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Abstract001

Spatial perception is a crucial component of002
intelligence and plays a vital role in under-003
standing the physical world. Current multi-004
modal large language models (MLLMs) exhibit005
promising spatial perception abilities. However,006
existing datasets are limited to absolute spatial007
perspectives or small-scale, unstructured col-008
lections lacking systematic variations in spatial009
relationships. This hinders models in under-010
standing how rotation affects spatial relations.011
To address this issue, we propose ROTATE,012
a novel pipeline for synthesizing spatial rela-013
tion datasets, and create the ROTATE dataset014
with 48K synthetic images, 608K captions, and015
250K QA pairs covering both relative and abso-016
lute spatial perspectives. To further enhance the017
model’s understanding of rotation, we propose018
a novel task: Spatial Difference Generation. In019
this task, the model must identify and generate020
both commonalities and differences in spatial021
relationships between paired images. Exper-022
imental results show that through three-stage023
training, the ROTATE dataset significantly im-024
proves the model’s ability to comprehend spa-025
tial relationships from both relative and abso-026
lute perspectives. Furthermore, incorporating027
the Spatial Difference Generation task during028
training yields additional improvements in ro-029
tation comprehension and increases response030
consistency. Dataset and code will be published031
after the paper is published.032

1 Introduction033

Spatial awareness is an innate core capability for all034

visually enabled organisms, which underpins their035

movement and decision-making in complex envi-036

ronments. Consider a house cat hunting a mouse037

in a room: the predator does not simply pounce038

toward the prey’s current position but rather an-039

ticipates the escape route based on the mouse’s040

body orientation. This hunting strategy vividly041

demonstrates two complementary perceptual per-042

spectives: the absolute perspective allows the cat to043

Figure 1: An example of absolute perspective and rela-
tive perspective.

perceive its surroundings for path planning, while 044

the relative perspective enables it to infer potential 045

movement trajectories based on the prey’s orien- 046

tation. As shown in Figure 1, absolute perspec- 047

tive spatial relationships are centered on the ob- 048

server and generally do not account for the influ- 049

ence of the orientation of an object. In contrast, 050

spatial relationships in the relative perspective are 051

centered on a specific object in the field of view, 052

where the orientation of the object significantly 053

impacts the perceived spatial relationships. This 054

dual-perspective mechanism holds critical appli- 055

cation value for systems that require environmen- 056

tal perception for navigation, such as autonomous 057

driving systems. For example, the absolute perspec- 058

tive provides autonomous vehicles with ego-centric 059

perception of road geometry, lane markings, and 060

obstacle positions, while the relative perspective 061

plays an indispensable role in understanding other 062

traffic participants’ behavioral intentions. The sys- 063

tem can predict pedestrian crossing intentions from 064

their body orientation, anticipate lane changes by 065

detecting adjacent vehicles’ wheel angles, and de- 066

termine right-of-way at intersections by analyzing 067

approaching vehicles’ heading angles. 068

Existing multimodal spatial perception datasets, 069

such as VG(Krishna et al., 2017), GQA(Hudson 070

and Manning, 2019), and VSR(Liu et al., 2023), 071

rely on manual annotations and lack automated 072
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Figure 2: Overview of ROTATE pipeline.

