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ABSTRACT

Standard inference and training with transformer based architectures scale quadrat-
ically with input sequence length. This is prohibitively large for a variety of ap-
plications especially in web-page translation, query-answering etc. Consequently,
several approaches have been developed recently to speedup attention computation
by enforcing different attention structures such as sparsity (Zaheer et al., 2020),
low-rank (Wang et al., 2020), approximating attention using kernels (Choromanski
et al., 2021). In this work, we view attention computation as that of nearest neighbor
retrieval, and use decision tree based hierarchical navigation to reduce the retrieval
cost per query token from linear in sequence length to nearly logarithmic. Based
on such hierarchical navigation, we design Treeformer which can use one of two
efficient attention layers – TF-ATTENTION and TC-ATTENTION. TF-ATTENTION
computes the attention in a fine-grained style, while TC-ATTENTION is a coarse
attention layer which also ensures that the gradients are “dense”. To optimize
such challenging discrete layers, we propose a two-level bootstrapped training
method. Using extensive experiments on standard NLP benchmarks, especially for
long-sequences, we demonstrate that our TREEFORMER architecture can be almost
as accurate as baseline Transformer while using 30x lesser FLOPs in the attention
layer. Compared to Linformer, the accuracy can be as much as 12% higher while
using similar FLOPs in the attention layer.

1 INTRODUCTION

Self attention layer is the key component of Transformers (Vaswani et al., 2017), enabling them to
achieve state of the art performance across tasks in Natural Language Processing (Devlin et al., 2019;
Radford et al., 2019; Raffel et al., 2019) and Computer Vision (Dosovitskiy et al., 2021). Attention
computation scales quadratically (n2) with the input sequence length (n), making it a key bottleneck
in scaling Transformers to long inputs. This has resulted in a lot of alternate proposals to efficiently
compute attention using different approximations. However, as shown in Tay et al. (2021), methods
that offer dramatic speedups (Wang et al., 2020; Choromanski et al., 2021) suffer in accuracy, and
methods that match accuracy of Transformer (Zaheer et al., 2020) don’t offer significant speedups.

In this paper we develop a novel efficient attention mechanism using input dependent sparsity structure
in attention computation, motivated by the analysis showing the sparse nature of attention (Shi et al.,
2021; Gupta et al., 2021). We propose to use decision trees to efficiently compute attention by only
retrieving the top nearest neighboring keys for a given query. Decision trees are low cost, hierarchical
non-linear models that have been popular in both supervised (Chen & Guestrin, 2016; Quinlan, 2014)
and unsupervised (Duda et al., 1973) learning. Given a vector, each node of the decision tree decides
whether to navigate to the left or the right child depending on the sign of a simple linear projection.
We learn decision trees in each attention layer of a Transformer model so that a query pays attention
only to keys that map to the same leaf nodes1 of the decision trees. We refer to this as TF-ATTENTION.
Such sparse decision trees that retrieve only a single leaf node are typically hard to train due to their
discrete nature. Further, queries that pay strong attention to multiple keys result in bunching many
keys together in a single leaf node creating imbalance. The key computational advantage of decision
trees is realized only when they are balanced.

1Leaf nodes are the bottom nodes of a decision tree with 0 children.
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To address these issues we propose another attention mechanism TC-ATTENTION, that in addition
to keys in the leaf node, pays attention to keys at all the intermediate nodes traversed by the query.
We further combine the retrieved value vectors with query independent, but trainable weights. This
allows us to learn a decision tree that clusters keys in a hierarchical and balanced manner. In both
these methods we train the decision tree in an end-to-end manner with the rest of the components of
the Transformer. Since the decision trees themselves are inexpensive to evaluate, this allows us to
reduce attention computation cost dramatically, requiring typically only a few dot products per query.

In our goal to train these decision trees in an end to end manner with the rest of the Transformer
components we faced some challenges. Naively using the decision trees to restrict attention computa-
tion results in poor optimization with training getting stuck at high loss. To solve this we introduce a
novel bootstrapping method that allows us to gradually restrict attention computation in layers using
decision trees. While this keeps training expensive initially, it still dramatically reduces inference
costs. We further use Dense Gradient Trees (Karthikeyan et al., 2021), allowing us to use simple
gradient based optimization.

We evaluate the proposed architecture on popular NLP models such as BERT (Devlin et al., 2019),
and on the Long Range Arena benchmark (LRA) (Tay et al., 2021), developed specifically to compare
efficient attention methods on long sequence length tasks. We show that TREEFORMER is able to
match/improve the performance over other popular models while achieving lower computational cost,
for e.g. - TREEFORMER has 8-9x lesser FLOPs than models like BigBird (Zaheer et al., 2020) and
Performer (Choromanski et al., 2021).

Our contributions in this paper are — (i) We pose attention computation as a nearest neighbor
retrieval problem, and propose a novel architecture TREEFORMER − using dense gradient trees for
retrieving top keys to pay attention to for a given query. We develop two novel attention mechanisms
using decision trees - that, for a given query, pay attention to only keys in the matching leaf node
(TF-ATTENTION) or to all the keys along the traversed path (TC-ATTENTION). (ii) We develop a
novel bootstrapping method to gradually sparsify attention computation thereby showing that decision
trees can be trained as a part of neural networks using back propagation. (iii) We experimentally
show the effectiveness of the proposed architecture using BERT models and on LRA (Tay et al.,
2021). In particular, both TF-ATTENTION and TC-ATTENTION have matching accuracy to baseline
Transformer architecture, but with up to 30× cheaper (in FLOPs) attention layer compared to standard
Transformers and up to 9× cheaper attention layer compared to SOTA BigBird (Zaheer et al., 2020).

