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ABSTRACT

Recent neural networks demonstrated impressively accurate approximations of
electronic ground-state wave functions. Such neural networks typically con-
sist of a permutation-equivariant neural network followed by a permutation-
antisymmetric operation to enforce the electronic exchange symmetry. While ac-
curate, such neural networks are computationally expensive. In this work, we
explore the flipped approach, where we first compute antisymmetric quantities
based on the electronic coordinates and then apply sign equivariant neural net-
works to preserve the antisymmetry. While this approach promises acceleration
thanks to the lower-dimensional representation, we demonstrate that it reduces
to a Jastrow factor, a commonly used permutation-invariant multiplicative factor
in the wave function. Our empirical results support this further, finding little to
no improvements over baselines. We conclude with neither theoretical nor em-
pirical advantages of sign equivariant functions for representing electronic wave
functions within the evaluation of this work.

1 INTRODUCTION

The stationary Schrödinger equation (Schrödinger, 1926) at the heart of quantum chemistry is a
partial differential equation in 3N dimensions, where N is the number of electrons in the system:

Hψ = Eψ (1)

where ψ : RN×3 → R is the wave function, E the energy and H the Hamiltonian of the system, see
Appendix F. Electronic wave functions must obey the exchange antisymmetry ψ(..., ri, ..., rj , ...) =
−ψ(..., rj , ..., ri, ...). Typically, one enforces this by using a so-called Slater determinant

ψ(r) = det [φj(ri)]i,j∈{0,...,N} = det Φ(r). (2)

In practice, one often uses linear combinations of determinants ψ(r) =
∑K
k=1 wk det Φk(r). Fur-

ther, note that the antisymmetric property is preserved by multiplying the antisymmetric function
with a symmetric function J : RN×3 → R, leading to the so-called Slater-Jastrow wave function

ψ(r) = J(r)

K∑
k=1

wk det Φk(r). (3)

Recent works improved these Ansätze by replacing the so-called orbital functions φi in Equation 2
by neural networks (Hermann et al., 2023). While this has shown remarkably accurate approxima-
tions of the electronic wave function of various molecules, it comes at a significant computational
cost due to explicit electron-electron interactions. In classical quantum chemistry, one avoids this
high cost by using easily integrable Gaussian basis functions to construct the orbital functions φi.
Unfortunately, due to the simple structure of the orbital functions, one may typically require thou-
sands to millions of determinants to capture electronic correlations correctly (Gao et al., 2024).

In this work, we aim to reduce the classical large number of determinants via neural networks. But,
instead of defining the orbital functions via neural networks, we explore non-linear combinations of
determinants, i.e., we are reformulating the classic Slater-Jastrow wave function to

ψ(r) = f
(

[det Φk(r)]
K
k=1 , J(r)

)
, (4)
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where f(x, y) = y
∑K
k=1 wkxk recovers the classical case. To accomplish this, we define a set of

sign equivariant operations to preserve the antisymmetry of the determinants in the final output. Our
theoretical analysis finds that such an algebraic construction is identical to a Jastrow factor and, thus,
cannot shrink the zero set of the wave function. We support these findings via empirical results.

2 RELATED WORK

Solving the stationary Schrödinger equation accurately for many systems opens the path to fast
and accurate machine-learned force fields (Schütt et al., 2018; Kosmala et al., 2023; Wollschläger
et al., 2023). The machine learning approach to this has been, since the first work by Lou et al.
(2023), to parameterize the orbitals from from Equation 2 with neural networks (Hermann et al.,
2023; Zhang et al., 2023). While subsequent works tweak architectures (Gerard et al., 2022; von
Glehn et al., 2023), explore new applications (Cassella et al., 2023; Kim et al., 2023; Lou et al.,
2023; Wilson et al., 2022; Pescia et al., 2023), compute excited states (Pfau et al., 2023; Entwistle
et al., 2022), generalize across molecules (Scherbela et al., 2022; 2024; 2023; Gao & Günnemann,
2022; 2023b;a), or explore the use of Diffusion Monte Carlo (Wilson et al., 2021; Ren et al., 2023),
the underlying structure of the wave function remained the same. This work explores a different
approach by parametrizing the wave function via non-linear combinations of determinants.