construction methods, making it difficult to scale073

them up. Some datasets, such as SpatialVLM(Chen074

et al., 2024a) and SpatialRGPT(Cheng et al., 2024),075

adopt automated approaches to build spatially rele-076

vant datasets. However, in either computer vision077

or multimodal learning, determining the orientation078

of objects from real-world images remains a signif-079

icant challenge. As a result, these datasets lack spa-080

tial relationships from a relative perspective. Since081

these datasets extract spatial relationships from082

real-world images, neither object orientation nor083

camera angles can be manually controlled, leading084

to a lack of systematic spatial variation. Synthetic085

image-based datasets, such as CLEVR(Johnson086

et al., 2017), typically generate images using geo-087

metric symmetric shapes or primitives, where ob-088

jects inherently lack the notion of directionality.089

To address these challenges, we propose the RO-090

TATE pipeline. As illustrated in Figure 2, the RO-091

TATE pipeline uses Blender(Community, 2018) to092

render CAD models from the ModelNet(Wu et al.,093

2015) dataset in images containing various spatial094

relationships by configuring different orientations095

and positions. Each image is paired with a textual096

description or QA pair generated using carefully097

designed templates. The ROTATE pipeline renders098

images in groups of 8 pairs (16 images total). Each099

group consists of two subgroups of images captured100

by eight cameras from eight different viewpoints.101

Crucially, each corresponding image pair contains102

identical objects with identical layouts, with only103

the orientations of all objects reversed between104

the paired images. Using this pipeline, we con- 105

struct the ROTATE dataset, comprising 48K syn- 106

thetic images, with 608K captions (covering both 107

relative and absolute perspectives) and 250K QA 108

pairs. To further enhance the consistency of the an- 109

swer, we introduce a novel task: Spatial Difference 110

Generation (SDG). The SDG task requires models 111

to identify and describe similarities and differences 112

in spatial relationships between image pairs from 113

specified perspectives. 114

The experimental results demonstrate that while 115

spatial perception from relative perspectives re- 116

mains a significant challenge for current multi- 117

modal models, three-stage training with ROTATE- 118

synthesized data can substantially enhance this ca- 119

pability. In particular, without introducing addi- 120

tional data, our proposed SDG task significantly 121

enhances both spatial perception accuracy and the 122

consistency of their spatial reasoning. The contri- 123

butions of this work can be summarized as follows: 124

• We propose the ROTATE pipeline, which en- 125

ables large-scale generation of spatial percep- 126

tion datasets with systematic spatial variations. 127

Based on this pipeline, we construct the RO- 128

TATE dataset. 129

• We introduce a novel task: Spatial Difference 130

Generation (SDG), which significantly im- 131

proves spatial reasoning capabilities and im- 132

proves the consistency of the answer for spa- 133

tial perception questions. 134
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2 Related Work135

Prior work has extensively explored spatial per-136

ception. The VG(Krishna et al., 2017) and137

GQA(Hudson and Manning, 2019) datasets con-138

struct spatially aware QA pairs through manu-139

ally annotated scene graphs, while VSR(Liu et al.,140

2023) provides human-labeled captions for three141

reference frames. Spatial-MM(Shiri et al., 2024)142

and MM-Vet(Yu et al., 2024) collect limited images143

and design spatial perception benchmarks based on144

them. Since these datasets are based on human145

annotation, they inherently incorporate both ab-146

solute and relative perspectives. However, their147

scalability is constrained by this manual annota-148

tion process. The CLEVR(Johnson et al., 2017)149

dataset generates synthetic images using geometric150

primitives. Due to the symmetric nature of most151

primitives lacking directional concepts, CLEVR152

excludes relative perspectives. SpatialVLM(Chen153

et al., 2024a) and SpatialRGPT(Cheng et al., 2024)154

employ existing tools to extract 3D scene graphs155

from web-collected images, then generate QA pairs156

from these graphs. However, since object orienta-157

tion detection remains challenging in real images,158

these datasets only consider absolute spatial re-159

lationships. With the exception of CLEVR, all160

the aforementioned datasets source images from161

the Web, resulting in limited systematic variation162

in spatial relationships. What’s Up(Kamath et al.,163

2023) dataset attempted to address this by manually164

arranging objects to capture systematic spatial vari-165

ations through photography. However, constrained166

by labor-intensive processes and predefined spatial167

relationship categories, What’s Up remains limited168

in scale and lacks relative spatial relationship data.169

3 ROTATE170

3.1 Pipeline171

The construction of relative-perspective images re-172

quires accurate knowledge of the orientations of173

objects. Since current techniques cannot reliably174

extract object orientations from real-world images,175

generating relative spatial relationships from natu-176

ral imagery remains infeasible. To address this fun-177

damental limitation, we turn to 3D rendering tech-178

nology. By systematically adjusting the orientation179

and position of 3D models, we achieve controlled180

variations in spatial relationships. Crucially, known181

object orientations enable precise computation of182

relative spatial relationships between any pair of183

objects. For reliable orientation information, we se-184

Figure 3: Schematic diagram of 8 cameras.

