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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) has enabled significant
advancements within language modeling for powerful, instruction-following mod-
els. However, the alignment of these models remains a pressing challenge as
the policy tends to overfit the learned “proxy” reward model past an inflection
point of utility as measured by a “gold” reward model that is more performant –
a phenomenon known as over-optimization. Prior work has mitigated this issue
by computing a pessimistic statistic over an ensemble of reward models, which
is common in Offline Reinforcement Learning but incredibly costly for language
models with high memory requirements, making such approaches infeasible for
sufficiently large models. To this end, we propose using a shared encoder but sep-
arate linear heads. We find this leads to similar performance as the full ensemble
while allowing tremendous savings in memory and time required for training for
models of similar size.

1 INTRODUCTION

Modern language models have been ubiquitous in discussions of general purpose AI systems that can
accomplish myriad tasks across many disciplines and with rapidly increasing capabilities OpenAI
(2023); Manyika & Hsiao (2023); Touvron et al. (2023); Bommasani et al. (2022); Wei et al. (2022).
However, alongside this increase in capabilities, there has been growing concern around the risks of
such systems as they are not entirely interpretable and could be misused to cause substantial harm
either maliciously or inadvertently (Hendrycks et al., 2023; Wang et al., 2023; Hendrycks et al.,
2022).

A salient research question is that of alignment; given a set of human values, how do we imbue
these principles within the behavior of such systems? Russell (2022). Suppose we can access
a ground truth reward model. One observed phenomenon is that training a reward model from
preference feedback eventually reaches an inflection point where increasing the policy performance
on the proxy stagnates and ultimately degrades the reward credited by the ground truth model – even
though both are consistent with human labels! (Gao et al., 2023).

This reward over-optimization problem has been identified as a significant technical issue in scaling
up learning from human feedback Ouyang et al. (2022); Casper et al. (2023); Coste et al. (2023);
Eisenstein et al. (2023). Prior work has noted that because the reward models trained from user
feedback are only a proxy for their underlying preferences, opting for a high reward can lead to per-
formance degradation. Recent work has proposed mitigations either through ensembling or trans-
forming the RL objective but these methods are either too computationally expensive or analytically
intractable to be used with modern language models given limited compute (Coste et al., 2023;
Eisenstein et al., 2023).

In our work, we propose a simple modification to a common strategy of ensembling: instead of
maintaining multiple separate reward models, we opt for a shared backbone with different linear
heads with the hypothesis that different initialization and training procedure will generate enough
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diversity. Our contributions show initial experiments validating the utility of such an approach in
RLHF as it is just as performant as using a full ensemble for mitigating overoptimisation, while
requiring less time for training during reward modeling, and less memory and time for PPO.

2 RELATED WORK

Reinforcment Learning from Human Feedback (RLHF) RL is a powerful framework for learning
diverse and performant policies that can tackle a wide array of tasks Sutton & Barto (2018); Abbeel
& Ng (2004); Bellman (1957); Haarnoja et al. (2017); Drake (2005). Of particular recent interest are
language models, which have shown impressive base capabilities in terms of instruction following.
RLHF is a core component of the tuning processes for many of the currently highest-performing
and most widely-used language models, improving their ability to follow instructions and align their
responses with human preferences Stiennon et al. (2022); Christiano et al. (2023). However, tuning
through RLHF can introduce a risk of overfitting to a proxy of true reward, since the reward model
is learned. Prior work analyzes this phenomenon using a fixed “gold-standard” reward model in the
place of humans, training proxy reward models from labels it provides (Gao et al., 2023).

Ensembles for Overoptimisation Recent work has shown multiple ways to mitigate this overopti-
mization issue, but the suggestions only apply during training or require expensive copies of multiple
reward models for ensembling without deeper analysis as to why they mitigate this issue Coste et al.
(2023). Related work further discovered that the ensembles are more effective when pretraining
from scratch with separate seeds Eisenstein et al. (2023). Separately, other work has investigated
uncertainty across ensemble members for RLHF showing that using the same backbone with differ-
ent linear heads can lead to significant improvement in calibration, but that this weakly correlated
with performance for summarization tasks Gleave & Irving (2022). We draw on this literature to
propose a multi-head reward modeling scheme, for which we use each head as a separate reward
function, utilizing the shared features from supervised fine-tuning but enabling the diversity of re-
ward ensembles in a scalable manner.

