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Abstract

Implicit Neural Representations (INRs) that learn Signed Distance Functions (SDFs) from
point cloud data represent the state-of-the-art for geometrically accurate 3D scene recon-
struction. However, training these Neural SDFs often involves enforcing the Eikonal equa-
tion, an ill-posed equation that also leads to unstable gradient flows. Numerical Eikonal
solvers have relied on viscosity approaches for regularization and stability. Motivated by
this well-established theory, we introduce ViscoReg, a novel regularizer for Neural SDF
methods that provably stabilizes training. Empirically, ViscoReg outperforms state-of-the-
art approaches such as SIREN, DiGS, StEik, and HotSpot across most metrics on ShapeNet,
Surface Reconstruction Benchmark, 3D scene reconstruction and reconstruction from real
scans. We also establish novel generalization error estimates for Neural SDFs in terms of the
training error, using the theory of viscosity solutions. Our empirical and theoretical results
provide confidence in the general applicability of our method.

1 Introduction

Implicit neural representations (INRs) encode continuous signals, such as images, sounds, 3D surfaces, or
scenes (Mildenhall et al., 2021; Park et al., 2019; Mescheder et al., 2019). Neural networks mapping input
coordinates to signal values are used as compact, high-resolution, representations of the underlying signal.
Neural Signed Distance Functions (SDFs) (Park et al., 2019) extend this approach to 3D scene reconstruction.
The model learns a function that maps spatial coordinates to their signed distance from a surface manifold,
implicitly defining the surface as the zero level set of the function. They are trained on the input point
cloud data by constraining the signed distance to be zero on the surface, and optionally, using surface
normal information. In the absence of normal information, previous methods suffer a severe degradation in
reconstruction quality.

While normals may be precomputed from the input point cloud, this is expensive and typically error-prone.
Without normals, constraining the network to be zero on the surface can lead the network to collapse to the
trivial zero function during training. Enforcing the Eikonal partial differential equation (PDE):

∥∇u(x)∥2 = 1 for x ∈ Ω, u(x) = 0 for x ∈ ∂Ω, (1)

via the Eikonal loss ensures that the network learns a valid SDF (Gropp et al., 2020). Here, Ω is a bounded
domain, and ∂Ω is the sufficiently smooth boundary surface we aim to reconstruct. However, the Eikonal loss
alone may not be enough for good reconstruction (Ben-Shabat et al., 2022), and it presents two fundamental
challenges. First, training with this regularizer can cause instabilities, leading the network to converge to
suboptimal local minima with large errors, as has been demonstrated both theoretically and empirically
(Yang et al., 2023). Second, the Eikonal equation is inherently ill-posed, with multiple solutions (see Sec. 3).
Viscosity solutions represent the physically meaningful solution to the Eikonal equation (and to the broader
class of Hamilton-Jacobi equations (Crandall & Lions, 1983)). The SDF is the unique viscosity solution of
the Eikonal. This leads to an important question for Neural SDFs: With infinitely many solutions to
the Eikonal equation, why is minimizing the PDE residual loss on a finite training set sufficient
to ensure convergence to the unique viscosity solution (i.e., the SDF)?

We use the theory of viscosity solutions to address both challenges discussed above. To address the theoretical
ill-posedness, we rigorously establish bounds on the INR generalization error using properties of viscosity
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solutions, and classical PDE inequalities. To the best of our knowledge, this is the first work to provide
bounds on the global error between the learned function and the ground truth SDF in terms of the training
error. To address the practical instability, we consider the well-posed parabolic equation, which adds a
viscosity/diffusion term to the Eikonal:

∥∇uε∥2 = 1 + ε∆uε. (2)

The viscosity solution u of equation 1 is recovered in the limit ε → 0 of uε. The vanishing viscosity method
is important in the analysis of Hamilton Jacobi class of equations, and care is taken in classical numerical
analysis to arrive at the viscosity solution rather than one of the infinitely many other Lipschitz solutions.
For instance, the Fast Marching method (Sethian, 1999), a widely used Eikonal solver, computes viscosity
solutions via level-set techniques. Motivated by these, we propose a novel regularization technique that
incorporates a dynamically scaled viscous term into the Eikonal loss during training. This stabilizes training,
and improves reconstruction quality, while avoiding the pitfalls of other proposed regularizations that either
lack physical rigor (e.g., constraining the SDF to be harmonic (Ben-Shabat et al., 2022)), require normals
(Atzmon & Lipman, 2020b), or overfit to input noise (Yang et al., 2023).

Our main contributions can be summarized as follows:
• Generalization error bounds are presented to validate that minimizing the PDE residual and surface data
fidelity loss ensures that the estimated solution converges to the unique viscosity solution.
• Neural SDFs, which are currently state-of-the-art for surface reconstruction, rely on the Eikonal constraint
which is ill-posed and has unstable training dynamics. This leads to convergence to suboptimal local minima
and poor reconstruction. We propose ViscoReg, a novel training regime for Neural SDF based on the
vanishing viscosity method with a dynamically scaled loss. We justify this by analyzing the gradient flow of
its variational formulation, and demonstrate its ability to stabilize training for high-frequency components.
Our loss does not add extra hyperparameters, compared to DiGS (Ben-Shabat et al., 2022), StEik (Yang
et al., 2023) or HotSpot Wang et al. (2025).
• We compare our work with current SOTA methods on several reconstruction benchmarks to demonstrate
significant improvements.

2 Related Work
2.1 Surface Reconstruction
Reconstructing surfaces from point clouds is a long-studied problem in computer vision that is challenging
due to non-uniform point sampling, noisy normal estimations, missing surface regions, and other data im-
perfections (Berger et al., 2017). The problem is highly ill-posed, as there are multiple surfaces that can fit a
finite set of points Sulzer et al. (2024). Traditional methods include triangulation (Cazals & Giesen, 2006),
Voronoi diagrams (Amenta et al., 1998), and alpha shapes (Bernardini et al., 2002). Implicit function meth-
ods using radial basis functions (Carr et al., 2001) and Poisson surface reconstruction (Kazhdan et al., 2006)
are also well-studied. More recent non-neural approaches include Neural Splines (Williams et al., 2021),
which use kernel formulations arising from infinitely wide shallow networks, and Shape As Points (Peng
et al., 2021), which represents surfaces using a differentiable Poisson solver. Methods based on differentiable
3D Gaussian splatting (Kerbl et al., 2023) have also been increasingly employed for this task (Guédon &
Lepetit, 2024; Krishnan et al., 2025; Waczyńska et al., 2024). Relevant to our work is ViscoGrids (Pumarola
et al., 2022), a grid-based method incorporating viscosity; however, it is not a neural network-based approach
and uses a fixed, non-decaying viscosity coefficient estimated from the grid resolution, unlike our method.
While viscosity-based regularization has a long history in numerical Eikonal solvers (Sethian, 1999), modern
reconstruction pipelines rely almost exclusively on neural implicit representations trained by gradient-based
optimization. This shift raises a fundamental questions on how viscosity methods can improve the training
dynamics of neural SDFs, which we address in this work.

2.2 Implicit Neural Representations
INRs are a popular approach in volumetric representation due to their high resolution and compactness
(Cao & Taketomi, 2024; Chen & Zhang, 2019; Lombardi et al., 2019; Ma et al., 2020; Michalkiewicz et al.,
2019; Mildenhall et al., 2021; Müller et al., 2022; Sitzmann et al., 2019a;b; Wang et al., 2024). They have
demonstrated success in encoding shapes by learning SDFs or occupancy functions (Mescheder et al., 2019).
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Figure 1: Reconstructing the 2D fractal Mandelbrot set using different Neural SDF techniques. SIREN:
Converges quickly but the boundary is poorly reconstructed with many self-intersections. DiGS: Overly
smoothed boundary in early iterations, with the final reconstructed boundary being disconnected and self-
intersecting. StEik: While it avoids oversmoothing, it struggles with spurious self-intersections, disconnec-
tions and not capturing fine detail. ViscoReg: Smoothly converges to the underlying complex boundary,
maintaining its intricate structure throughout training.