lect the ModelNet(Wu et al., 2015) dataset, where 185

all 3D models are pre-aligned with consistent orien- 186

tation baselines. This fundamental property allows 187

the deterministic calculation of both absolute and 188

relative spatial perspectives. 189

Render: Figure 2 illustrates the detailed work- 190

flow of the ROTATE pipeline. During the render- 191

ing of each image group, ROTATE first selects 192

2-3 object categories from the ModelNet dataset 193

and chooses one 3D model per category for ren- 194

dering. We classify ModelNet objects into three 195

distinct types: (1) objects with inherent directional 196

properties (e.g., humans, vehicles), (2) objects that 197

humans typically use in fixed orientations (e.g., 198

chairs), and (3) objects without directional con- 199

cepts (e.g., flower pots) - with the first two cate- 200

gories collectively referred to as "directional ob- 201

jects." To ensure that every image can generate 202

relative perspective data, ROTATE always includes 203

at least one directional object in each scene. The 204

pipeline then randomly generates each object’s 205

position and orientation while performing colli- 206

sion detection to prevent bounding-box overlaps 207

between objects. After sequentially applying dif- 208

ferent colored materials to each model, ROTATE 209

renders two image subgroups from the 8 camera 210

angles shown in Figure 3: the first subgroup main- 211

tains the originally generated orientations, while 212

the second subgroup applies an additional 180 de- 213

gree rotation to all object orientations. 214

Filter: We implemented a rigorous filtering pro- 215

cess to eliminate images with object occlusion 216

or recognition ambiguity. Specifically, we used 217

the InternVL2-26B model as our filtering mecha- 218

nism. For each candidate image, we systematically 219

queried the model about the presence of every indi- 220

vidual object in the scene. Only images in which 221

InternVL2 confidently confirmed the presence of 222

all objects were retained in the final dataset. 223

Captions and QA pairs: ROTATE employs 224

carefully designed templates to generate captions 225
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Figure 4: Examples of Spatial Difference Generation data.

and question-answer pairs for each image. To en-226

hance linguistic diversity, we decompose spatial227

relation descriptions into three components: the228

perspective clause (relative or absolute; see Ap-229

pendix A), main object clause (added only in rela-230

tive perspectives for objects that humans typically231

use in fixed orientations; Appendix B), and spatial232

relation (selected from Appendix C based on task)233

and recombine them variably. We define two types234

of spatial relation: cardinal directions (front, back,235

left, right, and their diagonals) and clock directions236

(12 hour positions). These underpin two QA task237

templates: judgment tasks (verifying spatial cor-238

rectness) and prediction tasks (identifying precise239

spatial relations).240

3.2 Dataeset241

Using the ROTATE pipeline, we initially synthe-242

sized 10,000 image groups. After filtering, the final243

dataset comprises 48K images, 608K captions, and244

250K QA pairs. For caption generation, we used245

the first 9,000 groups, divided into training and val-246

idation sets. The remaining 1,000 groups were allo-247

cated for the construction of QA pairs, divided into248

training, validation, and test sets. As demonstrated249

in Table 1 and Appendix D, the textual distribu-250

tions in the ROTATE dataset are well balanced, a251

direct result of our carefully designed caption and252

QA generation rules. However, we note two impor-253

tant filtering effects: (1) While object counts were254

randomly selected during rendering, three-object255

scenes exhibited higher occlusion rates than two-256

object scenes, leading to disproportionate filtering257

of three-object images. (2) Three-object images 258

could still generate questions about two-object rela- 259

tionships, resulting in significantly more two-object 260

questions, as shown in Table 2’s comparison with 261

other multimodal spatial relation datasets. 262

3.3 Spatial Difference Generation 263

To further enhance the model’s comprehension of 264

rotation and improve its consistency in spatial un- 265

derstanding when only orientation or camera angles 266

differ, we propose the Spatial Difference Genera- 267

tion (SDG) task. The SDG task requires the model 268

to process two similar images as input and identify 269

both similarities and differences in their spatial re- 270

lationships, either from relative or absolute perspec- 271

tives. Specifically, the model must first explicitly 272

state whether the relationships are similar or dif- 273

ferent and then generate fine-grained comparisons 274

of spatial relationships at the object level. Figure 275

4 illustrates the methodology for constructing the 276

task dataset. To minimize data collection efforts, 277

we reuse caption data from the ROTATE dataset. In 278

ROTATE, images within the same subgroup share 279

identical relative spatial relationships, while im- 280

ages from different subgroups but captured from 281

the same camera viewpoint share identical abso- 282

lute spatial relationships. By using pairs of images 283

from either the same subgroup or the same cam- 284

era viewpoint as input, we systematically organize 285

their similarities and differences into structured 286

spatial-difference captions. 287
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ROTATE Modality Viewpoint Task Relation Type Object Numbers
Component Split Images Text Relative Absolute Judgement Prediction Cardinal Clock 2 3

Captions train 41K 595K 50% 50% - - 100% 100% 100% 32.43%
val 1K 13K 50% 50% - - 100% 100% 100% 34.35%

QA
train 5.6K 225K 51.47% 48.53% 66.67% 33.33% 50% 50% 81.26% 18.74%
val 300 12K 52.63% 47.37% 66.67% 33.33% 50% 50% 80.67% 19.33%
test 312 13K 53.87% 46.13% 66.67% 33.33% 50% 50% 81.23% 18.77%

Images - - - - - - - - - 67.37% 32.63%

Table 1: ROTATE dataset distribution. To comprehensively characterize spatial relationships in images, each caption
incorporates both types of spatial relations. Crucially, even when an image contains three objects, it inherently
allows describing spatial relationships between two objects - therefore, every caption contains a section describe the
spatial relationship between paired objects.

