
Probing a Vision-Language-Action Model for
Symbolic States and Integration into a Cognitive

Architecture
Hong Lu*

Department of Computer Science
Tufts University

Medford, MA, USA
Hlu07@tufts.edu

Hengxu Li*
Department of Computer Science

Tufts University
Medford, MA, USA
Hengxu.Li@tufts.edu

Prithviraj Singh Shahani*
Department of Computer Science

Tufts University
Medford, MA, USA

Prithviraj Singh.Shahani@tufts.edu

Stephanie Herbers
Department of Computer Science

Tufts University
Medford, MA, USA

Stephanie.Herbers@tufts.edu

Matthias Scheutz
Department of Computer Science

Tufts University
Medford, MA, USA

Matthias.Scheutz@tufts.edu

Abstract—Vision-language-action (VLA) models hold promise
as generalist robotics solutions by translating visual and linguistic
inputs into robot actions, yet they lack reliability due to their
black-box nature and sensitivity to environmental changes. In
contrast, cognitive architectures (CA) excel in symbolic reasoning
and state monitoring but are constrained by rigid predefined
execution. This work bridges these approaches by probing
OpenVLA’s hidden layers to uncover symbolic representations
of object properties, relations, and action states, enabling inte-
gration with a CA for enhanced interpretability and robustness.
Through experiments on LIBERO-spatial pick-and-place tasks,
we analyze the encoding of symbolic states across different
layers of OpenVLA’s Llama backbone. Our probing results
show consistently high accuracies (> 0.90) for both object
and action states across most layers, though contrary to our
hypotheses, we did not observe the expected pattern of object
states being encoded earlier than action states. We demonstrate
an integrated DIARC-OpenVLA system that leverages these
symbolic representations for real-time state monitoring in the
appendix, laying the foundation for more interpretable and
reliable robotic manipulation.

Index Terms—Vision Language Action Model, Symbolic States,
Cognitive Architectures, Robotics

*These authors contributed equally.

I. INTRODUCTION

A vision-language-action (VLA) model is a type of foun-
dation model for robotics that takes in images and language
commands as input and directly outputs robot actions [1],
[2]. VLAs show promise in providing generalist robot policies
across different scenarios and robotic platforms [1]. Recently,
OpenVLA has emerged as a significant open-source VLA
model, built on a Llama 2 language model backbone combined
with a visual encoder that fuses pretrained features. Despite
using only 7B parameters (7x fewer than comparable models),
OpenVLA has demonstrated strong generalization capabilities

across diverse manipulation tasks through its training on nearly
one million real-world robot demonstrations [2].

However, recent evaluation of VLAs shows that they strug-
gle with changes in environmental factors such as camera
poses, lighting conditions, and the presence of unseen objects
[3]. VLAs also lack reliability, particularly because of their
opaque, black-box nature, which makes their internal workings
challenging to interpret.

On the other hand, traditional Cognitive Architectures (CA),
also known as symbolic architectures, excel in dependable,
symbol-based reasoning but are constrained by their reliance
on predefined rules and coded policy execution [4], [5].
Ideally, a CA could harness the versatility of generalist
robotic policies and the multimodal capabilities offered by
VLAs while maintaining vigilance over dynamic environmen-
tal changes during execution in safety-critical applications
such as robotic manipulations.

In this work, we investigate whether and how OpenVLA en-
codes symbolic representations in its activation space through
probing experiments. Our investigation aims to answer the
following research questions:

• RQ1: To what extent can we decode object properties
and relations (e.g., spatial relationships between objects)
from OpenVLA’s hidden layer activations?

• RQ2: Can we extract action-related concepts (e.g., grasp
states, movement targets) from the model’s activation
patterns, and how do these compare to object-level rep-
resentations?

To answer these questions, we train linear probes on different
layers of OpenVLA to predict symbolic states during manip-
ulation tasks. Based on prior work in language model probing
[6] [7], we hypothesize that:



DIARC

VLAComponent

GUI Knowledge 
Base

OpenVLA

Llama 2 7B

Action 
De-tokenizer

Llama 
Tokenizer

Vision 
Projector

NL: " In: what should 
the robot do to {task}? Out: "

best object state
layer's output

Simulation

beliefs

pick up the black bowl between 
the plate and the ramekin and 

place it on the plate

utterance

action

image

Action States Probe
best action state
layer's output

Object States Probe

predicted
object states

predicted action 
states

Fig. 1. The DIARC - VLA - Probes System. The user selects a natural language command in DIARC’s Graphical User Interface (GUI). The VLAComponent
in DIARC sends this command to OpenVLA. The probes receive two hidden layers’ activations in OpenVLA’s Llama backbone that encode the most object
state and action state information respectively. The two best hidden layers are identified through the probing experiment described in Section IV. The probes
predict the object state and the action state based on the hidden layers’ activations at each timestep. The VLAComponent in DIARC updates DIARC’s beliefs
based on the predicted object state and action state.

