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ABSTRACT

Deep long-tail learning is a challenging visual recognition problem that trains
models on long-tailed distributed datasets. In the last decade, a large number of
methods have been proposed to solve the problems caused by imbalanced data.
Many methods have been proven useful in learning a deep model from scratch,
such as ResNet or ResNeXt, but they have not been validated as effective in fine-
tuning the pre-trained foundation models, such as CLIP or ViT. If users inappro-
priately apply these long-tail learning methods, it may result in worse accuracy
than expected. However, there is no scientific guideline for these methods in the
existing literature. In this paper, we first collect the widely used methods of ex-
isting long-tail learning and then conduct extensive and systematic experiments to
provide a guideline for the accurate use of these methods in fine-tuning foundation
models. Furthermore, we observe that the current comparison protocol ignores
the influence of training cost and hyperparameter selection, which may poten-
tially lead to unfair comparisons and biased results. Motivated by our empirical
studies, we propose a unified fine-tuning framework for long-tailed recognition.
Experimental results demonstrate that the proposed framework outperforms exist-
ing methods on multiple long-tailed datasets, including ImageNet-LT, Places-LT,
CIFAR100-LT, and iNaturalist 2018.

1 INTRODUCTION

Deep neural networks have achieved great success in a variety of computer vision tasks, such as
image recognition (Voulodimos et al., 2018; Krizhevsky et al., 2012), object detection (Zhao et al.,
2019; Zou et al., 2023), etc. These achievements are attributed to the availability of large-scale
datasets (Deng et al., 2009; Zhou et al., 2017; Krizhevsky, 2009) and the elaborately designed mod-
els (He et al., 2016; Dosovitskiy et al., 2021). However, in the real world, the natural data typically
exhibits a long-tailed distribution (Liu et al., 2019; Cao et al., 2019; Kang et al., 2020; Yuan et al.,
2021a; Yan et al., 2023; Xu et al., 2023a), where a small number of head classes have the majority of
samples, and a large number of tail classes have only a few samples. Such extreme class imbalance
poses severe challenges to the training of deep neural networks. The reason lies in that the models
are prone to making predictions biased towards the head classes, leading to poor performance on tail
classes, thereby decreasing the overall prediction performance (Tan et al., 2020; Zhang et al., 2023).

To solve the long-tail problem, many methods have been proposed in recent years. For example,
re-weighting methods (Wu et al., 2020; Khan et al., 2019; Cui et al., 2019) aim to adjust the training
loss for each class by multiplying it with a different weight; re-sampling methods (Chawla et al.,
2002; Liu et al., 2008; Shi et al., 2023) aim to adjust the number of samples for each class in each
sample batch to rebalance the classes; ensemble learning methods (Zhou et al., 2020; Wang et al.,
2021b) aim to combine multiple exports to reduce the bias of the model towards the head classes.
These existing methods have made significant progress in improving classification accuracy, but the
experimental results of these methods are obtained from models trained from scratch, with limited
research on fine-tuning pre-trained foundation models.

Recently, some works study long-tail learning with foundation models instead of training from
scratch, such as BALLAD (Ma et al., 2021), VL-LTR (Tian et al., 2022), LPT (Dong et al., 2023),
LIFT (Shi et al., 2024), and RAC (Long et al., 2022). However, these studies are less comprehensive
and lack a systematic investigation. BALLAD and VL-LTR focus on two-stage learning methods,
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while LPT and LIFT utilize rebalanced loss functions to mitigate the long-tail problem. On the other
hand, BALLAD, VL-LTR, and RAC only apply the full fine-tuning setting, while LPT and LIFT fo-
cus solely on the parameter-efficient fine-tuning approaches. To the best of our knowledge, there has
not been a systematic study on how to fine-tune foundation models under a long-tailed distribution.

In this paper, we delve into the commonly used methods in long-tail learning and apply them to
fine-tune pre-trained CLIP (Radford et al., 2021) and ViT (Dosovitskiy et al., 2021), which are
widely used in various visual tasks (Dehghani et al., 2023; Zhou et al., 2022; Yuan et al., 2021b;
Wang et al., 2021a; Gao et al., 2024). We conduct extensive and systematic experiments to evaluate
whether these methods are equally effective on foundation models as learning from scratch. We
also analyze their training costs and hyperparameter selections. Finally, motivated by the results of
our empirical studies, we integrate the optimal methods and propose a unified training framework.
The proposed framework achieves better results than existing approaches on multiple long-tailed
datasets, including ImageNet-LT (Liu et al., 2019), Places-LT (Sharma et al., 2021), CIFAR100-
LT (Cao et al., 2019), and iNaturalist 2018 (Van Horn et al., 2018).

