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ABSTRACT

Deep long-tail learning is a challenging visual recognition problem that trains
models on long-tailed distributed datasets. In the last decade, a large number of
methods have been proposed to solve the problems caused by imbalanced data.
Many methods have been proven useful in learning a deep model from scratch,
such as ResNet or ResNeXt, but they have not been validated as effective in fine-
tuning the pre-trained foundation models, such as CLIP or ViT. If users inappro-
priately apply these long-tail learning methods, it may result in worse accuracy
than expected. However, there is no scientific guideline for these methods in the
existing literature. In this paper, we first collect the widely used methods of ex-
isting long-tail learning and then conduct extensive and systematic experiments to
provide a guideline for the accurate use of these methods in fine-tuning foundation
models. Furthermore, we observe that the current comparison protocol ignores
the influence of training cost and hyperparameter selection, which may poten-
tially lead to unfair comparisons and biased results. Motivated by our empirical
studies, we propose a unified fine-tuning framework for long-tailed recognition.
Experimental results demonstrate that the proposed framework outperforms exist-
ing methods on multiple long-tailed datasets, including ImageNet-LT, Places-LT,
CIFAR100-LT, and iNaturalist 2018.

1 INTRODUCTION

Deep neural networks have achieved great success in a variety of computer vision tasks, such as
image recognition (Voulodimos et al., |2018; [Krizhevsky et al., 2012)), object detection (Zhao et al.,
2019; |Zou et all 2023), etc. These achievements are attributed to the availability of large-scale
datasets (Deng et al., 2009} [Zhou et al., 2017} Krizhevsky}, 2009) and the elaborately designed mod-
els (He et al.| 2016} |Dosovitskiy et al|2021). However, in the real world, the natural data typically
exhibits a long-tailed distribution (Liu et al., 2019} |Cao et al., |2019; |Kang et al., [2020; [Yuan et al.}
2021a;|Yan et al., 2023 |Xu et al.,2023a), where a small number of head classes have the majority of
samples, and a large number of tail classes have only a few samples. Such extreme class imbalance
poses severe challenges to the training of deep neural networks. The reason lies in that the models
are prone to making predictions biased towards the head classes, leading to poor performance on tail
classes, thereby decreasing the overall prediction performance (Tan et al.,2020; [Zhang et al.| [2023).

To solve the long-tail problem, many methods have been proposed in recent years. For example,
re-weighting methods (Wu et al., 2020; Khan et al.,|2019;|Cui et al.,|2019) aim to adjust the training
loss for each class by multiplying it with a different weight; re-sampling methods (Chawla et al.,
2002; |Liu et al., 2008; [Shi et al., 2023) aim to adjust the number of samples for each class in each
sample batch to rebalance the classes; ensemble learning methods (Zhou et al.|, 2020; Wang et al.,
2021b) aim to combine multiple exports to reduce the bias of the model towards the head classes.
These existing methods have made significant progress in improving classification accuracy, but the
experimental results of these methods are obtained from models trained from scratch, with limited
research on fine-tuning pre-trained foundation models.

Recently, some works study long-tail learning with foundation models instead of training from
scratch, such as BALLAD (Ma et al. |2021), VL-LTR (Tian et al.| 2022), LPT (Dong et al. |2023)),
LIFT (Shi et al.| [2024)), and RAC (Long et al.,|2022). However, these studies are less comprehensive
and lack a systematic investigation. BALLAD and VL-LTR focus on two-stage learning methods,
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while LPT and LIFT utilize rebalanced loss functions to mitigate the long-tail problem. On the other
hand, BALLAD, VL-LTR, and RAC only apply the full fine-tuning setting, while LPT and LIFT fo-
cus solely on the parameter-efficient fine-tuning approaches. To the best of our knowledge, there has
not been a systematic study on how to fine-tune foundation models under a long-tailed distribution.

In this paper, we delve into the commonly used methods in long-tail learning and apply them to
fine-tune pre-trained CLIP (Radford et al., [2021)) and ViT (Dosovitskiy et al.l [2021), which are
widely used in various visual tasks (Dehghani et all 2023} Zhou et al., [2022; |Yuan et al.| [2021bj
Wang et al., 20214} |Gao et al., |2024). We conduct extensive and systematic experiments to evaluate
whether these methods are equally effective on foundation models as learning from scratch. We
also analyze their training costs and hyperparameter selections. Finally, motivated by the results of
our empirical studies, we integrate the optimal methods and propose a unified training framework.
The proposed framework achieves better results than existing approaches on multiple long-tailed
datasets, including ImageNet-LT (Liu et al., [2019), Places-LT (Sharma et al.| [2021), CIFAR100-
LT (Cao et al., 2019), and iNaturalist 2018 (Van Horn et al., [2018)).

The main contributions of our work are as follows:

* We thoroughly explore the effectiveness of commonly used methods in long-tail learning when
applied to foundation models to provide guidance for future research.

* We propose a unified fine-tuning framework by assembling optimal methods, which outperforms
existing methods on multiple long-tailed datasets.

* We investigate training costs and hyperparameter selection in experiments to offer comprehen-
sive recommendations for the use of these methods in practical settings.

2 RELATED WORK

Long-Tail Learning There are several methods being proposed to address the long-tail prob-
lem (Liu et al.l 2019; |Cao et al.l 2019; |Cui et al., [2019; [Kang et al., 2020; Zhou et al., [2020; [Zhong
et al., 2021} Yang et al.|[2022;|Zhang et al.| [2023)), which can be divided into three categories (Zhang
et al., 2023): 1) Class re-balancing aims to enhance the model’s ability to recognize minority classes
by rebalancing the sample proportions across different classes, including re-sampling (Chawla et al.|
2002; Liu et al., 2008} Shi et al.| 2023)), class-sensitive re-weighting (Wu et al., 2020; |Khan et al.,
2019; [Cu1 et al.} 2019), and logit adjustment (Menon et al., 2021; |[Zhang et al., [2021aj |Hong et al.,
2021). 2) Information augmentation aims to improve model performance on long-tailed data by
incorporating additional information during model training, including transfer learning (Cui et al.,
2018; |Xiang et al., 2020) and data augmentation (Shorten & Khoshgoftaar, 2019} Zhong et al.,
2021). 3) Module improvement methods seek to address long-tail problems by improving network
modules or representations, including classifier design (Wu et al., 2021} [Liu et al. [2021a), con-
trastive learning (Kang et al.l 2021; Zhu et al., 2022), and ensemble learning (Zhou et al., 2020;
Wang et al., |2021b). However, these works only study how to train models from scratch and ignore
the development of pre-trained foundation models. In this paper, we aim to further investigate the
specific effects of the representative methods by applying them to the advanced foundation models.

Fine-Tuning Foundation Models The pre-trained foundation models have attracted widespread
attention in recent years (Vaswani et al., 2017} [Dosovitskiy et al.l 2021} |Radford et al., 2021} |Tou-
vron et al., 2021} [Liu et al., 2021b)). These models are pre-trained on web-scale data to construct so-
phisticated features and transferred to various downstream tasks, such as image classification (Yuan
et al., 2021a)), object detection (Yan et al. |2023), and semantic segmentation (Xu et al., 2023a).
Moreover, the adaptation to downstream tasks can be further improved by applying extra data to
fine-tune the foundation model (Dosovitskiy et al., 2021} Zhou et al., |2022). There are two fine-
tuning approaches: full fine-tuning (Kumar et al.| 2022) and parameter-efficient fine-tuning (Zaken
et al.| [2022; Jia et al) 2022} |Chen et al., |2022), where the latter is regarded as a typical efficient
mode by introducing only a few learnable parameters. However, these methods mainly utilize the
balanced data for fine-tuning, which may yield unsatisfactory results when directly applied to the
long-tailed datasets (Shi et al., [2024). Although some works have been proposed to mitigate this
issue (Ma et al.l 2021} [Tian et al.l [2022; [Dong et al., 2023} [Zhang et al., [2021b), no research has
systematically studied the impact of long-tail learning algorithms on foundation models. For the
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first time, we explore the reasonable application of long-tail learning methods on foundation models
to provide a guideline for future applications.

3 METHODS GALLERY

We commence by introducing the Problem Definition, then categorize classical long-tail learning
methodologies into 7 distinct groups: 1) Re-sampling, 2) Data Augmentation, 3) Class-sensitive
Loss, 4) Balanced Classifier, 5) Knowledge Distillation, 6) Ensemble Learning, and 7) Other tricks.
For each group, we first revisit relevant methods and then compare experimental performance. To
ensure the reliability of our investigation, we experiment under different scenarios, including dif-
ferent foundation models (CLIP and ViT) and different fine-tuning paradigms (FFT and PEFT).
Comprehensive details regarding the datasets and implementation settings are provided in Appendix
Section[A] Due to the page limit, the knowledge distillation method is introduced in Appendix Sec-
tion[B] and the ensemble learning method is presented in Appendix Section [C]

3.1 PROBLEM DEFINITION

Long-tailed recognition aims to learn deep classification models from training datasets character-
ized by a long-tailed class distribution, where a small number of classes contain a large number of
samples, while the majority of classes have only a few samples. Formally, we denote the long-tailed
datasets with N samples as D = {z;,y;}]*,. Besides, we denote n; as the sample frequency of

class i (1 < i < K), then we have N = Zf:l n;. In long-tail learning, the class frequencies
are arranged in a descending order (Kang et al., [2020), ie., if 1 < ¢ < j < K, then n; > n;.
The imbalance ratio is defined as 7 = .-, representing the ratio between the class with the largest
number of images and the class with the smallest number of images, which can be used to describe
the severity of the long-tailed distribution. In practice, r formulates a large number, which indicates
that ny > ng in a long-tailed dataset. The goal of long-tail learning is to learn a model M from the
imbalanced data D so that M can attain optimal predictions on test data.

3.2 RE-SAMPLING

Due to the intrinsic data imbalance in the long-tailed data, conventional sampling methods result in
more head-class samples than tail-class samples in each training batch (Kang et al.|[2020;2021}; /Zhu
et al.,2022). Re-sampling tackles this issue by adjusting the sample distribution of each class within
the training data.

Re-sampling Methods We investigate several classic and widely used re-sampling methods.

¢ Random Over-Sampling (ROS) (Buda et al.l [2018) balances the data distribution by duplicat-
ing samples from the tail classes to increase their proportion in training data to achieve a more
balanced sample distribution between head classes and tail classes.

¢ Random Under-Sampling (RUS) (More, |2016) aims to balance the data distribution by reducing
the number of samples from the head classes to make their sample frequencies closer to those of
the tail classes.

* Equalized re-sampling (EQ) (Kang et al., [2020; [Shi et al., |2023) dynamically applies over-
sampling or under-sampling to different classes by ensuring the total size of the dataset is un-
changed. In this case, it obtains a balanced dataset without adding more training overhead.

e Square-root sampling (Kang et al), [2020) addresses limitations of balanced re-
sampling—excessive discarding of head-class samples and redundant duplication of tail-class
samples. This approach samples class j with probability p; = nijnq (n; = class sample

i=1""%
count). Setting ¢ = %, it reduces head-class sampling frequency while preventing over-balancing
between head and tail classes.