DeepSDF (Park et al., 2019) was the first to learn an SDF with a neural network, but relied on ground truth
SDFs for supervision, which are usually unavailable. SAL (Atzmon & Lipman, 2020a) proposed learning the
SDF directly from point cloud data, constraining the function to be zero on the surface. SALD (Atzmon
& Lipman, 2020b) added normal supervision; IGR (implicit geometric regularization) (Gropp et al., 2020)
introduced the Eikonal loss to ensure that the learned function is a valid SDF. PHASE (Lipman, 2021)
proposed a density function that converges to an occupancy function. While PHASE used viscosity theory
to justify the convergence of their occupancy representation, our work establishes the first generalization
error bounds for standard Neural SDFs. SIREN (Sitzmann et al., 2020) used a sine activation function,
which allows computation of higher-order derivatives, such as the Laplacian term in this work.

DiGS (Ben-Shabat et al., 2022) minimizes the Laplacian of the learned function, showing improved perfor-
mance without normals. However, the SDF Laplacian corresponds to the mean curvature of the surface,
and its minimization can lead to over-smoothing of fine detail (see Sec. 5). StEik (Yang et al., 2023) iden-
tified training instabilities with the Eikonal loss and proposed a directional divergence regularizer, similar
to the gradient-Hessian alignment constraint in Wang et al. (2023a). However, this is a direct mathematical
consequence of the Eikonal and naturally holds when this constraint is satisfied. Empirically, as seen in
StEik, it overfits noise in the input. More recently, HotSpot (Wang et al., 2025) addresses the stability of
Neural SDFs by proposing a loss function derived from a screened Poisson equation. This contrasts with
our approach, which is grounded in the classical PDE theory of viscosity solutions to directly regularize the
Eikonal equation.
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2.3 Neural PDE solvers
PDEs are foundational models in applications like computer graphics and wave propagation. While tradi-
tionally solved with numerical methods like finite difference and finite element (LeVeque, 1992; Ames, 2014),
neural networks are increasingly used to approximate PDE solutions (Han et al., 2018; Blechschmidt & Ernst,
2021; Sirignano & Spiliopoulos, 2018). Notably, Physics-Informed Neural Networks (PINN) introduced by
Karniadakis et al. (2021), incorporate PDE residuals and boundary conditions in the loss. The Neural SDF
method is a specific PINN for the Eikonal equation. Despite their empirical success, learning theory for
these solvers is still nascent. Generalization theory aims to understand how well the network generalizes to
unseen data given the training error. Results have been established for neural methods for PDE in abstract
settings (Mishra & Molinaro, 2023; 2022; Chen et al., 2025), and for specific PDEs (De Ryck & Mishra, 2022;
Hu et al., 2021; Berner et al., 2020; Zubov et al., 2021). We extend this analysis to Neural SDFs, providing
intuition on why the network should converge to the correct solution, and bounds on the worst-case deviation
from the ground-truth.

3 Error Analysis
We present novel theoretical results on generalization error bounds for Neural SDF, starting with a brief
overview of Neural SDFs and of viscosity solutions. This also motivates the ViscoReg training regime
introduced in Sec. 4. The primary motivation behind the theoretical study in this section is to establish
guarantees on the convergence of the Neural SDF method to the unique viscosity solution. In our work,
Ω ⊂ R3 represents an open, connected, bounded domain with sufficiently smooth boundary ∂Ω. Lebesgue
and Sobolev spaces are represented as Lp(Ω), and W k,p(Ω), equipped with standard norms, ∥ · ∥Lp(Ω),
(denoted for simplicity as ∥ · ∥p) and ∥ · ∥W k,p(Ω) for 1 ≤ k, p ≤ ∞ (definitions in appendix). The space
of continuous functions on Ω is denoted as C(Ω) with the L∞(Ω) norm, and Ck(Ω) is the space of k-times
differentiable functions with Ck norm.

3.1 Neural Signed Distance Functions
A Neural SDF uθ : Ω → R is a network, parametrized by weights θ ∈ Rd, approximating an SDF whose zero
level set is ∂Ω. Since ground-truth SDF values for non-manifold points are not usually available, training
is supervised using the manifold constraint Lm and the non-manifold penalization constraint Lnm. These
ensure that uθ is zero on the manifold, and non-zero away from it.

Lm(uθ) =
∫

∂Ω
|uθ(x)| dx, Lnm(uθ)=

∫
Ω\∂Ω

e−α|uθ(x)| dx, (3)

Additionally, the Eikonal constraint Leik that specifies the norm of the gradient to be one is enforced.

Leik(uθ) =
∫

Ω
∥∥∇uθ∥2 − 1∥p dx for p = 1, 2. (4)

The combined loss with hyperparameters αm, αnm, αe and α >> 1 is:

L(uθ) = αmLm(uθ) + αnmLnm(uθ) + αeLeik(uθ). (5)

We do not consider a normal loss as normals may need to be obtained via error-prone pre-processing. The
input is the surface point cloud P∂Ω := {xi}N

i=1 ⊂ ∂Ω, and uniformly sampled non-manifold points from the
domain PΩ := {yj}M

j=1 ⊂ Ω. The integrals of equation 3-4 are discretized as:

Lm(uθ; P∂Ω) = 1
N

N∑
i=1

∥uθ(xi)∥p, xi ∈ P∂Ω

with Lnm and Leik defined analogously for Lnm, Leik. Thus, the optimization problem is:

arg min
θ∈Rd

(αmLm(uθ; P∂Ω) + αeikLeik(uθ; P∂Ω ∪ PΩ) + αnmLnm(uθ; PΩ)) , (6)

where uθ ∈ FNN , where FNN is the class of fully connected SIREN networks, with weights θ ∈ Rd.
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3.2 Generalization Error
A considerable challenge for Eikonal equations equation 1 is the lack of uniqueness - there exist infinitely
many continuous solutions to the equation. Consider the one-dimensional Eikonal equation ∥u′(x)∥2 = 1,
with boundary conditions u(0) = u(1) = 0 in [0, 1]. Any zig-zag function with slopes ±1 satisfying the
boundary conditions is a solution (the points with C1 discontinuities are a set of measure 0), whereas the
SDF solution is u(x) := min(x, 1−x). In many applications, the meaningful solution is the viscosity solution,
introduced by Crandall & Lions (1983). These solutions possess maximum and stability properties, which
make the analysis of Eikonal-and more broadly, of Hamilton-Jacobi equations—more tractable. Viscosity
solutions inherit these properties from the solutions of the well-posed parabolic equations (2), which they
approximate in the limit (Calder, 2018). Using properties of the viscosity solutions, and classical inequalities
in PDE theory, we provide a novel generalization error estimate for the Neural SDF method. The estimate
is provided when the L1 norm is used for the Eikonal loss. It is extended to the L2case in the appendix.

The computational domain is often chosen as a bounding box tightly fitted to the surface, enclosing the shape.
For analysis, we consider the domain to be the volume enclosed by the surface. Since the trained network
will not exactly satisfy the Eikonal equation 1, consider the more general formulation of the boundary value
problem (BVP):

∥∇u(x)∥2 = f(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω. (7)

where f ∈ C∞(Ω̄), g ∈ C(∂Ω), for Ω̄ = Ω∪∂Ω. Let u ∈ C(Ω̄) denote the viscosity solution, see the appendix
for a rigorous definition. When f ̸≡ 1, u is not the SDF, but rather the shortest arrival time of a wavefront
propagating from x ∈ Ω̄ to ∂Ω. The function f represents the “slowness" (reciprocal of the speed) in the
medium, while g acts as an exit-time penalty.

To obtain the required bounds, we establish a few preliminary results for viscosity solutions.

Lemma 1 Let u1, u2 ∈ C(Ω̄) be viscosity solutions of the Eikonal equation ∥∇u∥2 = f , subject to the
respective boundary conditions u1|∂Ω = g1, u2|∂Ω = g2, for g1, g2 ∈ C(∂Ω). Then:

∥u1 − u2∥∞ ≤ ∥g1 − g2∥∞. (8)

Lemma 1 shows that equation 7 has at most one continuous viscosity solution. Next, we provide a stability
estimate that shows the sensitivity of the viscosity solution to the slowness function.