2 PRELIMINARIES: ATTENTION AND DECISION TREES

2.1 ATTENTION

LetQ,K,V ∈ Rn×d be the input query, key, and value matrices, where n is the sequence length and
d is the embedding dimension, and WQ,WK ,WV ∈ Rd×d are their respective projection matrices.
The standard attention in each Transformer layer can be defined as

Attention(Q,K,V ) = softmax
[
QWQ(KWK)T√

d

]
︸ ︷︷ ︸

A

·VWV (1)

Note that for the self attention layer, all the three matrices Q,K,V are same as the input to the
layer. Computing both attention A and its product with the projected value matrix VWV is an
O(n2d+ d2n) operation. In particular, assuming cpqr cost for multiplying two matrices of size p× q
and q × r, the main cost of this layer is: c(2n2d+ 2d2n).

This computation becomes a major bottleneck in applications which have large sequence lengths n.
To mitigate this, several efficient attention mechanisms have been proposed (Child et al., 2019; Wang
et al., 2020; Choromanski et al., 2021; Kitaev et al., 2020; Sun et al., 2021; Wang et al., 2022). Child
et al. (2019) proposed sparse attention (A) with different sparsity patterns that reduce attention cost
from O(n2) to O(n1.5). Later Zaheer et al. (2020); Yun et al. (2020) proved universal approximation
power of Transformers with sparse attention, improving the cost to O(ns), with constant sparsity s
per query. Alternately Wang et al. (2020) considered a low rank approximation to attention, reducing
computation cost to O(nk) for rank k approximation. Choromanski et al. (2021) considered a kernel
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based approach to approximate attention computation reducing the cost to O(nr), where r is the
dimension of the random features used to compute the kernel. We refer readers to Tay et al. (2020)
for a detailed survey of efficient attention methods. In this paper, we propose a decision tree based
mechanism to speed up the attention computation to O(nh), where h is the height of the decision tree.
We show that with TREEFORMER even a h as small as 8 is sufficient for most applications, leading to
the least amount of FLOPs required, while maintaining the performance.

Table 1: Comparison of attention computation cost (eq.equation 1) for different models.

Model Transformer Linformer BigBird Performer TREEFORMER TF-A

Attention cost O(n2d + n2) O(knd + kn) O(snd + sn) O(rnd + n(r + d)) O(hnd + (2h+1 − 1)d)

2.2 DECISION TREES

Decision trees are a classical technique that enables partitioning of the input space in several oblique
blocks that can be navigated efficiently using the hierarchical structure. Decision trees and similar hier-
archical structures are highly popular in supervised learning (XgBoost (Chen & Guestrin, 2016), C4.5
(Quinlan, 2014)), unsupervised learning (hierarchical clustering (Duda et al., 1973)), and retrieval
(KD tree (Bentley, 1975)). Generally, hierarchical retrieval techniques are nominally data-dependent,
e.g., PCA-tree (Sproull, 1991) and Cover Trees (Beygelzimer et al., 2006). Our TC-ATTENTION
and TF-ATTENTION methods combine hierarchical retrieval methods with supervised tree learning
techniques to enable learning of the hierarchical attention layer in end-to-end differentiable manner.
See Figure 1 for overall representation of the hierarchical navigation based attention layer. Each
internal node of the tree has a classifier that determines which children a given input should navigate
to. While the classifier makes hard decision, we use technique from straight-through estimators
(Bengio et al., 2013), and in particular, Dense Gradient Trees from Karthikeyan et al. (2021) to train
the tree parameters using gradient style methods.

Construction Formally, let T (θ) represent a binary tree with height h and 2h nodes. Let θ{l,j}
denote the tree parameters at {l, j}-th node where l ∈ {0, 1, · · · ,h} is the node level and j ∈
{0, 1, · · · , 2l − 1} is the node index at level l. Let decision at each internal node to send the point q
to left or the right child is based on SIGN(f(θ{l,j}; q)), where,

f{l,j}(q) = f(θ{l,j}; q) = 〈w{l,j}, q〉+ b{l,j}, (2)

and θ{l,j} = {w{l,j}; b{l;j}} consists of a oblique hyperplane and a bias. Let PT (l, q) denote the
node-index of T that was traversed by q at level l. That is, PT (h, q) denote the leaf node to which q
is mapped. Also, let Sl,j(K) denote the indices of vectors from the key matrixK that traverses node
{l, j}. That is, i ∈ Sl,j(K) iff j = PT (l,ki).

3 TREEFORMER ATTENTION VARIANTS

In this section, we describe the decision tree attention mechanism which replaces the standard dot
product attention (Vaswani et al., 2017) in our TREEFORMER architecture. Recall that for each query
qi, the attention is given by:

Ai = softmax(
1√
d
qTi W

Q(WK)TKT )VWV .

That is, attention computation for qi is equivalent to applying a linear scan over all keys, and
computing value as the weighted average of value of most similar keys to qi. Recent works have
shown that we do not need to attend to all tokens in a given input sequence (Shi et al., 2021), and
demonstrate that top-k attention is a good approximation for standard attention (Gupta et al., 2021).

