
Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

TRANSFORMERS CAN ACHIEVE LENGTH
GENERALIZATION BUT NOT ROBUSTLY

Yongchao Zhou1,2 ∗, Uri Alon1, Xinyun Chen1, Xuezhi Wang1, Rishabh Agarwal1,
Denny Zhou1

1Google DeepMind, 2 University of Toronto

ABSTRACT

Length generalization, defined as the ability to extrapolate from shorter training
sequences to longer test ones, is a significant challenge for language models. This
issue persists even with large-scale Transformers handling relatively straightfor-
ward tasks. In this paper, we test the Transformer’s ability of length generalization
using the task of addition of two integers. We show that the success of length gen-
eralization is intricately linked to the data format and the type of position encod-
ing. Using the right combination of data format and position encodings, we show
for the first time that standard Transformers can extrapolate to a sequence length
that is 2.5× the input length. Nevertheless, unlike in-distribution generalization,
length generalization remains fragile, significantly influenced by factors like ran-
dom weight initialization and training data order, leading to large variances across
different random seeds.

1 INTRODUCTION

Transformer-based models have revolutionized natural language understanding and generation
across diverse applications (Gemini et al., 2023). Despite their impressive abilities in mathemat-
ical reasoning (Lewkowycz et al., 2022), code synthesis (Li et al., 2022), and theorem proving (Wu
et al., 2022), Transformers often struggle with length generalization, an ability that requires the
model to generalize to longer sequences than seen during training (Anil et al., 2022; Abbe et al.,
2023; Zhou et al., 2024). This limitation raises an essential question: do Transformers genuinely
grasp the correct underlying algorithms for a given task, or are they merely resorting to superficial
memorization or shortcut strategies that fail to scale to more complex problems Liu et al. (2023b)?

Recent work has scrutinized Transformers’ shortcomings in length generalization across formal lan-
guage learning Deletang et al. (2023) and algorithmic reasoning tasks Anil et al. (2022); Zhang
et al. (2022); Dziri et al. (2023). These investigations consistently indicate a notable deficiency in
length generalization capabilities. This recurring issue raises a crucial question: Is there an inherent
limitation in Transformers’ design preventing effective length generalization?

In this paper, we systematically examine the Transformer’s capability of length generalization,
specifically focusing on the N -digit decimal addition problem. We view the addition problem as
a form of synthetic language learning, which despite its relative simplicity compared to natural
language, provides valuable insights into the Transformer’s ability to internalize fundamental al-
gorithms. Notwithstanding its simplicity, recent work has demonstrated that Transformers exhibit
limited length generalization in this task (Lee et al., 2023; Shen et al., 2023).

Previous attempts to improve Transformer’s length generalization ability primarily focus on two ar-
eas: refining position encodings (Shen et al., 2023) and optimizing data formats (Lee et al., 2023;
Zhou et al., 2024). Therefore, we perform an extensive empirical evaluation of combinations of
widely used position encoding and various data formats, resulting in a recipe for successful length
generalization. Our final recipe consists of: FIRE position encodings (Li et al., 2024), with random-
ized positions (Ruoss et al., 2023), in reversed format, with index hints (Zhou et al., 2024).

∗Student Researcher at Google Deepmind. Corresponding authors: <yczhou@cs.toronto.edu>, <den-
nyzhou@google.com>

1

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

Our Work
Zhou et al. (2023)
Shen et al. (2023)
Kazemnejad et al. (2023)
Lee et al. (2023)

Figure 1: Using an appropriate position encoding
and data formatting, we demonstrate that Transform-
ers can generalize to 100-digit decimal addition tasks
with more than 98% of accuracy when trained up to
40-digit addition, resulting in a length extension ra-
tio of 2.5×, which is much more than the ratio of
Lee et al. (2023) (1.0×), Kazemnejad et al. (2023)
(1.125×), Shen et al. (2023) (1.1×), and Zhou et al.
(2024) (1.5×).

Position Encoding (PE) & Data Formatting

Lee et al.

Kazemnejad et al.

Shen et al.

Zhou et al.

Our Work

Raw Data 576+361=937

675+163=739APE

NoPE 675+163=739

6 75+16 3=739NoPE

NoPE

FIRE + Randomized PE a6b7c5+a1b6c3=a7b3c9

Method PE

a6b7c5+a1b6c3=a7b3c9

Data Format

Figure 2: Comparative overview of PEs and data for-
mats: While most related studies focus on APE or
NoPE, our approach integrates FIRE (Li et al., 2024)
and Randomized PE (Ruoss et al., 2023). All studies
utilize a reversed format. Shen et al. (2023) enhance
this with random space augmentation, and both Zhou
et al. (2024) and Our Work incorporate index hints.

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE
NoPE
KerpleLog
RoPE

Figure 3: EM accuracy (best of 10 trials),
trained exclusively on sequences of lengths 1 to
40, the best trials involving FIRE exhibit near-
perfect generalization on 100-digit addition.

0 20 40 60 80 100
Digit Length

0

20

40

60

80

100
Ex

ac
t M

at
ch

 A
cc

ur
ac

y
(%

)

FIRE
NoPE
KerpleLog
RoPE

w/ Hint
w/o Hint
w/ Hint
w/o Hint

Figure 4: EM accuracy of models trained with
and without index hints (best of 10 trials): With-
out index hints, all PE methods fail in general-
ization, both within and beyond trained lengths.

As shown in Figure 1, when trained on only 40 digits, our model successfully extrapolates to se-
quences of up to 100 digits, exceeding the input length by 2.5×. To the best of our knowledge, this is
the strongest known generalization result for text-based Transformers on addition. Nevertheless, we
observe that the robustness of this length generalization is fragile, significantly swayed by variables
such as random initialization and the training data order.