• H1: Object states are primarily encoded in earlier layers,
as these may encode basic visual and spatial properties.

• H2: Action-related concepts are encoded in later layers,
where visual and language information has been inte-
grated for action planning

To test these hypotheses, we conduct a probing experiment in
which we examine all 33 hidden layers of OpenVLA for their
capacity to predict object and action states. Figure 1 shows
how we integrate the best-performing layers (for object vs.
action states) into DIARC for real-time symbolic monitoring
of the model’s internal state.

II. RELATED WORK

A. Cognitive Architecture - Foundational Model Integration

Existing works typically explore how CAs can be integrated
with large language models (LLMs). For example, Wu et al.
investigate whether the Llama-2 13B model encodes features
that can predict expert decisions in a decision making task by
training a linear classifier on the Llama model’s last contextual
embeddings to predict ACT-R’s expert decision when the
model is given ACT-R’s strings of decision making traces
as input; they further examine whether ACT-R’s knowledge
can be injected into the Llama model by fine-tuning a Llama-
classifier system on ACT-R’s expert decisions [8]. Bajaj et al.
enhance ACT-R’s analogical reasoning capabilities by building
a natural language processing pipeline to automatically extract

key entities, relationships, and attributes [9]. Once these key
elements have been extracted from unstructured text, an LLM
is prompted to convert the unstructured text into a structured
format based on its key elements. ACT-R can utilize the struc-
tured knowledge for reasoning tasks downstream, significantly
reducing the need for manual knowledge engineering. While
Bajaj et al. propose to use LLMs to transform unstructured text
into structured knowledge, Kirk et al. explore ways in which
LLMs can be leveraged as a knowledge source for the task
knowledge needed for successful task planning downstream
[10]. They propose three approaches to knowledge extraction:
indirect extraction in which the LLM’s reponses are placed
in a knowledge store that the cognitive agent accesses, direct
extraction in which the agent directly queries the LLM and
parses its output for structured knowledge, and direct knowl-
edge encoding in which the LLM creates programs that are
run as part of the cognitive agent’s task pipeline.

To the best of our knowledge, no existing work has explored
the integration of a CA with a VLA model. Realizing such an
integration requires a method to “probe” the VLA’s hidden
representations for symbolic content. We next discuss relevant
literature on foundational model probing, which informs our
approach in extracting object and action states from Open-
VLA.



B. Foundational Model Probing

Foundational models encode extensive knowledge derived
from their internet-scale training data [11]. The increasing
popularity of these models has drawn significant attention to
the challenges of extracting and evaluating the knowledge they
encode. An approach commonly used to evaluate LLMs is
prompt-based probing in which an LLM is prompted to fill
in the blanks on the prompt [12]. For example, Alivanistos et
al. combine various prompting techniques to probe LLMs for
possible objects of a triple where the subject and the relation
are given [13], Wang et al. develop a method to automatically
search sentences to construct optimal and readable prompts
for probing certain knowledge [14], and Qi et al. propose
a probing framework for multimodal LLMs that includes
visual prompting, textual prompting, and extra knowledge
prompting [15]. While prompt-based probing is intuitive and
easy to execute, it lacks the layer-specific precision offered
by linear probing. Furthermore, prompt-based probing is not
applicable to vision-language-action models as they do not
output language tokens. Linear probing on the other hand
involves training a linear classifier on top of each frozen
layer of a foundational model. Each classifier is tasked with
predicting specific knowledge based on the output features of
the corresponding frozen layer. For example, Li et al. train
semantic probes to predict object properties and relations as
they evolve throughout a discourse [16]. Similarly, Chen et al.
use linear probes to evaluate the Llama model family’s perfor-
mance on higher-order tasks such as reasoning and calculation,
comparing probe performance across layers and model sizes
[6]. In our work, we extract symbolic representations of state
changes similar to the approach described in Li et al [16] and
we evaluate probing accuracies across hidden layers similar to
the approach used by Chen et al [6].

III. INTEGRATED VISION-LANGUAGE-ACTION MODEL -
COGNITIVE ARCHITECTURE OVERVIEW

Figure 1 illustrates the high-level architecture of our
DIARC–OpenVLA system. DIARC provides a cognitive ar-
chitecture that manages symbolic reasoning and user inter-
action, while OpenVLA is a continuous policy that takes in
images and language instructions to produce a 7D robot action.
Internally, OpenVLA uses a Llama 2 7B backbone [7], which
consists of 32 transformer blocks (often referred to as “layers”)
plus an initial embedding layer, yielding 33 distinct hidden
states when indexed from 0 to 32 at runtime. Each hidden
state is a 4096-dimensional vector. At a conceptual level,
we combine these by: (1) routing user commands through
DIARC to OpenVLA, (2) running OpenVLA in a LIBERO
simulation environment to generate actions and extract hidden-
layer embeddings, and (3) mapping those embeddings to sym-
bolic states for DIARC’s belief store. This pipeline leverages
the expressiveness of a vision-language-action model while
maintaining the reliability of a symbolic architecture. Subsec-
tion III-A details our real-time implementation, including the
WebSocket interface and a React-based UI for visualization.