The main contributions of our work are as follows:

• We thoroughly explore the effectiveness of commonly used methods in long-tail learning when
applied to foundation models to provide guidance for future research.

• We propose a unified fine-tuning framework by assembling optimal methods, which outperforms
existing methods on multiple long-tailed datasets.

• We investigate training costs and hyperparameter selection in experiments to offer comprehen-
sive recommendations for the use of these methods in practical settings.

2 RELATED WORK

Long-Tail Learning There are several methods being proposed to address the long-tail prob-
lem (Liu et al., 2019; Cao et al., 2019; Cui et al., 2019; Kang et al., 2020; Zhou et al., 2020; Zhong
et al., 2021; Yang et al., 2022; Zhang et al., 2023), which can be divided into three categories (Zhang
et al., 2023): 1) Class re-balancing aims to enhance the model’s ability to recognize minority classes
by rebalancing the sample proportions across different classes, including re-sampling (Chawla et al.,
2002; Liu et al., 2008; Shi et al., 2023), class-sensitive re-weighting (Wu et al., 2020; Khan et al.,
2019; Cui et al., 2019), and logit adjustment (Menon et al., 2021; Zhang et al., 2021a; Hong et al.,
2021). 2) Information augmentation aims to improve model performance on long-tailed data by
incorporating additional information during model training, including transfer learning (Cui et al.,
2018; Xiang et al., 2020) and data augmentation (Shorten & Khoshgoftaar, 2019; Zhong et al.,
2021). 3) Module improvement methods seek to address long-tail problems by improving network
modules or representations, including classifier design (Wu et al., 2021; Liu et al., 2021a), con-
trastive learning (Kang et al., 2021; Zhu et al., 2022), and ensemble learning (Zhou et al., 2020;
Wang et al., 2021b). However, these works only study how to train models from scratch and ignore
the development of pre-trained foundation models. In this paper, we aim to further investigate the
specific effects of the representative methods by applying them to the advanced foundation models.

Fine-Tuning Foundation Models The pre-trained foundation models have attracted widespread
attention in recent years (Vaswani et al., 2017; Dosovitskiy et al., 2021; Radford et al., 2021; Tou-
vron et al., 2021; Liu et al., 2021b). These models are pre-trained on web-scale data to construct so-
phisticated features and transferred to various downstream tasks, such as image classification (Yuan
et al., 2021a), object detection (Yan et al., 2023), and semantic segmentation (Xu et al., 2023a).
Moreover, the adaptation to downstream tasks can be further improved by applying extra data to
fine-tune the foundation model (Dosovitskiy et al., 2021; Zhou et al., 2022). There are two fine-
tuning approaches: full fine-tuning (Kumar et al., 2022) and parameter-efficient fine-tuning (Zaken
et al., 2022; Jia et al., 2022; Chen et al., 2022), where the latter is regarded as a typical efficient
mode by introducing only a few learnable parameters. However, these methods mainly utilize the
balanced data for fine-tuning, which may yield unsatisfactory results when directly applied to the
long-tailed datasets (Shi et al., 2024). Although some works have been proposed to mitigate this
issue (Ma et al., 2021; Tian et al., 2022; Dong et al., 2023; Zhang et al., 2021b), no research has
systematically studied the impact of long-tail learning algorithms on foundation models. For the
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first time, we explore the reasonable application of long-tail learning methods on foundation models
to provide a guideline for future applications.