Our key contributions are summarized as follows:

(i) We demonstrate that the success in length generalization is markedly influenced by position
encoding and data format. Through careful selection of these factors, we achieved extrapolation
to lengths that are 2.5× longer than those seen during training.

(ii) Our exploration of established data formatting and augmentation techniques indicates that their
effectiveness in length generalization is primarily contingent on the choice of position encoding.

(iii) Despite remarkable generalization to lengths 2.5× longer than training, we found this general-
ization to be fragile and heavily relying on factors like random weight initialization and training
data order.

2 EXPERIMENTS

FIRE enables significantly better length generalization. Figure 3 compares the length gener-
alization capabilities of four positional encodings in the best of 10 trials (See Appendix F.1 for all

2

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

0 20 40 60 80 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE
NoPE
KerpleLog
RoPE

Reverse
Standard
Reverse
Standard

Figure 5: EM accuracy of the standard vs. the
reversed format: Consistently with prior stud-
ies, the reversed format excels over the standard
format across all PEs.

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

Figure 6: The reversed format shows distinct
grokking during training, unlike the gradual en-
hancement in the standard format. This phe-
nomenon is observed across all PEs (Figure F.3)

RoPE
 (N=50)

KerpleLog
(N=50)

NoPE
(N=70)

FIRE
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
)

RS Aug
False
True

Figure 7: Effects of Random Space Augmen-
tation (RS Aug): Random space augmenta-
tion is beneficial for RoPE and KerpleLog;
adverse for NoPE and FIRE.

KerpleLog
(N=70)

FIRE
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) Randomized PE

False
True

Figure 8: Effects of Ran-
domized PE: Random-
ized PE enhances FIRE
but degrades KerpleLog

Input w/ Carry

51.5%

Input w/o Carry

48.5%

Figure 9: Error Distri-
bution: Errors appear
almost equally with
and without carry.

trials). Trained exclusively on sequences of lengths 1-40, the best trial of FIRE exhibit near-perfect
generalization to sequences up to the length of 100. In contrast, other PEs show a visible degradation
in generalization accuracy beyond the sequence length of 60. This finding counters the findings of
Kazemnejad et al. (2023) that no positional encoding (NoPE) surpasses complex PE techniques for
length generalization. Our findings suggest that a well-designed PE, such as FIRE, is essential for
optimal length generalization.

Index hints are crucial. We compare models trained with and without index hints. As shown in
Figure 4, index hints significantly enhance length generalization across various PEs, corroborating
the findings of Zhou et al. (2024). Notably, without index hints, NoPE and FIRE demonstrate poor
in-distribution generalization for 40-digit additions, a marked deviation from their reasonable perfor-
mance when trained on 10-digits, as shown in Figure F.8(a). Figure G.1 shows that this phenomenon
occurs across all random seeds. Conversely, RoPE and KerpleLog exhibit moderate in-distribution
generalization but falter in out-of-distribution scenarios. Appendices G.1 and G.2 shows the training
loss and test accuracy of these runs.

Analyzing errors in 11-digit additions from models trained on 10-digits revealed a common mis-
alignment issue: the Transformer often adds operands adjacent to the correct ones. An attempt to
rectify this by reformatting addition (A1B1, A2B2, A3B3 = C1C2C3, with 1 as the least significant
bit) failed to improve length generalization, merely shifting the error to adjacent output positions.
This highlights the Transformer’s inherent limitations in precise position identification.

Standard format vs reversed format. As shown in Figure 5, standard formatting shows limited
length generalization in all PEs compared to the reversed format. FIRE excels in length gener-
alization even with the standard format, even matching RoPE in reverse format. However, FIRE’s
performance (with standard format) declines beyond 60-digit additions, likely due to increased carry
propagation challenges exceeding the model’s capacity.

3

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure 10: Exact match across 10 trials us-
ing FIRE. While transformers can achieve near-
perfect accuracy in 100-digit addition, the vari-
ance across different random seeds is high.

20 30 40 50 60 70 80 90 100
Digit Length

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

Weight Seed 1
Weight Seed 2
Weight Seed 3

Figure 11: Effects of weight initialization and
data input order: 15 models trained on a com-
bination of three weight initialization seeds and
five data input order seeds.

Looking at the training loss and training next-token accuracy in both formats also shows interesting
differences. As shown in Figures 6 and F.3, the standard format training leads to gradual improve-
ment, whereas reverse format yields a sharp performance transition. This transition, which is a rem-
iniscent of “grokking” phenomenon Power et al. (2022), shows in this case the “Eureka moment” in
which the Transformer learns the right addition algorithm.

Random space augmentation and randomized position encoding. Figure 7 reveals divergent
impacts of random space augmentation on four PEs. The augmentation’s efficacy is notably con-
tingent upon the chosen PE. While Random Spaces marginally enhances RoPE and KerpleLog’s
performance, it markedly deteriorates NoPE and FIRE. A similar PE-specific pattern is evident in
Randomized PE, as Figure 8 demonstrates. Randomized PE significantly degrades KerpleLog’s ef-
fectiveness, yet it substantially boosts FIRE. See Appendices G.4 and G.5 for training loss and EM
accuracy for all trials in each setting.

Length generalization is not robust to either weight initialization or training data order. Fig-
ure 10 illustrates the varying performance of 10 FIRE trials using identical training data order but
distinct weight initializations. Notably, while all trials achieve similar close-to-zero training losses
after 10K training steps (Figure F.2) and exhibit perfect in-distribution generalization, their out-of-
distribution (OOD) length generalization shows significant variance. Moreover, the length general-
ization performance fluctuates significantly across training steps (Appendix F.3). This observation
contrasts with earlier studies suggesting in-distribution loss as a reliable OOD generalization pre-
dictor (Nagarajan et al., 2020).