3 SIGN EQUIVARIANT FUNCTIONS

Throughout this work, we will mainly refer to two different symmetries. Firstly, the fermionic
antisymmetry to permutations, i.e., ψ(π(r)) = sign(π)ψ(r), and, secondly, to odd function, more
formally functions that are equivariant to the cyclic group C2, i.e., f(−x) = −f(x). The framework
of equivariance allows us to define these symmetries more generally.
Definition 1. A function f : X → Y on real vector spaces X ,Y is said to be equivariant under
group G iff ∀g ∈ G f(GXg x) = GYg f(x) where GXg , GYg are the group representations of g acting
on the vector spaces X and Y , respectively.

As a special case of equivariance, one can define invariance where the result of a function does not
change under group actions, i.e., GYg is the identity for all g ∈ G. Given these definitions, we can
now concretely describe antisymmetric and odd functions. Further, to aid later discussion, we also
introduce symmetric and even functions as counterparts.
Definition 2. A function f : X → Y is antisymmetric iff f is equivariant under the symmetric group
Sn and the group acts on Y as y 7→ sign(π)y,∀π ∈ Sn,y ∈ Y .
Definition 3. A function f : X → Y is symmetric iff f is invariant under the symmetric group Sn.
Definition 4. A function f : X → Y is odd iff f is equivariant under the cyclic group C2 = {−1, 1}
and the group acts on Y as y 7→ gy,∀g ∈ C2,y ∈ Y .
Definition 5. A function f : X → Y is even iff f is invariant under the cyclic group C2.

Implicit Odd Functions A function f acting on the vector of determinants x = [det Φk(r)]
K
k=1

must be odd, i.e., f(−x) = −f(x), to preserve the fermionic antisymmetry. Let f1 and f2 be odd
functions and g an even function. The following functions are odd: (1) multiplication with a constant
αf(x), (2) addition f1(x) + f2(x), (3) element-wise odd functions, e.g., f(x) = [tanh(xi)]

K
k=1,

(4) multiplication with an even function g, i.e., f(x)g(x), and (5) chaining f2(f1(x)). With (5),
we can compose complex functions by chaining simpler ones.Combining (1) and (2) yields linear
combinations, i.e., we can construct linear layers without bias terms. We construct neural networks
f (T ) by combining this with non-linear activation functions (3):

f (t+1)(x(t)) = tanh
(
x(t)W (t)

)
∗ J (t) (5)

where J (t) is obtained from a Jastrow factor, i.e., a symmetric function of the electronic coordinates.

Explicit Odd Functions. Alternatively, given an arbitrary function g : X → Y , one can construct
an odd function f : X → Y via f(x) = g(x) − g(−x). Inversely, as proven in Appendix A, every
odd function f can be expressed by a non-odd function g:
Theorem 1. Any odd function f : X → Y on real vector spaces X ,Y can be represented as
f(x) = g(x)− g(−x) where g : X → Y,x ∈ X .
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In our experiments, we implement g via an MLP with Jastrow factors J (0) and J (T ):

f(x) =
(

MLP
(
x ∗ J (0)

)
−MLP

(
−x ∗ J (0)

))
∗ J (T ). (6)

Linear-logarithmic Domain. One may notice that the distribution of ψ for samples drawn from ψ2

varies by several orders of magnitude. We illustrate this in Appendix C for LiH. While well separated
in the logarithmic domain, the data is crammed into a small region when viewed in the linear domain.
Unfortunately, we cannot directly work in the log-domain as it prohibits any intermediate values
from being zero. We address this by working in a domain that resembles a linear relationship around
zero and a logarithmic relationship far from zero. We define the linlog transformation as

linlogα(x) = sign(x) log(|x|eα + 1) (7)
where α controls a shift of the data towards the linear or logarithmic region. We depict this function
and discuss its stable implementation in Appendix D.

4 THEORETICAL RESULTS

Equivalence to Jastrow Factor. Before empirically analyzing the sign equivariant functions, we
point out an equivalence between odd functions and a Jastrow factor in the context of electronic
wave functions. Interestingly, one can show that all functions of the form in Equation 4 can be
represented by functions in the classical Slater-Jastrow form in Equation 3.

Theorem 2. Let R,X ,Y,Z be real vector spaces, φ : R → X an antisymmetric function, J :
R → Y a symmetric function, and f : X × Y → Z an in the first argument odd function, i.e.,
f(−x,y) = −f(x,y). Any antisymmetric function ψ : R → Z;ψ(r) = f(φ(r), J(r)) can be
expressed a.e. as ψ(r) = (φ(r)Tx)Ĵ(r) with x ∈ X \ {0} and a symmetric function Ĵ : R → Z .