A. DIARC–OpenVLA-Probes Integration

The DIARC–OpenVLA-Probes integration bridges Open-
VLA’s continuous policy outputs and hidden-layer embeddings
with DIARC’s symbolic reasoning modules. Our approach
requires minimal modification to OpenVLA itself: we inter-
cept each inference call to extract the relevant hidden-layer
activations and feed them to trained linear probes for symbolic
state prediction, then pass those states back to DIARC in an
automated fashion. Figure 1 provides a broad schematic, and
Figure 6 shows the user interface in action.

a) VLAComponent and Symbolic Predicates.: At every
timestep, OpenVLA predicts a 7D action ∆x,∆θ,∆Grip
given the current camera image and the user’s natural-language
instruction. In parallel, we run linear probes on the extracted
hidden-layer embeddings to output arrays of 0/1 labels for
object relations and action subgoals (e.g., on(bowl, plate) =
1, grasped(bowl) = 0). These arrays are sent to DIARC’s
VLAComponent, which converts them into DIARC’s symbolic
predicate format: relation(object1, object2), property(object)
for object states, and action(object) for action states. For
example, a 1 in grasped(bowl 1) becomes grasped(bowl 1)
in DIARC’s knowledge store. DIARC can then leverage these
discrete predicates to detect inconsistencies (e.g., a bowl can-
not be both on(bowl 1, plate 1) and inside(bowl 1, drawer 1)
at the same time), verify subgoals, or track overall task
progress.

B. Simulated Pick-and-Place Tasks

LIBERO-object and LIBERO-spatial is each a suite of
10 pick-and-place tasks in the LIBERO simulation environ-
ment [17]. We choose this simulation environment for our
OpenVLA evaluation as LIEBRO-obejct and LIBERO-spatial
finetuned OpenVLA checkpoints are readily available for
download. The LIBERO-object task suite consists of 10 pick-
and-place tasks of the form “pick up the {target object} and
place it in the basket”. Figure 2 shows 4 frames of the
OpenVLA performing the “pick up the cream cheese and
place it in the basket” task. The LIBERO-spatial task suite
consists of 10 pick-and-place tasks of the form “pick up the
black bowl {spatial relations identifier} and place it on the
plate” where the “spatial relations identifier” is filled with a
natural language description of the target black bowl’s spatial
relations to its surrounding objects. For example, Figure 3
shows 4 frames of the OpenVLA performing the “pick up
the black bowl between the plate and the ramekin and place it
on the plate” task. Other LIBERO-spatial pick-and-place tasks
include “pick up the black bowl next to the ramekin and place
it on the plate” and “pick up the black bowl in the top drawer
of the wooden cabinet and place it on the plate”. Since the 10
pick-and-place tasks involve the same objects and the object
initial placements remain the same across tasks except for the
two black bowls, the natural language description of the target
black bowl’s spatial relations serves as an identifier.



?
on-floor(cream_cheese_1) = 1
on-floor(milk_1) = -1
inside(cream_cheese_1, baseket_1) = 0
grasped(cream_cheese_1) = 0
should-move-towards(cream_cheese_1) = 1
should-move-towards(basket_1) = 0
?

...
...

...

?
on-floor(cream_cheese_1) = 1
on-floor(milk_1) = -1
inside(cream_cheese_1, baseket_1) = 0
grasped(cream_cheese_1) = 1
should-move-towards(cream_cheese_1) = 0
should-move-towards(basket_1) = 1
?

?
on-floor(cream_cheese_1) = 0
on-floor(milk_1) = -1
inside(cream_cheese_1, baseket_1) = 0
grasped(cream_cheese_1) = 1
should-move-towards(cream_cheese_1) = 0
should-move-towards(basket_1) = 1
?

?
on-floor(cream_cheese_1) = 0
on-floor(milk_1) = -1
inside(cream_cheese_1, baseket_1) = 1
grasped(cream_cheese_1) = 0
should-move-towards(cream_cheese_1) = 0
should-move-towards(basket_1) = 1
?

Fig. 2. Example Labeled Object States and Action States in a LIBERO-
object Pick-and-Place Trajectory. Object states are shown in green and
action states are shown in blue. The task is to “pick up the cream cheese
and place it in the basket”. Note that 0 represents false, 1 represents
true, and -1 represents not applicable due to the object not being present.
The first frame (top) is taken at the beginning of the episode where
the cream cheese is directly on the floor and the robot needs to pick
it up. The on-floor(cream cheese 1) object relation and the should-move-
towards(cream cheese 1) action subgoal are detected to be true. Once the
robot arm closes its grippers on the target black bowl in frame 2, the
grasped(cream cheese 1) action status is detected to be true. In frame 3, the
on-floor(cream cheese 1) object relation becomes false as the cream cheese is
lifted off the floor. Finally, in frame 4, the inside(cream cheese 1, basket 1)
object relation becomes true, indicating that the task has been successfully
completed.