Experimental Result Table [I] shows the results of using different re-sampling methods on
CIFARI100-LT and Places-LT datasets. For more detailed results, please refer to Appendix sec-
tion[D.1]
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Table 1: Accuracy of re-sampling methods. “Baseline” represents no resampling. Bold and
underlined numbers represent the optimal and sub-optimal results, respectively; the same notations
are applied to all tables below.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT |FFT PEFT|FFT PEFT|FFT PEFT
Baseline [54.6 71.9 [70.3 80.7 [24.7 39.8 [26.0 32.1
ROS 44.8 68.3 [48.3 71.0 |12.6 383 |11.4 32.2
RUS 455 774 [69.3 87.0 |42.3 50.8 |41.2 453
EQ 50.4 72.8 |62.0 77.3 |21.7 43.7 |22.0 33.7
Square-root|56.8 76.4 (76.0 84.4 |37.1 47.5 [32.6 39.7

Based on our experimental findings, these sampling methods consistently perform better under the
PEFT setting than under the FFT setting. RUS and Square-root sampling are proven to be more
effective strategies, which can significantly enhance performance by more than 5%. In contrast,

ROS exhibits significant performance deterioration, which is due to the severe overfitting issue. The
performance of EQ is between RUS and ROS.

Given that the model is already pre-trained, these results appear to be justifiable: a minimal amount
of data is sufficient to fine-tune the model and improve its performance on long-tailed datasets. We
conduct an additional experiment to verify this point. Specifically, we compare the balanced dataset
obtained through the RUS with 2, 5, and 10 times larger variants. Table |Z| reports the results on
the CLIP-ViT-B/16 PEFT setting, showcasing that RUS performs better, particularly on tail classes.
As the data amount grows larger, though the head-class performance slowly increases, the tail-class
performance exhibits significant declines.

We evaluated the models with two RUS and RUSx10 to enable a deeper mechanistic analysis. We ex-
tract the features of tail-class test data from CIFAR100-IR100 using these two models and visualize
the results using t-SNE, as shown in Figure[Ta|[Tb] The ellipse is constructed using the eigenvectors
and eigenvalues of the covariance matrix, derived from the data’s mean and covariance, which define
its orientation, major and minor axes, and center.

Figure 1: t-SNE visualization and classifier weight norms for RUS and RUSx10.
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(a) t-SNE visualization for RUS (b) t-SNE visualization for RUSx10  for RUS and RUSx10.

It can be observed that the ellipses in the t-SNE plot for RUS exhibit less overlap. This indicates
more distinct decision boundaries for the tail classes, leading to better tail classification performance.
Additionally, the weight norms of the model’s classifier are presented in Figure RUS clearly
demonstrates a more balanced distribution across all classes.

Furthermore, in terms of the training cost, the samples produced by RUS and Square-root sampling
are significantly fewer, nearly 100 times less than those generated by ROS (the number varying
with the dataset). Therefore, the training time cost is substantially lower than that of ROS and EQ
under the same setting. Considering the above factors, using RUS or Square-root sampling is more
practicable for fine-tuning foundation models with long-tailed datasets.

3.3 DATA AUGMENTATION

Data augmentation (Shorten & Khoshgoftaar, |2019) aims to increase data diversity by applying
predefined transformations, thereby improving model generalization, especially in scenarios where
the available data is limited.
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Table 2: RUSxN indicates that the training dataset size is N times that of the RUS-sampled dataset,
with each class containing N times the data as in RUS; “-” in the table means the corresponding
experiment is not implemented due to the huge amount of data.

Datasets CIFAR100-LT Places-LT
Mean Many Med. Few |[Mean Many Med. Few

RUS 777 82.0 80.0 69.9] 50.8 49.6 522 49.6
RUSx2 | 77.5 853 80.6 64.6| 50.6 50.5 52.6 46.1
RUSxS | 75.6 87.2 79.7 57.4|49.1 515 514 392
RUSx10| 734 88.1 77.8 50.7|47.7 5277 489 339

Table 3: Accuracy of applying augmentation methods.

Datasets CIFARI100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT|FFT PEFT |FFT PEFT|FFT PEFT

No augmentation |48.7 71.9 |71.1 81.6 |23.7 39.8 |25.7 31.7

ColorlJitter 54.6 719 |70.3 80.7 (24.7 39.8 {26.0 32.1
RandAugment |56.7 72.1 |70.0 81.5 |25.4 40.4 |26.5 32.6
AutoAugment |57.8 70.7 |71.6 81.3 |24.9 40.7 (26.9 32.7

Augmentation Methods In our paper, in addition to conventional image processing, we apply
several common data augmentation techniques.

* ColorlJitter is one of the most commonly used methods for color-based data augmentation in
images. It applies random transformations within a specified range to the image’s brightness,
contrast, saturation, and hue.

* AutoAugment (Cubuk et al.,|2019)) creates a search space of strategies, each containing multiple
sub-strategies. For each mini-batch image, one sub-strategy is randomly selected. Each includes
two processing functions—Iike rotation, inversion, or shearing—with their probability and mag-
nitude parameters.

* RandAugment (Cubuk et al.| [2020) is a simplified version of AutoAugment. The core of Ran-
dAugment is to randomly select a set of predefined augmentation operations with equal probabil-
ity and assign an intensity hyperparameter to each operation to transform the input images.

Experimental Results Table 3] shows the results of different augmentation methods on different
datasets and settings. For more detailed results, please refer to Appendix section

Based on the experimental results, it can be concluded that solely applying data augmentation to
long-tailed datasets can just slightly improve the performance of foundation models by less than
1%. Furthermore, when combined with other long-tail learning methods, data augmentation can not
always gain benefits, which will be discussed in Section The Ultimate Framework.

Data augmentation introduces computational overhead during data preparation, consequently ex-
tending the total training duration. For example, our experiments demonstrate a 15% increase in
end-to-end training time with RandAugment. In addition, we also research other impact of data
augmentation on model training, as shown in Figure 2] We illustrate the convergence curves of
training loss and accuracy for the ImageNet-LT dataset without augmentation and with AutoAug-
mentation. Based on the observations from the figures, it can be concluded that data augmentation
slows down the convergence speed of the model. The reason why such kind of data augmentation
without using external data faces difficulty in improving performance may be that foundation mod-
els have already seen various styles of images. Some recent studies have shown that introducing
external data or knowledge for augmentation is effective (Long et al.| |2022; Wang et al., 2024a),
which may be an interesting direction in future research.

3.4 CLASS-SENSITIVE LOSS

Traditional deep learning methods typically employ the softmax cross-entropy loss function for
training. However, this loss function often overlooks the issue of class imbalance among training
data. We revisit some classic class-sensitive losses, which aim to rebalance the training loss for
different classes to deal with the imbalance problem.
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Figure 2: Convergence curves of training accu- Figure 3: Training loss of LADE and CE
racy (left) and loss (right) on ImageNet-LT un- on Places-LT under CLIP/B-16 FFT (left) and

der CLIP-ViT-B/16 PEFT. ViT/B-16 PEFT (right) setting
Table 4: Summary of losses. In the table, z is the predicted logits, p is the probability obtained by

applying softmax to z, where 2, p, correspond to class y. m, = R} represents the label frequency
of the class y, where n,, represents the number of samples in class y, N is the total sample numbers.

Loss Formulation Hyperparam. | Loss Formulation Hyperparam.
1/7y)P
CE —log(py) - GRW  — % log(py) p
Focal  —(1—p,)" log(p,) ¥ BS —log(s 0 S) -
exp(zy—Ay) exp(zy+p-my)
LDAM  —log(s5nt285) s LA —log(s oty p
CB — 1%;3& log(py) B LADE Lps +alraper a, A

Loss Functions We study common class-sensitive losses, which are listed in Table@

e Focal Loss (Lin et al.}[2017): Modulates CE loss with v to down-weight easy examples.

e LDAM (Cao et al] 2019): Assigns class-dependent margins (A) inversely proportional to class
frequency.

¢ CB Loss (Cui et al.,|2019): Reweights losses by the effective number of samples per class.
* G-RW (Zhang et al.l 2021a)): Generalizes re-weighting with scale parameter p.
* Balanced Softmax (Ren et al.,|2020): Adjusts softmax weights by class sample sizes.

* Logit-Adjusted (Menon et al., 2021): Applies label-dependent offsets to logits based on class
frequency.

* LADE (Hong et al.l 2021): Calibrates outputs using test label distribution. Its regularizer
L1 aper combines class priors 7; and normalization terms. Lypaprr = Z]EK ijLADERj,

given Lpaper, = *N% Zf\; ly—j-m+2Z+ Zj m;AZ?, where Z = log(% Zfil szry)

Experimental Result We present the experimental result in Table 5] For more parameter settings
and results, please refer to Appendix section[D.3]

Table 5: Accuracy of applying class-sensitive losses.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT |FFT PEFT |FFT PEFT|FFT PEFT

CE [54.6 71.9 [70.3 80.7 |24.7 39.8 [26.0 31.9
Focal |52.7 712 |69.4 81.4 (243 39.0 [25.9 30.9
LDAM [53.6 73.6 |64.4 82.8 |24.7 41.1 [25.0 30.9
CB |54.7 72.5(69.4 80.3 [25.1 40.2 [26.0 32.0
G-RW 509 71.8 |66.9 81.8 [22.0 44.5 |23.4 34.2

BS [58.0 80.1 [75.8 85.1 |31.3 48.4 |30.3 38.3
LA [62.7 79.8 |73.1 86.3 |32.0 48.0 [31.9 39.7
LADE |182 79.9 |72.8 86.0 |16.8 49.2 [27.3 03

In most cases, we find that Focal loss, Class-Balanced loss and Generalized Re-Weight loss achieve
only moderate gains when applied to foundation models in both FFT and PEFT settings, and even
impair the performance in some cases. LDAM loss shows a slight improvement only in the PEFT
setting, with no improvement observed in the FFT setting. LADE loss is complex and highly sen-
sitive to hyperparameter selection due to its two hyperparameters. We use the same parameters for
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LADE across all experimental settings; however, in some cases, it provides a significant improve-
ment, while in others, it leads to a notable performance drop and even causes training collapse.
Figure [3|shows the training loss of the LADE under certain training settings, which fails to converge
to lower values and even crashes during training, indicating the potential risk caused by improper
hyperparameters. We believe the LADE loss function introduces numerous additional assumptions
based on logit adjustment, making it overly complex. Therefore, it may only be suitable for specific
models, such as CNN models, rather than ViT models.

In contrast, Balanced Softmax and Logit-Adjusted loss consistently proved to be effective methods
for both FFT and PEFT in foundation models and can significantly improve model performance.
Specifically, they sacrifice a little performance of the head class in exchange for significant im-
provements in the performance of the middle and tail classes. Based on the experimental results,
we recommend using Balanced Softmax loss and Logit-Adjusted loss when fine-tuning foundation
models with long-tailed datasets. If time spent on hyperparameter tuning is non-trivial, then the
nonparametric BS loss is a more reliable choice.

3.5 BALANCED CLASSIFIER

In general visual tasks, a common practice in deep learning is to employ linear classifiers p =
¢(w - x + b) for classification, where ¢ is the softmax function, the bias term b can be discarded.
However, the long-tailed distribution data lead to larger classifier weight norms for head classes than
tail classes (Yin et al.;[2019). We investigate diverse classifier types to tackle this challenge.

Classifier Methods We introduce two representative classifiers, i.e., Cosine classifier and 7-

normalized classifier.

+ Cosine classifier (Wu et al, 2021) uses a scale-invariant metric p = ¢((j )/t + 0), in
which both the classifier weights and the sample features are normalized. t is the temperature
parameter. This strategy can be motivated by removing the negative impact of imbalanced weight
norms (Kang et al.,2020; Wei et al., [2021]).