We further examine 15 unique combinations, resulting from 3 weight initialization seeds and 5 data
input orders. As shown in Figure 11, there is significant variance across training data orders even
when the weight initialization is constant. Intriguingly, certain weight initializations demonstrate
remarkable resilience to changes in data input order. This observation is reminiscent of the Lottery
Ticket Hypothesis (Frankle & Carbin, 2018), which posits the existence of a sparse, equally effective
sub-network within a larger neural network. Our findings suggest the presence of “fortunate” weight
configurations that exhibit robust length generalization, akin to a “lucky weight ticket.”

While Anil et al. (2022) also noticed similar in-distribution accuracy but marked differences in OOD
behavior on parity tasks, their OOD performance was quite poor across all runs. Moreover, contrary
to the findings of Anil et al. (2022) on the impact of hyperparameter variation, our experiments
reveal considerable performance fluctuations even with different random seeds. This inconsistency
appears unrelated to position encoding (refer to Figure F.1 for different PEs), and is more likely due
to variations in random weight initialization and data order.

3 ANALYSIS

Error analysis. In examining Transformers’ error characteristics, we classified erroneous pre-
dictions into two categories: those with and without carry. Figure 9 shows no significant difference
between these categories, thus carry propagation does not majorly impede length generalization.

4

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=70)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(a) RoPE

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(b) NoPE

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(c) FIRE

Figure 12: Scaling model size inconsistently affects length generalization performance. While con-
sistently enhancing performance in shorter length regimes (1-10, 1-20) across four PEs, this trend
does not hold for larger regimes (1-30, 1-40). For instance, larger models outperform smaller ones
with RoPE and KerpleLog (Figure F.14), but underperform with NoPE and FIRE. Moreover, in-
creasing model size doesn’t noticeably decrease performance variance, suggesting size scaling isn’t
vital for length generalization.

Additionally, we analyzed the error distribution in 100-digit addition using FIRE, illustrated in Fig-
ure F.10. As shown, Figure F.10 indicates an overall uniform error distribution across all indices,
despite some individual model checkpoints showing errors at specific positions. Excluding two near-
zero accuracy runs, over 90% of errors in incorrect examples are single-digit mistakes, following an
exponential distribution. Additional results are shown in Figures F.11 and F.12.

Despite the imperfect calculation, the FIRE model does not show any systematic error. Random
errors may stem from phenomena such as attention glitches Liu et al. (2023a). Conversely, other
PEs systematically fail to identify the start or end of addition, leading to premature termination.

Scaling model size. The scaling of model size is crucial for improving large language mod-
els (Thoppilan et al., 2022; Chowdhery et al., 2023). To assess its effect on length generalization,
we contrasted models with 25M and 268M parameters. We find that model size variation has a
minor effect on length generalization. Figure 12 shows that larger models slightly improve gen-
eralization in short digit regimes (1 to 10 and 1 to 20 digit additions) but yield mixed results in
longer regimes. While RoPE and KerpleLog show improvements, NoPE and FIRE experience per-
formance degradation with a larger model, indicating model size may not be the primary factor in
length generalization.

The efficacy of length generalization in the 25M model prompted us to explore the capabilities of
smaller models. Specifically, we trained models with 2M and 5M parameters. As Figures F.15
and F.16 illustrate, the 2M model’s performance deteriorates with longer sequences, indicating lim-
ited model capacity as a potential performance bottleneck. Intriguingly, this model outperforms its
larger counterparts (5M and 25M models) in tasks involving 1 to 10 digit addition. Furthermore,
the 5M model remarkably achieves 80% accuracy in 100 digit addition, trained only on 1 to 40 digit
tasks, surpassing the 268M model’s performance.

4 CONCLUSION

Length generalization in Transformers has been a long-standing challenge. We evaluate the ability
of Transformers to generalize to longer test sequences using the decimal addition task. Through ex-
tensive experiments, we find that there is no inherent limitation in Transformers’ design preventing
effective length generalization. Instead, the missing ingredient is the right combination of data for-
mat and position encoding. We show that Transformers can achieve almost perfect generalization on
sequences up to 2.5× the training length, given appropriate data formatting and position encoding.

Our thorough empirical analysis of common length generalization techniques reveals a significant
dependency between the type of position encoding and the data format. This underscores the impor-
tance of synergizing data format with model architecture for optimal generalization. Despite these
advancements, robust length generalization in Transformers remains elusive, even with meticulously
finetuned regularization hyperparameters.

5

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. arXiv preprint arXiv:2301.13105, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task hint-
ing. arXiv preprint arXiv:2310.00726, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation. arXiv preprint arXiv:2306.15595, 2023.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized rel-
ative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A Ortega. Neural networks and
the chomsky hierarchy. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=WbxHAzkeQcn.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Shaoxiong Duan and Yining Shi. From interpolation to extrapolation: Complete length generaliza-
tion for arithmetic transformers. arXiv preprint arXiv:2310.11984, 2023.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location attention for extrapolation
to longer sequences. arXiv preprint arXiv:1911.03872, 2019.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jian, Bill Yuchen Lin, Peter West,
Chandra Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. Faith and fate: Limits of transformers
on compositionality. arXiv preprint arXiv:2305.18654, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Gemini, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gomez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John P. Agapiou,
Adrià Puigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hass-
abis. Hybrid computing using a neural network with dynamic external memory. Nat., 538
(7626):471–476, 2016. doi: 10.1038/NATURE20101. URL https://doi.org/10.1038/
nature20101.