Dataset Images Captions QA Symmetric
Image

Relative
Viewpoint

Systematic
Variation

VG* 108K 5M 1.7M ✗ ✗ ✗

GQA* 113K - 22M ✗ ✗ ✗

VSR 6940 11K - ✗ ✓ ✗

Spatial-MM 3.1K - 3.1K ✗ ✓ ✗

MM-Vet* 187 - 205 ✗ ✗ ✗

SpatialVLM 10M - 2B ✗ ✗ ✗

SpatialRGPT 1M - 8.7M ✗ ✗ ✗

What’s up 820 820 - ✗ ✗ ✓

CLEVR 100K - 1M ✓ ✗ ✗

ROTATE 48K 608K 250K ✓ ✓ ✓

Table 2: Comparison of existing multimodal spatial re-
lationship datasets. Dataset with "*" indicates that only
a portion of the dataset is related to spatial relationships

3.4 Training Strategy288

As illustrated in Figure 5, we adopt a carefully289

designed three-stage training approach using the290

ROTATE dataset to progressively improve the spa-291

tial understanding of the model and the consistency292

of the answers across multimodal inputs. In the293

first stage, we train the entire model using image294

captions, which provide rich descriptions of object295

arrangements and spatial relationships. This stage296

enables the model to develop a foundational under-297

standing of how objects interact within a scene. To298

maintain parameter efficiency while ensuring effec-299

tive learning, we employ LoRA(Hu et al., 2021)300

for both the language model and the visual encoder,301

allowing them to adapt to the multimodal task with302

minimal training parameters. Meanwhile, the MLP303

layer, which bridges the visual and linguistic modal-304

ities, undergoes a full fine-tuning to better align305

cross-modal representations. The second stage fo-306

cuses on improving the spatial consistency of the307

model between images that share identical objects308

but differ in their arrangement. To achieve this, we309

train the model with the proposed SDG task. In par-310

ticular, to minimize additional data overhead, we311

repurpose the original captions from the first stage312

into SDG-compatible formats through automated313

rule-based transformations. During this phase, we 314

freeze the visual encoder to stabilize the training 315

and only update the LM and MLP layers, ensuring 316

that the model hones its spatial differentiation skills 317

without overfitting to low-level visual features. Fi- 318

nally, in the third stage, we further fine-tune the 319

model in QA pairs using the same training protocol 320

as in the second stage. This phase adapts the model 321

to downstream spatial QA tasks, reinforcing its 322

ability to generate accurate and coherent responses 323

grounded in visual-spatial understanding. 324

Direction 1 2 3 4 5 6 7 8 9 10 11 12

Front ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Front-Right ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Right ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Back-Right ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Back ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Back-Left ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Left ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

Front-Left ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Table 3: Same direction under different spatial relation-
ship types.

4 Experiement 325

4.1 Configurations 326

Models: We trained the InternVL2-8B model us- 327

ing our proposed three-stage training strategy as 328

a baseline. To the best of our knowledge, there 329

are currently no viable training methods for rel- 330

ative spatial relationships currently exist. There- 331

fore, for comparison, we fine-tune the InternVL- 332

8B model using only the ROTATE QA training set. 333

Furthermore, we evaluated zero-shot performance 334

across models of varying scales, including open- 335

source models (InternVL2(Chen et al., 2024b), 336

Llama3.2(AI@Meta, 2024), LlavaNext(Liu et al., 337

2024), Qwen2.5-VL(Bai et al., 2025)) and propri- 338

etary models (GPT-4o(OpenAI et al., 2024)). Ap- 339

pendix E shows the prompt for the zero-shot exper- 340
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Figure 5: Three stage training strategy. In the first stage, the model is trained on captions to learn spatial relationships
across perspectives. During the second stage, we freeze the visual encoder and employ the SDG task to improve
rotation understanding. Finally, the model is fine-tuned using QA pairs.