We propose to leverage this observation by using a decision tree based hierarchical navigation instead
of linear scan to find the top-most similar keys. Naturally, accuracy of the method would depend on
accuracy of retrieval of most similar keys by the hierarchical navigation method. So, we propose
to learn the decision tree parameters so as to explicitly optimize the loss function. We develop two
approaches to compute the value for a query qi based on its traversal through the tree. In the following
subsections we present our two different tree based attention layers.
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3.1 TF-ATTENTION (Tree Fine-grained Attention)

In this variant, we compute the value for a query q as a weighted sum of value vectors of keys that lie
in the same leaf node as q. More formally,

TF-ATTENTION(q,K,V ; T ) = softmax
[
qTWQ(KS̄W

K)T√
d

]
· VS̄W

V , (3)

where S̄ = Sh,PT (h,(WQ)T q)(KWK) is the set of keys K that are mapped to same leaf node (i.e.
PT (h, (WQ)Tq)) as (WQ)Tq. Note that this is a sparse attention variant as we compute dot products
only between those queries and keys belonging to the same leaf node, and the attention score between
a query and keys lying in different leaf nodes is 0. Intuitively, this attention layer can be thought of as
top-k attention where the tree structure is responsible for computing the k tokens which are the most
important for a given query token.

Computational Complexity Assuming a uniform distribution of the input sequence tokens across
the leaf nodes of the decision tree, the amortized computational cost for TF-ATTENTION is O(n2d

2h ) +

2cd2n ≡ O(nkd) + 2cd2n, where k is generally a small factor assuming the height of the decision
tree is of the order O(log(n

k )), and c is as defined in Section 2.1.

If the decision tree parameters are such that all the queries and keys get clustered into a single leaf
node of the tree, we get the original full attention in this case. Therefore the worst case time complexity
of TF-ATTENTION is O(n2d+ d2n). Furthermore, this also illustrates that TF-ATTENTION can be
as expressive as standard attention. We state this claim formally below.
Lemma 1. There exists a tree T s.t. TF-ATTENTION(Q,K,V ; T ) = Attention(Q,K,V ).

The lemma follows immediately from the above observation; for completeness, see Appendix for a
proof of the above lemma.

k-ary TF-ATTENTION We extend the binary tree construction of the TF-A variant to construct
a k-ary tree attention model for height h, where each node at level l has a branching factor of bl,
l ∈ {0, 1, · · · , h− 1}. The total number of leaf nodes in this case are

∏l=h−1
l=1 bl. This is a general

version of the TF-ATTENTION variant, where we can scale the number of leaf nodes even for smaller
heights, and thus reducing the amount of queries and keys in each leaf node. In all our experiments
on k-ary TF-ATTENTION models, h = 2 and b = [100, 10], resulting in 1000 leaf nodes.

Although the proposed TF-ATTENTION TREEFORMER variant works well in principle, there are a
couple of shortcomings of the same — (i) In case the distribution of queries and keys is skewed in
even one of the layers of the model, the computational cost approaches the worst case time complexity
of the standard attention model. So we might need to add explicit loss terms to encourage more
uniform representation across various leaf nodes/subtrees. (ii) It might be possible that for a given
query, some key tokens important to this query lie in a different leaf node of the decision tree to
minimize the overall loss. But due to the sparse nature of the model, the attention score between the
query and these keys will be 0. Using multiple decision trees (forest structure) might help alleviate
this but we leave it for future exploration.

We address the above problems using a novel variant that computes the attention values in a coarse
manner and hence has denser gradients.

3.2 TC-ATTENTION (Tree Coarse Attention)

In this variant, rather than computing attention as a weighted sum of values of keys in the leaf node,
we take a coarse unweighted sum of the value vectors. That is, the query is only used to navigate to a
leaf node, but with-in a leaf node, the value vector is fixed. So given a leaf node, the attention value is
independent of the query itself. Note that this requirement completely flips the tree’s tendency to map
multiple keys to a single leaf node. That is, to optimize the loss function, TF-ATTENTION would
prefer all the keys to map to one leaf node, TC-ATTENTION’s incentives are completely reversed.
That is, if TC-ATTENTION maps all the keys to the same leaf node then it would give an unweighted
average of the value vectors of all the keys, irrespective of query which is average attention - naturally
a weaker model and would have large loss. Instead, TC-ATTENTION would prefer to spread out keys
as much as possible in leaf nodes so that it can compute more powerful query dependent attention.
We present key distributions of learned TREEFORMER models in Figure 4 supporting this argument.
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Figure 1: The figure on the left represents the self attention layer in TREEFORMER models, and the
tree self attention block is expanded for a representative view of the TC-ATTENTION mechanism.

We further generalize this technique to ensure contributions from other nodes to the value vector.
That is, we add contributions to a query’s value vector from not only the leaf node but also from the
internal nodes that were traversed by the query.

Formally, let νl,j be the value vector associated with a node. Then,

νl,j =
1

|Sl,j(KWK)|
∑

i∈Sl,j(KWK)

ViW
V ,

i.e., it is an average of all value vectors of keys such that l, j lies in their paths. Now, given νl,j for
each node and the tree T (including it’s parameters θ), we get the attention for a query q as:

TC-ATTENTION(q,K,V ; T ) =

h∑
l=0

αl · ν{l,PT (l,(WQ)T q)} (4)

where αl is the learnable attention weight at each level of the decision tree. See Figure 1 for a visual
representation of TC-ATTENTION.