Lemma 2 Let u1, u2 be unique viscosity solutions of ∥∇u∥2 = f1, ∥∇u∥2 = f2, respectively, with u1|∂Ω =
u2|∂Ω = 0. Here, f1, f2 ∈ C∞(R3), and assume, ∃ Cf > 0 such that 0 < 1

Cf
≤ f1, f2 < Cf . Then the

solutions satisfy:

∥u1 − u2∥∞ ≤ CΩC−2
f ∥f1 − f2∥∞. (9)

where CΩ is a constant corresponding to the diameter of Ω.

The proof of both Lemmas is in the appendix (Crandall et al., 1984; Calder, 2018). Now, let θ∗ ∈ Rd be
the minimizer of the optimization (6) obtained via gradient descent algorithms, and let uθ∗ ∈ C∞(Ω̄) be
the corresponding network. Note that uθ∗ is smooth, since we use the sine activation function in SIREN.
To analyze the error of the network u∗

θ, which only approximately satisfies the Eikonal equation, we must
consider it as an exact solution to a perturbed Eikonal equation, where the PDE residual corresponds to the
slowness function fθ∗ ∈ C∞(Ω̄) and the boundary error becomes the boundary condition gθ∗ ∈ C∞(∂Ω):

∥∇uθ∗(x)∥2 = fθ∗(x), x ∈ Ω, uθ∗(x) = gθ∗(x), x ∈ ∂Ω. (10)

We assume that the network uθ∗(x) satisfies the following conditions.

Assumption 1: The gradient of uθ∗ is bounded away from zero. Specifically, for all x ∈ Ω, we have 0 <
1

Cθ∗ ≤ ∥∇uθ∗(x)∥2 ≤ Cθ∗ , for Cθ∗ > 0.

5



Under review as submission to TMLR

If θ∗ is a sufficiently good local minima, it is natural that Assumption 1 holds, since the ground-truth SDF
u satisfies ∥∇u(x)∥2 = 1 > 0, ∀ x ∈ Ω.

Assumption 2: The input point cloud is such that the discrete sum used to calculate the boundary and
Eikonal loss is a sufficiently good approximation of the true continuous integral. Specifically, P∂Ω = {xi}N

i=1
satisfies the quadrature error bound:∣∣∣∣∣

∫
Ω̃

|g(x)|pdx − 1
N

N∑
i=1

|g(xi)|p
∣∣∣∣∣ ≤ CgN−β , (11)

for p = 1, 2, and β > 0. This assumption is quite general, essentially requiring that as N → ∞, the sample ℓp

norm converges to the true Lp norm. In the case of uniform sampling, β takes the value 1/3. For Monte-Carlo
random sampling, β = 1/2 for sufficiently smooth functions (Mishra & Molinaro, 2023). Since the point
cloud data may be obtained through sensors, we consider the more general β to account for irregularities in
the sampling process. Ignoring measurement errors, we consider the sampling process to be deterministic,
while non-uniform.

Since Ω is bounded, and the network has bounded weights, ∥uθ∥Ck(Ω) ≤ Ck < ∞ for all finite k. This also
implies that the network (and its derivatives) is bounded in W k,p norm for finite k and 1 ≤ p ≤ ∞. Denote
∥fθ∗∥W 6,1(Ω), ∥gθ∗∥W 6,1(∂Ω) ≤ Mθ∗ for Mθ∗ > 0. Here, the choice of k = 6 is determined by the requirements
of the interpolation inequality used in the proof of Theorem 1.

This brings us to the main theoretical results of our paper.

Theorem 1 Suppose Assumptions 1-2 hold. Consider the minimizer θ∗ ∈ Rd of (6) and let uθ∗ ∈ C∞(Ω̄)
be the network parametrized by θ∗. Let u ∈ C(Ω̄) be the solution to equation 1. Then, the generalization
error is bounded as:

∥u − uθ∗∥∞≲ Mθ∗(Lm(uθ∗)) 1
2 +Mθ∗C−2

θ∗ (Leik(uθ∗))
1
2 +O((M + N)−1/6) + O(N− β

2 ). (12)

The constants in ≲ depend only on Ω̄.

Proof Sketch: We first decompose ∥u − uθ∗∥∞, into terms controlled by the boundary error (gθ∗) and
by the PDE residual (fθ∗). We apply stability estimates from Lemmas 1 and 2 to bound these terms. To
connect the continuous, worst-case bounds to discrete training losses, the Gagliardo-Nirenberg interpolation
inequality is used to relate L∞ norms to L1 norms. Finally, we bound the L1 norms using discrete sample
losses, Lm and Leik, yielding the final result after accounting for the quadrature error using Assumption 2.
The full proof is in the appendix.

At first glance, the generalization bound may seem expected, as it suggests that small training error leads to
better generalization. However, this result is non-trivial in the context of PDE solutions, where there is no
fundamental reason why minimizing the PDE residual and boundary loss at finitely many points should lead
the network to converge to a solution of the continuous formulation of a nonlinear PDE. This is particularly
insightful for the ill-posed Eikonal equation, which admits infinitely many solutions, only one of which is the
viscosity solution (the true SDF). This provides a guarantee that the learned function is close to the viscosity
solution in the L∞-sense, and offers insight into how training error controls the worst-case deviation from
the correct viscosity solution.

4 ViscoReg
4.1 Energy Formulations and Gradient Flow
An important problem in many applications is to find a function u : Ω ⊂ Rn → R that minimizes a functional
E(u), representing an energy/loss function. The gradient flow defines the continuous evolution of u along
the path of steepest descent for E(u). It may be obtained in the continuum limit of the gradient descent
method for the minimization problem, and is given by:

ut = −∇E(u). (13)
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Here, t is an artificial time parameter (the continuous limit of discrete iterations of gradient descent), and
∇E(u) represents the Fréchet derivative of E with respect to u. When u is restricted to neural networks uθ

parametrized by weights θ ∈ Rd, the optimization is performed in the finite-dimensional parameter space.
The resulting update to the function uθ can be understood as a projection of the ideal, unconstrained gradient
flow onto the tangent space spanned by the neural network’s basis functions (Yang et al., 2023). As the
network’s representational capacity increases, this basis more closely approximates the full function space,
and the projected gradient flow well approximates the unconstrained equation 13. Hence, we study the
unconstrained gradient flow to provide insight into the training process. Computing the Frechét derivative
of the loss functional Leik(u) (equation 3), we see that the gradient flow closely resembles the heat equation
with:

ut = ∇ · (g (∥∇u∥2) ∇u) , g(s) =
{

1
s − 1, p = 2
sign(s − 1), p = 1

Observe that g can be positive or negative making the above equation a Forward-Backward heat equation.
The backward nature, however, destabilizes the PDE. The gradient flow of the Eikonal loss has been studied
by Yang et al. (2023), who propose a stabilizing directional divergence regularizer, but as shown in Sec. 5,
there is room for improvement. They show that adding a Laplacian energy term (as in Ben-Shabat et al.
(2022)) can also stabilize training. However, since the SDF Laplacian is the mean curvature on the surface,
it should not be minimized in areas of fine detail.

4.2 ViscoReg

To stabilize Neural SDF training, we propose adding a decaying viscosity term to the Eikonal loss :

L(uθ) = αmLm(uθ) + αnmLnm(uθ) + αvLveik(uθ). (14)

Here, Lveik represents the viscous Eikonal loss that we refer to as ViscoReg given by:

Lveik(uθ) =
∫

Ω
|∥∇uθ(x)∥2 − 1 − ε∆uθ|p dx, p = 1, 2, (15)

where ε > 0 is a hyperparameter decayed to zero in the course of training. Note that this is different from
the DiGS loss because we are not minimizing the divergence with this regularization. The main motivation
behind this regularization is that the viscosity solution to the Eikonal (in Definition 3.1) is a limit of solutions
to parabolic equation 2 (see Theorem 2 in the appendix).