iment. All experiments were conducted using four341

A100 80GB GPUs. The complete training hyper-342

parameters for the three-stage training strategy are343

provided in Appendix F.344

Metric:We employ accuracy as the primary345

metric to evaluate the performance of the model346

in different tasks. Furthermore, to assess347

whether the model has genuinely acquired spa-348

tial knowledge, we introduce two consistency met-349

rics: Relationship Type Consistency (RTC) and350

Rotation Consistency(RC). Relation-type consis-351

tency measures the model’s ability to identify352

equivalent directions using different spatial relation353

types (e.g., "12 o’clock direction" and "front" rep-354

resent the same direction). Specifically, we evenly355

divide the circle into 12 and 8 equal sectors, re-356

spectively, representing directional ranges through357

angular intervals for different types of relationship.358

We define two directions as identical when their359

angular intervals under a given relationship type360

have a non-empty intersection. Table 3 shows the361

same direction under different types of spatial re-362

lation. This metric is calculated as the proportion363

of question pairs that differ only in the required364

type of spatial relation, where the model provides365

consistent directional answers. Rotation consis-366

tency evaluates response invariance across varying367

camera viewpoints or object orientations, reflecting368

the model’s understanding of rotational transforma- 369

tions. We quantify this using Normalized Entropy 370

(NE), where inconsistent responses indicate higher 371

disorder (greater entropy). The normalization pro- 372

cess eliminates potential biases caused by varying 373

the sizes of image groups in the evaluation. The 374

Normalized Entropy is calculated as Equation 1 375

when N questions should yield identical answers, 376

where M denotes the total number of distinct possi- 377

ble answers, and ni represents the occurrence count 378

of the ith answer: 379

NE =

∑M
i=1−

ni
N log2

ni
N

log2N
(1) 380

To handle cases where the model generates re- 381

sponses outside our predefined answer set, we treat 382

each such unique response as a distinct category to 383

prevent irrelevant answers from lowering the NE 384

metric. 385

4.2 Main Results 386

Table 4 presents the performance of different mod- 387

els and training approaches on the ROTATE QA 388

test set. Current multimodal models show lim- 389

ited capability in spatial relationship understanding, 390

where even substantial increases in model scale 391

yield negligible accuracy improvements. In partic- 392

ular, models fine-tuned solely on the ROTATE QA 393
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Model Task↑ Viewpoint↑ Relation Type↑ TotalJudgement Prediction Relative Absolute Cardinal Clock

GPT-4o 53.43 35.08 38.40 57.73 47.74 46.89 47.32
InternVL2-8B 52.33 19.77 40.25 42.91 44.97 37.99 41.48

InternVL2-76B 53.35 28.57 39.96 51.08 48.80 41.38 45.09
Llama3.2-11B 50.29 8.52 34.79 38.21 37.33 35.40 36.37
Llama3.2-90B 52.12 24.46 37.41 49.33 46.36 39.45 42.90
LlavaNext-13B 50.00 11.95 36.77 37.96 39.37 35.26 37.32
LlavaNext-34B 53.64 14.33 37.85 43.67 43.42 37.66 40.54

Qwen2.5-VL-7B 51.77 16.64 38.33 42.09 44.96 35.17 40.06
Qwen2.5-VL-72B 51.27 29.34 34.26 55.30 42.67 45.25 43.96

Finetune 56.24 34.31 40.83 58.40 51.87 46.00 48.93
Ours 80.53 51.24 52.57 92.02 71.96 69.58 70.77

Table 4: Accuracy of multimodal models on ROTATE QA test set. For each column, the highest, the second, and
the third highest figures are highlighted by green , orange and pink backgrounds.

Model RTC↑ RC×10−2 ↓
Relative Absolute Total

GPT-4o 35.72 55.08 54.39 54.75
InternVL2-8B 11.48 57.68 54.24 56.06

InternVL2-76B 10.53 45.31 42.69 44.08
Llama3.2-11B 12.38 83.07 71.78 77.75
Llama3.2-90B 28.80 53.52 44.30 51.17
LlavaNext-13B 9.35 65.89 64.77 65.36
LlavaNext-34B 13.52 28.52 26.46 27.55

Qwen2.5-VL-7B 6.69 68.10 64.33 66.32
Qwen2.5-VL-72B 34.30 32.16 24.85 28.72

Finetune 44.02 57.68 50.88 54.48
Ours 64.90 51.30 11.70 32.64

Table 5: Consistency of multimodal models on ROTATE
QA test set, where RTC represents relationship type
consistency and NE represents Normalized Entropy. For
each column, the highest, the second, and the third
highest figures are highlighted by green , orange and

pink backgrounds.