3 METHODS GALLERY

We commence by introducing the Problem Definition, then categorize classical long-tail learning
methodologies into 7 distinct groups: 1) Re-sampling, 2) Data Augmentation, 3) Class-sensitive
Loss, 4) Balanced Classifier, 5) Knowledge Distillation, 6) Ensemble Learning, and 7) Other tricks.
For each group, we first revisit relevant methods and then compare experimental performance. To
ensure the reliability of our investigation, we experiment under different scenarios, including dif-
ferent foundation models (CLIP and ViT) and different fine-tuning paradigms (FFT and PEFT).
Comprehensive details regarding the datasets and implementation settings are provided in Appendix
Section A. Due to the page limit, the knowledge distillation method is introduced in Appendix Sec-
tion B, and the ensemble learning method is presented in Appendix Section C.

3.1 PROBLEM DEFINITION

Long-tailed recognition aims to learn deep classification models from training datasets character-
ized by a long-tailed class distribution, where a small number of classes contain a large number of
samples, while the majority of classes have only a few samples. Formally, we denote the long-tailed
datasets with N samples as D = {xi, yi}Ni=1. Besides, we denote ni as the sample frequency of
class i (1 ≤ i ≤ K), then we have N =

∑K
i=1 ni. In long-tail learning, the class frequencies

are arranged in a descending order (Kang et al., 2020), i.e., if 1 ≤ i < j ≤ K, then ni ≥ nj .
The imbalance ratio is defined as r = n1

nK
, representing the ratio between the class with the largest

number of images and the class with the smallest number of images, which can be used to describe
the severity of the long-tailed distribution. In practice, r formulates a large number, which indicates
that n1 ≫ nK in a long-tailed dataset. The goal of long-tail learning is to learn a model M from the
imbalanced data D so that M can attain optimal predictions on test data.

3.2 RE-SAMPLING

Due to the intrinsic data imbalance in the long-tailed data, conventional sampling methods result in
more head-class samples than tail-class samples in each training batch (Kang et al., 2020; 2021; Zhu
et al., 2022). Re-sampling tackles this issue by adjusting the sample distribution of each class within
the training data.

Re-sampling Methods We investigate several classic and widely used re-sampling methods.

• Random Over-Sampling (ROS) (Buda et al., 2018) balances the data distribution by duplicat-
ing samples from the tail classes to increase their proportion in training data to achieve a more
balanced sample distribution between head classes and tail classes.

• Random Under-Sampling (RUS) (More, 2016) aims to balance the data distribution by reducing
the number of samples from the head classes to make their sample frequencies closer to those of
the tail classes.

• Equalized re-sampling (EQ) (Kang et al., 2020; Shi et al., 2023) dynamically applies over-
sampling or under-sampling to different classes by ensuring the total size of the dataset is un-
changed. In this case, it obtains a balanced dataset without adding more training overhead.

• Square-root sampling (Kang et al., 2020) addresses limitations of balanced re-
sampling—excessive discarding of head-class samples and redundant duplication of tail-class
samples. This approach samples class j with probability pj =

nq
j∑K

i=1 nq
i

(ni = class sample

count). Setting q = 1
2 , it reduces head-class sampling frequency while preventing over-balancing

between head and tail classes.

Experimental Result Table 1 shows the results of using different re-sampling methods on
CIFAR100-LT and Places-LT datasets. For more detailed results, please refer to Appendix sec-
tion D.1
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Table 1: Accuracy of re-sampling methods. “Baseline” represents no resampling. Bold and
underlined numbers represent the optimal and sub-optimal results, respectively; the same notations
are applied to all tables below.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
Baseline 54.6 71.9 70.3 80.7 24.7 39.8 26.0 32.1

ROS 44.8 68.3 48.3 71.0 12.6 38.3 11.4 32.2
RUS 45.5 77.4 69.3 87.0 42.3 50.8 41.2 45.3
EQ 50.4 72.8 62.0 77.3 21.7 43.7 22.0 33.7

Square-root 56.8 76.4 76.0 84.4 37.1 47.5 32.6 39.7

Based on our experimental findings, these sampling methods consistently perform better under the
PEFT setting than under the FFT setting. RUS and Square-root sampling are proven to be more
effective strategies, which can significantly enhance performance by more than 5%. In contrast,
ROS exhibits significant performance deterioration, which is due to the severe overfitting issue. The
performance of EQ is between RUS and ROS.