Note that as TC-ATTENTION applies query independent averaging, it is easy to design counterex-
amples where the standard attention layer is strictly more powerful than TC-ATTENTION. Now,
we can make TC-ATTENTION as powerful as a standard attention layer by allowing traversal of
multiple paths and αl to be query dependent. However, our results indicate that TC-ATTENTION is
sufficiently powerful, and might not require more modeling power in the attention layer. We leave
further exploration of multiple traversal paths for future work.

Computational Complexity The cost of TC-ATTENTION can be broken down into three parts:
1. projection of query, key, and value tensors - note that we can embed projection matrices for both
query and key in the parameters of the tree (with two different sets of tree parameters). So the cost is
half of standard attention: cd2n 2. storing projected key vectors in the decision tree - O((2h+1−1)d),
and 3. computing the path and attention layer transformation for all queriesQ - O(ndh).

Compared to the full attention mechanism - O(n2d+ d2n), the computational complexity for TC-
ATTENTION is linear in sequence length n: O(ndh+ (2h+1 − 1)d+ d2n). In all our experiments,
decision tree height h is generally ≤ 10. Also, note that compared to TF-ATTENTION, the computa-
tional complexity is guaranteed to be linear in both n and h, irrespective of the trained trees/model.

3.3 TRAINING OF TREEFORMER MODELS

Pre-training It is well-known that learning tree is a challenging problem due to the discrete structure.
We use recent techniques (Karthikeyan et al., 2021) to help with the optimization, and ensure
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Algorithm 1: TREEFORMER 2-D Bootstrapping Algorithm
Input :M = M{1,··· ,L}(hs) - TREEFORMER model with height hs, w - layer width for bootstrapping, hf -

height of desired TREEFORMER model, N - number of training steps
Result: TREEFORMER model M{1,··· ,L}(hf )

for i = 1 to dL
w
e do

idx = 1 +max(0, L− w · i);
for h = hs + 1 to hf do

Initialize M{idx,··· ,L}(h) using parameter weights from M . Tree parameters in the attention layer
are initialized up to depth h− 1 and the remaining leaf node parameters are initialized randomly;

Train M{idx,··· ,L}(h) for N

dL
w
e·(hf−hs)

steps using self supervised learning;

end
M = M{idx,··· ,L}(hf );

end
return

better flow of gradients throughout the network. Despite this, we found in our experiments that pre-
training complete TREEFORMER models with tree attentions in all L layers is challenging and often
leads to poor sub-optimal solutions. To overcome this challenge issue and avoid inaccurate saddle
points, we use a method of incremental bootstrapping for training TREEFORMER (see Algorithm 1).
Specifically, we first pre-train an existing model (say a transformer or BigBird). We then introduce
tree attention (either TF-ATTENTION or TC-ATTENTION) only in the last few layers (layer j to
L). The new architecture – denoted by M{j,··· ,L} – is trained for a fixed number of steps using
the standard self-supervised learning objective. Now, all the parameters of M{j,··· ,L} are used to
initialize theM{i,··· ,j,··· ,L} model. We do this bootstrapping until we have the completeM{1,··· ,L}
TREEFORMER model and it is also trained for a given number of steps. In a similar fashion, we
can do this bootstrapping process to initialize TREEFORMER models for a given height using a
TREEFORMER model with a smaller tree height. Based on TF-ATTENTION or TC-ATTENTION
model, multiple bootstrapping techniques for tree levels can be explored: random assignments in
next level, assignment to one node only etc. In this work, we mostly use random assignments based
approach where the tree parameters in layers {i, · · · , j − 1} are randomly initialized.

Fine-tuning We don’t do any bootstrapping during the downstream fine-tuning tasks and tree attention
exists in all layers of the models. But, we tried two variants of keeping the pre-trained decision tree
weights fixed and allowing them to be trained during fine-tuning, and the corresponding results are
reported in Section 4. Overall, bootstrapping in finetuning phase leads to similar results as standard
fine-tuning with all the model and tree parameters.

4 EXPERIMENTS

In this section, we present experimental results comparing the TREEFORMER models with Trans-
formers and with popular efficient Transformer architectures – BigBird (Zaheer et al., 2020),
Linformer (Wang et al., 2020) and Performer (Choromanski et al., 2021). We first evaluate our
TREEFORMER on the standard NLP benchmark of BERT-based pre-training and GLUE+SQuAD
finetuning (Devlin et al., 2019). Next, to study effectiveness of TREEFORMER on long sequence length
tasks, we present results on the standard benchmark for methods in long-sequence regime: Long
Range Arena (LRA) (Tay et al., 2021). We also provide ablation studies to understand challenges in
optimizing TREEFORMER and the utility of the bootstrapping approach (Algorithm 1).

The complete experimental setup along with the hyper-parameters for each of the tasks and hardware
details is provided in Appendix A. Please note that we will be using a shorter notation of TF-A for
TF-ATTENTION and TC-A for TC-ATTENTION.