The added viscosity term lends stability to the Eikonal loss formulation. Let r(u) = ∥∇u∥2 −1−ε∆u denote
the viscous residual. For p = 1, computing the Frèchet derivative of Lveik gives the gradient flow equation:

∂u

∂t
= ∇ ·

(
sign(r) ∇u

∥∇u∥2

)
+ ε∆(sign(r)) (16)

For analytical ease, we replace sign(r) function with a smooth approximation (such as the sigmoid function)
S(r) such that S(0) = 0 and S′(0) = c > 0. Linearising the resulting non-linear PDE around its stationary
solution u0 = a · x (with ∥a∥2 = 1, say a = [1, 0, 0]T ), we get:

ut = c(a · ∇)2u − cε2∆2u. (17)

Taking the Fourier transform of the above PDE gives:

ût = −c[(a · ω)2 + ε2∥ω∥4
2]û =⇒ û = exp

(
−ct[(a · ω)2 + ε2∥ω∥4

2]
)

. (18)

The Fourier symbol λ(ω) = −c[(a · ω)2 + ε2∥ω∥4
2] is non-positive for all wavevectors since c > 0. This implies

that as t → ∞, û → 0 for all frequency modes, and that the equation is unconditionally stable.

Similar results are presented for the case p = 2 in the appendix. Enforcing the viscous Eikonal PDE over
the inviscid version in the initial phases of training, not only encourages convergence to the physically
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meaningful solution, but also stabilizes the Eikonal training. As proof of concept, we demonstrate the
boundary reconstruction of a complex Mandelbrot fractal with different methods in Fig. 1. DiGS without
normals, results in an overly smoothed boundary during early iterations. After the annealing phase, where
the divergence weight is set to zero, the reconstructed boundary becomes self-intersecting and disconnected.
Other state-of-the-art methods are also plagued with similar challenges. In contrast, ViscoReg smoothly
converges to the highly curved boundary, maintaining its intricate structure throughout the process.
5 Results
Implementation Details: We evaluate the proposed regularization term on different surface reconstruction
tasks, specifically, the Surface Reconstruction Benchmark (Berger et al., 2013), a scene reconstruction task
from Sitzmann et al. (2019b), ShapeNet (Chang et al., 2015) and real scans from Huang et al. (2024). Meshes
are extracted using the Marching cubes algorithm (Lorensen & Cline, 1998) using a grid with shortest axis
512 tightly fitted onto the surface. We use the sine activation function proposed in SIREN to compute the
second derivatives needed for our task. For all our experiments, we find a simple piecewise linear decay
of ε to be sufficient. We note that most state of the art methods (including DiGS, StEik, and HotSpot)
use annealing for their loss terms, and hence ViscoReg does not add any extra hyperparameters. Further
implementation details are listed in the appendix.

Our main point of comparison involves SoTA methods such as DiGS (Ben-Shabat et al., 2022), StEik (Yang
et al., 2023), HotSpot (Wang et al., 2025), Neural Singular Hessian (Wang et al., 2023b) and NeurCADRecon
(Dong et al., 2024). However, note that StEik introduces two key techniques to achieve their results: (1)
directional divergence regularizer, (2) quadratic layers in the network architecture. Our work introduces
a theoretically motivated regularizer. So, besides the reported results, for an apples-to-apples comparison
between the two methods, we report results on (a) StEik’s regularizer with standard linear layers and the
same architecture as our method and (b) StEik’s architecture with our regularizer. Unless specified, all
qualitative and quantitative results are presented for ViscoReg with linear layers, and StEik with quadratic
layers. Methods marked “quad” correspond to the quadratic architecture. As in DiGS and related works, we
evaluate our methods on the Chamfer distance metric (dC), and the Hausdorff distance (dH) metric for the
Surface Reconstruction Benchmark. For the ShapeNet dataset, we report the squared Chamfer distance and
the Intersection over Union (IoU) between the reconstructed shapes and ground truth. For reconstruction
from real scans, we report Chamfer Distance, F-score and Normal Consistency Score (NCS).

Table 1: Results on SRB. dC : Chamfer and dH :
Hausdorff distance. ∆dC , ∆dH denote mean de-
viation from the best method.

Method dC ↓ dH ↓ ∆dC ∆dH

IGR wo n 1.38 16.30 1.2 13.61
SIREN wo n 0.42 7.67 0.23 4.98

SAL 0.36 7.47 0.18 4.78
IGR+FF 0.96 11.06 0.78 8.37

PHASE+FF 0.22 4.96 0.04 2.27
AGH (W23) 0.19 2.98 0.01 0.29

NSH 0.20 3.73 0.02 1.04
NeurCADRecon 0.20 3.70 0.02 1.01
VisCoGrids wo n 0.34 4.39 0.16 1.95

HotSpot 0.19 3.17 0.01 0.48
DiGS 0.19 3.52 0.0 0.73

StEik (linear) 0.20 4.56 0.02 1.87
Ours 0.18 2.76 0.0 0.07

Table 2: Ablation on ε decay for mean Chamfer and
Hausdorff metrics in SRB. BL×x= baseline scaled
by x.

Method dC ↓ dH ↓
BL 0.18 2.76

BL ×2 0.18 3.17
BL ×0.5 0.19 5.06

Fast decay (0 @ 20%) 0.19 3.51
Slow decay(0 @ 90%) 0.18 3.28

Piecewise Const. 0.20 5.17
Quintic 0.19 3.89

ε = 0 (SIREN [47]) 0.42 7.67
SOTA best (HotSpot) 0.19 3.17

Results on the Surface Reconstruction Benchmark (SRB): SRB consists of five noisy shapes as
point clouds with normals. For fair evaluation we compare our method with the normal-free versions of
SoTA. To train the network we used 5 hidden layers and 128 neurons. For ε, we used an annealing strategy,
setting ε = 0.5 initially and decaying to zero through piece-wise linear schedule. This decay schedule does not
add extra hyperparameters because a similar annealing strategy was used for the divergence terms in DiGS
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and StEik. We used the MFGI initialization from DiGS. Results for the Chamfer and Hausdorff distances
between ground truth meshes are in Table 1. Our method improves upon all other methods in this task.
There is considerable improvement in the Hausdorff distance, even though we use approximately 50% fewer
parameters than DiGs or SIREN.

(a) DiGS (b) StEik (c) ViscoReg (ours)

Figure 2: Results from the scene reconstruction benchmark from Sitzmann et al. (2019b). The DiGS mesh
(a) is missing fine details like the sofa legs, accurate vase shape on the right, and picture frame details. StEik
(b) performs better but struggles with fine details such as the curtains and plate on the table. The ViscoReg
mesh (c) reconstructs fine details with high fidelity.

Viscosity parameter decay ablation: Baseline decay for all shapes is initial ε = 0.5, decayed linearly at
20/40/60/80% iterations to 0.4/0.04/0.005/0 for ViscoReg (linear). See Tab. 2 for ablation. Many “rea-
sonable" decays work well; an optimal schedule may be obtained via coarse grid search. When the baseline
is reduced by half, the performance degrades and is close to the “no-viscosity” case (i.e. SIREN). This
validates the necessity for viscosity stabilization of the Eikonal. Ablation decay schedules are provided in
the appendix. We also provide additional ablation on the decay schedule for surface reconstruction from real
scans in the appendix.

Scene Reconstruction from Sitzmann et al. (2019b): We use 8 layers and 512 neurons with 10M
sample points as in the original dataset. Qualitative results are in Fig. 2. Without normal information,
methods like SIREN report ghost geometries (Ben-Shabat et al., 2022). Due to the smoothing effect of the
Laplacian term, DiGS does not recover fine details such as sofa legs, vase and picture frames. StEik recovers
details somewhat better but still struggles with more intricate detailing like picture frames, curtains, and the
plate rim. Our method recovers the fine details reconstructing the surface with greater fidelity, even though
we do not use normal information or quadratic layers.