Given that the model is already pre-trained, these results appear to be justifiable: a minimal amount
of data is sufficient to fine-tune the model and improve its performance on long-tailed datasets. We
conduct an additional experiment to verify this point. Specifically, we compare the balanced dataset
obtained through the RUS with 2, 5, and 10 times larger variants. Table 2 reports the results on
the CLIP-ViT-B/16 PEFT setting, showcasing that RUS performs better, particularly on tail classes.
As the data amount grows larger, though the head-class performance slowly increases, the tail-class
performance exhibits significant declines.

We evaluated the models with two RUS and RUSx10 to enable a deeper mechanistic analysis. We ex-
tract the features of tail-class test data from CIFAR100-IR100 using these two models and visualize
the results using t-SNE, as shown in Figure 1a 1b. The ellipse is constructed using the eigenvectors
and eigenvalues of the covariance matrix, derived from the data’s mean and covariance, which define
its orientation, major and minor axes, and center.

Figure 1: t-SNE visualization and classifier weight norms for RUS and RUSx10.

(a) t-SNE visualization for RUS (b) t-SNE visualization for RUSx10
(c) Classifier Weight norms
for RUS and RUSx10.

It can be observed that the ellipses in the t-SNE plot for RUS exhibit less overlap. This indicates
more distinct decision boundaries for the tail classes, leading to better tail classification performance.
Additionally, the weight norms of the model’s classifier are presented in Figure 1c. RUS clearly
demonstrates a more balanced distribution across all classes.

Furthermore, in terms of the training cost, the samples produced by RUS and Square-root sampling
are significantly fewer, nearly 100 times less than those generated by ROS (the number varying
with the dataset). Therefore, the training time cost is substantially lower than that of ROS and EQ
under the same setting. Considering the above factors, using RUS or Square-root sampling is more
practicable for fine-tuning foundation models with long-tailed datasets.

3.3 DATA AUGMENTATION

Data augmentation (Shorten & Khoshgoftaar, 2019) aims to increase data diversity by applying
predefined transformations, thereby improving model generalization, especially in scenarios where
the available data is limited.
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Table 2: RUSxN indicates that the training dataset size is N times that of the RUS-sampled dataset,
with each class containing N times the data as in RUS; “-” in the table means the corresponding
experiment is not implemented due to the huge amount of data.

Datasets CIFAR100-LT Places-LT
Mean Many Med. Few Mean Many Med. Few

RUS 77.7 82.0 80.0 69.9 50.8 49.6 52.2 49.6
RUSx2 77.5 85.3 80.6 64.6 50.6 50.5 52.6 46.1
RUSx5 75.6 87.2 79.7 57.4 49.1 51.5 51.4 39.2
RUSx10 73.4 88.1 77.8 50.7 47.7 52.7 48.9 33.9

Table 3: Accuracy of applying augmentation methods.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
No augmentation 48.7 71.9 71.1 81.6 23.7 39.8 25.7 31.7

ColorJitter 54.6 71.9 70.3 80.7 24.7 39.8 26.0 32.1
RandAugment 56.7 72.1 70.0 81.5 25.4 40.4 26.5 32.6
AutoAugment 57.8 70.7 71.6 81.3 24.9 40.7 26.9 32.7

Augmentation Methods In our paper, in addition to conventional image processing, we apply
several common data augmentation techniques.

• ColorJitter is one of the most commonly used methods for color-based data augmentation in
images. It applies random transformations within a specified range to the image’s brightness,
contrast, saturation, and hue.

• AutoAugment (Cubuk et al., 2019) creates a search space of strategies, each containing multiple
sub-strategies. For each mini-batch image, one sub-strategy is randomly selected. Each includes
two processing functions—like rotation, inversion, or shearing—with their probability and mag-
nitude parameters.

• RandAugment (Cubuk et al., 2020) is a simplified version of AutoAugment. The core of Ran-
dAugment is to randomly select a set of predefined augmentation operations with equal probabil-
ity and assign an intensity hyperparameter to each operation to transform the input images.

Experimental Results Table 3 shows the results of different augmentation methods on different
datasets and settings. For more detailed results, please refer to Appendix section D.2.

Based on the experimental results, it can be concluded that solely applying data augmentation to
long-tailed datasets can just slightly improve the performance of foundation models by less than
1%. Furthermore, when combined with other long-tail learning methods, data augmentation can not
always gain benefits, which will be discussed in Section The Ultimate Framework.