6

https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.1038/nature20101
https://doi.org/10.1038/nature20101

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. arXiv preprint arXiv:2306.15400,
2023.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan, Payel Das, and Siva Reddy. The im-
pact of positional encoding on length generalization in transformers. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=Drrl2gcjzl.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papailiopoulos.
Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
rR03qFesqk.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing atten-
tion glitches with flip-flop language modeling. arXiv preprint arXiv:2306.00946, 2023a.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023b. URL https://openreview.net/forum?id=De4FYqjFueZ.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Mohammad Motamedi, Nikolay Sakharnykh, and Tim Kaldewey. A data-centric approach for train-
ing deep neural networks with less data. arXiv preprint arXiv:2110.03613, 2021.

Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the failure
modes of out-of-distribution generalization. arXiv preprint arXiv:2010.15775, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

7

https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=rR03qFesqk
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=R8sQPpGCv0

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Ben-
nani, Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization
of transformers. arXiv preprint arXiv:2305.16843, 2023.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. Advances in Neural Information Processing Systems, 34:6695–6706, 2021.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. arXiv preprint arXiv:1803.02155, 2018.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

David R So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Primer:
Searching for efficient transformers for language modeling. arXiv preprint arXiv:2109.08668,
2021.

Jianlin Su. Rectified rotary position embeddings. https://github.com/bojone/rerope,
2023.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368, 2022.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and
Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. arXiv preprint
arXiv:2211.09066, 2022.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? a study in length
generalization. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=AssIuHnmHX.

8

https://github.com/bojone/rerope
https://openreview.net/forum?id=AssIuHnmHX

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

A POSITION ENCODING AND DATA FORMATS

Recently proposed improvements in architectural design, notably in position encoding (Shen et al.,
2023; Kazemnejad et al., 2023; Ruoss et al., 2023) and attention mechanisms (Dubois et al., 2019;
Duan & Shi, 2023), aim to address the challenge of length generalization in arithmetic computations
with Transformers. However, the effectiveness of such modifications is often constrained, either due
to their overly ad-hoc nature or their poor performance on longer sequences. Although scaling the
size of models and datasets has been recognized as a generally effective strategy to improve perfor-
mance, prior research (Brown et al., 2020; Anil et al., 2022) suggests that relying solely on scale
might not be sufficient for handling test sequences that are longer than training. Concurrently, with
the rising focus on data-centric AI (Motamedi et al., 2021), recent work has investigated refining
the data format to enhance the learning efficacy of existing Transformer models. In this section,
we review some of the most common position encodings (Appendix A.1) and relevant data formats
(Appendix A.2)

A.1 POSITION ENCODING FOR LENGTH GENERALIZATION

The inability of transformers to extrapolate to longer sequences has been primarily attributed to
position encoding (PE; Shaw et al., 2018). In this section, we review existing positional encoding
approaches with an emphasis on their length generalization abilities.

Absolute Positional Encoding (APE). APE enhances Transformer models with positional infor-
mation by attaching a positional vector pi to each position i. This is achieved through a predefined
sinusoidal function (Vaswani et al., 2017) or a learnable approach (Devlin et al., 2018). Then, the
vector pi is combined with the token embedding ei before entering the transformer’s first layer.
Although straightforward, APE often struggles with generalizing to longer sequences, as observed
in both NLP (Press et al., 2022) and algorithmic tasks (Kazemnejad et al., 2023).

Additive Relative Positional Encoding (RPE). Shaw et al. (2018) pioneered the additive RPEs,
diverging from standard input-level integration by modifying keys and, optionally, values in each
attention layer. This concept was advanced by T5, which employed scalar biases to directly affect
pre-softmax attention logits, a method noted for its simplicity yet criticized for limited efficiency and
positional differentiation in long sequences (Raffel et al., 2020; Press et al., 2022). Later approaches
such as Alibi (Press et al., 2022), Kerple (Chi et al., 2022) and FIRE (Li et al., 2024) build on the
idea of learned additive bias, proposing different functions to model the scalar bias as a function
of the key- and query-indices. Most pre-softmax attention logits of additive RPEs can be generally
written as (Li et al., 2024):

ARPE(X) = XWQ(XWK)⊤ +B, (A.1)

where X , WQ, WK denote the input and weight matrices for queries and keys. The bias matrix
B ∈ Rn×n is induced by the position encoding function b : N∗2 → R, with its (i, j)-th entry
defined as b(i, j). Instances of b(i, j) include:

• T5 (Raffel et al., 2020): b(i, j) = rmin{i−j,K}, whereK is a hyperparameter and ri are learned
scalars.

• Alibi (Press et al., 2022): b(i, j) = −r |i− j|, where r > 0 is a hyperparameter.
• KerpleLog (Chi et al., 2022): b(i, j) = −r1 log(1 + r2|i − j|), where r1, r2 > 0 are learnable

scalars.

• FIRE (Li et al., 2024): b(i, j) = fθ

(
ψ(i−j)

ψ(max{L,i})

)
, where fθ : R → R is a learnable MLP

parameterized by θ, ψ : N → R+ is ψ (x) = log (cx+ 1) and c > 0, L > 0 are learnable scalars.

Additional background on additive RPEs is provided in Appendix D.1

Rotary Positional Encoding (RoPE). RoPE (Su et al., 2024) encodes position information in at-
tention logits through rotational encoding of query and key vectors based on their relative positions.
Despite being simple and effective, RoPE exhibits limited length generalization (Press et al., 2022;
Kazemnejad et al., 2023). While extensions like Position Interpolation Chen et al. (2023); Peng
et al. (2023); Su (2023) enhance RoPE’s context length, they do not necessarily improve length
generalization on algorithmic tasks where learning the underlying algorithm is crucial.

9

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

No Positional Encoding (NoPE). While encoder-only Transformers (e.g., BERT (Devlin et al.,
2018)) are permutation equivariant without positional encodings, decoder-only counterparts with
causal attention, as shown by Haviv et al. (2022), acquire positional understanding autonomously,
even without explicit PE. Interestingly, recent findings by Kazemnejad et al. (2023) further reveal
that a model without PE outperforms those with specialized PEs on simple algorithmic tasks.