IV. PROBING EXPERIMENT

To test our hypothesis, we extract activations from the 33
hidden layers of OpenVLA’s Llama 2 7B backbone. Each
hidden-layer embedding is a 4096-dimensional vector. We then
train two probes on each layer’s activations to predict object
states and action states. In total, we train 2× 33 = 66 probes.

An object state involves the following relation predicates for
the LIBERO-spatial suite: behind(tabletop-object1, tabletop-
object2), in-front-of(tabletop-object1, tabletop-object2),
inside(tabletop-object, container), left-of(tabletop-object1,
tabletop-object2), on(tabletop-object1, tabletop-object2),
on-table(tabletop-object), and right-of(tabletop-object1,

?
on-table(bowl_1) = 1
on(bowl_1, plate_1) = 0
grasped(bowl_1) = 0
should-move-towards(bowl_1) = 1
should-move-towards(plate_1) = 0
?

?
on-table(bowl_1) = 1
on(bowl_1, plate_1) = 0
grasped(bowl_1) = 1
should-move-towards(bowl_1) = 0
should-move-towards(plate_1) = 1
?

?
on-table(bowl_1) = 0
on(bowl_1, plate_1) = 0
grasped(bowl_1) = 1
should-move-towards(bowl_1) = 0
should-move-towards(plate_1) = 1
?

?
on-table(bowl_1) = 0
on(bowl_1, plate_1) = 1
grasped(bowl_1) = 1
should-move-towards(bowl_1) = 0
should-move-towards(plate_1) = 0
?

...
...

...

Fig. 3. Example Labeled Object States and Action States in a LIBERO-
spatial Pick-and-Place Trajectory. Object states are shown in green and
action states are shown in blue. The task is to “pick up the black bowl
between the plate and the ramekin and place it on the plate”. The first frame
(top) is taken at the beginning of an episode where the target black bowl
(which happens to be the bowl 1 object) is still directly on the table and the
robot needs to pick it up. As expected, the on-table(bowl 1) object relation
and the should-move-towards(bowl 1) action subgoal are detected to be true.
Once the robot arm closes its grippers on the target black bowl in frame
2, the grasped(bowl 1) action status is detected to be true. In frame 3, the
on-table(bowl 1) object relation becomes false as the bowl is lifted off the
tabletop. Finally, in frame 4, the on(bowl 1, plate 1) object relation becomes
true, indicating that the task has been successfully completed.

tabletop-object2), as well as unary object property predicates:
open(container) and turned-on(on-off-object).

An action state captures the action status predicate
grasped(pickupable-object) and the action subgoal predi-
cate should-move-towards(tabletop-object). Examples of ob-
ject states and action states are provided in the Probe Train-
ing Data Collection section below. We find combinations of
grounded objects to which a predicate is applicable, and we
define the object relation atoms as the object relation pred-
icates applied to all combinations of their grounded objects.
We define an object state as a complete truth assignment to
the object relation atoms and object property atoms. Similarly,
we define an action state as a complete truth assignment to
the action status atoms and action subgoal atoms. In total, a
LIEBRO-spatial object state has 224 atoms and an action state



has 12 atoms, a LIBERO-object object state has 461 atoms and
an action state has 20 atoms.

A. Probe Training Data Collection

To train the probes, we need to collect (hidden layer
activation, ground truth state) pairs as training data. To do this,
we implement detector functions that detect the truth values for
object relations, object properties, action statuses, and action
subgoals in the 10 LIBERO-object tasks and the 10 LIBERO-
spatial tasks. Figure 2 and Figure 3 demonstrate the changes in
symbolic states in a LIEBRO-object trajectory and a LIBERO-
spatial trajectory respectively. The 4 frames are points at which
critical state changes happen.

We collect 5 successful episodes per LIBERO-object task
and 5 per LIBERO-spatial task by repeatedly querying Open-
VLA until 5 completed episodes are obtained. While the model
is queried to predict the next robot action at each frame, we
also extract and record the activations from each hidden layer
ℓ ∈ {0, . . . , 32}. Importantly, at timestep t, we pair the hidden-
layer embedding ht with the ground-truth symbolic state yt

at the same time, ensuring no temporal mismatch (e.g., not
using t+ 1 states to label time t). We then store each pair as
(ht, object statet) or (ht, action statet).

B. Probe Training Data Preprocessing

To assess the linear decodability of symbolic states
from OpenVLA’s internal representations, we employ linear
probes trained on per-timestep embeddings and corresponding
ground-truth symbolic labels derived from the LIBERO-Object
environment. The symbolic labels are encoded using three
values: ‘1‘ indicating the state is True, ‘0‘ indicating False, and
‘-1‘ indicating the state is Not Applicable (N/A), typically due
to the absence of relevant objects in the current task scenario.
Rigorous preprocessing and a specific training protocol are
essential for obtaining reliable and interpretable results.