4.1 BERT PRE-TRAINING / FINE-TUNING

Following Devlin et al. (2019) we use a masked LM (MLM) objective to pretrain our TREEFORMER
BERT-Base models on Wikipedia, Books (Zhu et al., 2015), CC-News (Guu et al., 2020), and
Stories (Trinh & Le, 2018) datasets.
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Table 2: BERT Pre-training and Fine-tuning on sequence length 512. We report the accuracies for
MLM and MNLI, F1 Score for SQuAD, and the average over tasks for the GLUE Benchmark. We
see that TF-A matches the baseline with 3x reduction in computation, and k-ary TF-A improves
GLUE score by > 1%! TC-A models with 6 fine-tuned decision tree layers matches the baseline, and
models with higher number of tree layers underperform. Please note that Linformer suffers a 1.3%
drop on GLUE and BigBird does not offer compute savings for smaller sequence lengths (≤ 512).

Model MLM MNLI SQuAD GLUE (Avg.) FLOPs

BERT-Base 71.91 81.33 88.74 80.11 100%
Linformer (k = 128) 71.22 81.02 85.19 78.75 49.59%
BigBird 72.28 81.67 86.24 80.16 100.40%
TREEFORMER TF-A (12 layers) 73.24 82.73 (83.32) 88.69 (87.65) 80.05 29.87%
TREEFORMER TC-A (6 layers) 72.30 81.73 (80.98) 86.55 (85.61) 80.55 57.98%
TREEFORMER TC-A (9 layers) 70.88 80.66 (80.40) 84.32 (83.66) 79.51 36.97%
TREEFORMER TC-A (12 layers) 64.91 74.29 (70.28) 71.96 (54.19) 71.39 15.96%
TREEFORMER k-ary TF-A 73.04 83.08 89.00 81.25 25.44%

Fine-tuning - GLUE/SQuAD We fine-tune the pre-trained BERT-Base models on 7 datasets from
the GLUE benchmark (Wang et al., 2018) including MNLI and the SQuAD (Rajpurkar et al., 2016)
dataset for question answering. Table 2 shows the comparison between various architectures on these
tasks. We observe that the TREEFORMER model with TF-ATTENTION and k-ary TF-ATTENTION
work well - beating the BERT baseline in MNLI and SQuAD while using fewer FLOPs. The
bracketed values in Table 2 for the TREEFORMER models represent fine-tuning while the decision
tree parameters are fixed and obtained from the corresponding pre-trained TREEFORMER models.

We would like to make multiple observations here: a). TF-ATTENTION is competitive with both
baseline BERT model as well as the BigBird model. In fact, for MNLI task, it is 1% more accurate
than BERT, and on SQuAD, it is 2% more accurate than BigBird, despite requiring 3x fewer FLOPs
in the attention layer. b). TF-ATTENTION is more accurate than Linformer as well, while still being
cheaper c). TC-ATTENTION provides accuracy values competitive with baseline Linformer, BigBird
only when TC-ATTENTION layer is applied in 6 of the 12 transformer blocks. With a larger number
of TC-ATTENTION layers, the accuracy drops significantly, confirming challenges in optimizing a
difficult discrete layer across multiple layers. We leave further investigation into better optimization
of TC-ATTENTION in deep architectures for future work.

Benefits of Bootstrapping Figure 2 shows the training progression of the TREEFORMER models
with bootstrapping (Algorithm 1). The sudden decrease (increase) in MLM accuracy (loss) happens at
the bootstrapping stage, when a model with more decision tree layers is initialized with a model with
less decision tree layers. We observe that while bootstrapping causes a momentary drop, it eventually
leads to a higher final accuracy for TF-A. For TC-A we notice improvement in bootstrapping upto 6
decision tree layers (till ≈ 1e6 steps), but going to 12 decision tree layers causes training instabilities.

We next compare the training progress for TREEFORMER models with different decision tree heights
in Figure 3. We notice that TF-A performs better with bootstrapping for smaller tree heights, but
suffers as tree height goes to 7. On the other hand we find TC-A to be much more challenging in
bootstrapping to more that 6(out of 12) layers. For larger heights the training is hard due to vanishing
gradients and MLM accuracy approaches 0 at the last stage of the bootstrapping process.

Leaf distribution Figure 4 shows the distribution of key vectors in the leaf nodes of the TREEFORMER
models in specific layers. Lighter lines represent the initial stages of the pre-training process and
darker lines represent the distribution at later stages in the pre-training – showing the evolution of
distribution as the training progresses. We observe that the distribution is more skewed in later layers
compared to the initial layers. Moreover, the distribution is much more skewed in the TF-A variant
compared to TC-A. This is because TF-A, being a sparse attention mechanism, will try to cluster
more keys in a given leaf node to attend to all relevant keys for a given query (see § 3).

4.2 LONG RANGE ARENA (LRA)

We next perform experiments on the Long Range Arena Benchmark (LRA) (Tay et al., 2021). It
comprises of 6 tasks (ListOps, Text, Retrieval, Image, Pathfinder, and Path-X) with inputs having long
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Figure 2: Progression of MLM training for TREEFORMER models with the two tree attention variants. The
jump in loss/accuracy corresponds to points in training when bootstrapping was done. This allows us to train
TREEFORMER avoiding the optimization issues in training from scratch.

Figure 3: Progression of MLM accuracy while training TREEFORMER models with different decision tree
heights. Notice that models with larger tree heights are much more challenging to train and they completely
collapse as the bootstrapping process gradually restricts attention.