» 7t-normalized classifier (Kang et al.| 2020) adjust the classifier weight norms to solve the im-
balance by T-normalized procedure, typically used to enhance the performance and stability of

models in high-dimensional data. Formally, w = HuI’UH” where 7 is temperature factor for nor-
2

malization.

Experimental Result In our experiments, we follow the setting of [Shi et al.|(2024) and Kang et al.
(2020) and set the t to % in Cosine Classifier and 7 to 0.5, 1, 2 in 7-normalized classifier. Table @
shows the accuracy of different classifier methods on CIFAR100-LT and Places-LT datasets. For
more detailed results, please refer to Appendix section[D.4]

In our experiments, we observed comparable training costs across different classifiers. According
to the experiment results, we can observe that in most cases, the Cosine classifier is a better choice
because it has empirical robustness to imbalances and stronger generalization ability. Note that these
classifiers are exclusive to each other and can’t be used simultaneously. We recommend using the
Cosine Classifier to train foundation models.

Table 6: Accuracy of applying different classifiers.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT|FFT PEFT |FFT PEFT |FFT PEFT

Linear 54.6 71.0 [70.3 80.7 [24.9 39.8 [26.0 319
Cosine 56.4 72.2 [69.6 83.9 |24.9 40.6 [27.1 38.1
r-norm (r = 0.5)|55.6 71.7 |69.3 80.8 [24.7 40.3 |25.8 32.1
rnorm (r = 1) |55.6 71.9 |68.9 80.9 [24.6 40.0 |25.4 32.3
r-norm (1 = 2) |54.8 71.8 |68.8 81.2 [23.5 37.6 |24.8 32.1

3.6 OTHER TRICKS

In addition to the aforementioned methods, we also explore two more tricks: mixup (Zhang et al.,
2018) and label smoothing (Szegedy et al., 2016)), which are widely used in various types of deep
models and long-tail learning algorithms (Zhong et al., 2021).
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Table 7: Accuracy of applying mixup.
Datasets CIFAR100-LT Places-LT
Backbone| CLIP ViT CLIP ViT
FFT PEFT |FFT PEFT |FFT PEFT|FFT PEFT

Baseline [51.5 80.1 [75.8 85.1 {31.3 48.8 {30.3 38.3
Mixup [68.7 79.7 |81.6 86.7 |35.8 49.8 |33.3 45.0

Table 8: Accuracy of applying label smoothing.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT |FFT PEFT |FFT PEFT|FFT PEFT

CE 54.6 71.9 |70.3 80.7 |24.7 39.8 {26.0 31.9
CE (w/LS)|56.2 71.7 |71.3 82.7 |25.0 39.7 |26.9 34.1
BS 58.0 80.1 [75.8 85.1 [31.3 48.8 {30.3 38.3
BS (w/LS)|59.8 80.6 {78.2 88.1 |28.6 49.4 |32.4 41.8

For the mixup trick, we follow the setting of [Zhang et al| (2018)). Specifically, we randomly se-
lect two data points (z;,¥;), (z;,y;) from the original dataset and combine them through linear
weighting. Formally,

T = 01’1 + (1 - 9)$j (D
y=0y; +(1—-0)y; (2

where 6 is randomly sampled from a Beta distribution Beta((, (). The mixup hyper-parameter ¢
controls the strength of interpolation between feature-target pairs.

Label smoothing (Szegedy et al., [2016) transforms the training label from hard (one-hot) label to
soft label, where the true label is considered to have a probability of 1 — ¢, and the remaining e
is shared across all classes. After using label smoothing, the modified probability distribution is

formulated as follows:
1, ify=1 1—e¢ ify=1
P = . .= P = . ) 3
{0, ify #14 {Ke_l, ify#£1 3)

where ¢ is the i-th class, K is the total number of classes and the hyperparameter € determine the
smooth level.

Experimental Result Table [/|and Table [§] show the test accuracy of using these two tricks. For
more detailed results, please refer to Appendix section

For mixup, we set hyper-parameter ¢ to 1. It can be observed that input mixup effectively provides
better results compared to the baseline in both FFT and PEFT settings. Mixup can be seen as a form
of data augmentation that combines multiple samples linearly, rather than applying transformations
to a single sample. This linear behavior helps reduce the oscillations when the model predicts
the out-of-distribution samples (Zhang et al., 2018)). However, when combined with other long-tail
learning methods, mixup may also not always gain benefits like those mentioned above in subsection
Data Augmentation.

For label smoothing, we set the € to 0.1 by the setting of [Szegedy et al.|(2016)) and apply it to CE
loss and BS loss. We find that label smoothing can effectively improve the final performance of
CE loss and BS loss. More specifically, label smoothing enhances the performance of tail classes,
as shown in tables [0} 1] 2] in the Appendix. Our results suggest the noise introduced by label
smoothing effectively reduces the model’s tendency to overly favor head-class samples, allowing
for greater focus on tail-class samples.

4 THE ULTIMATE FRAMEWORK

Framework construction In the previous section, we review several classical methods. In this
section, we analyze these methods from a more unified perspective. Specifically, we compare the
different combinations of these methods to identify the best framework. It is worth noting that since
re-sampling methods and class-sensitive losses both aim to re-balance the data distribution, their
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Table 9: Results of the ablation experiments. “Avg.” represents the average of all experimental
results listed front in the line. A represents the performance change against the previous line. The
abbreviations are defined as follows: “Cos” = Cosine Classifier, “Sqrt” = Square-Root Sampling,
“BS” = Balanced-Softmax, “LS” = Label Smoothing, “Aug” = Auto Augmentation.

Datasets ImageNet-LT iNaturalist 2018

Backbone CLIP ViT CLIP ViT
Cos Sqrt BS LS Aug Mixup | FFT PEFT| FFT PEFT| FFT PEFT| FFT PEFT
48.7 70.5(50.8 78.2|58.4 69.5(57.8 73.6|63.4| -
48.7 70.4(53.2 80.3163.3 75.3|61.5 75.6|66.0 |+2.6
60.1 74.7|71.5 82.6|68.4 76.8|72.3 79.0|73.2|+7.2
63.2 77.0173.4 83.6(70.9 79.3|75.0 81.1|75.4 |+2.2
64.1 77.2|75.2 84.1|{71.5 79.0|74.6 81.1|75.9|+0.5
v 64.5 76.6|75.5 84.1(69.6 78.3|74.9 81.1|75.6(-0.3
v’ |65.7 755|764 84.1|169.4 76.9|73.3 79.9[75.2|-04
v’ |63.9 749(77.0 84.2|48.7 74.6|72.3 79.4|71.9|-3.3

Avg.| A

NENENENENENEN
SENENENENEN
RNRNENEN
NENENEN

v

simultaneous application will over-emphasize tail classes and harm generalization. To balance these
effects, we adopt Square-root sampling (a moderate re-sampling approach) and apply Balanced
Softmax loss to the rectified distribution.

For our final framework, we integrate AutoAugment, Cosine classifier, Square-root sampling, Bal-
anced Softmax loss, mixup, and label smoothing — all selected based on their excellent performance
in previous experiments. We conduct ablation experiments on these methods under multiple settings,
including different backbones such as CLIP and IN21K pre-trained ViT, and different fine-tuning
methods such as full fine-tuning (FFT) and parameter-efficient fine-tuning (PEFT). The results are
shown in Table[9] Due to the page limit, we report more detailed results for all datasets in Appendix

section[D.8

From the results, we can conclude that 1) The combination methods of Cosine Classifier, Square-
root sampling, BS loss, and label smoothing can consistently enhance the model performance
on foundation models when using long-tailed data. As they achieve the best average performance
across all scenarios, we consider the combination of these four methods as the optimal framework.
2) AutoAugment and mixup, as different forms of data augmentation, have inconsistent effects on
performance across different datasets and models. There is no consistent conclusion on whether they
improve or decrease performance based on our experiments, so we exclude them from the optimal
framework.

Table 10: The results of applying our framework compared to other methods across four datasets:
Places-LT, ImageNet-LT, CIFAR100-LT, iNaturalist 2018. { denotes VL-LTR uses extra data for
fine-tuning. “-” means the paper has not reported the corresponding result. We also compare our
framework with LIFT [Shi et al.|(2024) in Appendix

Places-LT IN-LT CIFAR-LT iNat.
MiSLAS (Zhong et all[2021)  40.4 52.7 47.0 71.6

PaCo (Cui et al.,|2021) 41.2 57.0 52.0 71.8
LiVT (Xu et al.l2023b) 40.8 60.9 58.2 76.1
BALLAD (Ma et al.,[2021) 49.5 75.7 77.8 -

Decoder (Wang et al.;,[2024b)  46.8 73.2 - 59.2
LPT (Dong et al.}2023) 50.1 - - 76.1
VL-LTRT (Tian et al.,[2022) 50.1 77.2 - 76.8
Ours 51.2 77.2 80.5 79.0

Improvements over baselines We apply our ultimate framework to four datasets on the pre-
trained CLIP-ViT-B/16 backbone and obtain quite competitive results under PEFT settings. The
test accuracy is reported in Table Overall, our framework achieves superior performance on
these challenging datasets, surpassing Decoder, LPT, VL-LTR, and various training-from-scratch
approaches. And VL-LTR relies on extensive auxiliary data to facilitate fine-tuning, the advantage
of our framework is more significant compared with methods that do not use auxiliary data. In ad-
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dition, due to the Square-root sampling method included in our framework, the training cost of our
framework is significantly reduced compared to other methods.

To provide a deeper mechanistic analysis. We examine the classifier weight norms, which led to
some interesting findings. Specifically, we extract the classifier weight norms from models trained
under the PEFT setting of CLIP-ViT/B-16 using four different datasets. Figure d]displays the classi-
fier weight norms for Cifar100-IR100 and Places-LT. The classes on the horizontal axis are arranged
in descending order of their number of training samples.

Figure 4: Classifier weight norms for CIFAR100-IR100 and Places-LT.

L6 Classifier weight norms Classifier weight norms
—_ g;ccs e SE+C05
— +Cos+Sqrt —— CE+Cos+Sqrt
1.4 — g§+gos+::rt L5 — Bs+cOs+s:n
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1.2 1.0 —
10 M
0.5
0 50 100 0 200
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Due to the pronounced overlap between the curve of our method (blue line) and those of other ap-
proaches, visual inspection alone is insufficient to draw a definitive conclusion regarding its superior
balance. To facilitate a quantitative comparison, we employ the standard deviation of the classifier
weight norms as a metric for balance. The subsequent results are shown in Table[TT].

The results validate the superiority of our proposed method, which attains the most balanced norms
— as evidenced by the lowest standard deviation in the comparison.

Table 11: Standard Deviation of classifier weight norms from models trained on different datasets.
Each value in the table represents the actual standard deviation when multiplied by 1072,

Standard Deviation Places-LT IN-LT CIFAR-LT iNat.

CE 16.3 23.8 13.6 10.6
CE+Cos 7.9 15.2 7.8 5.7
CE+Cos+Sqrt 1.8 3.0 1.3 39
BS+Cos+Sqrt 1.8 3.0 1.3 3.9

BS+Cos+Sqrt+LS 1.5 2.6 1.1 3.6

Discussions We have taken into account the potential data leakage issue, such as between Ima-
geNet and IN21K-ViT. In response to this, in Table [T0] we only present results on CLIP-ViT-B/16.
For detailed results across more experimental settings, we report in the Appendix. Looking ahead,
we intend to explore the generalizability of our framework by extending it to more models, such as
DINO (Oquab et al.|, 2023), which could further validate its transferability across different founda-
tion models. Preliminary investigations in Appendix [D.I0] have already shown encouraging align-
ment with our current findings, suggesting broader applicability.