training set show only marginal improvements over394

GPT-4o. In contrast, our three-stage training strat-395

egy achieves a remarkable 21.84% performance396

gain compared to the standalone finetuning. We397

comprehensively evaluate the spatial reasoning ca-398

pabilities of existing multimodal models through399

four key dimensions: task, viewpoint, spatial rela-400

tion, and consistency.401

Task: Unexpectedly, current multimodal models402

perform poorly in both judgment and prediction403

tasks. For the judgment task, even after fine-tuning,404

the accuracy stays just above 50%, close to ran-405

dom guessing. For the prediction task, the fine-406

tuned InternVL2-8B model improves significantly 407

but still falls slightly short of GPT-4o, demonstrat- 408

ing the inherent difficulty of the ROTATE dataset. 409

However, our three-stage training enables even 410

smaller models to achieve substantially higher pre- 411

diction accuracy. 412

Viewpoint: Current models consistently under- 413

perform in relative perspective tasks compared 414

to absolute perspective tasks, regardless of train- 415

ing. Fine-tuning improves performance primarily 416

on absolute perspective tasks, with minimal gains 417

for relative perspective understanding. However, 418

our three-stage training yields significant improve- 419

ments for both perspectives. Despite this advance- 420

ment, there remains a substantial performance gap 421

between relative and absolute perspectives, con- 422

firming that understanding relative spatial relation- 423

ships remains a challenge in the field. 424

Spatial Relation: The inherent data scarcity 425

of clock direction expressions (compared to cardi- 426

nal directions) in daily use leads to systematically 427

weaker performance on clock direction tasks in 428

all models. Although fine-tuning improves both 429

types of representations, it shows limited efficacy 430

in bridging this performance gap, reducing the dis- 431

parity in InternVL2-8B from 6.98% to just 5.87%. 432

In contrast, our three-stage training demonstrates 433

significantly stronger generalization ability, nar- 434

rowing the gap to 2.38% and proving particularly 435

effective in learning low-frequency spatial patterns. 436

Consistency: We evaluate the consistency by 437

examining the agreement of the answer (regard- 438

less of correctness) to assess whether the modes 439
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establish conceptual connections. Table 5 presents440

the consistency of the type of relation(RTC) and441

the consistency of rotation(RC). The RTC metric442

reveals that most models, except GPT-4o, Qwen2.5-443

VL-72B, and Llama3.2-90B, fail to recognize the444

relationship between the two spatial representation445

methods. Even these three large-scale models show446

limited alignment capability. Training significantly447

improves this understanding, enabling better rep-448

resentation alignment. Unexpectedly, fine-tuning449

only marginally boosts relative spatial consistency450

while failing to enhance rotation consistency in451

relative perspectives. However, our three-stage452

training effectively improves rotation consistency,453

though gains in relative perspectives remain sub-454

stantially lower than in absolute perspectives, high-455

lighting the persistent challenge of relative spa-456

tial reasoning. InternVL2-76B, LLava-Next-34B,457

and Qwen2.5-VL-72B demonstrate exceptionally458

high rotation consistency scores. However, sta-459

tistical analysis of their responses reveals severe460

answer biases that artificially inflate these metrics.461

Under relative perspective conditions, InternVL2-462

76B produces "left-back" responses 54% of the463

time; LLaVA-Next-34B shows a 50.3% bias to-464

ward "right" answers, with this preference in-465

creasing to 89.9% for "10 o’clock" responses in466

clock-direction tasks; Qwen2.5-VL-72B generates467

"front"/"back" responses in less than 1% of cases.468

These extreme biases elevate rotation consistency469

metrics without indicating a genuine understanding470

of how rotation affects spatial relationships.471

4.3 Ablation472

Strategy Accuracy Consistency
RTC↑ RC×10−2 ↓

0-shot 41.48 11.48 56.06
S3 48.93 44.02 54.48

S1+S3 56.64 42.46 54.61
Ours 70.77 64.90 32.64

Table 6: The ablation experiment results of the three-
stage training strategy. S3: only uses the third-stage
training model, that is, only uses question answer pairs
for fine-tuning. S1+S3: the first and third stages, which
involve training with caption first and then fine-tuning
with question answer pairs.

As evidenced by Table 11, the incorporation of473

captions during training improves the accuracy of474

the model, but does not improve consistency. The475

subsequent introduction of the SDG task yields 476

significant improvements in both accuracy and con- 477

sistency metrics. This demonstrates that caption- 478

based training solely boosts predictive accuracy 479

without fostering understanding of either (1) the re- 480

lationships between different spatial relation types 481

or (2) rotation’s impact on spatial relationships. 482

Crucially, the SDG task achieves these advanced 483

comprehension capabilities without requiring addi- 484

tional training data. This phenomenon potentially 485

reveals a fundamental limitation in current multi- 486

modal model training paradigms: Although large- 487

scale caption training effectively enhances multi- 488

modal comprehension and facilitates knowledge ac- 489

quisition, it does not allow models to systematically 490

organize these discrete knowledge components into 491

a unified cognitive framework. In contrast, the 492

SDG task artificially constructs inter-knowledge re- 493

lationships through comparative learning, thereby 494

enabling the model to establish an integrated knowl- 495

edge system. Remarkably, this architectural im- 496

provement achieves substantial performance gains 497

without requiring additional training data. In ad- 498

dition, contrastive learning also introduces com- 499

parative information. As detailed in Appendix G, 500

we conducted experiments replacing the SDG task 501

with contrastive learning. Our findings reveal that 502

contrastive learning is not suitable for current gen- 503

erative multimodal models and fails to deliver per- 504

formance improvements. This limitation may be 505

closely tied to the fundamental differences in task 506

objectives between contrastive learning and next to- 507

ken prediction task, and the computational resource 508

requirements involved. 509

5 Conclusion 510

In this paper, we present ROTATE, a novel pipeline 511

for batch synthesis of multimodal spatial percep- 512

tion data. Using this pipeline, we construct the 513

ROTATE dataset and propose a new Spatial Dif- 514

ference Generation task(SDG). Our experimental 515

results demonstrate that while spatial understand- 516

ing from relative perspectives remains challeng- 517

ing for current multimodal models, our three-stage 518

training protocol using the ROTATE dataset yields 519

significant improvements in spatial perception ca- 520

pabilities.Furthermore, the SDG task enhances the 521

model’s spatial perception capability without re- 522

quiring additional data, while also improving re- 523

sponse consistency across varying viewpoints and 524

different spatial representation methods. 525
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Limitations526