(a) TFA- Layer 1 (b) Layer 4 (c) Layer 9 (d) Layer 12

(e) TCA - Layer 1 (f) Layer 4 (g) Layer 9 (h) Layer 12

Figure 4: Distribution of key vectors across the leaf nodes of the decision tree in different layers of
TREEFORMER- TF-A (a-d) and TC-A (e-h) models. We notice that TC-A helps in training a more
uniform key distribution in comparison to TF-A as discussed earlier (see § 3).

sequence lengths ranging from 1024 to 16384. Three of the tasks are text-based and the remaining
three comprise of visual inputs. In our comparison, we skip the Pathfinder task in the LRA benchmark
because of the very high variance in the accuracy for all models, and also skip Path-X because all
model architectures fail in this task due to the memory or computational bottlenecks at sequence
length 16384. The results of various model architectures across the remaining 4 tasks are presented in
Table 3. Along with the performance, we also show the computational FLOPs relative to the standard
Transformer averaged over the 4 tasks for each of the models in the self attention layer of an encoder
block in the model architecture.

On average, both TF-ATTENTION and TC-ATTENTION are almost as accurate as the baseline
Transformer as well as the BigBird. Further, attention layer FLOPs of TF-ATTENTION is almost 3x
lower than that of Transformer. These factors are further improved by using the k-ary TF-ATTENTION
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Table 3: LRA Benchmark. Comparison of TREEFORMER with other efficient transformers. We
notice that TREEFORMER models perform as well as baseline and even improve over it in some tasks,
while using much less FLOPs. In particular, TC-A matches baseline and improves over other efficient
transformers with 33x reduction in compute. TF-A and k-ary TF-A while suffer from imbalanced
key allocations, still match the baseline performance and lead to 3x FLOPs reduction.

Model ListOps Text Retrieval Image Average FLOPs

Transformer 36.37 64.27 57.58 42.35 50.14 100%
Linformer 35.70 53.94 52.93 37.92 45.12 2.57%
Performer 18.01 65.40 54.56 42.51 45.12 25.37%
BigBird 36.05 64.02 58.98 40.34 49.85 27.13%
TREEFORMER TF-A 36.02 64.38 58.52 42.31 50.31 34.18%
TREEFORMER TC-A 35.54 64.41 58.38 42.01 50.09 3.05%
TREEFORMER k-ary TF-A 35.76 64.62 58.29 42.34 50.25 29.82%

Table 4: Inference times for different input sequence lengths.

Model ↓ Seq. Length→ 1024 2048 4096 8192

Transformer 108ms 391ms 1.83s 9.23s
TREEFORMER TF-A 113ms 218ms (1.8x) 549ms (3.3x) 1.37s (6.7x)
k-ary TREEFORMER TF-A 108ms 230ms (1.7x) 584ms (3.1x) 1.55s (6x)

variant. TC-ATTENTION on the other hand is almost 33x cheaper than Transformer and 9x cheaper
than BigBird despite achieving almost the same accuracy. Only Linformer has similar computational
cost as TC-ATTENTION, but TC-ATTENTION is almost 5% more accurate than Linformer. In terms
of total FLOPs for the transformer encoder block, the self attention comprises of 50.84% of the total
computational FLOPs in the ListOps task, and the rest is used in dropouts and the two feed forward
layers. For Text, the distribution is 73.3% and 26.7% respectively. So, we can get a total speedup of
2-3x by using TREEFORMER models instead of the standard Transformer.

Inference times In Table 4, we finally present a comparison of inference wall time between the
TREEFORMER TF-ATTENTION model and the standard attention on a Intel Xeon Platinum P-8136
CPU using one thread and 100GB of RAM. We measure the inference time for the self-attention
module using 8 attention heads and hidden dimension 768 for a batch size of 1. We use a decision
tree of height 6 for TF-ATTENTION. Our implementation of TREEFORMER TF-ATTENTION model
iterates over the leaf nodes and gathers the subset of queries and keys that lie in a given leaf node,
and only computes attention scores by doing matrix multiplication between these gathered queries
and their relevant keys. The final projections for the gathered keys are then scattered into the original
query matrix. For sequence lengths 2048 - 8192, we get a speedup ranging from 1.8x - 6.7x.

5 CONCLUSION

In this work we proposed TREEFORMER with a novel efficient attention mechanism that leverages
the idea of finding top nearest neighbors using decision trees and applying it to attention computation.
We proposed two attention variants TF-ATTENTION and TC-ATTENTION with different sparsity
levels. We showed that using techniques like dense gradient trees and bootstrapping allows us to train
the TREEFORMER models in an end to end manner with simple back propagation. Using extensive
experiments, we showed that TREEFORMER models achieve comparable or better accuracy than other
efficient attention models, but with significantly lower computational complexity.

While decision trees are popular in other applications (XgBoost (Chen & Guestrin, 2016), C4.5
(Quinlan, 2014), KD tree (Bentley, 1975)), there have been few works integrating and jointly training
them with neural networks. Our work takes a first step in that direction and shows that while
optimizing with decision trees can be challenging, it is also rewarding. Some interesting future
research directions include developing better optimization techniques for discrete models, efficiently
combining decision trees with different types of neural network architectures, and using multiple
decision trees to reduce discretization.
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A EXPERIMENTAL SETUP

In this section we give a detailed description of our experimental setup including various hyper-
parameters.