Randomized Position Encoding. Ruoss et al. (2023) introduced Randomized PE to enhance
existing PEs by randomly sampling encodings from a range exceeding test-time lengths while pre-
serving the order. Transformers trained this way adapt to larger positional encodings, effectively
eliminating OOD position encodings during testing.

A.2 DATA FORMATS

Data format plays a pivotal role in enhancing Transformers’ length generalization capabilities, pri-
marily by transforming the data into a format that could be more easily learned. We give an overview
of the existing techniques below.

Reversed Format. Computing addition in an algorithmic way (as taught in elementary school)
requires starting with the least significant digit (LSD) and proceeds to the most significant digit
(MSD). This sequence contrasts with the standard printed format (A3A2A1+B3B2B1 = C3C2C1,
where A1 and B1 are the LSDs, which is not ideally suited for autoregressive models due to their
outputting the MSD first. However, the reversed format (A1A2A3 + B1B2B3 = C1C2C3) aligns
better with these the natural order of computing the digits. It simplifies the learning task to a function
that depends only on the two corresponding operand digits and the carry from the previous step (Lee
et al., 2023; Zhou et al., 2024; Shen et al., 2023).

Index Hints. Zhou et al. (2024) introduced “index hints” in both the query and response of
arithmetic tasks. For example, 42 + 39 = 81 is represented as a4b2 + a3b9 = a8b1 during training
and inference, enabling transformers to execute indexing via induction heads (Olsson et al., 2022).

Random Space Augmentation. Shen et al. (2023) explored the impact of random spacing be-
tween digits in addition, aiming to disrupt the model’s reliance on absolute positional informa-
tion. Their results show successful generalization from 10-digit to 11-digit addition, but falters with
longer sequences.

Figure 2 lists the position encodings and data formats used in some of the most related work to ours.

B A RECIPE FOR LENGTH GENERALIZATION IN DECIMAL ADDITION

The task of decimal addition is composed of two critical subtasks: (a) the identification of the right
operands to add; and (b) the summation of these operands with the preceding carry. While the
summation step ((b)) is relatively easier because it has a finite set of possible inputs, the primary
generalization challenge lies in the operand identification ((a)), where precise positional access is
crucial.

Our best model, which leads to the results in Figure 1, uses the following combination:

1. FIRE position encodings (Li et al., 2024): We believe that FIRE position encodings are helpful
for length generalization because they are more expressive than other PEs, as shown by Li et al.
(2024).

2. Randomized position encodings (Ruoss et al., 2023): We believe that randomized position
encodings are crucial to avoid overfitting on the position indices and index differences that were
seen during training.

3. Reversed format: The reversed format makes it easier for the model to decompose the long
computation to local, “markovian”, steps that depend only on the single previous step.

4. Index hints (Zhou et al., 2024): We believe that index hints are useful because they ease the task
of operand identification (discussed in (a)), of matching the right operands to add at a certain
step.

We ablate each of these decisions and some other alternative choices in Section 2.

10

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

C RELATED WORK

Length generalization remains a significant challenge in neural networks, underscored by substantial
research (Graves et al., 2016; Hupkes et al., 2020; Schwarzschild et al., 2021; Zhang et al., 2022;
Deletang et al., 2023; Dziri et al., 2023). Despite their advanced reasoning capabilities, Transformer-
based large language models (LLMs) (Thoppilan et al., 2022; Chowdhery et al., 2023) struggle
with processing sequences beyond their training scope Anil et al. (2022). Enhancements in length
generalization, especially in the addition task, primarily focus on two areas: refining positional
encoding and optimizing data format.

Position Encoding for Length Generalization The inability of Transformers to extrapolate to
longer sequences has been primarily attributed to Position Encoding (PE) Shaw et al. (2018). Var-
ious studies have suggested alternatives, such as relative positional encodings, which focus on the
relative distances between tokens (Dai et al., 2019), the implementation of randomized position en-
coding (Ruoss et al., 2023), or the adoption of weighted attention mechanisms in place of position
embeddings (Press et al., 2022; Raffel et al., 2020; Chi et al., 2022; Li et al., 2024). These ap-
proaches have shown promise in natural language processing (NLP). However, Kazemnejad et al.
(2023) found that omitting position encoding entirely yields better results for algorithmic tasks. In
contrast, our experiments indicate that an effectively designed PE, such as the FIRE, is crucial for
achieving optimal length generalization (Figure 3). Moreover, we show that a synergistic approach
to consider both PE and data design markedly enhances length generalization capabilities.

Data format for Length Generalization A range of heuristic-based data formatting methods have
been introduced, particularly for pretrained LLMs. These methods, including the use of scratchpads
and the chain of thoughts approach, aim to facilitate arithmetic learning either through in-context
learning or fine-tuning Anil et al. (2022); Zhou et al. (2022). Conversely, there is a body of research
focused on Transformers trained from scratch. This research indicates that employing techniques
such as reversed formatting and scratch pads can significantly boost length generalization perfor-
mance Shen et al. (2023); Lee et al. (2023). Furthermore, it has been observed that both the data
distribution and the sampling strategies can profoundly influence generalization Lee et al. (2023).
Awasthi & Gupta (2023) further demonstrates the benefits of incorporating a simpler auxiliary task
(e.g., identifying the successor element) in supporting the primary task (e.g., sorting). In contrast,
Jelassi et al. (2023) finds that train set priming enables length generalization for a encoder-only
Transformer model. In contrast, our good length generalization performance achieved with naive
random sampling approach suggesting that sophisticated data sampling might be redundant.