Due to constraints in our rendering capabilities,527

synthesized images lack photorealism and could be528

improved in several aspects, such as incorporating529

more realistic material textures and detailed back-530

ground environments. Furthermore, existing spatial531

perception datasets suffer from three critical limi-532

tations: (1) their small scale, (2) inconsistent defi-533

nitions of spatial relationships across datasets, and534

(3) the lack of explicit annotations distinguishing535

between relative and absolute perspectives. Con-536

sequently, evaluations on these datasets provide537

a limited reference value to assess model perfor-538

mance.539
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A Template for Viewpoint634

Listing 1: Template for relative viewpoint.
635

'relative_prefix ': [636
'from [A]\'s perspective ',637
'looking from [A]\'s point of view',638
'from [A]\'s viewpoint ',639
'from [A]\'s point of view',640
'looking from [A]\'s perspective ',641
'according to [A]\'s view',642
'in [A]\'s line of sight',643
'through [A]\'s perspective ',644
'from [A]\'s vantage point',645
'aligned with [A]\'s gaze',646
'following [A]\'s line of sight',647
'in the direction [A] is facing ',648
'through the lens of [A]\'s649

perspective ',650
'with [A]\'s forward focus',651
'seen as if standing in [A]\'s652

position ',653
'relative to [A]\'s front',654

],655656

Listing 2: Template for absolute viewpoint.
657

'absolute_prefix ': [658
'from the perspective of the camera659

itself ',660
'in terms of a purely objective661

angle ',662
'through the lens of the camera ',663
'from the absolute viewpoint that664

the camera records ',665
'viewed directly from an absolute666

standpoint ',667
'seen directly from this position ',668
'seen directly from the image\'s669

perspective ',670
'viewed precisely as the image shows671

',672
'as observed from the angle673

presented in the image',674
'in view as the image frames it'675

],676677

B Template for Main Object678

Listing 3: Template for main object.
679

'used_directed_prefix ': [680
'if someone is [V] [A]',681
'while someone is [V] [A]',682
'as a person [V] [A]',683
'when a person is [V] [A]',684
'if a person is [V] [A]'685

],686687

C Template for Spatial Relationship 688

Listing 4: Example template for captions with two ob-
jects.

689
'directed ': { 690

'location ': { 691
'left': ['[B] is on the left 692

side of [A]', ], 693
'right ': ['we can confirm [B] is 694

positioned on [A]\'s right 695
side'], 696

} 697
'clock ': ['[B] is located at [A]\'s 698

[X] o\'clock ', ] 699
} 700
'used_directed ': { 701

'location ': { 702
'left': ['[B] is on his left 703

side', ], 704
'right ': ['[B] is positioned to 705

his right', ], 706
} 707
'clock ': ['[B] is positioned at [X] 708

o\'clock ', ] 709
} 710711

Listing 5: Example template for qa pairs with three
objects.

712
'true_or_false ': { 713

'question ': { 714
'left': ['is [B] to the left of 715

[C]', ], 716
'clock ': ['is [B] located at the 717

[X] o\'clock position 718
relative to [C]', ], 719

} 720
'answer ': { 721

'left': { 722
'true': ['[B] is indeed to 723

the left of [C]', ], 724
'false ': ['[B] is not on the 725

left side of [C]', ]}, 726
'clock ': { 727

'true': ['[B] is indeed at [ 728
X] o\'clock position ', 729
], 730

'false ': ['[B] is not at the 731
[X] o\'clock position ', 732
]}, 733

} 734
} 735
'predict ': { 736

'question ': { 737
'location ': ['what direction is 738

[B] relative to [C]', ], 739
'clock ': ['what is the 740

approximate clock position 741
of [B] relative to [C]', ] 742

}, 743
'answer ': { 744

'left': ['[B] is on the left 745
side of [C]', ], 746

'clock ': ['[B] would appear to 747
be around [X] o\'clock 748
relative to [C]', ], 749

} 750
} 751752
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D Answer Distribution753

QA Split Yes No

train 50% 50%
val 50% 50%
test 50% 50%

Table 7: Distribution of answers for the judgment task.