Method dC × 10−2 ↓ F-score ↑ NCS ↑
VisCo Grids w n 32.11 88.52 94.20

SIREN wo n 52.35 75.88 90.36
NeurCADRecon 38.55 84.09 93.74

NSH 38.23 83.97 93.84
HotSpot 36.23 83.00 95.17

DiGS 37.49 86.11 94.72
StEik (lin) 38.45 86.31 94.73
Ours (lin) 30.55 86.50 95.67

Table 3: Comparisons on real scans (Huang et al., 2024).
Only Visco Grids uses normals

Surface Reconstruction from Real
Scans: To further demonstrate ViscoReg’s
robustness, we test it on the real scans
benchmark of Huang et al. (2024), which
consists of 20 noisy range scans of real ob-
jects. We report Chamfer Distance, F-score
and Normal Consistency Score (NCS). For
fair comparison, we test all methods with
the same architecture (4 layers and 256
channels). We use the same decay schedule
starting at 1.0 linearly decaying to 0 by 60%
iterations for all shapes. Despite ViscoGrids
using normal information, ViscoReg out-
performs all methods on 2 out of 3 metrics while showing extremely competitive results on the other.
Notably, we achieve the best results across metrics among methods not using normals. Qualitative results
are presented in Figure 4 where ViscoReg excels at capturing fine details (remote example) while also
maintaining shape integrity (inside of the prism flower pot).

ShapeNet: The dataset consists of 3D CAD models of a variety of object categories. Following Williams
et al. (2021), we evaluate on 20 shapes per category across 13 categories. This preprocessing pipeline ensures
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ViscoReg Ground TruthStEikDiGSHotSpotNSH

Figure 3: Results from ShapeNet for examples from bench, lamp, car, and table (top to bottom) categories.
NSH recovers lumpy surfaces and struggles with details. HotSpot causes tearing of the geometry (see bench
and the pool table) and also causes lumps for simple shapes. DiGS and StEik results do not maintain sharp
details, and exhibit ghost pieces and other artifacts. ViscoReg mesh avoids ghost geometry and reconstructs
fine surface details with high fidelity. The results are from surfaces reconstructed with StEik + quadratic
layers, and others with standard linear layers.

Table 4: Our method is top 2 in every metric compared to SoTA, showing significant improvement in mean
squared Chamfer distances. Bottom two have quadratic layers.

Squared Chamfer ↓ IoU ↑
method mean median std mean median std

SPSR 2.22e-4 1.7e-4 1.76e-4 0.643 0.673 0.158
IGR 5.13e-4 1.13e-4 2.15e-3 0.810 0.848 0.152

SIREN 1.03e-4 5.28e-5 1.93e-4 0.827 0.910 0.233
FFN 9.12e-5 8.65e-5 3.36e-5 0.822 0.840 0.098
NSP 5.36e-5 4.06e-5 3.64e-5 0.897 0.923 0.087

DiGS +n 2.74e-4 2.32e-5 9.90e-4 0.920 0.977 0.199
SIREN wo n 3.08e-4 2.58e-4 3.26e-4 0.309 0.295 0.201

SAL 1.14e-3 2.11e-4 3.63e-3 0.403 0.394 0.272
NSH 7.60e-5 3.40e-5 1.49e-4 0.729 0.934 0.357

HotSpot 4.17e-5 2.35e-5 7.67e-4 0.936 0.976 0.158
DiGS 1.32e-4 2.55e-5 4.73e-4 0.939 0.974 0.126

StEik (lin) 1.36e-4 2.34e-5 9.34e-4 0.963 0.981 0.091
ViscoReg (lin) 5.27e-5 2.32e-5 1.08e-4 0.952 0.978 0.083

StEik (quad) 6.86e-5 6.33e-6 3.34e-4 0.967 0.984 0.088
ViscoReg(quad) 3.72e-5 2.17e-5 7.88e-5 0.959 0.984 0.086

consistent normal orientations and converts internal structures into manifold meshes. We use an architecture
of 4 hidden layers and 256 channels as in Ben-Shabat et al. (2022).
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The results in Table 4 and Fig. 3 clearly demonstrate quantitative and qualitative improvements with
respect to the SoTA. With linear layers, ViscoReg shows 61% decrease in the mean squared Chamfer distance
compared to StEik, while achieving comparable IoU scores (within 1% on mean, and 0.3% in median IoU).
With quadratic layers, in the squared Chamfer metric, we achieve 45% reduction in mean error compared
to StEik. This combined with the lower variance of our results indicates that our method avoids failure
cases better in comparison to StEik. Thus, the proposed regularization helps converge to better minima that
stabilize without smoothing out fine details and thin structures. More results are in the appendix. Similarly,
results for Hotspot is also presented with our same 4\ 256 model.

ViscoReg Ground TruthStEikDiGSHotSpotNSH

Figure 4: Results from real scans of Huang et al. (2024). ViscoReg recovers fine features such as buttons
of the remote, threads of the screw, while also maintaining structural integrity of the empty flower pot.
HotSpot and NSH struggle with details. DiGS and Steik recover lumpy artifacts.

6 Conclusion
We provide theoretical insight on improving the stability when learning a signed distance function using
neural networks. We leverage classical PDE theory to provide an estimate on the worst case error when
using neural networks to approximate the SDF. We also propose a physically-motivated regularizing term
(ViscoReg) for improved reconstruction. We demonstrate the effectiveness of our approach on many bench-
marks and show improved performance compared to the SoTA. However, we note that ViscoReg is designed
to address training stability and high-frequency detail recovery in dense or noisy point clouds, rather than
explicitly targeting completion of extremely sparse inputs or large missing regions. Our method should
extend to neural solvers for other Hamilton Jacobi equations.

Broader Impact Statement

The research presented in this paper does not make use of human subjects, nor does it make any datasets
available with personally identifiable information. The theoretical work is purely foundational and we do
not foresee any direct ethical impacts from it. The empirical work concerns Neural SDF which aids in 3D
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surface reconstruction. Potential negative applications include the generation of deepfakes, and unauthorized
reconstruction of private places. Despite these risks, we believe there is significant positive impact from this
work in fields like robotics, content creation, and scientific visualization.
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A Appendix

In this section, we provide supplementary details for our paper.

Let Ω ⊆ Rn be an open, bounded domain and let u : Ω → R be a sufficiently regular function. The following
norms are defined (Evans, 2022).

Function Space Norms

Lp Norm For 1 ≤ p < ∞, the Lp(Ω) norm is defined as:

∥u∥Lp(Ω) =
(∫

Ω
|u(x)|p dx

)1/p

For p = ∞, the L∞(Ω) norm is defined by the essential supremum:

∥u∥L∞(Ω) = ess sup
x∈Ω

|u(x)|
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W k,p (Sobolev) Norm Let k ∈ N and 1 ≤ p ≤ ∞. The Sobolev norm for the space W k,p(Ω) is defined
using multi-index notation for weak derivatives Dαu, where |α| ≤ k. For 1 ≤ p < ∞, the norm is:

∥u∥W k,p(Ω) =

∑
|α|≤k

∥Dαu∥p
Lp(Ω)

1/p

For p = ∞, the norm is:
∥u∥W k,∞(Ω) = max

|α|≤k
∥Dαu∥L∞(Ω)

Ck Norm For a function u ∈ Ck(Ω̄), which is k times continuously differentiable on the closure of Ω, the
Ck norm is defined as the sum of the supremum norms of all its partial derivatives up to order k:

∥u∥Ck(Ω̄) =
∑

|α|≤k

sup
x∈Ω̄

|Dαu(x)|

A.1 Viscosity Solutions

Denote by USC(Ω̄) and LSC(Ω̄), the space of upper and lower semi-continuous functions, respectively. The
viscosity solution of the Eikonal equation is defined rigourously below.