5 CONCLUSION

In this paper, we systematically revisit the representative long-tail learning methods and provide a
scientific empirical guideline for their accurate use in fine-tuning foundation models. Furthermore,
we select the optimal methods to construct a unified framework and analyze the contribution of each
component through extensive ablation studies. Our proposed framework achieves competitive per-
formance on multiple long-tailed datasets. We hope that our work serves as a convenient guideline
for related applications and can inspire further research in the field of long-tail learning.

10
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A  EXPERIMENTAL SETTINGS

A.1 DATASETS

CIFAR100-LT CIFARI00-LT is the long-tailed version of CIFAR (Krizhevsky}, |2009). The latter
is a balanced dataset consisting of 100 classes, with each class containing 500 samples for training
and 100 samples for test. We construct CIFAR100-LT following the approach in (Cao et al.,[2019).

Specifically, each class contains n; = 500 - r(='5) samples in training, where i is class index. In
this work, the imbalance factor is set to 100 considering its generality (Shi et al., |2024; Ma et al.,
2021; Rangwani et al.| 2022).

Places-LT The Places-LT (Sharma et al., [2021)) features a long-tailed dataset consisting of 62,500
images across 365 classes from Places-2 (Zhou et al.l 2017). The class frequencies follow a nat-
ural power law distribution, with the largest class containing 4,980 images and the smallest class
containing only 5 images.

ImageNet-LT ImageNet-LT (Liu et al.l 2019) is a long-tailed version of ImageNet ILSVRC
2012 (Deng et al, [2009), composed according to a Pareto distribution. This dataset consists of
1000 classes and a total of 1158K images, with the largest class containing up to 1,280 images and
the smallest class containing as few as 5 images.

iNaturalist 2018 iNaturalist 2018 (Van Horn et al., |2018)) is a natural dataset of fine-grained long-
tailed categories, consisting of wildlife images across 8,142 species, with a total of 437,513 images.
The number of images in each category ranges from a maximum of 1000 to a minimum of 2. Itis a
standard benchmark for evaluating algorithm performance on long-tailed distribution tasks.

A.2 IMPLEMENTATION SETTINGS

In most of our experiments, we adopt pre-trained model CLIP (Radford et all 2021} and Vision
Transformer (Dosovitskiy et al., |2021) as the backbone and employ full fine-tuning (FFT) and
parameter-efficient fine-tuning (PEFT) on these two models. Knowledge distillation is an excep-
tion where we use pre-trained DeiT (Touvron et al.l [2021) as the student backbone. For the PEFT
methods, we choose AdaptFormer (Chen et al., 2022) because of its optimal performance (Shi et al.}
2024). Table shows the performance of different PEFT methods under the ultimate framework.
We use the SGD optimizer with a batch size of 128, weight decay of 5 - 104, and momentum of
0.9. The number of training epochs for iNaturalist 2018 is 100, while for other datasets, it is 50.
The learning rate is initialized to 0.1. The number of epochs and learning rate are carefully selected.
We conduct comprehensive ablation studies on the epochs and learning rates across the CIFAR100-
IR100, Places-LT, and ImageNet-LT datasets as shown in Table We use mean accuracy and
harmonic mean accuracy to measure the model’s performance. In addition, we also follow the eval-
uation protocol introduced by (Liu et al.,|[2019), reporting accuracy for three categories: many-shot
(>100 images), medium-shot (20-100 images), and few-shot (<20 images).

Table 12: Accuracy of using different PEFT methods.

Datasets Places-LT |ImageNet-LT
Backbone |CLIP| ViT |CLIP| ViT
LoRA 50.7147.1176.0| 83.8
VPT-deep |50.5|47.5|76.2| 84.1
Adapter 50.9147.7|77.0| 84.0
Bias-tuning |50.9|47.3|76.2| 83.2
AdapterFormer| 51.247.9 |77.2| 84.1

B KNOWLEDGE DISTILLATION

In this subsection, we focus on the knowledge distillation technique and explore whether it can im-
prove the performance of long-tailed datasets on foundation models. We follow the setup mentioned
in Data Efficient Transformer (DeiT) [Touvron et al.[| (2021) to create the student backbone for our
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Table 13: Comparison of different numbers of epochs and learning rate.

CIFAR100-IR100 Places-LT ImageNet-LT

10 78.7 50.7 75.7

20 80.2 51.3 77.0

Epochs 50 80.8 51.2 77.2
70 80.7 50.8 77.0

90 80.4 50.4 76.8

0.001 78.7 49.8 74.4

0.005 80.8 51.5 76.9

LR 0.01 80.8 51.2 77.2
0.05 77.9 48.9 75.7

0.1 717.1 48.3 75.3

experiments. In addition to the CLS token, DeiT adds a DIST token in the ViT backbone that learns
via distillation from the teacher. For both the classification head and the distillation head, training is
conducted using cross-entropy loss, and the final loss function Rangwani et al.| (2024) is

L=aLcp(f%x),y) + (1 —a)Lep(f4%(x), y) 4)

where f¢!*(z) and f%*(x) are outputs of the CLS and DIST tokens through their respective layers,
y is the ground truth, and y, is the teacher model’s hard label for sample x.

Experimental Result We simply set the a to 0.5 to ensure the fair status of the ground truth and
the teacher’s prediction. Table [14] shows the accuracy of the knowledge distillation methods. For
more detailed settings and results, please refer to Appendix section|[D.5]

Compared to PEFT, the performance enhancement under FFT is significantly more substantial. Ex-
perimental results demonstrate that knowledge distillation yields an improvement of approximately
3% in the FFT setting, whereas it contributes almost no gain in the PEFT setting.

We believe this is because knowledge distillation helps mitigate the biases towards the head classes
in the student model during training. Since the FFT setting involves substantially more parameters
to train compared to the PEFT setting, it is more susceptible to being biased toward head classes.
This explains why the performance improvements are more pronounced in the FFT setting.

Table 14: Student results of applying knowledge distillation.

[ Datasets | CIFAR100-LT | Places-LT ]
Student DeiT-S DeiT-Ti DeiT-S DeiT-Ti
FFT PEFT |FFT PEFT |FFT PEFT|FFT PEFT

Baseline |67.3 69.9 [58.7 60.8 [27.1 32.1 [24.6 29.4
Distillation|70.4 70.0 |{61.7 60.6 |30.2 32.5 |28.6 30.0

C ENSEMBLE LEARNING

Ensemble learning improves model performance by combining the predictions of multiple experts to
address the long-tail problem. We conduct an experiment using a framework similar to BBN |[Zhou
et al.| (2020). Specifically, we use two branches: the “conventional learning branch”, which employs
the uniform sampler to learn the original data distribution, and the “re-balancing branch”, which
uses the reversed sampler to sample more tail-class samples for learning a balanced distribution.
Both branches use the same backbone and share all the weights except for the last classifier. At last,
a cumulative loss weight w is used to shift the learning “attention” smoothly from the head class to
the tail class. Formally, the objective loss of the model is illustrated as

L=wLcp(fx%)y°)+ 1 —w)Lee(fM(z"),y") (35)
w=1- () (6)

where the f¢(z€) and f7(«") respectively represent the predicted output of the conventional learning
branch and re-balancing branch. y° and y" are the ground truth of z¢ and z" respectively. ¢. and
tmaz respectively refer to the current epoch and total training epochs.
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Experimental Result Ensemble-based methods address the class imbalance at the model level.
Table |15] shows the accuracy of the ensemble method. For more detailed results, please refer to
Appendix section[D.6 Ensemble methods can generally improve performance by an average of over
3% in the PEFT setting. However, in the FFT setting, the model improvements are less favorable,
with a maximum increase of 1%, and in some cases, even face a significant decrease.

Additionally, it is very important to note that ensemble learning inevitably increases the training
cost. In this experiment, using two branches doubles the memory cost and computational time
expenditure, because we need to create two individual data samplers and calculate the corresponding
loss. In practice, though more experts may lead to better performance, the greater time and storage
costs are non-negligible overheads. Therefore, we only recommend employing ensemble learning
in the lightweight PEFT setting on foundation models. Using ensemble learning in the FFT setting
is not cost-effective and does not guarantee performance improvements.

Table 15: Accuracy of applying ensemble learning.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT
FFT PEFT |FFT PEFT |FFT PEFT|FFT PEFT

Baseline [54.6 71.9 {70.3 80.7 |24.9 39.8 [26.0 31.9
Ensemble |55.6 76.0 |68.6 82.2 |18.9 45.0 |26.7 36.4

D ADDITIONAL RESULTS

D.1 RE-SAMPLING DETAILED RESULTS

For re-sampling methods, we report detailed results of applying RUS, RUSxN, ROS, EQ, Square-
root sampling and no resampling (Baseline) methods. Tables [16] [[§] show the detailed results
of applying re-sampling methods for CIFAR100-LT. Places-LT, ImageNet-LT respectively. Ta-
bles show the detailed results of applying RUSXN for CIFAR100-LT, Places-LT and
ImageNet-LT respectively. We can observe that applying RUS and Square-root sampling can signif-
icantly improve model performance.

D.2 DATA AUGMENTATION DETAILED RESULTS

For data augmentation methods, we report detailed results of applying ColorlJitter, RandAugment,
AutoAugment, and no augmentation (Baseline) methods. Tables[22] 23] 24]show the detailed results
of applying data augmentation methods for CIFAR100-LT, Places-LT, ImageNet-LT respectively.
We can observe that applying data augmentation methods can only slightly improve the model per-
formance and don’t play a decisive role.

D.3 CLASS-SENSITIVE LOSS DETAILED RESULTS

For Class-sensitive loss, we report detailed results of applying CE, Focal, Label-Distribution- Aware
Margin, Class-Balanced, Generalized Re-Weight, Balanced Softmax, Logit Adjustment, LAbel dis-
tribution DisEntangling loss. The selection of hyperparameters for each loss follows the correspond-
ing paper, except for G-RW. The original paper of G-RW proposed p = 1.2, which performs very
poorly under FFT settings for each backbone. After our experimental attempts, we finally changed
it to 0.5. The selected hyperparameters are shown as follows:

Focal loss: v = 2; LDAM loss: s = 25; Class Balanced loss: 5 = 0.9; Generalized Re-weight loss:
p = 0.5 for FFT setting, p = 1.2 for PEFT setting; Logit adjustment loss: © = 1.5; LADE loss:
a=0.01,\=0.1.

In practice, we have tried different hyperparameters but only report the best. For example, we have
tried: v = {2, 3,4} for Focal loss; 5 = {0.9,0.99,0.999} for Class-Balanced loss; 7 = {1,1.5,2}
for LA loss; p = {0.5,1,1.2,1.5,2} for G-RW loss.

Tables 23] [26] 27] show the detailed results of applying class-sensitive losses for CIFAR100-LT,
Places-LT, ImageNet-LT respectively. We can observe that applying Balanced Softmax loss and
Logit Adjustment loss can greatly gain benefits.
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D.4 BALANCED CLASSIFIER DETAILED RESULTS

For the balanced classifier, we report detailed results of using the Cosine classifier, 7-normalized
classifier, and Linear classifier methods. Tables 28] 29} [30] show the detailed results of applying
different classifiers for CIFAR100-LT, Places-LT, ImageNet-LT respectively. We can observe that
Cosine classifier can achieve an improvement in model performance.