3 BACKGROUND & METHODS

3.1 PPO

Proximal Policy Optimization (PPO) is an algorithm in reinforcement learning (RL) that is particu-
larly adept at ensuring gentle policy updates, crucial for the complex dynamics of language models
by optimizing reward with a KL constraint to the original policy.

max
π

E
s,a∼πold

[
π(a|s)
πold(a|s)

R(s, a)− βKL(πold||π)
]

(1)

3.2 REWARD LEARNING

In standard reward modelings given a prompt completion x and a human pairwise binary preference
label y, we instantiate the reward model using the backbone feature extractor from a pre-trained or
model F . We then initialize a linear reward head H : Rd × R with feature dim d giving a reward

r(x) = H(F(x)) (2)

3.2.1 MULTI-HEAD REWARD LEARNING

In our approach, the multi-head reward model is structured upon a shared base neural architecture
derived from the pre-trained and supervised fine-tuned language model. Everything is fixed except
instead of a singular head we design the model to incorporate multiple heads. Formally let F
is the feature extractor and Hi is the ith head linear head, the reward ri for input x using head i can
be described as:

ri(x) = Hi(F(x)) (3)
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Figure 1: Comparison of Reward Modeling methods to ours (right)

4 EXPERIMENTS

4.1 DATASETS AND MOTIVATION

We select the Alpaca Instructions dataset which emphasizes naturalistic, closed-form questions
and answers, usually having a well-defined correct response, e.g., the number of planets in the solar
system, but also included more open questions such as famous actors who started on broadway, why
certain states are named, how to play kickball, etc. Taori et al. (2023). Given the most relevant prior
work studying overoptimisation focused on this dataset, it is our primary dataset for training and
evaluation (Coste et al., 2023).

4.2 METHODOLOGY AND TOOLS

We follow the RLHF pipeline of supervised fine-tuning (SFT), reward learning, and proximal policy
optimization (PPO). The experiments are implemented using the OPT model family Zhang et al.
(2022). We opted for the Alpaca Farm codebase to serve as our framework (Dubois et al., 2023).

• Supervised Fine-Tuning (SFT): Given a prompt (”Tell me a bedtime story”) and some
ideal completions, the base model is fine-tuned to minimize perplexity on a split of 52k
instructions.

• Reward Learning: Given the SFT model and the same set of prompts but now with pairs of
completions (preferred and dispreferred), we use the backbone and fine-tune a linear head
on the Bradley-terry loss with the preferred completion as the target (Bradley & Terry,
1952).

• PPO Finally, we further tune the SFT language model as a policy in the RL framework
against the reward model through PPO.

We modify this pipeline by training the multi-head reward models with the base model initialized
from SFT. When selecting the reward for a given sample, since we produce multiple predictions,
we are presented with multiple choices for computing our final prediction Coste et al. (2023), but
we simply take the minimum over the ensemble. A pessimistic estimator might reduce perfor-
mance in principle, although for offline RL and RLHF preferences, it has been either conjectured or
empirically validated that a minimum is optimal, and prior work demonstrated uncertainty penalties
do not improve the efficiency of ensembles in preventing over-optimization over a simple min Zhu
et al. (2023); Coste et al. (2023); Kumar et al. (2020); Chen et al. (2021). Our approach is shown in
Figure 1, and all hyperparameters and further training details are in the Appendix.

4.3 RESULTS

To test the efficacy of our approach, we run 1) Standard PPO 2) PPO with an ensemble of three
reward models and 3) PPO with a multi-head reward model with three linear heads. We fix ensemble
size at three as prior work found no gains when increasing to four or five members due to fixed
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Figure 2: Gold analysis on top, Proxy metrics below.

compute, although we emphasize our method is amenable to a much larger number of ensemble
members with minimal overhead Coste et al. (2023). We select the 1.3 B parameter OPT model
as the proxy and the 6.7B variant as the gold model and run PPO for 15 epochs to extensively test
overoptimisation.

We present our results in Figure 6. Given the difference in reward scales, and multiple works validat-
ing the benefit of using a full ensemble for overoptimisation we opt for two figures that demonstrate
1) the efficacy of the multi-head ensemble against standard PPO and 2) the efficacy of using a multi-
head or full ensemble. Following prior work we also plot reward against KL divergence Gao et al.
(2023); Coste et al. (2023); Eisenstein et al. (2023). Figure 6 clearly shows the replication of overop-
timisation as we reproduce the concave-down nature of gold rewards under standard PPO and then
summarily show how using a multi-head reward model bridges this gap. Figure 6 shows that the
multi-head and full ensemble nature to similar gold performance, however we emphasize that our
approach allows an ensemble with much larger reward models and following the prior work suggest-
ing the full ensemble we train each member for three epochs to maximize performance whereas
we find the multi-head approach needs only one epoch. We include further details and ablations
in the appendix.