1) Episode-Level Data Splitting: Our dataset consists of
multiple trajectories (episodes) collected from interactions
within the environment. To prevent temporal leakage, where
information from adjacent frames within the same trajectory
could inflate performance on held-out data, we perform data
splitting strictly at the episode level before any label filtering
or analysis. Each complete episode is randomly assigned to
either a training set (90% of episodes) or a validation set (10%
of episodes), using a fixed random seed for reproducibility.
This ensures that the probe is trained on trajectories entirely
disjoint from those used for validation, compelling it to gener-
alize across different interaction scenarios rather than merely
interpolating within a familiar trajectory. The validation set is
used solely for reporting final performance metrics.

2) Label Filtering based on Training Set Frequencies:
Many symbolic states may exhibit minimal or no variation
within the collected data, offering little insight into the model’s
dynamic state representation. To focus the probing analysis
on informative labels, we implement a filtering step based on
label frequency, calculated exclusively using the designated

training set episodes to avoid any data leakage from the
validation set into the feature selection process.

Specifically, for each symbolic label dimension, we con-
catenate all corresponding label values (‘-1‘, ‘0‘, or ‘1‘) from
all timesteps within the training episodes. We then compute
the frequency of the ’True’ state (‘1‘) relative to the ’False’
state (‘0‘), explicitly ignoring the ’Not Applicable’ (‘-1‘)
entries for this calculation. That is, the frequency f for label
i is calculated as: fi =

∑
(yi == 1)/

∑
(yi! = −1) across

all training timesteps where yi is the label value. Any label i
where fi is below 1% or above 99% is deemed near-constant
with respect to its applicable states and is excluded from the
set of labels (keep_indices) that the probes are trained to
predict. This ensures the probes focus on labels demonstrating
meaningful variation within the training data distribution. The
same set of keep_indices derived from the training set is
applied when preparing data for validation.

3) Masking Non-Applicable Labels during Training and
Evaluation: A core design choice in this probing methodology
is how to handle the ‘-1‘ (Not Applicable) labels. Instead of
treating ‘-1‘ as a third class to be predicted, we mask these
entries during both loss computation and metric calculation.

Motivation: Our primary goal is to determine if the truth
value (True/False) of a symbolic state, when it is relevant,
is linearly decodable from the embedding. Predicting object
presence or state applicability is a distinct, albeit related, task.
By masking ‘-1‘ values, we directly probe the representation
of the 0/1 distinction without confounding the analysis with
the model’s potential ability (or inability) to infer applicabil-
ity solely from the embedding. This is standard practice in
probing when focusing on the semantics of defined states.

Mechanism: During the training and validation loop (run
function):

1) The ground-truth label tensor y (containing ‘-1‘, ‘0‘, ‘1‘
for the kept labels) is loaded.

2) A boolean mask mask = (y != -1) is created.
3) The target for the Binary Cross-Entropy loss is de-

fined as target = (y == 1).float(), effec-
tively mapping ‘1‘ to ‘1.0‘ and both ‘0‘ and ‘-1‘ to ‘0.0‘.

4) The BCE loss is computed element-wise but then mul-
tiplied by mask.float(). The final loss for the
batch is the sum of the masked element-wise losses
divided by the number of valid (non-masked) elements
(mask.sum()). This ensures only timesteps where the
label was ‘0‘ or ‘1‘ contribute to the loss and gradient
updates.

5) Similarly, accuracy and F1-score calculations operate
only on the masked elements. Predictions pred (thresh-
olded sigmoid outputs, ‘0, 1‘) are compared against
target only where mask is True (pred[mask] ==
target[mask]). The total number of valid predic-
tions (tot = mask.sum().item()) serves as the
denominator for accuracy. F1 scores are computed using
only the masked predictions and targets.

4) Feature Usage and Class Balancing: We utilize the raw
embeddings extracted directly from the specified OpenVLA



Fig. 4. Probing Results of the LIEBRO-object dataset. The first seven columns are object state symbols and the last two columns are action state symbols.

layers without applying z-score standardization or other nor-
malization techniques, as preliminary experiments indicated
stable convergence without them. Furthermore, no explicit
class re-balancing techniques (e.g., over/under-sampling, loss
weighting) are applied to the 0/1 labels after masking. While
imbalance exists for certain labels (as shown in Figure X), the
primary goal here is to assess linear separability in its raw
form. The filtering step already removes the most extreme
cases (labels that are almost always 0 or always 1 when
applicable).

5) Summary of Preprocessing and Training: In summary,
our probe training pipeline involves: (1) Strict episode-level
splitting of data into training and validation sets. (2) Filtering
of labels based on the frequency of True vs. False states
(ignoring N/A states) calculated only on the training set.
(3) Training linear probes using Binary Cross-Entropy loss
where non-applicable (‘-1‘) target labels are masked and do
not contribute to the loss or gradients. (4) Evaluating probes
using accuracy and Macro F1-score, similarly masking non-
applicable labels to ensure metrics reflect performance solely
on the True/False classification task for relevant states. This
rigorous process prevents data leakage and focuses the analysis
on the linear decodability of meaningful, dynamic symbolic

states represented within OpenVLA.