QA Split Left Right Front-Left Front-Right

train 12.95% 12.93% 11.16% 11.80%
val 11.21% 10.92% 10.20% 16.92%
test 10.50% 10.46% 10.18% 11.30%

QA Split Front Back Back-Left Back-Right

train 14.07% 14.20% 11.80% 11.08%
val 11.70% 11.50% 17.50% 10.05%
test 17.37% 17.46% 11.16% 11.58%

Table 8: Distribution of answers for cardinal directions.

QA Split 1 2 3 4

train 9.02% 7.11% 8.89% 8.55%
val 13.10% 6.67% 8.26% 6.77%
test 12.28% 5.51% 5.74% 9.10%

QA Split 5 6 7 8

train 6.76% 9.64% 9.10% 7.10%
val 6.72% 7.93% 13.68% 6.62%
test 7.56% 10.69% 11.90% 5.79%

QA Split 9 10 11 12

train 8.92% 8.55% 6.78% 9.58%
val 8.60% 6.96% 6.62% 8.07%
test 5.84% 8.40% 6.63% 10.55%

Table 9: Distribution of answers for clock directions.

E Zero-shot prompt754

Listing 6: Prompt for zero-shot experiments.
755

[IMAGE] I will ask you a question. If756
the question requires a yes/no judgment ,757
answer strictly "Yes" or "No". For758

short -answer questions: if the answer is759
a direction , use only one of these:760

front , back , left , right , front -left ,761
back -left , front -right , back -right. If762
the answer is a clock position , use the763
format "[X] o'clock" where [X] is a764
number (1-12) or its English word (e.g.,765
"2 o'clock" or "two o'clock"). Provide766

only the answer without explanations.767
Question: [QUESTION]768
Answer:769770

F Experimental Hyperparameters 771

Stage1 Stage2 Stage3

Batch size 64 64 32
Micro batch size 4 1 4
Max token num 1024 1536 512

Total step 5000 5000 10000
Optimizer AdamW

LR schedule Linear warmup cosine decay
LR 4e-5

Min LR 2e-5
Warm up start LR 3e-5

Weight decay 0.05
Warm up step 100

Table 10: Experiemental hyperparameters for each stage.
The hyperparameters that are the same in all three stages
will only be displayed once. LR: Learning Rate

G Contrastive Learning 772

Strategy Accuracy Consistency
RTC↑ RC×10−2 ↓

0-shot 41.48 11.48 53.93
S3 48.93 44.02 54.48

S1+S3 56.64 42.46 54.48
contrastive 55.12 41.79 53.86

Ours 70.77 64.90 32.51

Table 11: The ablation experiment results of the three-
stage training strategy with comparative learning. S3:
only uses the third-stage training model, that is, only
uses question answer pairs for fine-tuning. S1+S3: the
first and third stages, which involve training with caption
first and then fine-tuning with question answer pairs.

We also experimented with replacing the second- 773

stage SDG task with contrastive learning, inves- 774

tigating whether this approach could improve the 775

model’s consistency in spatial relationship under- 776

standing. As shown on the left side of Figure 4, 777

we leverage the inherent correlations in spatial re- 778

lationships among image groups within the RO- 779

TATE dataset to construct positive and negative 780

samples for our contrastive learning task, where 781

each data instance consists of four images (similar 782

to those in Figure 4) representing two subgroups 783

captured from two different camera angles. For 784

relative perspective conditions, positive samples 785

are images from the same subgroup sharing iden- 786

tical relative spatial relationships, while negative 787
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Figure 6: Comparative Learning of LVLM.

samples include both images from the same camera788

angle but different subgroups (relative perspective)789

and the image’s own absolute perspective relation-790

ships; correspondingly, for absolute perspective791

conditions, positive samples are images rendered792

from the same camera angle, with negative sam-793

ples consisting of images from the same subgroup794

but different camera angles (absolute perspective)795

and the image’s own relative perspective relation-796

ships. To our surprise, contrastive learning fails to797

enhance the model’s spatial perception capabilities,798

improving only its consistency in relative spatial799

relationships. This phenomenon may stem from800

conflicting gradient update directions between con-801

trastive learning and the QA task optimization ob-802

jectives. Our experiments reveal that contrastive803

learning solely affects the convergence speed of804

the loss function in the third training stage, with805

nearly identical final loss values and validation per-806

formance regardless of its inclusion.807

12


	Introduction
	Related Work
	ROTATE
	Pipeline
	Dataeset
	Spatial Difference Generation
	Training Strategy

	Experiement
	Configurations
	Main Results
	Ablation

	Conclusion
	Template for Viewpoint
	Template for Main Object
	Template for Spatial Relationship
	Answer Distribution
	Zero-shot prompt
	Experimental Hyperparameters
	Contrastive Learning