Definition A.1 (Viscosity Solution) A function u ∈ USC(Ω̄) is a viscosity subsolution of (7) if for all
x0 ∈ Ω̄ and all ϕ ∈ C∞(R3) such that u − ϕ has a local maximum at x0, we have:{

∥∇ϕ(x0)∥2 − f(x0) ≤ 0, if x0 ∈ Ω
min {∥∇ϕ(x0)∥2 − f(x0), u(x0) − g(x0)} ≤ 0, if x0 ∈ ∂Ω

Similarly, u ∈ LSC(Ω̄) is a viscosity supersolution of equation 7 if for all x0 ∈ Ω̄ and all ϕ ∈ C∞(R3) such
that u − ϕ has a local minimum at x0, the following inequality holds:{

∥∇ϕ(x0)∥2 − f(x0) ≥ 0, if x0 ∈ Ω
max {∥∇ϕ(x0)∥2 − f(x0), u(x0) − g(x0)} ≥ 0, if x0 ∈ ∂Ω

Then, u ∈ C(Ω) is a viscosity solution of (7) if it is both a viscosity subsolution and a supersolution.

Next, we state formally the result for covergence of solutions of the parabolic equation 2 to the solution of
equation 1 in the limit (Crandall & Lions, 1983).

Theorem 2 For each ε > 0, let uε ∈ C2(Ω̄)∩C(Ω̄) denote the unique solution to 2. Then uε → u uniformly,
as ε → 0+, where ε is the unique viscosity solution of (1).

A.2 Mathematical Proofs

Let u1, u2 be viscosity solutions of ∥∇u∥2 = f1, ∥∇u∥2 = f2, respectively. The comparison principle states
that if f1 ≤ f2 in Ω̄, and u1|∂Ω ≤ u2|∂Ω then u1 ≤ u2 in Ω̄. We prove Lemmas 1 and 2 using this theory
(Calder, 2018).

A.2.1 Proof of Lemma 1

Let C = max∂Ω ∥u − v∥. Then by definition:

u(x) − C ≤ v(x), x ∈ ∂Ω. (19)
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The function u(x) − C is also a solution to the equation ∥∇(u − C)∥ = f . The comparison principle for
Hamilton-Jacobi equations (see Corollary 3.2 in Calder (2018)) then implies that:

u(x) − C ≤ v(x) x ∈ Ω (20)
=⇒ u(x) − v(x) ≤ max

∂Ω
(u − v), ∀ x ∈ Ω (21)

This bound may also be obtained for v − u by flipping u and v. It follows that,

∥u − v∥∞ ≤ max
∂Ω

∥u − v∥ = ∥g1 − g2∥∞ (22)

A.2.2 Proof of Lemma 2

Let f̂1 = λf1 where λ = maxΩ
f2
f1

. By construction, this ensures that f̂1 ≥ f2. Note that λu1 is the viscosity
solution to the Eikonal equation with slowness f̂1. Since λu1, u2 are the viscosity solutions, they obey the
maximum principle, and hence λu1 ≥ u2. This leads to the following inequality:

u2 − u1 ≤ (λ − 1)u1 ≤ max
Ω

f2 − f1

f1
u1

≤ 1
Cf

∥f1 − f2∥∞u1. (23)

Since u1 is the signed distance function, it can be bounded by the maximum time to travel between two
points in the domain, and hence,

∥u1∥∞ ≤ C(Ω)C−1
f . (24)

Inequality equation 23 may also be derived for u1 − u2 by swapping u1 and u2. Consequently:

∥u1 − u2∥L∞(Ω) ≤ CΩC−2
f ∥f1 − f2∥∞ (25)

A.2.3 Proof of Theorem 1

First, we state the following classical result that follows from the Gagliardo–Nirenberg interpolation inequal-
ity relating different function norms Nirenberg (1959).

Theorem 3 Let Ω ⊂ R3 be an open, smooth, bounded and connected domain. For u ∈ L1(Ω) ∩ W 6,1(Ω), we
have:

∥u∥∞ ≤ C ′
Ω∥u∥1/2

W 6,1(Ω) ∥u∥1/2
1 . (26)

Here C ′
Ω is a constant depending only on Ω.

Note that this result also holds for compact Riemannian manifolds Nirenberg (1959).

Proof of Theorem 1 By Lemma 1, equation 1 can have at most one continuous viscosity solution. Since
uθ∗ is smooth, it is the unique viscosity solution to equation 10. Define an auxillary function ûθ∗ ∈ C(Ω̄)
such that it is the unique viscosity solution of the PDE:

∥∇ûθ∗(x)∥2 = 1, x ∈ Ω, ûθ∗(x) = gθ∗(x), x ∈ ∂Ω. (27)

By the regularity of ∂Ω and gθ∗ : ∂Ω → R, we have ûθ∗ ∈ C(Ω). Using the triangle inequality:

∥u − uθ∗∥∞ ≤ ∥u − ûθ∗∥∞ + ∥ûθ∗ − uθ∗∥∞. (28)

Using Lemma 1 and Lemma 2 to bound the first and second term, respectively:

∥u − uθ∗∥∞ ≤ ∥gθ∗∥∞ + CΩC−2
θ∗ ∥1 − fθ∗∥∞. (29)
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where CΩ is a constant depending only on the domain. Using the Gagliardo-Nirenberg interpolation inequal-
ity (see Theorem 3 in the appendix) for the open bounded set Ω and compact Riemannian manifold ∂Ω,
along with Assumption 3:

∥u − uθ∗∥∞ ≲ Mθ∗∥gθ∗∥
1
2
1 + Mθ∗C−2

θ∗ ∥1 − fθ∗∥
1
2
1 , (30)

where the hidden constants in ≲ only depends on Ω̄. Observe that both ∥gθ∗∥1 and ∥1 − fθ∗∥1 can be
approximated by their sample norms. The neural SDF method samples uniformly in the domain for the
Eikonal loss ∥1−fθ∗∥1 and hence the L1(Ω) quadrature error is O(N−1/3), where N is the number of sample
points. Assumption 2 can be used to bound the boundary loss ∥gθ∗∥1. This gives:

∥u − uθ∗∥∞ ≲ Mθ∗

(∑N
i=1 |gθ∗(xi)|

N

) 1
2

+ Mθ∗C−2
θ∗

(∑M+N
i=1 |1 − fθ∗ |

M + N

) 1
2

+ O(N− β
2 ) + O((M + N)−1/6). (31)

Since the first term can be represented using the boundary loss, and the second term by the Eikonal loss,
we obtain the required result. □

The L2 error estimate may be obtained in a similar setting as Theorem 2 by using a more general version of
Theorem 1 that we state below.

Theorem 4 Nirenberg (1959) Let Ω ⊂ R3 be an open smooth connected domain. Let 1 ≤ r, m ≤ ∞ and
α ∈ [0, 1] such that:

(1 − α)
(

m

3 − 1
r

)
= α

p
(32)

for p = 1, 2. Then for u ∈ L2(Ω) ∩ W m,r(Ω), we have:

∥u∥∞ ≤ ∥u∥1−α
W m,r(Ω) ∥u∥α

p . (33)

By following the proof of Theorem 2, with this inequality, we can provide a similar result.

A.3 Derivation of the Gradient Flow

For p = 1, the first variation of the energy δLveik(u)[v] in the direction of a test function v is:

δLveik(u)[v] =
∫

Ω
sign(r(u))

(
∇u · ∇v

∥∇u∥2
− ε∆v

)
dx (34)

To obtain the Frèchet derivative, we apply integration by parts (with vanishing boundary terms as SDF is
zero on the boundary). Let r(u) = ∥∇u∥2 − 1 − ε∆u denote the viscous residual.

• Eikonal term:
∫

sign(r) ∇u·∇v
∥∇u∥ dx = −

∫
v∇ ·

(
sign(r) ∇u

∥∇u∥

)
dx.

• Viscous term: −ε
∫

sign(r)∆v dx = −ε
∫

v∆(sign(r))dx.

The Frèchet derivative is:
δLveik

δu
= −∇ ·

(
sign(r) ∇u

∥∇u∥2

)
− ε∆(sign(r)) (35)

and the gradient flow equation may be obtained as ut = − δL
δu .
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A.4 Proof of stability for p = 2.

For p = 2, the first variation of the energy δLveik(u)[v] is:

δLveik(u)[v] =
∫

Ω
r(u)

(
∇u · ∇v

∥∇u∥2
− ε∆v

)
dx (36)

Applying integration by parts as before

• Eikonal term:
∫

r ∇u·∇v
∥∇u∥ dx = −

∫
v∇ ·

(
r ∇u

∥∇u∥

)
dx.