C. Probe Training and Evaluation

Our probing methodology builds on recent work investi-
gating internal representations in language models [16] and
multimodal embeddings [18]. Inspired by these approaches,
we implement a linear probe that maps from the model’s
internal representations to ground truth environment states.
However, rather than using single-label classification which
would face combinatorial explosion with growing numbers of
states, we extend this to multi-label classification where each
state variable can be predicted independently.

Formally, for a given layer’s activation vector h ∈ Rd, our
probe learns a mapping to binary predictions ŷ ∈ [0, 1]n where
n is the number of tracked symbolic states:

ŷ = σ(Wh+ b) (1)

where W ∈ Rn×d and b ∈ Rn are learned parameters and
σ is the sigmoid activation function. Each element of ŷ cor-
responds to a binary prediction about a specific ground atom
(e.g., “on(bowl 1, plate 1)” or “in(bowl 1, top drawer”). We
train using binary cross-entropy loss with the Adam optimizer.



Fig. 5. Probing Results of the LIEBRO-spatial dataset. The first seven columns are object state symbols and the last two columns are action state symbols.

For evaluation, we compute averaged accuracies per predi-
cate type. For a predicate like “on”, we average the accuracies
across all specific instances of that predicate that we track
- for example, if we track both “on(bowl 1, plate 1)” and
“on(plate 1, table 1)”, we would average their individual
prediction accuracies to get the overall accuracy for the “on”
predicate:

acc(pred) =
1

Npred

Npred∑
i=1

acc(i) (2)

where Npred is the number of tracked instances of that
predicate, and acc(i) is the binary prediction accuracy for the
ith instance.

The probe results, visualized as a heatmap across layers and
predicates, reveal consistently high accuracies across later lay-
ers suggesting robust encoding of symbolic state information.
However, the first layer shows notably lower performance,
aligning with its expected role in encoding lower-level features
rather than high-level semantic relationships.



V. RESULTS AND DISCUSSION

Figures 4 and 5 show a heatmaps of the object state probes’
accuracies and the action state probes’ accuracies across all 33
layers. Note that the object relation on-table(tabletop-object)
and the object property turned-on(on-off-object) are dropped
from training due to low variance in the training data-most
objects remain on-table and the stove 1 object (the only on-
off-object) remains off, therefore their corresponding atoms
never change truth values.

The accuracies are above 0.90 for most layers, indicating
that the OpenVLA indeed encodes some object relation, object
property, action status, and action subgoal features. The layer 0
probes perform significantly worse across all categories. This
is not surprising as the first Llama layer probably only encodes
very low-level semantic features such as syntactic relations
and not the high level visual-semantic features such as object
relations. We do not observe the hypothesized pattern of higher
object state accuracies in earlier layer probes versus that of
later layer probes. This does not support our hypothesis 1 and
hypothesis 2. We recognize that the training data we use are
not diverse enough in terms of the variation in object states
and action states. Specifically, the objects in the 10 simulated
LIBERO-spatial tasks have the same placements across tasks
except for the two black bowls. As a result, most of the object
relations remain unchanged across tasks, significantly reducing
the variation in object states. Furthermore, the robot always
picks one of the two black bowls, and the place target is
always the plate, significantly reducing the variation in action
states. These two factors combined significantly reduce the
difficulty of the linear classification task that the probes are
trained to do, leading to high accuracies across layers and
categories, potentially washing out the layer-wise object state
versus action state difference we expected to observe. More
and better data are needed to test our hypotheses.

VI. LIMITATION AND FUTURE WORK

Our current evaluation is limited due to the lack of diversity
of the LIBERO-spatial tasks as object layouts remain relative
unchanged across episodes. This potentially masks the differ-
ences across model layers as probe performance is inflated. As
future work, we plan to scale the probing experiment up by
collecting more diverse data from tasks that involve variable
objects, variable object layouts, and variable goals.

The integration of symbolic probing and CA shows great
potential for real-world robotic applications in which explain-
ability and safety are critical. In these applications, real-
time access to interpretable symbolic states allows the CA to
monitor and potentially correct robot actions during execution.
We believe that extracting symbolic information from VLAs
opens the door to the integration of CA and VLA and we
demonstrate an integrated CA-VLA system with this work. In
the future, we hope to explore how the reasoning capabilities
of the CA can enhance or monitor the performance of the
VLA.