We prove this theorem in Appendix B. In the context of quantum chemistry, this result implies that
a linear combination and a non-positive-constrained Jastrow factor can equally represent any odd
non-linear combination of the antisymmetric function. While this result guarantees the existence of
such a Jastrow factor, it provides no statement about the ease of finding such a solution.

Cusp Conditions. Thanks to Kato (1957)’s theorem, we know that the solutions to Equation 1 must
fulfill the cusp condition limr→Rm − 1

ψ(r)
∂ψ(r)
∂r = Zm where Rm, Zm are the position and charge

of the m-th nucleus, respectively. However, one cannot fulfill the cusp conditions if one chooses
Gaussian-type orbitals as basis functions φi in Equation 2. In fact, all extrema of the original wave
function are preserved. One can verify this via the chain rule on ψ(r) = f([det Φk(r)]

K
k=1):

∂ψ(r)

∂r
=

∂ψ(r)

∂ [det Φk(r)]
K
k=1

∂ [det Φk(r)]
K
k=1

∂r
. (8)

Thus, anytime the orbital derivatives are 0, the derivatives of the final wave function will be 0. As the
derivatives of Gaussian-type orbitals are zero at the nuclei, the cusp conditions cannot be fulfilled.

5 EMPIRICAL RESULTS

While Theorem 2 guarantees the existence of equivalent Jastrows, it does not provide insights into
finding one. Thus, we experimentally evaluate the impact of odd functions on the energy of wave
functions. We test odd functions on four different systems, LiH, Li2, and two states of N2, as detailed
in Appendix E. We use two different approaches to get the initial antisymmetric input for the odd
functions: (1) CASSCF wave functions, a series of Slater determinants from standard quantum
chemistry (Szabo & Ostlund, 2012), and (2) FermiNet, a neural network wave functions (Pfau et al.,
2020). For optimization, we use the variational Monte Carlo (VMC) framework, which we highlight
in Appendix F, with K-FAC (Martens & Grosse, 2015). Ablations with Prodigy (Mishchenko &
Defazio, 2023) can be found in Appendix H and the exact hyperparameters in Appendix G.

CASSCF. We first use the cheaper CASSCF wave functions to test the hyperparameter α ∈
{−2, 0, 2}’s impact from Equation 7 on the final energy. Additionally, we repeat the experiment
in the linear and linlog domain. Further, we compare a classical linear readout, implicit odd func-
tions from Equation 5, and the explicit odd functions from Equation 6. The final energies are plotted
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Figure 1: CASSCF for different values of α without symmetric functions.
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Figure 2: FermiNet with different choices of symmetric functions and α = −2.

in Figure 1. On small structures like LiH and Li2, the explicit odd functions improve energies by up
to 8 mEh and 4 mEh, respectively. Unfortunately, this advantage does not carry over to larger, more
challenging molecules like the nitrogen dimer. We observe significant numerical instabilities with
implicit or explicit odd functions in the optimization process; we explore this further in Appendix H.

FermiNet. For FermiNet we picked the best performing α from the CASSCF experiments, i.e.,
α = −2. We evaluate the energy change by including a Jastrow factor. We consider three types of
Jastrows, (1) none, (2) a traditional Jastrow, Equation 3, (Jastrow), and (3) a Jastrow included the
odd function, Equations 5 and 6, (SymmetricOdd). Appendix G details the exact Jastrow function.
In contrast to CASSCF wave functions, FermiNet can closely recover the ground state thanks to
the explicit inclusion of electron correlation in the orbitals. We plot the final energies in Figure 2.
However, neither odd function positively impacts the optimization but worsens energies. Adding a
Jastrow factor leads to improvements in the more challenging nitrogen dimer.