• Viscosity term: −ε
∫

r∆v dx = −ε
∫

v∆r dx.

The Frèchet derivative is:
δLveik

δu
= −∇ ·

(
r

∇u

∥∇u∥2

)
− ε∆r (37)

The gradient flow equation is then ut = − δL
δu . Linearizing around u0 = a · x (with ∥a∥2 = 1):

ut = (a · ∇)2u − ε2∆2u (38)

In the Fourier domain:
v̂t = −

(
(a · ω)2 + ε2∥ω∥4

2
)

û (39)
The Fourier symbol λ(ω) = −[(a ·ω)2 +ε2∥ω∥4

2] is always non-positive. Frequency damping and thus stability
is again guaranteed by the ε2∥ω∥4 term.

A.5 Implementation Details

All the methods are evaluated on a single Nvidia RTX A6000 GPU. For testing for all shapes, we use
the Marching Cubes algorithm Lorensen & Cline (1998) with resolution 512 and the same mesh extraction
process as Yang et al. (2023), Ben-Shabat et al. (2022) and other methods.

A.5.1 2D Mandelbrot Set

All methods were evaluated with the same 4 layer 128 neuron architecture, and optimized for 10000 iterations.
We compute the ground truth SDF using a dense sampling of the 2D domain and report the RMSE and
MAE of the learned SDF.

All methods utilized a 4-layer SIREN architecture (sine activations) with 128 hidden units, initialized
via Multi-Frequency Geometric Initialization (MFGI). The models were optimized using a learning rate
of 5 × 10−5. At each step, we sampled 15, 000 domain points. The loss terms were balanced with weights
[αm, αnm, αe] = [3000, 100, 50]. To decouple spurious errors from far-field extrapolation, we report RMSE
and MAE within a bounded domain (all points with SDF <0.5). As the object is normalized to have a bound-
ing box half-width of 0.5, this evaluation threshold of δ = 0.5 is equivalent to 100% of the object’s maximal
spatial extent from the center and includes all interior points. We additionally report “Near Surface” error
(i.e abs(SDF)<0.05) to highlight accuracy near the zero-level set. See Table 5 for results.

A.5.2 Surface Reconstruction Benchmark

First, we center the input point clouds at the origin and normalize them so that it is inside the unit cube.
The bounding box is scaled to 1.1 times the size of the shape. At each iteration, we sample 15,000 points
from the original point cloud and an additional 15,000 points uniformly from the bounding box. Training is
conducted for 10,000 iterations with a learning rate of 10−4. The weights were taken to be [αm, αnm, αe] =
[3000, 100, 50]. Baseline decay for all shapes is initial ε = 0.5, decayed linearly at 20/40/60/80% iterations
to 0.4/0.04/0.005/0. We used 5 hidden layers, and 128 nodes. MFGI with sphere initial parameters was
taken to be (1.6, 0.1).

Additional quantitative results for each individual shape are presented in Table 15.
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Table 5: Quantitative comparison of SDF reconstruction on 2D Mandelbrot Set.

Overall Near Surface (< 0.05)
Method RMSE MAE RMSE MAE
SIREN 0.055 0.036 0.0150 0.0091
DiGS 0.052 0.031 0.0110 0.0074
StEik 0.034 0.023 0.0120 0.0076
ViscoReg 0.024 0.015 0.0091 0.0062

Adaptive Decay Strategy: We test a method to adaptively control the ε parameter based on the absolute
error of the eikonal constraint. The update for the viscosity weight εt at iteration t is defined as:

εt =
{

max (εmin, εtarget_decay(t) + S · EMAt−1) if t < 0.5 · N

0 if t ≥ 0.5 · N

Here εtarget_decay is the baseline target decay. The baseline provides a monotonically decaying target for
εt. The progress p is normalized over the first 50% of training: p = t/(0.5 · N), with εtarget_decay(t) =
εinitial · (γfactor)p. Then we use Exponential Moving Average (EMA) to track the recent residual of the pure
Eikonal constraint, LEik, to assess the need for regularization.

EMAt = β · EMAt−1 + (1 − β) · LEik,t

For the SRB dataset we use εinitial = 0.4, γfactor = 0.01, β = 0.999, S = 0.5 (Sensitivity factor) and
εmin = 0.0.

Table 6: Adaptive Decay for SRB. dC : Chamfer and dH : Hausdorff distance.

Shape Piecewise Linear Adaptive Decay
dC dH dC dH

anchor 0.23 4.35 0.23 4.14
dc 0.16 1.33 0.15 1.53
daratech 0.18 2.96 0.19 1.87
gargoyle 0.18 3.81 0.18 4.31
lord_quas 0.13 1.37 0.13 1.13
Mean 0.18 2.76 0.18 2.60

A.5.3 L1 vs L2 ViscoReg

We tested the model on SRB using p = 2 for the ViscoReg parameter in Table 7. Empirically, we see better
performance for p = 1. The improved performance of p = 1 is seen across a range of method such as DiGS
and StEik as well. It is perhaps unsurprising as L2 tends to suppress the large gradients required for sharp
edges, which can cause over-smoothing. Whereas the L1 norm is more tolerant to these geometric features.

A.5.4 Computational Cost

The bulk of the computational cost comes from calculating the Laplacian. Hence, the computational cost is
just slightly lower than that of DiGS and higher than that of StEik (who computes the directional derivative
with more efficient calculations). Timings are presented in Table 8 for the SRB dataset with experiments
conducted on A100 GPU.

Loss dC dH

L1 ViscoReg 0.18 2.76
L2 ViscoReg 0.19 4.49

Table 7: L1 vs L2 ViscoReg loss terms
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Table 8: Runtime comparison in ms. All models utilize a 4 × 256 architecture with 0.26M parameters.

Method DiGS StEik ViscoReg
Runtime (ms) 36.05 27.68 35.50

A.5.5 Ablation

Table 9: Ablation on ε decay for anchor.

Method dC ↓ dH ↓
BL 0.23 4.35

BL ×2 0.25 5.36
BL ×0.5 0.26 4.70

Piecewise Const. 0.29 7.97
Quintic 0.26 6.35

Fast decay (0 @ 20%) 0.31 7.33
Slow decay(0 @ 90%) 0.25 5.71
ε = 0 (SIREN [47]) 0.72 10.98

SoTA best 0.26 4.26

Table 10: Ablation on ε decay for dc.

Method dC ↓ dH ↓
BL 0.16 1.33

BL ×2 0.15 1.44
BL ×0.5 0.16 1.39

Piecewise Const. 0.16 1.49
Quintic 0.17 1.32

Fast decay (0 @ 20%) 0.16 1.35
Slow decay(0 @ 90%) 0.15 1.23
ε = 0 (SIREN [47]) 0.34 6.27

SoTA best 0.15 1.70

Table 11: Ablation on ε decay for daratech.

Method dC ↓ dH ↓
BL 0.18 1.33

BL ×2 0.18 1.44
BL ×0.5 0.20 1.39

Piecewise Const. 0.21 1.49
Quintic 0.19 1.32

Fast decay (0 @ 20%) 0.19 1.35
Slow decay(0 @ 90%) 0.20 1.23
ε = 0 (SIREN [47]) 0.21 6.27

SoTA best 0.18 1.72

Table 12: Ablation on ε decay for gargoyle.

Method dC ↓ dH ↓
BL 0.18 3.81

BL ×2 0.17 3.97
BL ×0.5 0.21 9.18

Piecewise Const. 0.18 4.09
Quintic 0.19 6.06

Fast decay (0 @ 20%) 0.18 3.95
Slow decay(0 @ 90%) 0.19 4.48
ε = 0 (SIREN [47]) 0.46 7.76

SoTA best 0.17 4.10

Table 13: Ablation on ε decay for lord_quas.