D.5 KNOWLEDGE DISTILLATION DETAILED RESULTS

We use a well-trained CLIP-ViT-B/16 as the teacher backbone for Places-LT and IN21K-ViT-B/16
as the teacher backbone for CIFAR100-LT and ImageNet-LT, while employing the pre-trained DeiT-
S and DeiT-Ti backbone architecture as student models for all the datasets. Tables 31} 32} B3] show
the detailed results of applying knowledge distillation on CIFAR100-LT, Places-LT, ImageNet-LT
respectively. We can observe that knowledge distillation is only effective in the FFT setting.

D.6 ENSEMBLE LEARNING DETAILED RESULTS

We build a framework similar to BBN and report details results of applying it on CIFAR100-LT,
Places-LT and ImageNet-LT as shown in Tables [34] [35] [36] respectively. We can observe that apply-
ing ensemble learning is only cost-effective under the PEFT setting.

D.7 TRICKS DETAILED RESULTS

For tricks, we report detailed results of applying mixup and label smoothing. Tables [37] [38] [39]show
the detailed results of applying mixup for CIFAR100-LT, Places-LT, ImageNet-LT respectively. Ta-
bles[d0] AT} 2] show the detailed results of applying label smoothing for CIFAR100-LT, Places-LT,
ImageNet-LT respectively. We can observe that both tricks can improve model performance.

D.8 ABLATION EXPERIMENTS DETAILED RESULTS

To build the best framework for fine-tuning pre-trained models, we choose AutoAugment, Cosine
classifier, Square-root resampling, Balanced Softmax loss, Mixup, and Label smoothing for the
ablation experiments.

Tables 3] [44] B3] A6] show the detailed ablation results for CIFAR100-LT, Places-LT, ImageNet-LT,
iNaturalist 2018 datasets respectively.

D.9 COMPARISON WITH LIFT

The performance of our model is comparable to that achieved by LIFT, as shown in the tables
Although we have more epochs, due to the sampling strategy of the data, the total training cost is
significantly lower compared to LIFT, with an average saved cost of 21% (specific values vary de-
pending on the dataset). Notably, it achieves a remarkable 34% reduction on the Places-LT, demon-
strating the effectiveness of our method.

D.10 TRANSFERABILITY OF OUR FRAMEWORK

To verify the transferability of our framework, we extend it to DINO and conduct corresponding
experiments. The results are shown in Table 8] we are temporarily unable to report results for
DINOV2 due to GPU memory limitations. Our framework can also be readily adapted to MAE and
SigLIP, which are planned for a future version.
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Table 16: Detailed results of applying resampling methods to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Baseline 546 829 559 20.1 0.0 0.0
Random Over-Sampling 44.8 717 425 9.1 0.0 0.0
FFT | Random Under-Sampling | 45.5 51.0 49.8 34.1 31.0 6.0
Equal resampling 50.4 826 505 128 0.0 0.0
. Square-root resampling 56.8 80.3 60.0 258 0.1 0.0
CLIP-VIT-B/16 Baseline 719902 75.0 4656 56.0 7.0
Random Over-Sampling 683 8.0 731 385 36.9 2.0
PEFT | Random Under-Sampling | 774 799 79.1 725 73.6 26.0
Equal resampling 728 886 772 492 559 7.0
Square-root resampling 76.4 87.1 782 618 69.8 18.0
Baseline 703 89.6 719 458 48.0 3.0
Random Over-Sampling 48.3 834 460 10.0 0.0 0.0
FFT | Random Under-Sampling | 69.3 746 716 603 58.5 5.0
Equal resampling 62.0 900 646 262 0.0 0.0
. Square-root resampling 76.0 905 78.1 56.6 60.2 5.0
IN2IK-VIT-B/16 Baseline 807 935 809 654 12 T.0
Random Over-Sampling 71.0 930 763 39.2 0.1 0.0
PEFT | Random Under-Sampling | 87.0  90.5 87.3 82.6 81.9 15.0
Equal resampling 71.3 93.1 80.3 553 37.3 1.0
Square-root resampling 844 938 851 726 69.2 7.0

Table 17: Detailed results of applying resampling methods to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Baseline 247 405 198 6.8 0.1 0.0
Random Over-Sampling 126 257 7.2 0.7 0.0 0.0
FFT | Random Under-Sampling | 42.3 42,6 454 345 0.2 0.0
Equal resampling 21.7 402 147 3.6 0.0 0.0
. Square-root resampling 37.1 51.0 348 16.6 18.8 1.0
CLIP-VIT-B/16 Baseline 308 540 357 227 0.1 0.0
Random Over-Sampling 38.3 51.0 355 209 0.4 0.0
PEFT | Random Under-Sampling | 50.8 49.6 522 49.6 35.7 1.0
Equal resampling 43.7 533 428 279 25.2 1.0
Square-root resampling 47.5 55.6 457 36.6 324 2.0
Baseline 260 414 209 95 0.1 0.0
Random Over-Sampling 114 242 5.7 0.7 0.0 0.0
FFT | Random Under-Sampling | 41.2  47.6 433 246 23.4 1.0
Equal resampling 220 404 149 42 0.0 0.0
. Square-root resampling 326 48.6 277 141 0.2 0.0
IN2IK-VIT-B/16 Baseline 320 459 284 152 02 0.0
Random Over-Sampling 322 458 2809 149 0.1 0.0
PEFT | Random Under-Sampling | 45.3 46.7 476 375 322 2.0
Equal resampling 33.7 475 307 152 0.1 0.0
Square-root resampling 39.7 509 377 233 23.5 2.0

@ 9

Table 18: Detailed results of applying resampling methods to the ImageNet-LT dataset.
the corresponding experiment is hard to implement due to the huge amount of data.

means

Mean Many Med. Few Harmonic mean  Worst case
Baseline 499 69.0 440 16.6 0.0 0.0
Random Over-Sampling - - - - -
FFT | Random Under-Sampling | 59.2 62.1 59.0 522 44.6 2.0
Equal resampling 48.6 67.8 419 18.0 0.0 0.0
. Square-root resampling 59.9 74.8 56.1 31.2 0.2 0.0
CLIP-VIT-B/16 Baseline 706 855 676 358 0.1 0.0
Random Over-Sampling - - - - - -
PEFT | Random Under-Sampling | 75.4 78.2 75 68.4 67.6 10.0
Equal resampling 73.6 83.2 722 51.1 1.0 0.0
Square-root resampling 74.5 83.9 72.5 547 59.7 2.0
Baseline 52.1 70.1 459 230 0.1 0.0
Random Over-Sampling - - - - - -
FFT | Random Under-Sampling | 72.6 792 717 570 1.0 0.0
Equal resampling 50.1 70.1 43.1 187 0.0 0.0
. Square-root resampling 68.2 80.6 648 448 1.0 0.0
IN21K-VIT-B/16 Baseline 782 875 758 599 4z 20
Random Over-Sampling - - - - - -
PEFT | Random Under-Sampling | 83.2 85.6 829 774 78.9 16.0
Equal resampling 79.2 87.4 774 618 69.7 8.0
Square-root resampling 81.0 87.3 79.5 68.6 74.1 8.0
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Table 19: Detailed results of applying RUSxN to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
RUS 56.0 71.6 61.3 315 21.8 1.0
FFT RUSx2 58.0 81.3 62.3 25.8 0.0 0.0
RUSx5 54.0 83.0 55.5 18.3 0.0 0.0
. RUSx10 48.8 79.1 49.5 12.8 0.0 0.0
CLIP-ViT-B/16 RUS 777820 800 699 737 25.0
PEET RUSx2 77.5 85.3 80.6 64.6 71.6 20.0
RUSx5 75.6 87.2 797 574 63.4 8.0
RUSx10 73.4 88.1 77.8 50.7 56.8 6.0
RUS 75.7 87.9 78.1 58.6 59.6 5.0
FFT RUSx2 70.8 90.6 73.1 449 35.2 1.0
RUSx5 66.4 90.6 69.5 34.4 26.5 1.0
. RUSx10 59.8 87.7 62.1 24.4 0.1 0.0
IN21K-ViT-B/16 RUS 863 914 875 792 776 TT.0
PEET RUSx2 84.5 92.7 86.4 728 71.0 8.0
RUSx5 81.0 93.5 827 645 41.6 1.0
RUSx10 78.2 934 80.2 58.3 39.5 1.0
Table 20: Detailed results of applying RUSxN to the Places-LT dataset.
Mean Many Med. Few Harmonic mean Worst case
RUS 423 42.6 454 345 0.2 0.0
FFT RUSx2 41.6 46.6 45.3 24.1 24.8 1.0
RUSx5 34.6 49.4 32.9 10.9 0.1 0.0
X RUSx10 29.0 48.3 23.3 6.6 0.0 0.0
CLIP-VIT-B/16 RUS 508 496 522 496 35,7 r.0
PEFT RUSx2 50.6 50.5 52.6 46.1 35.8 1.0
RUSx5 49.1 51.5 514 39.2 35.5 3.0
RUSx10 47.7 52.7 489 339 0.4 0.0
RUS 41.2 47.6 433 246 234 1.0
FFT RUSx2 38.0 50.7 36.9 16.8 0.1 0.0
RUSx5 31.6 49.4 26.3 10.8 0.1 0.0
. RUSx10 27.7 46.3 21.2 8.4 0.1 0.0
IN21K-ViT-B/16 RUS 153 467 476 375 32 7.0
PEET RUSx2 43.2 48.4 449 299 29.4 3.0
RUSx5 39.1 49.2 38.5 21.6 0.2 0.0
RUSx10 29.0 48.3 23.3 6.6 0.0 0.0

Table 21: Detailed results of applying RUSxN to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

RUS 592 621 590 522 446 2.0

prp | RUSX2 | 613 685 612 414 1.0 0.0

RUSXS | 590 728 560 30.6 02 0.0

. RUSxI0 | 552 722 502 243 01 0.0
CLIP-ViT-B/16 RUS 54 T82 750 634 676 10,0
pEFT | RUSX2 | 759 800 755 659 67.9 6.0

RUSxS | 75.7 815 754 603 66.6 8.0

RUSXI0 | 75.0 824 743  56.0 62.5 40

RUS 6 792 717 570 0 0.0

ppp | RUSX2 | 715 809 696 515 582 2.0

RUSX5 | 660 799 619 409 1.0 0.0

. RUSXI0 | 605 772 557 307 0.2 0.0
IN21K-VIiT-B/16 RUS 832 856 829 774 789 16.0
pEFT | RUSX2 | 827 860 823 745 783 18.0

RUSXS | 80.6 867 793 67.8 737 10.0

RUSxI0 | 793 870 776 637 70.6 8.0
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Table 22: Detailed results of applying augmentation methods to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Baseline 48.7 77.9 48.1 154 12.2 1.0
FFT ColorlJitter 55.0 832 563 20.7 0.1 0.0
RandAugment | 56.7 84.1 579 235 0.1 0.0
. AutoAugment | 57.8 85.5 585 247 0.1 0.0
CLIP-VIT-B/16 Baseline 71.9 90.0 753 469 57.6 9.0
PEFT ColorlJitter 71.9 90.2 751 46.6 56.0 7.0
RandAugment | 72.1 90.1 754 473 54.7 7.0
AutoAugment | 70.1 90.1 73.8 445 36.1 1.0
Baseline 71.1 893 72,6 48.0 50.6 3.0
FFT Colorlitter 70.3 89.6 719 458 48.0 3.0
RandAugment | 70.0 89.6 70.7 463 45.4 2.0
. AutoAugment | 71.6 90.7 723 484 54.2 7.0
IN2IK-VIT-B/16 Baseline §6 933 S8I9 676 119 T.0
PEFT ColorlJitter 80.7 93.5 809 654 41.2 1.0
RandAugment | 81.5 937 815 672 54.7 3.0
AutoAugment | 81.3 93.3 81.8  66.7 422 1.0