D POSITIONAL ENCODING

D.1 ADDITIVE RELATIVE POSITIONAL ENCODING (RPE)

Shaw et al. (2018) pioneered additive RPE by integrating position encodings into the attention layer’s
key, and optionally the value, rather than the input. This concept was further simplified in T5 (Raf-
fel et al., 2020), where the vector representations of relative positions are simplified to scalar biases
added to pre-softmax attention logits. Subsequent advancements in additive RPE, aimed at enhanc-
ing length generalization and computational efficiency, include notable methods like Alibi (Press
et al., 2022), Kerple (Chi et al., 2022), and FIRE (Li et al., 2024). A commonality among these
methods is the unified computation formula for pre-softmax attention logits, as outlined by Li et al.
(2024):

ARPE(X) = XWQ(XWK)⊤ +B, (D.1)

where the bias matrix B ∈ Rn×n is induced by the position encoding function b : N∗2 → R, has
its (i, j)-th entry defined as b(i, j). Variations in b’s formulations and parameterizations give rise to
diverse RPE variants.

• T5 (Raffel et al., 2020): T5’s RPE segments relative distances into distinct buckets with
a logarithmic scale, each associated with a unique parameter. With K + 1 buckets and a

11

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

pre-defined distance L1, the attention bias is calculated as (assuming K + 1 is even)

b(i, j) =

ri−j 0 ≤ i− j < K+1

2

rK+1
2 +⌊K+1

2 log(2(i−j)
K+1)/ log(2L1

K+1)⌋
K+1
2 ≤ i− j < L1

rK i− j ≥ L1

. (D.2)

• Alibi (Press et al., 2022): b(i, j) = −r|i− j|, where r > 0 is a hyper-parameter.
• Kerple (Chi et al., 2022): b(i, j) = −r1 log(1+ r2|i− j|) (logarithmic variant) or −r1|i−
j|r2 (power variant), where r1, r2 > 0 are learnable scalars.

• FIRE (Li et al., 2024): b(i, j) = fθ

(
ψ(i−j)

ψ(max{L,i})

)
, where fθ : R → R is a learnable MLP

parameterized by θ, ψ : N → R+ is monotonically increasing and L > 0 is a learnable
scalar.

12

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

E IMPLEMENTATION DETAILS

E.1 DATA GENERATION

As shown in Figure 2, we adopt the reversed format with index hints as our default data format.
During training, we randomly sample a consecutive index hints from a pre-defined ordered index
set with 102 distinct symbols, thereby enhancing the learning of hint sequences and their order. At
inference, the same hint sampling strategy is applied to questions, prompting the model for answers.

To generate addition examples, we opt for a naive random sampling approach instead of structured
data sampling Lee et al. (2023), as our analysis indicates that carry operations are not a major
hindrance to length generalization (See Figure 9). Our approach involves uniformly selecting the
number’s length from 1 to the maximum training length, followed by independent sampling of two
operands based on this length, with an additional zero padding to accommodate potential carry-
induced extra digits. For training, datasets comprising 30M, 40M, 60M, and 120M examples are
generated for number lengths 1-40, 1-30, 1-20, and 1-10, respectively. In contrast, the test set
consists of 1,000 examples per digit length.

E.2 TRAINING DETAILS

Our base model, following Zhou et al. (2024), is a 25M parameter Transformer featuring 6 blocks,
a 512 hidden size, a feedforward layer with a hidden dimension of 2048 using GeGLU activation
(Shazeer, 2020), and an 8-head attention mechanism. We also adopt RMSNorm, integrating both
PreNorm and PostNorm layers, following the Primer architecture (So et al., 2021). Additionally,
our preliminary investigations underscore the significance of employing causal language modeling
when applying the index hint technique. Conversely, attempts to leverage prefix language modeling
paired with bidirectional attention in model inputs consistently falter in length generalization. Our
three other model variants with size [2M, 5M, 268M] consist of [2, 4, 16] blocks, a [256, 256,
1024] hidden size, a feedforward layer with a hidden dimension of [1024, 1024, 4096], and a [4, 4,
16]-head attention mechanism, respectively.

In our implementation of FIRE Li et al. (2024), we employ layerwise sharing of attention bias across
all attention blocks to enhance training efficiency. The paraterization of FIRE consists of a 2-layer
MLP with a 32-unit hidden layer, utilizing ReLU activation.

We use the AdamW optimizer (Loshchilov & Hutter, 2017) to train the model with a weight decay
value of 0.1 and dropout rate of 0.0. The learning rate schedule incorporates an initial 500-step linear
warm-up, followed by a cosine decay, starting at 3e-4. We train the model with sequence packing,
a batch size of 128, and a sequence length of 2048, over 50,000 steps. We use greedy decoding to
generate the model output during evaluation. We summarize the hyperparameters in Table E.1.

13

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Table E.1: Hyperparameters Summary for Length Generalization

Hyperparameter Value
Language Model Type Causal
Activation Functions GeGLU
Normalization Layer RMSNorm
Normalization Type PreNorm and PostNorm

Optimizer AdamW
Training Steps 50,000
Batch size 128
Weight Decay 0.1
Dropout 0.0
Learning Rate (LR) 0.0003
LR Warmup Steps 500
LR Cooldown (Begin, End) (500, 50,000)
Warmup Schedule Linear (from 0 to LR)
Cooldown Schedule Cosine Decay (from LR to 0.1LR)
Training Sequence Length 2048
Evaluation Greedy

14

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F ADDITIONAL RESULTS

F.1 TRAINING LOSS AND SEQUENCE EXACT MATCH ACCURACY OF REVERSE FORMAT
WITH INDEX HINT TRAINED UP TO 40

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure F.1: Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure F.2: Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

15

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.2 TRAINING LOSS AND NEXT-TOKEN PREDICTION ACCURACY OF STANDARD AND
REVERSE FORMAT