6 CONCLUSION

Moving neural network complexity from the orbital functions to a non-linear combination of simpler
basis functions promises faster quantum chemistry methods than deep neural networks applied to
electronic coordinates. To design such functions, we present two approaches: implicit constructions
by combining simple odd functions and explicitly odd functions where one enforces the antisymme-
try at the end. While our experimental results show that such odd functions combined with classi-
cal determinants can yield better results on small structures, optimizing such odd functions proves
difficult. At larger system sizes, we frequently observe numerical instabilities and degraded perfor-
mance. In combination with neural network wave functions, we found such odd functions to worsen
energies. From a theoretical point of view, we have shown the limitations of odd functions. Specif-
ically, they correspond to a subset of the set of functions obtainable via Jastrow factors. Given the
theoretical and empirical results, we find little evidence for computational or accuracy advantages
of non-linear combinations of Slater determinants for machine-learning quantum chemistry.
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A PROOF OF THEOREM 1

Proof of Theorem 1. Define

g(x) =

{
f(x) , if xTv > 0,

0 , else,
(9)

for some arbitrary non-zero vector v ∈ X/0. This construction yields

g(x)− g(−x) =

{
f(x) , if xTv > 0,

−f(−x) , else
(10)

fodd
= f(x). (11)

B PROOF OF THEOREM 2

Lemma 1. Every odd function f : X → Y on real vector spaces X ,Y can be represented almost
everywhere as a product of a linear combination xTv,v ∈ X \ {0} and an even function h : X →
Y, h(x) = f(x)

xT v
, i.e.,

f(x) = xTvh(x). (12)

Proof of Lemma 1. We start with proving that h(x) = f(x)
xT v

for some v ∈ X/{0} is an even function

h(−x) =
f(−x)

−xTv =
−f(x)

−xTv =
f(x)

xTv
= h(x). (13)

Plugging h into Equation 12 yields

xTvh(x) = xTv
f(x)

xTv
= f(x). (14)

Proof of Theorem 2. Directly applying Lemma 1, we get

f(φ(r), J(r)) =(φ(r)Tv)
f (φ(r), J(r))

φ(r)Tv
. (15)

If we set Ĵ(r) = f(φ(r),J(r))
φ(r)T v

, it remains to show that Ĵ is symmetric:

Ĵ(π(r)) =
f (φ(π(r)), J(π(r)))

φ(π(r))Tv
(16)

=
f (sign(π)φ(r), J(r))

sign(π)φ(r)Tv
def. φ, J (17)

=
sign(π)f (φ(r), J(r))

sign(π)φ(r)Tv
def. f (18)

=Ĵ(r). (19)

C DISTRIBUTION OF WAVE FUNCTION AMPLITUDES

In Figure 3, we plot the distribution of wave function amplitudes for LiH in the logarithmic, linear,
and linlog domains. We drew samples from ψ2 and plotted the distribution of the amplitudes ψ.
While the data looks well distributed in the logarithmic domain, it is crammed into a small region in
the linear domain. Our linlog transformation from Equation 7 addresses this issue by viewing part
of the data in the linear domain and part in the logarithmic domain. The scaling factor α controls
the shift between the two domains. It plays a crucial role as a hyperparameter in our experiments. A
small α leads to a spiky distribution like in the linear domain, and a large α leads to a flat distribution.
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D LINLOG TRANSFORMATION

Our proposed linlog transformation from Equation 7 is C∞ smooth and can be numerically stably
implemented to transform from and to the logarithmic domain directly via

linlogα(sign(x), log(|x|)) = sign(x)softplus(log(|x|) + α). (20)
To avoid the spiky distribution one typically observed in the linear domain, we initialize α = αinit +
mediani{maxk{det Φk(ri)}} via a hyperparameter αinit and the median of a batch of electronic
configurations sampled from ψ2 with a linear readout instead of the learnable odd function. We plot
the transformation relative to the linear domain in Figure 4.

E USED STRUCTURES

We use four different systems for our empirical analysis: LiH, Li2, N2, and a distorted N2. For LiH
and Li2, we pick the equilibrium structures from Pfau et al. (2020). For N2, we use the equilibrium
structure from Pfau et al. (2020) as well a highly distorted structure where the error of FermiNet
from Pfau et al. (2020) peaks. All structures are listed in Table 1. As active space for the CASSCF
calculations, we pick all valence orbitals and electrons.