Method dC ↓ dH ↓
BL 0.13 1.37

BL ×2 0.13 2.18
BL ×0.5 0.14 6.45

Piecewise Const. 0.14 3.65
Quintic 0.14 2.30

Fast decay (0 @ 20%) 0.13 2.04
Slow decay(0 @ 90%) 0.12 1.41
ε = 0 (SIREN [47]) 0.35 8.96

SoTA best 0.11 0.70
For the ablation studies, the decay schedules are as follows. BL×x= baseline decay of 0.5/0.4/0.04/0.005/0
at 0/20/40/60/80%4 iterations scaled by x. Fast decay corresponds to a quick decay to 0, of 0.5/0.0 at
0/20% iterations. Slow decay corresponds to extended decay at 90 percent of iterations with a schedule
0.5/0.4/0.04/0.005/0 at 0/20/40/60/90%. We also test piecewise constant and piecewise quintic decay as
opposed to piecewise linear. Ablation studies per shape are provided in Tab.9-13.
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dC × 10−2 F-Score NCS
Baseline 30.55 86.50 95.67
Faster Decay (0 @50) 33.88 84.44 92.61
Slower Decay (0 @70) 36.88 85.07 93.36
Lower Start at 0.8 35.42 85.10 94.08
Higher start at 1.2 36.48 85.00 91.64
BL×0.5 35.58 84.42 91.82

Table 14: Ablation on real data from Huang et al. (2024).

Further ablation studies are provided for real nonsynthetic data in Table 14. Baseline decay is 1.0 decayed
linearly at 60% of iterations to 0. BL×x denotes baseline scaled by x. Lower start starts decay at 0.8 and
higher start starts decay at 1.2.

Shape Method dC dH

Overall

IGR wo n 1.38 16.33
SIREN wo n 0.42 7.67

SAL 0.36 7.47
IGR+FF 0.96 11.06

PHASE+FF 0.22 4.96
DiGS 0.19 3.52
StEik 0.18 2.80

ViscoReg 0.18 2.76
ViscoReg (quad) 0.18 2.69

Anchor

IGR wo n 0.45 7.45
SIREN wo n 0.72 10.98

SAL 0.42 7.21
IGR+FF 0.72 9.48

PHASE+FF 0.29 7.43
DiGS 0.29 7.19
StEik 0.26 4.26

ViscoReg 0.23 4.35
ViscoReg (quad) 0.26 4.90

Daratech

IGR wo n 4.9 42.15
SIREN wo n 0.21 4.37

SAL 0.62 13.21
IGR+FF 2.48 19.6

PHASE+FF 0.35 7.24
DiGS 0.20 3.72
StEik 0.18 1.72

ViscoReg 0.19 2.97
ViscoReg (quad) 0.17 1.43

DC

IGR wo n 0.63 10.35
SIREN wo n 0.34 6.27

SAL 0.18 3.06
IGR+FF 0.86 10.32

PHASE+FF 0.19 4.65
DiGS 0.15 1.70
StEik 0.16 1.73

ViscoReg 0.16 1.33
ViscoReg (quad) 0.16 1.29

Gargoyle

IGR wo n 0.77 17.46
SIREN wo n 0.46 7.76

SAL 0.45 9.74
IGR+FF 0.26 5.24

PHASE+FF 0.17 4.79
DiGS 0.17 4.10
StEik 0.18 4.49

ViscoReg 0.18 3.80
ViscoReg (quad) 0.18 4.15

Lord Quas

IGR wo n 0.16 4.22
SIREN wo n 0.35 8.96

SAL 0.13 4.14
IGR+FF 0.49 10.71

PHASE+FF 0.11 0.71
DiGS 0.12 0.91
StEik 0.13 1.81

ViscoReg 0.14 1.37
ViscoReg (quad) 0.13 1.69

Table 15: Additional quantitative results on the Surface Reconstruction Benchmark using point data without
normals.

A.5.6 Faster Convergence

We demonstrate ViscoReg’s faster convergence to better minima (in terms of the Eikonal constraint) than
SIREN Sitzmann et al. (2019b) with unstable Eikonal loss (see Fig 6).

A.5.7 Scene Reconstruction

For this experiment, we used an architecture of 8 hidden layers, and 512 channels. At each iteration, we
sample 15,000 points from the original point cloud and another 15,000 points uniformly at random within
the bounding box. Training is performed for 100,000 iterations with a learning rate of 8×10−6. The weights
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(a) Comparison on SRB shapes dc and lord_quas

(b) Reconstructed shapes gargoyle, anchor, and daratech using ViscoReg.

Figure 5: Qualitative results from SRB.

used were [αm, αnm, αe] = [5000, 100, 50]. The viscosity coefficient ε decayed piecewise linearly starting at
0.5, decaying to 0.01 at 50 percent iterations followed by steeply decaying to 0 at 60 percent.

A.5.8 Shapenet

We follow the preprocessing and evaluation methodology outlined in Williams et al. (2021). First, the
preprocessing technique from Mescheder et al. (2019) is applied, then performance is evaluated on the
first 20 shapes of the test set for each shape class. The preprocessing step extracts ground truth surface
points from ShapeNet and generates random samples within the domain, and their corresponding occupancy
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Figure 6: Deviation from Eikonal.

values. We use the MFGI initialization proposed in DiGS for this experiment. For evaluation, the ground
truth surface points are used to compute the squared Chamfer distance, while the labeled random samples
are used to calculate the Intersection over Union (IoU).

During training, 15,000 points are sampled from the original point cloud and an additional 15,000 points
are sampled uniformly at random within the bounding box. The model is trained for 10,000 iterations with
a learning rate of 5 × 10−5. The weights were chosen to be [αm, αnm, αe] = [3000, 100, 50]. The viscosity
coefficient ε decayed piecewise linearly starting at 1.0 decreasing at 10%, 20%, 30% and 40% to 0.0 for all
shapes besides rifle, lamp, and table. For these shapes, we start the decay at ε = 10.0.

Note that to report results for HotSpot Wang et al. (2025), we used as reported in their work, 5 layer, 128
hidden dimension architecture with linear layers.

For quadratic ViscoReg architecture, the decay rate was taken as 1.0/0.5/0/0 at 0/10/20% iterations.

Additional qualitative results are provided in Figure 8.

A.5.9 Real scans

To test the performance of this method on a dataset of real noisy scans, we used a 4 layer, 256 hidden
dimension architecture for all methods. All methods were trained for 20000 iterations. We used standard
siren initialization for all methods with a learning rate of 1e-4 for ViscoReg, StEik, DiGS and SIREN and
learning rate 5e-5 for all others. A single RTX2080Ti GPU was used for all experiments. Additional result
on the marker shape is presented in Fig. 9 where all methods with the exception of ViscoReg struggle to
maintain the hollow interior of the mug.

A.5.10 Activation Function Ablation

We use SIREN as the backbone architecture. We utilize this architecture because our method relies on
second-order derivatives (Laplacians), and ReLU networks have vanishing second-order gradients being
piecewise linear. SIREN remains the standard architecture for many recent SoTA; for instance, HotSpot,
NeurCADRecon, StEik, etc. all rely on it as their main architecture.

However, as proof of concept that ViscoReg can be applied to other activation functions (provided they
support second-order derivatives), we evaluated ViscoReg using the FINER activation (Liu et al., 2024) on
the SRB dataset. We kept the architecture and hyperparameters consistent with the SIREN experiments.

Table 16: Comparison of StEik and ViscoReg models

SIREN FINER
Model dC dH dC dH

StEik (lin) 0.20 4.56 0.28 9.59
ViscoReg (Ours) 0.18 2.76 0.26 5.55
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(a) DiGS

(b) StEik

(c) ViscoReg (ours)

(d) DiGS

(e) StEik

(f) ViscoReg (ours)

Figure 7: Results from the scene reconstruction benchmark from Sitzmann et al. (2019b). The left column**
compares results on one view of the scene: The DiGS mesh (a) is missing fine details like the sofa legs
and picture frame details. StEik (b) performs better but struggles with fine details such as the curtains.
ViscoReg (c) reconstructs these fine details with high fidelity. The right column provides additional views
of the scene.
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Figure 8: Quantitative results from the ShapeNet dataset from bench, cabinet, rifle and table categories.
Chang et al. (2015). 26
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Figure 9: Further Results from real scan reconstruction.
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