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5
Lo

g
Pe

rp
le

xi
ty

Standard
Reverse

(a) Training Loss using RoPE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(b) Next-token Prediction Accuracy using RoPE

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(c) Training Loss using KerpleLog

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(d) Next-token Prediction Accuracy using
KerpleLog

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(e) Training Loss using NoPE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(f) Next-token Prediction Accuracy using NoPE

0 10000 20000 30000 40000 50000
Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

Standard
Reverse

(g) Training Loss using FIRE

0 10000 20000 30000 40000 50000
Train Steps

60

80

100

Ne
xt

 To
ke

n
Pr

ed
 A

cc
ur

ac
y

(%
)

Standard
Reverse

(h) Next-token Prediction Accuracy using FIRE

Figure F.3: Training log perplexity and next-token prediction accuracy over 10 trials in standard versus reverse
formats using RoPE, KerpleLog, NoPE and FIRE. Reverse format shows distinct grokking during training,
unlike the gradual enhancement in standard format.

16

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.3 THE EVOLUTION OF EM ACCURACY DURING TRAINING IN REVERSE FORMAT USING 4
PES

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100
EM

 A
cc

ur
ac

y
at

 L
en

gt
h

30
 (%

)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

RoPE

10000 20000 30000 40000 50000
Train_Steps

0.00

0.05

0.10

0.15

0.20

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

RoPE

Figure F.4: Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using RoPE.

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

KerpleLog

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

KerpleLog

Figure F.5: Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using KerpleLog.

17

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

10000 20000 30000 40000 50000
Train_Steps

20

40

60

80

100
EM

 A
cc

ur
ac

y
at

 L
en

gt
h

30
 (%

)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

NoPE

10000 20000 30000 40000 50000
Train_Steps

0

10

20

30

40

50

60

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

NoPE

Figure F.6: Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using NoPE.

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

FIRE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
90

 (%
)

FIRE

Figure F.7: Exact match accuracy on [30, 50, 70, 90] digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using FIRE.

18

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.4 EFFECT OF INDEX HINT

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE
KerpleLog
FIRE
NoPE

(a) Models trained up to 10-digit addition

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE
KerpleLog
FIRE
NoPE

(b) Models trained up to 40-digit addition

Figure F.8: Best sequence exact match accuracy over five trials without index hint, trained upto length 10. All
position encoding methods fail to generalize beyond trivial lengths and struggle with in-distribution general-
ization, highlighting the crucial role of index hints in length generalization. See the performance of each run in
Appendix G.2 and Appendix G.1 for trained up to 10-digit and 40-digit addition.

F.5 SOURCE OF VARIANCE

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
30

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
50

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
70

 (%
)

Weight Seed 1
Weight Seed 2

10000 20000 30000 40000 50000
Train_Steps

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Seed 1
Weight Seed 2

Figure F.9: Exact match accuracy on [30, 50, 70, 100] digit addition of all 10 trials (2 weight seeds x 5 data
seeds) trained on up to 40-digit addition with index hint and reverse format using FIRE.

19

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.6 ERROR ANALYSIS

0 20 40 60 80 100
Error Index

0

1

2

3

4

5

6
Pe

rc
et

ag
e

(%
)

1 2 3 4 5 6
Number of Errors

10 1

100

101

102

Pe
rc

et
ag

e
(%

)

Figure F.10: (Left) Average error position distribution over 10 runs, showing a broad error spread across
all positions. Specific checkpoints exhibit a propensity for errors at certain positions (refer to Figure F.12).
(Right) Notably, in successful generalizations, more than 90% of errors are confined to single-digit inaccuracies,
exhibiting an exponential distribution.

1.0 1.5 2.0
0

5

10

15

20

Co
un

t

2 4 6
0

100

200

300

Co
un

t

1.0 1.5 2.0
0

5

10

15

Co
un

t

1 2 3 4
0

100

200

300

400

500

Co
un

t
2 4 6

0

100

200

300

Co
un

t
1 2 3 4

0

50

100

150

200

Co
un

t

1 2 3
0

10

20

30

40

Co
un

t

0 20 40
0

50

100

150

200

250

Co
un

t

10 20 30
0

25

50

75

100

Co
un

t

1 2 3 4
0

50

100

150

200

250

Co
un

t

Figure F.11: Error count distribution

30 35 40
0

5

10

15

20

Co
un

t

20 40 60
0

100

200

300

Co
un

t

20 40 60
0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

25 50 75 100
0

100

200

300

400

Co
un

t

0 50 100
0

100

200

300

400

500

Co
un

t

0 25 50 75
0

25

50

75

100

125

Co
un

t

60 80
0

10

20

30

Co
un

t

25 50 75
0

500

1000

1500

Co
un

t

0 50 100
0

500

1000

1500

Co
un

t

40 60 80
0

50

100

150

200

Co
un

t

Figure F.12: Error position distribution (FIRE)

20

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.7 TRAINING DIGIT LENGTH EFFECT

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(a) EM accuracy of a 25M model using RoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(b) EM accuracy of a 268M model using RoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(c) EM accuracy of a 25M model using
KerpleLog

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(d) EM accuracy of a 268M model using
KerpleLog

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(e) EM accuracy of a 25M model using NoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(f) EM accuracy of a 268M model using NoPE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(g) EM accuracy of a 25M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(h) EM accuracy of a 268M model using FIRE

Figure F.13: Best sequence exact match accuracy of 5 trials with two model sizes (i.e., 25M and 268M),
trained on up to 10, 20, 30 and 40 digit length using 4 PEs.