Name LiH Li2 N2 N2 distorted

Distance (a0) 3.015 5.051 2.068 4.0
Active space (Orbitals, Electrons) (6, 2) (6, 2) (6, 10) (6, 10)

Table 1: Systems evaluated in this work.
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F VARIATIONAL MONTE CARLO

Variational Monte Carlo (VMC) is a method to approximate solutions to the Schrödinger equation
from Equation 1. In this work, we are interested in molecular systems where the Hamiltonian takes
the following form in the Born-Oppenheimer approximation:

H = −
N∑
i=1

1

2

∂2

∂r2i
−

N∑
i=1

M∑
m=1

Zm
‖ri −Rm‖

+

N∑
i=1

N∑
j=i+1

1

‖ri − rj‖
+

M∑
m=1

M∑
n=i+1

ZmZn
‖Rm −Rn‖

(21)
with ri being the position of the i-th electron, Rm the position of the m-th nucleus, and Zm the
charge of the m-th nucleus. In linear algebra, Equation 1 is an eigenvalue problem, i.e., we are
looking for the lowest eigenvalue E0 and corresponding eigenvector ψ0. To accomplish this, we
use the variational principle, i.e., we approximate the ground state by a trial wave function ψT and
minimize the energy expectation value. The variational principle (Szabo & Ostlund, 2012) states
that the energy expectation value of any trial wave function ψθ is an upper bound to the ground state
energy E0:

E0 ≤
∫
ψθ(r)Hψθ(r) d r∫

ψ2
θ(r) d r

. (22)

If we now define the probability density function (PDF) p(r) = ψ2(r)∫
ψ2(r) d r

, we can rewrite Equa-
tion 22 as

E0 ≤
∫
p(r)

Hψθ(r)

ψθ(r)
d r =

∫
p(r)EL(r) d r = Ep(r) [EL(r)] (23)

where the right-hand side is the so-called VMC energy. By taking gradients of the VMC energy
to the parameters θ of the trial wave function ψθ, we can optimize the parameters to minimize the
energy. These gradients can be computed as

∇θ = Ep(r)
[
(EL(r)− Ep(r) [EL(r)])∇θ logψθ(r)

]
. (24)

By approximating the expectation values via Monte Carlo sampling, we can compute the gradients
via Equation 24 and optimize the parameters via gradient descent (Ceperley et al., 1977).

G SETUP

This section details the setup of our experiments.

As Jastrow factors, we use an MLP on the averaged electronic coordinates:

J(r) =MLP

(
N∑
i=1

[ri −Rm, ‖ri −Rm‖]Mm=1

)
. (25)

We picked this specific formulation as it provides a similar computational cost to the odd function
defined in Section 3 as it does not explicitly consider the individual electronic coordinates. We use
this Jastrow as a standalone Jastrow or the symmetric function in Equation 5 and 6.

As standard in the field, we pretrain the FermiNet on a Hartree-Fock wave function and then optimize
the odd function with the pretrained FermiNet within the VMC framework (Pfau et al., 2020).

We implement everything in JAX (Bradbury et al., 2018). To compute the laplacian from Equa-
tion 21, we use the forward laplacian algorithm from Li et al. (2023) implemented by Gao et al.
(2023).

We use the hyperparameters listed in Table 2 for our experiments.

H ADDITIONAL EXPERIMENTS

In addition to the experiments in the main body, we present additional empirical data here. As
an alternative to the KFAC optimizer, we present results with prodigy (Mishchenko & Defazio,
2023), a learning-rate-free version of Adam (Kingma & Ba, 2014), in Figure 5. However, the
conclusion remains the same: The odd functions improve energies on small structures and worsen

10
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Hyperparameter Value

CASSCF
Basis set 6-311G

FermiNet
Determinants 8
Single electron features 256
Pairwise features 32
Layers 4
Activation SiLU

Odd functions
Layers 5
Hidden units 256
α -2

Jastrow
Layers 3
Hidden units 256

Optimization
Optimizer KFAC
Learning rate 0.05

1+ t
1000

Damping 0.001
Batch size 2048
MCMC steps 20

Table 2: Hyperparameters used in the experiments if not otherwise specified.
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Figure 5: Final energies of CASSCF+odd optimized with Prodigy. Missing entries were numerically
unstable and encountered NaNs during training.

them on large ones. Further, we present CASSCF experiments with Jastrow factors in Figure 6.
Here, we observe that including a Jastrow factor closes the gap between the linear and non-linear
combinations. Finally, we present CASSCF experiments in float64 precision in Figure 7 to show
that the numerical instabilities are not due to numerical precision.
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Figure 6: The final energies of CASSCF+odd optimized with KFAC or Prodigy. Missing entries
encountered NaNs during training. Colors indicate the use of symmetric functions: Traditional Jas-
trow factor, and ‘SymmetricOdd’ implies including the symmetric Jastrow factor as in Equation 5,
and 6. α = −2.
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Figure 7: Final energies of CASSCF+odd optimized with Prodigy. Training in float64. α = −2.
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