Table 23: Detailed results of applying augmentation methods to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Baseline 237 39.8 185 6.0 0.1 0.0
FFT Colorlitter 24.7 40.5 19.8 6.8 0.1 0.0
RandAugment | 25.4 41.6 204 69 0.1 0.0
. AutoAugment | 24.9 41.8 198 5.6 0.0 0.0
CLIP-VIT-B/16 Baseline 398 545 357 223 0.1 0.0
PEET ColorJitter 39.8 540 357 227 0.1 0.0
RandAugment | 40.4 54.7 36.5 231 0.1 0.0
AutoAugment | 40.7 54.9 36.8 232 0.1 0.0
Baseline 25.7 409 205 94 0.1 0.0
FET ColorJitter 26.0 414 209 95 0.1 0.0
RandAugment | 26.5 419 216 94 0.1 0.0
. AutoAugment | 26.9 42.1 22.1 9.7 0.1 0.0
IN2IK-VIT-B/16 Baseline 31.7 455 278 151 0.1 0.0
PEFT Colorlitter 32.1 45.9 284 152 0.2 0.0
RandAugment | 32.6 46.8 288 154 0.2 0.0
AutoAugment | 32.7 46.8 29.1 152 0.2 0.0

Table 24: Detailed results of applying augmentation methods to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Baseline 487 679 425 160 0.0 0.0
FFT ColorJitter 499 690 440 16.6 0.0 0.0
RandAugment | 51.0 702 451 17.6 0.0 0.0
. AutoAugment | 51.8 713 459 17.0 0.0 0.0
CLIP-VIT-B/16 Baseline 705 855 675 383 0.1 0.0
PEFT ColorlJitter 706 855 67.6 388 0.1 0.0
RandAugment | 70.5 855 67.5 383 0.1 0.0
AutoAugment | 703  81.0 67.2 382 0.1 0.0
Baseline 508  69.1 444 218 0.1 0.0
FFT ColorlJitter 521 70.1 459 230 0.1 0.0
RandAugment | 534 714 47.1 245 0.1 0.0
. AutoAugment | 54.1 72.1  48.1 242 0.1 0.0
IN2IK-VIT-B/16 Baseline 782 874 760 598 T.0 0.0
PEFT ColorlJitter 782 875 758 599 64.4 2.0
RandAugment | 78.1 87.5 757 59.6 63.8 2.0
AutoAugment | 78.2 87.5 759 60.1 66.2 6.0
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Table 25: Detailed results of applying different losses to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
CE Toss 54.6 82.9 559 20.1 0.0 0.0
Focal loss 52.7 81.4 53.0 19.0 17.9 1.0
LDAM loss 53.6 78.5 529 254 0.1 0.0
FFT Class Balanced loss 54.7 83.4 56.1 194 0.1 0.0
Generalized Re-Weight | 50.9 804 509 165 0.0 0.0
Balanced Softmax Loss 58.0 75.5 589 365 42.3 6.0
Logit Adjustment loss 62.7 74.8 62.1 494 55.3 18.0
. LADE loss 18.2 26.3 19.9 6.9 0.0 0.0
CLIP-ViT-B/16 CE Toss 719902 750 466 56.0 7.0
Focal loss 71.2 89.5 74.0 46.7 58.3 10.0
LDAM loss 73.6 89.5 774 507 0.1 0.0
PEFT Class szllanced loss' 72.5 90.2 753  48.6 57.7 9.0
Generalized Re-Weight 71.8 84.0 783  50.1 55.8 9.0
Balanced Softmax Loss | 80.1 86.5 80.0 729 77.5 38.0
Logit Adjustment loss 79.8 80.6 79.3 795 77.8 47.0
LADE loss 79.9 85.7 79.0 74.1 77.1 42.0
CE loss 70.3 89.6 719 458 48.0 3.0
Focal loss 69.4 89.3 71.1 443 439 2.0
LDAM loss 64.4 85.9 67.0 363 41.5 4.0
FFT Class Balanced loss 69.4 89.6 713 437 50.1 5.0
Generalized Re-Weight | 66.9 88.9 69.5 38.1 0.0 0.1
Balanced Softmax Loss 75.8 88.7 764 599 63.0 6.0
Logit Adjustment loss 73.1 884  73.1 551 64.7 15.0
. LADE loss 72.8 89.9 724 532 48.8 2.0
IN2IK-VIT-B/16 CE Toss 807 935 809 654 12 T.0
Focal loss 81.4 93.5 81.3 675 52.9 2.0
LDAM loss 82.8 93.3 83.3 70.0 67.6 6.0
PEFT Class Bz}lanced loss' 80.3 934 80.7 64.6 41.7 1.0
Generalized Re-Weight | 81.8 93.0 84.0 663 62.9 5.0
Balanced Softmax Loss | 85.1 92.0 848 774 79.5 18.0
Logit Adjustment loss 86.3 919 8.9 813 83.2 28.0
LADE loss 86.0 93.0 850 79.2 81.6 23.0

Table 26: Detailed results of applying different losses to the Places-LT dataset.

Mean Many Med. Few Harmonic mean  Worst case

CE Ioss 247 40.5 19.8 638 0.1 0.0

Focal loss 24.3 40.5 19.2 6.3 0.1 0.0

LDAM loss 24.7 379 212 86 0.0 0.0

FFT | Class Balanced loss 25.1 40.7 20.3 7.3 0.0 0.0
Generalized Re-Weight | 22.0 38.8 163 4.1 0.0 0.0
Balanced Softmax Loss | 31.3 39.7 28.0 233 20.6 3.0

Logit Adjustment loss 32.0 36.2 29.9 293 21.6 3.0
CLIP-ViT-B/16 LADE loss 16.8 23.0 16.7 5.5 0.0 0.0
CE Toss 398 539 359 225 0.1 0.0

Focal loss 39.0 52.9 351 22.1 0.2 0.0

LDAM loss 41.1 54.7 374 243 0.0 0.0

PEFT | Class Balanced loss 40.2 54.0 358 246 0.1 0.0
Generalized Re-Weight | 44.5 51.1 463 282 0.4 0.0
Balanced Softmax Loss | 48.8 49.7 49.0 469 39.4 4.0

Logit Adjustment loss 48.0 414 505 547 0.4 0.0

LADE loss 49.2 499 493 476 354 1.0

CE Ioss 26.0 414 209 95 0.1 0.0

Focal loss 25.9 412 210 88 0.1 0.0

LDAM loss 25.0 399 200 9.1 0.1 0.0

FFT | Class Balanced loss 26.0 41.2 212 87 0.1 0.0
Generalized Re-Weight | 23.4 39.8 178 6.2 0.0 0.0
Balanced Softmax Loss | 30.3 41.3 26.8 181 16.9 2.0

Logit Adjustment loss 31.9 40.3 29.0 232 20.1 2.0
IN21K-ViT-B/16 LADE loss 27.3 38.8 227 165 15.2 2.0
CE Toss 319 458 282 150 02 0.0

Focal loss 30.9 450 269 140 0.1 0.0

LDAM loss 349 46.9 315 205 0.4 0.0

PEFT | Class Balanced loss 32.0 45.9 28.1 15.0 0.1 0.0
Generalized Re-Weight | 34.2 47.0 32.1 157 0.1 0.0
Balanced Softmax Loss | 38.3 453 36.6  29.5 26.7 3.0

Logit Adjustment loss 39.7 422 39.7 352 29.9 4.0

LADE loss 0.3 0.0 0.0 1.5 0.0 0.0
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Table 27: Detailed results of applying different losses to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
CE Toss 49.9 60.0 440 16.6 0.0 0.0
Focal loss 48.2 674 418 164 0.0 0.0
LDAM loss 50.4 67.0 457 203 0.0 0.0
FFT | Class Balanced loss 50.0 68.8 439 182 0.0 0.0
Generalized Re-Weight | 49.0 67.7 428 18.0 0.0 0.0
Balanced Softmax Loss | 54.6 64.8 51.0 382 0.3 0.0
Logit Adjustment loss 54.0 59.8 51.5 465 1.0 0.0
CLIP-ViT-B/16 LADE loss 53.0 634  50.7 32.1 0.1 0.0
CE loss 70.6 85.5 67.6 38.8 0.1 0.0
Focal loss 70.1 848 67.1 39.1 0.3 0.0
LDAM loss 71.6 854 693 407 0.1 0.0
PEFT | Class Balanced loss 71.2 85.5 67.7 432 0.5 0.0
Generalized Re-Weight | 74.5 81.8 742 546 59.8 2.0
Balanced Softmax Loss | 76.7 812 754 685 70.2 12.0
Logit Adjustment loss 75.6 75.0 757 76.7 67.9 4.0
LADE loss 76.3 81.1 753  66.6 69.3 8.0
CE Toss 52.1 70.1 459 230 0.1 0.0
Focal loss 51.0 69.1 445  22.6 0.1 0.0
LDAM loss 522 69.6 458 252 0.1 0.0
FFT | Class Balanced loss 52.3 70.3 46.1  23.6 0.1 0.0
Generalized Re-Weight | 50.9 69.3 445  21.0 0.1 0.0
Balanced Softmax Loss | 55.6 684 515 353 36.7 0.0
Logit Adjustment loss 56.2 66.2 526 405 1.0 0.0
IN21K-ViT-B/16 LADE loss 484 61.3 43.1 30.7 0.3 0.0
CE loss 782 87.5 758 3599 64.4 2.0
Focal loss 77.4 869 747 59.7 63.9 2.0
LDAM loss 79.4 872 713 649 69.5 4.0
PEFT | Class Balanced loss 78.2 87.5 758 60.5 64.3 2.0
Generalized Re-Weight | 78.8 870 772 613 66.4 4.0
Balanced Softmax Loss | 81.2 85.6 79.8  73.6 76.3 16.0
Logit Adjustment loss 81.6 83.7 80.6 78.7 77.6 16.0
LADE loss 81.2 86.1 794 740 76.6 16.0