21

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.8 MODEL SIZE EFFECT

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=70)

0

20

40

60

80

100
EM

 A
cc

ur
ac

y
at

 L
en

gt
h

N
(%

) 25M 268M

(a) RoPE

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(b) KerpleLog

1 to 10
(N=14)

1 to 20
(N=30)

1 to 30
(N=50)

1 to 40
(N=90)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(c) NoPE

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 25M 268M

(d) FIRE

Figure F.14: Scaling model size inconsistently affects length generalization performance. While
consistently enhancing performance in shorter length regimes (1-10, 1-20) across four position en-
codings, this trend does not hold for larger regimes (1-30, 1-40). For instance, larger models outper-
form smaller ones with RoPE and KerpleLog encodings, but underperform with NoPE and FIRE.
Moreover, increasing model size doesn’t noticeably decrease performance variance, suggesting size
scaling isn’t vital for length generalization.

1 to 10
(N=14)

1 to 20
(N=38)

1 to 30
(N=70)

1 to 40
(N=100)

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
N

(%
) 2M 5M 25M 268M

Figure F.15: Effect of different model sizes with FIRE as the position encoding.

22

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.9 FIRE RELATED SCALING

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(a) EM accuracy of a 2M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(b) EM accuracy of a 5M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(c) EM accuracy of a 25M model using FIRE

0 10 20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

1 to 40
1 to 30
1 to 20
1 to 10

(d) EM accuracy of a 268M model using FIRE

Figure F.16: Best sequence exact match accuracy of 5 trials with four model sizes (i.e., 2M, 5M, 25M and
268M), trained on up to 10, 20, 30 and 40 digit length using FIRE.

23

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

F.10 HYPERPARAMETER STUDY

1e-4 3e-4 1e-3
Learning Rate

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Decay
1e-1
3e-1

Figure F.17: Sequence exact match accuracy for test digit length 100, trained on digit lengths 1-40.
3e-4 seems to be the optimal learning rate.

0.0 0.1 0.2
Dropout

0

20

40

60

80

100

EM
 A

cc
ur

ac
y

at
 L

en
gt

h
10

0
(%

)

Weight Decay
1e-1
3e-1
5e-1
1e-0

Figure F.18: Sequence exact match accuracy for test digit length 100, trained on digit lengths 1-
40. A higher dropout rate markedly impedes length generalization, whereas a lower rate shows
negligible impact.

24

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

G TRAINING LOSS AND SEQUENCE EXACT MATCH ACCURACY

G.1 REVERSE FORMAT WITHOUT INDEX HINT TRAINED UP TO 40-DIGIT ADDITION

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100
Ex

ac
t M

at
ch

 A
cc

ur
ac

y
(%

)

RoPE

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

0 10 20 30 40 50
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure G.1: Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure G.2: Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

25

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

G.2 REVERSE FORMAT WITHOUT INDEX HINT TRAINED UP TO 10-DIGIT ADDITION

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

0 2 4 6 8 10 12 14 16
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure G.3: Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 10-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure G.4: Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

26

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

G.3 STANDARD FORMAT WITH INDEX HINT TRAINED UP TO 40

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure G.5: Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure G.6: Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity
losses across runs after 10K training steps, different runs exhibit very different length generalization.

27

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

G.4 RANDOM SPACE AUGMENTATION WITH REVERSE FORMAT WITH INDEX HINT TRAINED
UP TO 40-DIGIT ADDITION

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100
Ex

ac
t M

at
ch

 A
cc

ur
ac

y
(%

)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

RoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

NoPE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure G.7: (Left) With Random Space Augmentation. (Right) Without Random Space Augmen-
tation. Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

28

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

RoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

NoPE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure G.8: (Left) Without Random Space Augmentation. (Right) With Random Space Augmenta-
tion. Training loss over 10 trials in reverse formats. Despite similar nearly 0 log perplexity losses
across runs after 10K training steps, different runs exhibit very different length generalization.

29

Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

G.5 RANDOMIZED POSITION ENCODING WITH REVERSE FORMAT WITH INDEX HINT
TRAINED UP TO 40-DIGIT ADDITION

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100
Ex

ac
t M

at
ch

 A
cc

ur
ac

y
(%

)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

KerpleLog

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

20 30 40 50 60 70 80 90 100
Digit Length

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

(%
)

FIRE

Figure G.9: (Left) Without Randomized Position Encoding (Right) With Randomized Position En-
coding. Exact match accuracy on 20 to 100 digit addition of all 10 trials trained on up to 40-digit
addition with index hint and reverse format using four different position encodings.

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

KerpleLog

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

103 104

Train Steps

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g

Pe
rp

le
xi

ty

FIRE

Figure G.10: (Left) Without Randomized Position Encoding (Right) With Randomized Position
Encoding. Training loss over 10 trials in reverse formats.

30

	Introduction
	Experiments
	Analysis
	Conclusion
	Position Encoding and Data Formats
	Position Encoding for Length Generalization
	Data Formats

	A Recipe for Length Generalization in Decimal Addition
	Related Work
	Positional Encoding
	Additive Relative Positional Encoding (RPE)

	Implementation Details
	Data Generation
	Training Details

	Additional Results
	Training Loss and Sequence Exact Match Accuracy of Reverse Format with Index Hint trained up to 40
	Training Loss and Next-token Prediction Accuracy of Standard and Reverse Format
	The evolution of EM Accuracy during training in reverse format using 4 PEs
	Effect of Index Hint
	Source of Variance
	Error Analysis
	Training Digit Length Effect
	Model Size Effect
	FIRE Related Scaling
	Hyperparameter Study

	Training Loss and Sequence Exact Match Accuracy
	Reverse Format without Index Hint trained up to 40-digit addition
	Reverse Format without Index Hint trained up to 10-digit addition
	Standard Format with Index Hint trained up to 40
	Random Space Augmentation with Reverse Format with Index Hint trained up to 40-digit addition
	Randomized Position Encoding with Reverse Format with Index Hint trained up to 40-digit addition