4.4 CALIBRATION

4.5 CALIBRATION ANALYSIS AND IMPLICATIONS

We investigate the calibration of our multi-head reward models, as accurate representation of un-
certainty is crucial in RLHF to prevent overoptimistic predictions Casper et al. (2023). Prior work
found that ensembling improves calibration but is weakly related to model error when using a shared
backbone with different linear heads, suggesting that separate reward models might be necessary for
efficient ensembling Gleave & Irving (2022). However, we hypothesize that the difference in im-
provement is due to the diversity of tasks, as the AlpacaFarm dataset focuses on more open-ended
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Figure 3: Multi-head model calibration over different objectives with respect to the probabilities
(taking min, max over ensemble etc.)

questions compared to the summarization tasks in the prior work, which might increase model error
due to epistemic uncertainty. We assess the calibration quality of the models using different ensem-
ble objectives, such as mean and minimum reward estimation. The multi-head models, particularly
with the minimum objective, demonstrate an enhanced ability to capture uncertainty in the reward
signals without incurring significant computational overhead. While the minimum estimate is tech-
nically mis-calibrated, it leads to better than predicted performance at high levels of certainty. This
suggests a regularization effect from the pessimistic estimator, as overoptimized models typically
reach a local minima, explaining the ”U-shaped” curves that result as KL divergence from the base
policy increases. Our findings align with previous work on pessimistic estimates in ensemble mod-
els, underscoring the benefits of a conservative approach in certain RL contexts. Furthermore, our
experiments suggest that a smaller number of heads (3) might be optimal for mitigating overoptimi-
sation, providing a valuable guideline for future research in ensemble-based models for RLHF. An
increase in the number of heads beyond a certain threshold might introduce more noise than benefi-
cial diversity, potentially leading to overfitting on dataset nuances, which is consistent with existing
literature on the effectiveness of smaller ensembles in specific scenarios Galdran et al. (2023). See
Figure 4 for details.

4.6 CONCLUSION

Our research contributes a novel method to improve the robustness of aligning language models by
utilizing a robust pessimistic statistics while avoiding the cost of materializing a full ensemble. By
addressing the challenges of overoptimization in a computationally efficient manner, we move a step
closer to developing AI systems that can reliably align with human values and preferences.
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A APPENDIX

A.1 D ADDITIONAL EXPERIMENTAL DETAILS

A.1.1 D.1 HYPERPARAMETERS

We give the hyperparameters here for different components of our RLHF pipeline:
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Table 1: SFT hyperparameters for 6.7B model
Parameter Value

Learning rate 2e-5
Epochs 3

Batch size 128

Table 2: SFT hyperparameters for 1.3B
Parameter Value

Learning rate 8e-6
Epochs 1

Batch size 128

A.1.2 D.2 ALPACAFARM DATASET DETAILS

The AlpacaFarm dataset Dubois et al. (2023) employed in our experiments uses the Alpaca data
Taori et al. (2023) made up of 52,000 samples. This data is chosen due to its large size and success in
training instruction-following models. AlpacaFarm contains five splits: a labeled 10k ”sft” split for
supervised fine-tuning, a 10k ”pref” split containing pairwise preference labels, a 20k ”unlabeled”
split for training algorithms such as PPO, a 2k validation split, and an unused 10k split. We use
the noisy variant of alpaca instructions with 25% label noise to more closely model real-world data
distributions.

A.1.3 REWARD MODEL TRAINING ABLATION

Interestingly, we find that if we only train each reward model in the full ensemble for one epoch the
ensemble approach is not sufficient to prevent over-optimisation, and that at least three epochs are
necessary while prior work had five or more. We hypothesize that the multi-head approach is more
amenable to underspecified features for reward modeling.

Figure 4: Gold analysis.
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Table 3: RM hyperparameters
Parameter Value

Learning rate 1e-5
Epochs 3

Batch size 64

Table 4: PPO hyperparameters
Parameter Value

Max instruction length 520
Max new tokens (answer length) 256

PPO epochs 4
Top-p 0.9 (1.0 for PPO training)
Top-k 0

Temperature 1.0
Rollout Batch size 512

Gradient Step Batch size 256
Learning Rate 6e-6

Figure 5: Proxy metrics.

Figure 6: Gold analysis on top, Proxy metrics below.
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