A.1 BERT PRE-TRAINING/FINE-TUNING

Table 5 detail the four public datasets we used for pre-training the TREEFORMER and baseline models.
For all datasets, we truncate documents with length greater than 512 to multiple sequences of length
512. We follow the recommendations of Devlin et al. (2019) for MLM pre-training, and mask 15%
tokens in each input sequence. We report the MLM performance in terms of accuracy of prediction
on the masked positions. We list the hyper-parameters used for pre-training in Table 6. We use Adam
optimizer with decoupled weight decay (AdamW). We also use a learning rate warmup for the first
10k steps, with linear decay of the learning rate afterwards. We train the TREEFORMER models for a
total of 1.8M steps - 450000 steps during each of the four bootstrapped processes shown in Figures 2
and 3. The layer-width for each bootstrapping is 3, meaning 3 tree attention layers are added in every
subsequent bootstrapping process.

Table 5: Pre-training Datasets.

Dataset # Tokens Document Length

Books (Zhu et al., 2015) 327M 37K
CC-News (Guu et al., 2020) 3.7B 561
Stories (Trinh & Le, 2018) 2.5B 8.2K
Wikipedia 1.5B 592

Table 6: Hyper-parameters for the two TREEFORMER model variants for BERT Pre-training.

Parameter TREEFORMER TF-A TREEFORMER TC-A

Tree Height, h 2 7
Sequence Length 512 512
Attention Heads 12 12
Hidden Layers 12 12
Hidden Layer Size 768 768
Batch Size 1024 1024
Activation Layer gelu gelu
Dropout Prob. 0.1 0.1
Attention Dropout Prob. 0.1 0.1
Optimizer AdamW AdamW
Learning Rate 10−4 10−4

Hardware (TPUv3 slice) 8× 16 8× 16

For fine-tuning, we use the same pre-trained models and fine-tune on the downstream tasks with most
of the model parameters borrowed from the pre-training process. The parameters that are different for
various datasets in the GLUE benchmark and SQuAD are detailed in Table 7. For MNLI, we report
the matched accuracy, Matthews Correlation Coefficient (MCC) for COLA, F1 Scores for MRPC,
and accuracies for the remaining tasks - QQP, QNLI, SST-2, and RTE. On the SQuAD dataset, we
report the F1 scores on v1.1 version of the dataset.

Table 7: Hyper-parameters for BERT Fine-tuning for GLUE and SQuAD.

Parameter MNLI, QQP, QNLI, SST-2 COLA, MRPC RTE SQuAD

Batch Size 128 16 16 48
Epochs 3 10 10 2
Learning Rate 3× 10−5 1× 10−5 2× 10−5 8× 10−5

Hardware (TPUv3 slice) 4× 4 4× 2 4× 2 2× 2
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A.2 LONG RANGE ARENA (LRA)

The task specific hyper-parameters used for the LRA Benchmark (Tay et al., 2021) are presented in
Table 8. We use Adam optimizer for all the experiments but the weight decay factor is different for
Image task as highlighted in Table 8. We start the bootstrapping for TC-ATTENTION variant of the
TREEFORMER from tree height h = 2 up to all the way to h = 10. We notice that h = 6 performs
the best on most of the LRA tasks. So we report the performance numbers for h = 6. We also include
the number of training steps during each bootstrapping process in the table.

Table 8: Hyper-parameters for the various LRA tasks for TREEFORMER models.

Parameter Listops Text Retrieval Image

Max. Sequence Length 2048 4096 8192 1024
Tree Height for TREEFORMER 6 6 6 6
# Layers 4 4 4 1
Attention Heads 4 4 4 1
Embedding Dim. 512 256 128 32
MLP Dim. 1024 1024 512 64
Batch Size 32 32 32 56
Dropout Prob. 0.1 0.1 0.1 0.3
Attention Dropout Prob. 0.1 0.1 0.1 0.2
Learning Rate 0.05 0.05 0.05 0.0005
# Training Steps 5000 20000 5000 35000
Weight Decay for Adam 0.1 0.1 0.1 0.0
Hardware (TPUv3 slice) 2× 2 2× 2 2× 2 2× 2

B EXPERIMENTAL RESULTS

In this section, we include some extra results in addition to those present in the main paper.

B.1 BERT PRE-TRAINING/FINE-TUNING

We first present the task-wise performance of the different models on the GLUE benchmark in Table9.
In this section, we also demonstrate the importance of bootstrapping in the training process with
the help of some empirical evidence using the same set of experiments as in the paper. We track
the gradient norms during the pre-training process for TREEFORMER models with bootstrapping
and TREEFORMER models trained from scratch without any bootstrapping to see how they compare
during the pre-training stage. Figure 5 shows the corresponding plots for BERT-based TREEFORMER
models in layers 1, 4, 8, 12 of the models. We observe that gradient norms for the bootstrapped
TREEFORMER model are higher compared to the non-bootstrapped version of the same model. This
shows the challenges in training decision trees directly with neural networks and the advantage of the
proposed bootstrapping approach.

B.2 LONG RANGE ARENA (LRA)

Table 10 extends Table 3 to include more models like Kitaev et al. (2020), Sun et al. (2021), and
Gu et al. (2021). Although Gu et al. (2021) is the state of the art in the LRA benchmark, the paper
itself mentions that S4 cannot be scaled to sequence modeling using very large models because of
its compute and memory requirements. S4 experiments in the paper are on smaller models and it
cannot scale to the level of Transformer-based models involving billions of parameters. Sun et al.
(2021) performs better than TREEFORMER models on LRA, but it loses performance on GLUE tasks
compared to the baseline Transformer models.