Table 28: Detailed results of applying different classifiers to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Linear classifier 54.6 829 559 20.1 0.0 0.0
Cosine classifier 56.4 843 571 229 0.0 0.0
FFT | 7-normalized classifier (1 = 0.5) | 55.6 83.5 56.8 21.6 0.1 0.0
T-normalized classifier (7 = 1) 55.6 836 562 222 0.1 0.0
. T-normalized classifier (7 = 2) 54.8 83.1 55.1 213 0.1 0.0
CLIP-ViT-B/16 Linear classifier 719 902 751 46.6 56.0 7.0
Cosine classifier 72.2 90.2 745 485 37.9 1.0
PEFT | 7-normalized classifier (r = 0.5) | 71.7 89.9 743 473 54.9 6.0
T-normalized classifier (7 = 1) 71.9 90.0 746 47.6 54.1 5.0
T-normalized classifier (7 = 2) 71.8 89.9 737 484 56.7 8.0
Linear classifier 70.3 89.6 719 458 48.0 3.0
Cosine classifier 69.6 90.2 70.7 443 31.6 1.0
FFT | 7-normalized classifier (1 = 0.5) | 69.3 89.6 69.0 46.1 49.0 4.0
T-normalized classifier (T = 1) 68.9 89.9 70.1 429 48.3 4.0
. T-normalized classifier (7 = 2) 68.8 89.5 69.7 436 45.8 3.0
IN21K-VIT-B/16 Linear classifier 80.7 935 809 654 412 1.0
Cosine classifier 83.9 94.8 84.1 71.0 65.0 6.0
PEFT | 7-normalized classifier (r = 0.5) | 80.8 933 80.6 66.2 41.7 1.0
T-normalized classifier (7 = 1) 80.9 934 80.7 66.5 42.6 1.0
T-normalized classifier (7 = 2) 81.2 93.3 81.0 672 58.7 3.0
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Table 29: Detailed results of applying different classifiers to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Linear classifier 249 407 20.1 6.8 0.0 0.0
Cosine classifier 24.9 40.9 199 6.6 0.0 0.0
FFT | 7-normalized classifier ( = 0.5) | 24.7 40.9 198 6.2 0.0 0.0
T-normalized classifier (7 = 1) 24.6 41.3 19.2 6.0 0.0 0.0
. 7-normalized classifier (7 = 2) 235 40.3 17.8 59 0.0 0.0
CLIP-VIT-B/16 Linear classifier 39.8 539 359 225 0.1 0.0
Cosine classifier 40.6 552 359 242 0.2 0.0
PEFT | 7-normalized classifier (7 = 0.5) | 40.3 549 361 228 0.1 0.0
T-normalized classifier (7 = 1) 40.0 54.7 354 234 0.2 0.0
T-normalized classifier (7 = 2) 37.6  53.1 32.8 202 0.1 0.0
Linear classifier 26.0 414 20.9 9.5 0.1 0.0
Cosine classifier 27.1 433  21.8 9.1 0.1 0.0
FFT | 7-normalized classifier (- = 0.5) | 25.8 415 206 8.7 0.1 0.0
T-normalized classifier (7 = 1) 25.4 41.3  20.1 8.1 0.0 0.0
. T-normalized classifier (7 = 2) 24.8 41.8 192 63 0.0 0.0
IN21K-ViT-B/16 Linear classifier 31.9 458 282 150 02 0.0
Cosine classifier 38.1 534 337 202 0.4 0.0
PEFT | 7-normalized classifier (7 = 0.5) | 32.1 464 282 147 0.1 0.0
T-normalized classifier (7 = 1) 323 47.3 279 149 0.1 0.0
T-normalized classifier (7 = 2) 32.1 476 272 147 0.1 0.0

Table 30: Detailed results of applying different classifiers to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

Linear classifier 49.9 69.0 440 16.6 0.0 0.0

Cosine classifier 50.0 69.6 437 16.8 0.1 0.0

FFT | 7-normalized classifier (r = 0.5) | 49.8  69.0 438 16.5 0.0 0.0

T-normalized classifier (7 = 1) 49.0 685 427 162 0.0 0.0

. T-normalized classifier (7 = 2) 45.8 66.0 384 145 0.0 0.0

CLIP-VIT-B/16 Tinear classifier 706 855 676 388 01 0.0

Cosine classifier 70.5 854 67.0 406 0.2 0.0

PEFT | 7-normalized classifier ( = 0.5) | 70.5 855 673 395 0.2 0.0

T-normalized classifier (7 = 1 70.1 854 66.6 395 0.2 0.0

T-normalized classifier (7 = 2) 67.2 84.0 630 348 0.2 0.0

Linear classifier 52.1 70.1 459 23 0.1 0.0

Cosine classifier 54.4 7277 484 236 0.1 0.0

FFT | 7-normalized classifier (- = 0.5) | 51.6 69.4 45.4 23 0.1 0.0

T-normalized classifier (7 = 1) 50.5 69.1 44.1  20.1 0.1 0.0

. 7-normalized classifier (7 = 2) 494 689 423 188 0.1 0.0

IN2IK-VIT-B/16 Tinear classifier 782 875 758 599 6id 20

Cosine classifier 80.2 88.9 78.1 63.1 0.5 0.0

PEFT | 7-normalized classifier ( = 0.5) | 76.9 869 744 574 61.7 2.0

T-normalized classifier (7 = 1) 75.5 86.3 726 547 59.4 2.0

T-normalized classifier (7 = 2) 74.6 855 713 554 1.0 0.0

Table 31: Detailed results of applying knowledge distillation to the CIFAR100-LT dataset.

[ Mean Many Med. Few Harmonic mean  Worst case
Teacher | IN21K-ViT-B/16 [ PEFT | [ 88.8 91.8 88.0 86.3 81.4 9.0
FET B_as;lin; 67.3 889 679 415 29.4 1.0
DeiT-S dlsnll_atlon 70.4 91.0 714 453 31.4 1.0
PEET B_as;lm; 69.9 89.5 705 464 0.1 0.0
Student dlsnll_atlon 70.0 893 704 47.0 0.1 0.0
FFT Baseline 58.7 843  60.1 272 26.6 2.0
DeiT.Ti distillation | 61.7 86.7 623 31.7 24.5 1.0
PEET Baseline 60.8 843 616 32.6 0.1 0.0
distillation | 60.6 843 613 323 0.0 0.0

Table 32: Detailed results of applying knowledge distillation to the Places-LT dataset.

\ \ \ [ Mean Many Med. Few Harmonic mean  Worst case
Teacher ‘ CLIP-ViT-B/16 ‘ PEFT ‘ ‘ 51.5 50.9 522 509 37.1 1.0
FFT B.aS§lin§ 27.1 43.0 22.5 7.9 0.1 0.0
DeiT-S dlstlllgtlon 30.2 46.5 256 10.8 0.1 0.0
PEFT B.as§11n§ 32.1 48.4 273  13.1 0.1 0.0
Student dlstlll?.tlon 32.5 49.0 275 13.8 0.1 0.0
FFT B.as.elmfa 24.6 41.1 19.5 5.9 0.0 0.0
DeiT-Ti dlstlll?.tlon 28.6 45.2 23.8 9.0 0.1 0.0
PEFT Baseline 29.4 45.5 244 112 0.1 0.0
distillation | 30.0 46.2 250 113 0.1 0.0
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Table 33: Detailed results of applying knowledge distillation to the ImageNet-LT dataset.

[ [ [ Mean Many Med. Few Harmonic mean  Worst case
Teacher | IN2IK-VIT-B/16 | PEFT | [ 836 858 830 800 80.1 16.0
FFT Baseline 583 74.1 53.7 299 0.1 0.0
DeiT-S distillation | 60.5 75.8 56.2 32.6 0.2 0.0
PEFT Baseline 74.6 84.6 723 545 1.0 0.0
Student distillation | 74.9 84.6 72.6 559 57.6 2.0
FFT Baseline 50.8 68.7 452 202 0.0 0.0
DeiT.Ti distillation | 52.7 70.3 472 224 0.1 0.0
PEFT Baseline 65.6 78.8 62.3 40.2 0.5 0.0
distillation | 65.9 78.9 62.6 40.5 1.0 0.0

Table 34: Detailed results of applying ensemble learning to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
FFT Baseline 54.6 829 559 20.1 0.0 0.0
. Ensemble | 55.6 83.7 564 220 0.1 0.0
CLPVITBIG = Baseline | 719 902 75.1 466 56.0 7.0
Ensemble 76 894 788 57.1 65.7 10.0
FFT Baseline 70.3 89.6 719 458 48.0 3.0
. Ensemble | 68.6 90.7 70.0 413 46.2 4.0
IN2IK-VIT-B/16 PEFT Baseline 80.7 93.5 809 654 41.2 1.0
Ensemble | 82.2 93.6 829 68.1 60.7 4.0

Table 35: Detailed results of applying ensemble learning to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
FFT Baseline 24.9 40.7 20.1 6.8 0.0 0.0
. Ensemble | 18.9 34.8 134 24 0.0 0.0
CLIPVITBAG = " Baseline | 398 539 359 225 0.1 0.0
Ensemble | 45.0 55.5 435 289 04 0.0
FFT Baseline 26.0 414 209 95 0.1 0.0
. Ensemble | 26.7 43.1 214 8.6 0.1 0.0
IN2IK-VIT-B/16 PEFT Baseline 31.9 458 282 150 0.2 0.0
Ensemble | 36.4 49.2 336 192 17.3 1.0

Table 36: Detailed results of applying ensemble learning to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
FFT Baseline 499 69.0 440 16.6 0.0 0.0
. Ensemble | 36.7 547 298 9.7 0.0 0.0
CLIPVITBIG = T Baseline | 706 855 676 388 0.1 0.0
Ensemble | 734 844 716 4838 0.5 0.0
FFT Baseline 52.1 70.1 459 230 0.1 0.0
. Ensemble | 542 719 48,6 24.1 0.1 0.0
IN2IK-VIT-B/16 PEFT Baseline 78.2 87.5 758 599 64.4 2.0
Ensemble | 804 879 787 65.1 70.3 4.0
Table 37: Detailed results of applying mixup to the CIFAR100-LT dataset.
Mean Many Med. Few Harmonic mean Worst case

FFT Baseline | 51.0 70.3 51.0 303 36.4 7.0

. Mixup 68.7 819 69.7 519 61.1 19.0
CLIPVITBIG = Baseline | 80.1 865 80.0 729 775 38.0
Mixup 79.7 825 805 75.1 78.1 21.0

FFT Baseline | 75.8 88.7 76.4  59.9 63.0 6.0

. Mixup 81.6 86.7 825 745 73.6 8.0
IN2IK-VIT-B/16 PEFT Baseline | 85.1 92.0 848 714 79.5 18.0
Mixup 86.7 89.3 862 84.1 84.0 29.0
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Table 38: Detailed results of applying mixup to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
FFT Baseline 31.3 39.7 28.0 233 20.6 3.0
. Mixup 35.8 41.8 346 27.6 25.5 3.0
CLPVITBIG = " Baseline | 488 49.7 490 469 39.4 10
Mixup 49.8 49.9 50.5 48.1 37.5 2.0
FFT Baseline | 30.3 41.3 26.8 18.1 16.9 2.0
. Mixup 333 42.0 309 23.0 21.7 3.0
INKNIEBAG e  Baseline | 383 453 366 295 267 3.0
Mixup 45.0 48.1 449 398 35.2 5.0

Table 39: Detailed results of applying mixup to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
FFT Baseline | 54.6 64.8 51.0 382 0.3 0.0
. Mixup 58.7 67.9 56.8 39.1 0.2 0.0
CLIPVITBIG = Baseline | 767 812 754 683 702 12.0
Mixup 75.2 78.9 74.8  66.2 67.3 8.0
FFT Baseline | 55.6 68.4 515 353 36.7 0.0
. Mixup 61.5 72.0 576 45.6 1.0 0.0
INARNIEBA0 =  Baseline | 812 856 798 736 763 16.0
Mixup 83.3 85.1 82.6  80.8 79.2 10.0

