup sharing iden-
tical relative spatial relationships, while negative
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Figure 6: Comparative Learning of LVLM.

samples include both images from the same camera
angle but different subgroups (relative perspective)
and the image’s own absolute perspective relation-
ships; correspondingly, for absolute perspective
conditions, positive samples are images rendered
from the same camera angle, with negative sam-
ples consisting of images from the same subgroup
but different camera angles (absolute perspective)
and the image’s own relative perspective relation-
ships. To our surprise, contrastive learning fails to
enhance the model’s spatial perception capabilities,
improving only its consistency in relative spatial
relationships. This phenomenon may stem from
conflicting gradient update directions between con-
trastive learning and the QA task optimization ob-
jectives. Our experiments reveal that contrastive
learning solely affects the convergence speed of
the loss function in the third training stage, with
nearly identical final loss values and validation per-
formance regardless of its inclusion.

12



	Introduction
	Related Work
	ROTATE
	Pipeline
	Dataeset
	Spatial Difference Generation
	Training Strategy

	Experiement
	Configurations
	Main Results
	Ablation

	Conclusion
	Template for Viewpoint
	Template for Main Object
	Template for Spatial Relationship
	Answer Distribution
	Zero-shot prompt
	Experimental Hyperparameters
	Contrastive Learning