In Table 3, we presented the average speedup (FLOPs column) over the four tasks in the LRA
Benchmark for each of the models. Table 11 breaks down that average and details the speedup for
each representative task in LRA.
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Table 9: GLUE Benchmark

Model MNLI QQP QNLI SST-2 MRPC RTE CoLA

BERT-Base 81.33 89.62 87.93 90.63 89.55 67.19 54.53
Linformer (k = 128) 81.08 88.74 87.19 88.56 87.96 65.33 52.38
BigBird 81.67 87.84 88.42 92.77 89.20 66.32 54.93
TREEFORMER TF-A (12 l) 83.32 89.19 87.67 89.93 88.40 66.41 55.41
TREEFORMER TC-A (6 l) 81.73 89.75 88.86 89.58 89.47 68.75 55.70
TREEFORMER TC-A (9 l) 80.66 89.22 87.41 89.00 87.80 67.58 54.89
TREEFORMER TC-A (12 l) 74.29 85.63 82.65 84.14 84.01 62.11 26.88
TREEFORMER k-ary TF-A (12 l) 83.08 91.24 88.30 92.84 89.43 68.75 55.08

Figure 5: Comparison of gradient norms as the training progresses.

Table 10: LRA Benchmark (extended).

Model ListOps Text Retrieval Image Average FLOPs

Transformer 36.37 64.27 57.58 42.35 50.14 100%
Reformer 37.27 56.10 53.40 38.07 46.21 -
BigBird 36.05 64.02 58.98 40.34 49.85 27.13%
TREEFORMER TF-A 36.02 64.38 58.52 42.31 50.31 34.18%
TREEFORMER TC-A 35.54 64.41 58.38 42.01 50.09 3.05%
TREEFORMER k-ary TF-A 35.76 64.62 58.29 42.34 50.25 29.82%
Luna 37.98 65.78 79.56 47.86 57.80 -
S4 59.60 86.82 90.90 88.65 81.49 -
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Table 11: LRA Benchmark. Comparison of TREEFORMER with other efficient transformers in terms
of FLOPs in the attention layer.

Model ListOps Text Retrieval Image Average FLOPs

Transformer 100% 100% 100% 100% 100%
Linformer 2.98% 2.28% 0.57% 4.44% 2.57%
Performer 28.29% 14.47% 6.76% 51.96% 25.37%
BigBird 31.98% 16.35% 7.74% 52.43% 27.13%
TREEFORMER TF-A 37.82% 28.19% 29.48% 41.23% 34.18%
TREEFORMER TC-A 4.57% 2.34% 0.61% 4.66% 3.05%

Table 12: Summarization ROUGE scores obtained for the PubMed and Arxiv datasets. We notice
that TREEFORMER models outperform the baseline Transformer and BART models, and perform
competitively with BigBird.

Model PubMed Arxiv Average FLOPs
R-1 R-2 R-L R-1 R-2 R-L

Transformer 41.11 16.17 25.50 29.90 7.40 20.53 100%
BART 45.47 19.41 27.67 31.74 8.96 21.02 100%
BigBird 46.69 20.36 28.27 33.72 9.43 21.55 19.25%
TREEFORMER TF-A 45.02 19.34 26.30 33.34 9.29 21.48 28.76%
TREEFORMER k-ary TF-A 45.35 19.22 26.04 33.42 9.27 21.10 32.48%
TREEFORMER TC-A 40.23 15.02 24.78 30.14 7.86 20.95 3.09%

B.3 SUMMARIZATION

We also perform experiments on sequence-to-sequence (seq2seq) tasks with encoder-decoder models.
Following Zaheer et al. (2020), we only introduce our attention mechanism in the encoder and
use standard full attention in the decoder, as the number of output tokens is usually small (≤ 512)
compared to the input. It has been well established that pre-training also helps in seq2seq tasks like
summarization, machine translation, and other generative tasks (Lewis et al., 2019; Liu et al., 2020).
So, we also pre-train our encoder-decoder TREEFORMER models using the BART objective.

We use the pre-trained encoder-decoder models and finetune on the abstractive summarization task
on the PubMed and Arxiv datasets consisting of long documents with a maximum sequence length of
3072 for the input. The results on this task are presented in Table 12. Our TF-ATTENTION models
outperform the baseline Transformer and BART models, and are competitive with the BigBird models
with significant reduction in FLOPs in the attention layer. The FLOPs in TF-ATTENTION models
are higher compared to BigBird because of the skewness in leaf nodes of the decision tree. We leave
further optimization of TF-ATTENTION to enable less leaf-node skew for future work.

C PROOFS

We prove Lemma 1 by construction - we show that there exists a choice of the decision tree weights
for all layers of the TREEFORMER TF-ATTENTION model, such that all the queries and keys cluster
to the same leaf node.

From Equation 2, we have the tree parameters (w{l,j}; b{l,j}) for tree T . We assign the parameters
as follows:

w{l,j} = 0 ∀j = 0, · · · , 2l − 1 ∀l = 0, · · · , h
b{l,j} = ε,

(5)

where ε is any small positive value. We denote the tree with the above parameters as T0. This
assignment will ensure that all the queries and keys will follow the right-most path in the decision tree,
and cluster in the right-most leaf node. Thus, for T = T0, we have TF-ATTENTION(Q,K,V ; T ) =
Attention(Q,K,V ).
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