Table 40: Detailed results of applying label smoothing to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CE 546 829 559 201 0.0 0.0

prp | CEGW/LS) | 562 852 368 217 15.4 1.0

BS 580 755 589 365 423 6.0

. BS(W/LS) | 598 714 570 49.6 51.0 12.0
CLIP-ViT-B/16 CE 19902 751 466 56.0 70
pEpr | CEGWLS) | 717 898 752 466 36.1 1.0

BS 80.1 865 800 729 775 38.0

BS (w/LS) | 80.6 841 801 772 78.5 440

CE 703 896 719 453 480 3.0

prp | CEGW/LS) | 713 OLI 727 466 4200 2.0

BS 758 887 764 599 63.0 6.0

. BS(w/LS) | 782 90.1 768 658 71.9 23.0
IN2IK-ViT-B/16 CE 807 935 809 654 a2 T0
pErT | CEGW/LS) | 827 945 825 692 61.7 40

BS 851 920 848 774 79.5 18.0

BS(w/LS) | 88.1 895 866 882 86.6 50.0

Table 41: Detailed results of applying label smoothing to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
CE 247 4035 198 68 01 0.0
prp | CEGW/LS) | 250 405 197 83 01 0.0
BS 313 397 280 233 20.6 3.0
. BS(wW/LS) | 286 319 255 297 0.4 0.0
CLIP-ViT-B/16 CE 398 539 359 225 0.1 0.0
pErT | CEGW/LS) | 397 546 357 212 0.0 0.0
BS 488 497 490 469 39.4 40
BS (W/LS) | 494 489 497 494 37.9 3.0
CE 260 414 209 95 01 0.0
prp | CEGW/LS) | 269 431 217 83 0.1 0.0
BS 303 413 268 18.1 16.9 2.0
. BS(wW/LS) | 324 387 294 275 0.4 0.0
IN21K-ViT-B/16 CE 319 458 282 150 02 0.0
pprp | CEGW/LS) | 341 483 300 173 01 0.0
BS 383 453 366 295 26.7 3.0
BS(W/LS) | 418 446 412 378 30.6 5.0
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Table 42: Detailed results of applying label smoothing to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
CE 49.9 69.0 440 16.6 0.0 0.0
FFT CE (w/LS) | 514 69.7 458 19.1 0.0 0.0
BS 54.6 648 510 382 0.3 0
. BS (w/LS) | 55.5 632 522 453 41.0 4.0
CLIP-ViT-B/16 CE 706 855 67.6 388 01 0.0
PEET CE (w/LS) | 70.5 857 677 375 0.1 0.0
BS 76.7 812 754 685 70.2 12.0
BS (w/LS) | 76.7 80.1 75.7 703 70.5 12.0
CE 52.1 70.1 459 230 0.1 0.0
FFT CE (w/LS) | 54.5 732 482 242 0.1 0.0
BS 55.6 684 515 353 36.7 0.0
. BS (w/LS) | 59.0 689 545 438 434 2.0
IN21K-ViT-B/16 CE 782 875 758 599 644 2.0
PEFT CE (w/LS) | 804 88.3 783 654 66.4 2.0
BS 81.2 85.6 798 73.6 76.3 16.0
BS (w/LS) | 83.0 85.0 82.1 803 79.1 16.0
Table 43: Ablation experiment on CIFAR100-LT.
Cosine  Square-root Balanced Label Auto X .
Classifier ~ sampling ~ Softmax Smoothing Augment Mixup | Mean Many Med.  Few Hmean Worst
469 756 463 141 10.7 1.0
v 41,5 706 39.1 102 0.0 0.0
v v 60.0 827 645 282 206 1.0
FFT v v v 657 803 69.1 447 510 6.0
v v v v 674 808 703 48.6 555 8.0
v v v v v 297 389 318 164 0.0 0.0
CLIP v v v v v | 496 615 526 323 252 1.0
-ViT v v v v v v 144 153 172 10.0 0.0 0.0
-B/16 719 90.1 752 470 565 8.0
v 72.8 902 755 492 562 5.0
v v 770 877 789 623 68.7 11.0
PEFT v v v 80.1 845 810 740 770 28.0
v v v v 80.5 84.1 81.1 757 779 350
v v v v v 79.3 809 802 764 764 35.0
v v v v v 793 812 80.1 762 745 17.0
v v v v v v 775 793 781 749 73,1 280
71.1 893 726 48.0 50.6 3.0
v 714 910 730 468 390 2.0
v v 75.1 914 76.6 543 533 3.0
FFT v v v 827 906 83.1 729 744 9.0
v v v v 81.5 91.7 813 698 756 16.0
v v v v v 822 915 829 703 76.8 230
IN21K v v v v v |89 912 837 757 718 150
-ViT v v v v v v 847 89.5 853 784 81.6 26.0
-B/16 81.6 933 8I9 676 419 1.0
v 842 949 841 71.8 620 4.0
v v 872 942 87.1 792 792 120
PEFT | v v 89.1 926 885 858 865 280
v v v v 89.2 91.7 884 872 873 400
v v v v v 889 90.8 882 875 873 430
v v v v v 88.1 89.6 88.0 865 844 19.0
v v v v v v 87.6 889 87.1 86.6 84.6 240
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Table 44: Ablation experiment on Places-LT.

Cosine  Square-root Balanced Label Auto .
Classifier ~sampling  Softmax Smoothing Augment Mixup | Mean Many Med.  Few Hmean Worst
237 398 185 60 01 00
v 245 410 192 63 0.0 0.0
v v 369 509 344 167 187 1.0
FFT v v v 4.1 174 48 311 317 40
v v v v 422 492 425 28.6 31.3 5.0
v v v v v 437 473 453 333 320 4.0
CLIP v v v v v 456 480 47.1 377 308 1.0
-ViT v v v v v v 454 464 47.1 394 324 5.0
-B/16 39.8 545 357 223 0.1 0.0
v 40.6 551 362 240 0.1 0.0
v v 48.0 56.1 460 37.7 31.8 1.0
PEET v v v 513 513 519 499 404 3.0
v v v v 512 512 519 498 390 20
v v v v v 51.1 50.6 519 50.1 388 20
v v v v v 50.7 506 513 496 39.1 4.0
v v v v v v 502 499 509 489 358 20
257 409 205 94 0.1 0.0
v 266 429 213 8.4 0.2 0.0
v v 382 519 348 21.0 193 20
FET v v v 423 503 41.1 300 30.1 4.0
v v v v 425 51.1 415 292 296 3.0
v v v v v 438 50.5 439 31.1 31.8 3.0
IN21K v v v v v | 454 504 460 349 332 30
-ViT v v v v v v 46.0 499 47.0 36.6 334 3.0
-B/16 317 455 278 151 0.1 0.0
v 378 535 335 189 0.1 0.0
v v 447 534 428 329 298 4.0
PEET v v v 484 494 496 437 367 4.0
v v v v 479 490 49.1 431 36.0 4.0
v v v v v 482 493 493 435 36.6 5.0
v v v v v 48.4 483 494 46.0 340 1.0
v v v v v v 483 4777 49.6 462 349 2.0
Table 45: Ablation experiment on ImageNet-LT.
Cosine  Square-root Balanced Label Auto .
Classifier ~sampling ~ Softmax Smoothing Augment Mixup | Mean Many Med. Few Hmean Worst
487 679 425 160 00 0.0
v 487 68.6 422 155 0.0 0.0
v v 60.1 750 56.0 32.1 0.1 0.0
FET v v v 632 719 609 466 10 00
v v v v 64.1 73.1 61.6 474 512 4.0
v v v v v 645 714 63.0 50.1 519 2.0
CLIP v v v v v | 657 720 642 532 546 6.0
-ViT v v v v v v 639 70.0 627 51.0 50.1 2.0
-B/16 70.5 855 675 383 0.1 0.0
v 704 855 67.0 399 0.1 0.0
v v 747 840 727 554 608 4.0
PEET v v v 770 808 759 69.6 71.1 14.0
v v v v 772 805 763 715 712 14.0
v v v v v 76,6 793 759 712 69.8 6.0
v v v v v 755 783 746 704 68.1 8.0
v v v v v v 749 773 744 69.8 66.6 6.0
508 69.1 444 21.8 0.1 0.0
v 53.1 714 469 23.0 0.1 0.0
v v 71.5 823 685 51,5 558 2.0
FFT v v v 734 813 710 593 655 6.0
v v v v 752 821 73.1 628 67.7 100
v v v v v 755 819 740 628 684 10.0
IN21K v v v v v | 764 821 748 657 69.8 10.0
-ViT v v v v v v 770 821 757 67.1 708 10.0
_B/16 782 874 T76.0 598 1.0 0.0
v 80.3 888 782 63.6 0.5 0.0
v v 82.6 88.1 813 715 75.1 6.0
PEFT v v v 83.6 864 830 782 796 10.0
v v v v 84.1 858 83.6 80.6 80.2 16.0
v v v v v 84.1 858 83.6 809 802 14.0
v v v v v 84.1 85.1 838 828 80.1 12.0
v v v v v v 842 851 839 82.8 803 14.0
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Table 46: Ablation experiment on iNaturalist 2018.

Cosine  Square-root Balanced Label Auto .
Classifier ~sampling  Softmax Smoothing Augment Mixup | Mean Many Med. Few Hmean Worst
584 736 626 491 00 00
v 633 722 646 595 00 00
v v 684 703 694 667 00 00
FET v v v 709 661 713 715 00 00
v v v v 715 651 719 727 0.0 0.0
v v v v v 69.6 613 699 714 00 00
CLIP v v v v v | 694 3599 696 716 00 00
-ViT v v v v v v 487 342 472 544 00 0.0
-B/16 695 821 731 6I.7 00 00
v 753 816 760 727 0.0 00
v v 76.8 786 774 755 0.0 0.0
PEFT | v v v 793 735 791 810 00 00
v v v v 790 73.0 789 806 0.0 00
v v v v v 783 720 784 798 00 0.0
v v v v v 769 69.1 770 788 0.0 0.0
v v v v v v 746 663 744 769 0.0 0.0
578 653 59.I 542 00 00
v 615 703 629 575 00 00
v v 723 750 734 701 0.0 0.0
FET v v v 750 700 757 754 00 00
v v v v 746 698 751 752 0.0 00
v v v v v 749 688 755 757 0.0 0.0
IN2IK v v v v v | 733 657 739 746 00 00
-ViT v v v v v v 723 635 729 739 0.0 0.0
-B/16 73.6 792 758 695 0.0 0.0
v 756 812 772 722 0.0 0.0
v v 79.0 806 802 771 00 0.0
PEFT v v v 81.1 756 817 819 0.1 0.0
v v v v 81.1 758 818 81.7 0.1 0.0
v v v v v 81.1 746 81.8 81.8 0.1 00
v v v v v 799 719 804 814 00 0.0
v v v v v v 794 712 799 808 0.0 0.0

Table 47: Comparison of LIFT and our method on accuracy and training cost. ”S/E” represents the
number of training samples in each epoch, and “Samples” represents the total number of training
samples.

Datasets Acc  Epochs S/E Samples
LIFT | 80.3 10 10.8K 108K
CIFARIOO-IRI00 |y o 1805 50 19K  95K(|)

LIFT | 51.5 10 62.5K 625K
Ours | 51.2 50 8.2K 410K ()
LIFT | 77.0 10 117.0K 1.17M
Ours | 77.2 50 20.7K  1.03M(])
LIFT | 79.1 20 437.5K 8.75M
Ours | 79.0 100 65.0K  6.5M(])

Places-LT

ImageNet-LT

iNaturalist 2018

Table 48: Accuracy of our method with DINO.

Datasets Overall Many Med. Few
CIFAR100-IR100 80.3 85.1 81.7 73.0
Places-LT 43.9 45.5 45.4 37.3
ImageNet-LT 73.5 77.6 72.8 64.0
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