REFERENCES

[1] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees,
S. Dasari, J. Hejna, T. Kreiman, C. Xu, J. Luo, Y. L. Tan, L. Y. Chen,
P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine.
Octo: An open-source generalist robot policy. [Online]. Available:
https://arxiv.org/abs/2405.12213v2

[2] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar,
B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and C. Finn.
OpenVLA: An open-source vision-language-action model. [Online].
Available: https://arxiv.org/abs/2406.09246v3

[3] Z. Wang, Z. Zhou, J. Song, Y. Huang, Z. Shu, and L. Ma,
“Towards testing and evaluating vision-language-action models for
robotic manipulation: An empirical study.” [Online]. Available:
http://arxiv.org/abs/2409.12894

[4] V. N. Gudivada, “Chapter 1 - cognitive computing: Concepts,
architectures, systems, and applications,” in Handbook of Statistics, ser.
Cognitive Computing: Theory and Applications, V. N. Gudivada, V. V.
Raghavan, V. Govindaraju, and C. R. Rao, Eds. Elsevier, vol. 35,
pp. 3–38. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169716116300451

[5] M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V. Sarathy, and
T. Frasca, “An overview of the distributed integrated cognition affect
and reflection DIARC architecture,” in Cognitive Architectures, M. I.
Aldinhas Ferreira, J. Silva Sequeira, and R. Ventura, Eds. Springer
International Publishing, vol. 94, pp. 165–193, series Title: Intelligent
Systems, Control and Automation: Science and Engineering. [Online].
Available: http://link.springer.com/10.1007/978-3-319-97550-4 11

[6] N. Chen, N. Wu, S. Liang, M. Gong, L. Shou, D. Zhang, and J. Li, “Is
bigger and deeper always better? probing LLaMA across scales and
layers.” [Online]. Available: http://arxiv.org/abs/2312.04333

[7] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu,
W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra,
I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi,
A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan,
B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov,
Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned
chat models.” [Online]. Available: http://arxiv.org/abs/2307.09288

[8] S. Wu, A. Oltramari, J. Francis, C. L. Giles, and F. E. Ritter,
“Cognitive LLMs: Towards integrating cognitive architectures and
large language models for manufacturing decision-making.” [Online].
Available: http://arxiv.org/abs/2408.09176

[9] G. Bajaj, K. Pearce, S. Kennedy, O. Larue, A. Hough, J. King,
C. Myers, and S. Parthasarathy, “Generating chunks for cognitive
architectures,” vol. 2, no. 1, pp. 246–252, number: 1. [Online].
Available: https://ojs.aaai.org/index.php/AAAI-SS/article/view/27683

[10] J. R. Kirk, R. E. Wray, and J. E. Laird, “Exploiting language models
as a source of knowledge for cognitive agents.” [Online]. Available:
http://arxiv.org/abs/2310.06846

[11] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. v. Arx,
M. S. Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson,
S. Buch, D. Card, R. Castellon, N. Chatterji, A. Chen, K. Creel,
J. Q. Davis, D. Demszky, C. Donahue, M. Doumbouya, E. Durmus,
S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei, C. Finn,
T. Gale, L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha,
T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu,
J. Huang, T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti,
G. Keeling, F. Khani, O. Khattab, P. W. Koh, M. Krass, R. Krishna,
R. Kuditipudi, A. Kumar, F. Ladhak, M. Lee, T. Lee, J. Leskovec,
I. Levent, X. L. Li, X. Li, T. Ma, A. Malik, C. D. Manning,
S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan,
D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan,
J. Nyarko, G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech,
E. Portelance, C. Potts, A. Raghunathan, R. Reich, H. Ren, F. Rong,
Y. Roohani, C. Ruiz, J. Ryan, C. Ré, D. Sadigh, S. Sagawa,
K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori, A. W.
Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu,

https://arxiv.org/abs/2405.12213v2
https://arxiv.org/abs/2406.09246v3
http://arxiv.org/abs/2409.12894
https://www.sciencedirect.com/science/article/pii/S0169716116300451
https://www.sciencedirect.com/science/article/pii/S0169716116300451
http://link.springer.com/10.1007/978-3-319-97550-4_11
http://arxiv.org/abs/2312.04333
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2408.09176
https://ojs.aaai.org/index.php/AAAI-SS/article/view/27683
http://arxiv.org/abs/2310.06846


S. M. Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang,
X. Zhang, Y. Zhang, L. Zheng, K. Zhou, and P. Liang, “On the
opportunities and risks of foundation models.” [Online]. Available:
http://arxiv.org/abs/2108.07258

[12] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language models as knowledge bases?” [Online].
Available: http://arxiv.org/abs/1909.01066

[13] D. Alivanistos, S. B. Santamarı́a, M. Cochez, J.-C. Kalo, E. v.
Krieken, and T. Thanapalasingam, “Prompting as probing: Using
language models for knowledge base construction.” [Online]. Available:
http://arxiv.org/abs/2208.11057

[14] Z. Wang, L. Ye, H. Wang, W.-C. Kwan, D. Ho, and K.-F. Wong,
“ReadPrompt: A readable prompting method for reliable knowledge
probing,” in Findings of the Association for Computational Linguistics:
EMNLP 2023. Association for Computational Linguistics, pp. 7468–
7479. [Online]. Available: https://aclanthology.org/2023.findings-emnlp.
501

[15] S. Qi, Z. Cao, J. Rao, L. Wang, J. Xiao, and X. Wang, “What is the
limitation of multimodal LLMs? a deeper look into multimodal LLMs
through prompt probing,” vol. 60, no. 6, p. 103510. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306457323002479

[16] B. Z. Li, M. Nye, and J. Andreas, “Implicit representations of meaning
in neural language models,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds.
Association for Computational Linguistics, pp. 1813–1827. [Online].
Available: https://aclanthology.org/2021.acl-long.143

[17] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone, “LIBERO:
Benchmarking knowledge transfer for lifelong robot learning.” [Online].
Available: http://arxiv.org/abs/2306.03310

[18] A. D. Lindström, S. Bensch, J. Björklund, and F. Drewes,
“Probing multimodal embeddings for linguistic properties: the visual-
semantic case,” in Proceedings of the 28th International Conference
on Computational Linguistics, pp. 730–744. [Online]. Available:
http://arxiv.org/abs/2102.11115

APPENDIX

A. The DIARC - OpenVLA - Probe Integration

a) WebSocket Server and Real-Time Flow.: We imple-
ment a lightweight WebSocket server to provide real-time
communication among OpenVLA, the LIBERO simulator,
DIARC, and a React UI:

1) User Task. The user selects a pick-and-place command
in DIARC’s GUI (e.g., “pick up the black bowl between
the plate and the ramekin...”). DIARC sends this instruc-
tion via WebSocket to our server.

2) Environment Step. The server runs the LIBERO-spatial
simulator, retrieving the latest camera frame for input
to OpenVLA’s policy. OpenVLA returns a 7D action,
which the simulator executes.

3) Probe Inference. Simultaneously, the server extracts
the hidden-layer embedding from OpenVLA, feeds it to
our linear probes, and obtains predicted symbolic states
(object relations, subgoals, etc.).

4) Streaming Back. Finally, the server encodes the cur-
rent camera image in base64 and bundles it with the
predicted symbolic states plus the timestep index. This
data is streamed back over the WebSocket to DIARC
and the React UI.

b) React UI and Timeline Scrubbing.: Figure 6 shows
our React-based interface. While the task runs, the UI contin-
uously displays:

• A live camera feed (at ∼5 Hz) pinned at the top-left,
showing the robot’s current manipulation.

• A symbolic states panel on the right, color-coding newly
activated or deactivated predicates (e.g., green if on-
table(bowl 1) flips from 0 to 1).

• A timeline slider becomes available once the task
completes, letting the user “scrub” back through each
timestep’s image and states to analyze the model’s evo-
lution over time.

This design allows operators or domain experts to confirm that
the predicted states mirror actual environment changes (e.g.,
verifying on(bowl,plate)=1 precisely when the bowl is placed).
Meanwhile, DIARC receives the same 0/1 states as symbolic
predicates, enabling high-level logic or safety checks without
manually altering the VLA policy. By decoupling the raw
policy (OpenVLA) from DIARC’s symbolic reasoning through
a WebSocket-based design, we maintain modularity while
allowing step-by-step monitoring of the policy’s internal states.
We thus leverage the generalist capabilities of a VLA model
and the reliability of a symbolic architecture. This opens the
door for future enhancements where DIARC might intervene
upon contradictory states (e.g., an object can’t be both “on the
plate” and “in the cabinet”) or respond to user queries mid-
task. In short, our integration unites robust low-level action
generation with high-level interpretability and control.

http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/1909.01066
http://arxiv.org/abs/2208.11057
https://aclanthology.org/2023.findings-emnlp.501
https://aclanthology.org/2023.findings-emnlp.501
https://www.sciencedirect.com/science/article/pii/S0306457323002479
https://aclanthology.org/2021.acl-long.143
http://arxiv.org/abs/2306.03310
http://arxiv.org/abs/2102.11115


Fig. 6. DIARC–OpenVLA GUI. The left-hand pane displays the real-time camera feed (updated at 5–10 Hz), showing the robot’s manipulation progress.
The right-hand pane color-codes each predicted symbolic state (green for newly activated, red for deactivated), letting users quickly verify whether OpenVLA’s
internal representation matches the environment. After task completion, a timeline slider appears, allowing the user to revisit earlier steps’ images and states
for deeper analysis.


	Introduction
	Related Work
	Cognitive Architecture - Foundational Model Integration
	Foundational Model Probing

	Integrated Vision-Language-Action Model - Cognitive Architecture Overview
	DIARC–OpenVLA-Probes Integration
	Simulated Pick-and-Place Tasks

	Probing Experiment
	Probe Training Data Collection
	Probe Training Data Preprocessing
	Episode-Level Data Splitting
	Label Filtering based on Training Set Frequencies
	Masking Non-Applicable Labels during Training and Evaluation
	Feature Usage and Class Balancing
	Summary of Preprocessing and Training

	Probe Training and Evaluation

	Results and Discussion
	Limitation and Future Work
	References
	Appendix
	The DIARC - OpenVLA - Probe Integration