Data augmentation introduces computational overhead during data preparation, consequently ex-
tending the total training duration. For example, our experiments demonstrate a 15% increase in
end-to-end training time with RandAugment. In addition, we also research other impact of data
augmentation on model training, as shown in Figure 2. We illustrate the convergence curves of
training loss and accuracy for the ImageNet-LT dataset without augmentation and with AutoAug-
mentation. Based on the observations from the figures, it can be concluded that data augmentation
slows down the convergence speed of the model. The reason why such kind of data augmentation
without using external data faces difficulty in improving performance may be that foundation mod-
els have already seen various styles of images. Some recent studies have shown that introducing
external data or knowledge for augmentation is effective (Long et al., 2022; Wang et al., 2024a),
which may be an interesting direction in future research.

3.4 CLASS-SENSITIVE LOSS

Traditional deep learning methods typically employ the softmax cross-entropy loss function for
training. However, this loss function often overlooks the issue of class imbalance among training
data. We revisit some classic class-sensitive losses, which aim to rebalance the training loss for
different classes to deal with the imbalance problem.
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Figure 2: Convergence curves of training accu-
racy (left) and loss (right) on ImageNet-LT un-
der CLIP-ViT-B/16 PEFT.

Figure 3: Training loss of LADE and CE
on Places-LT under CLIP/B-16 FFT (left) and
ViT/B-16 PEFT (right) setting

Table 4: Summary of losses. In the table, z is the predicted logits, p is the probability obtained by
applying softmax to z, where zy, py correspond to class y. πy =

ny

N represents the label frequency
of the class y, where ny represents the number of samples in class y, N is the total sample numbers.

Loss Formulation Hyperparam. Loss Formulation Hyperparam.

CE − log(py) - G-RW − (1/πy)
ρ∑

j(1/πj)ρ
log(py) ρ

Focal −(1− py)
γ log(py) γ BS − log(

πyexp(zy)∑
j πjexp(zj)

) -

LDAM − log(
exp(zy−∆y)∑
j exp(zj−∆j)

) s LA − log(
exp(zy+µ·πy)∑
j exp(zj+µ·πj)

) µ

CB − 1−β
1−βny log(py) β LADE LBS + αLLADER α, λ

Loss Functions We study common class-sensitive losses, which are listed in Table 4.

• Focal Loss (Lin et al., 2017): Modulates CE loss with γ to down-weight easy examples.

• LDAM (Cao et al., 2019): Assigns class-dependent margins (∆) inversely proportional to class
frequency.

• CB Loss (Cui et al., 2019): Reweights losses by the effective number of samples per class.

• G-RW (Zhang et al., 2021a): Generalizes re-weighting with scale parameter ρ.

• Balanced Softmax (Ren et al., 2020): Adjusts softmax weights by class sample sizes.

• Logit-Adjusted (Menon et al., 2021): Applies label-dependent offsets to logits based on class
frequency.

• LADE (Hong et al., 2021): Calibrates outputs using test label distribution. Its regularizer
LLADER combines class priors πj and normalization terms. LLADER =

∑
j∈K πjLLADERj

,

given LLADERj
= − 1

Nj

∑N
i=1 1yi=j · πj + Z +

∑
j πjλZ

2, where Z = log( 1
N

∑N
i=1

zj
Kπy

).

Experimental Result We present the experimental result in Table 5. For more parameter settings
and results, please refer to Appendix section D.3.

Table 5: Accuracy of applying class-sensitive losses.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
CE 54.6 71.9 70.3 80.7 24.7 39.8 26.0 31.9

Focal 52.7 71.2 69.4 81.4 24.3 39.0 25.9 30.9
LDAM 53.6 73.6 64.4 82.8 24.7 41.1 25.0 30.9

CB 54.7 72.5 69.4 80.3 25.1 40.2 26.0 32.0
G-RW 50.9 71.8 66.9 81.8 22.0 44.5 23.4 34.2

BS 58.0 80.1 75.8 85.1 31.3 48.4 30.3 38.3
LA 62.7 79.8 73.1 86.3 32.0 48.0 31.9 39.7

LADE 18.2 79.9 72.8 86.0 16.8 49.2 27.3 0.3

In most cases, we find that Focal loss, Class-Balanced loss and Generalized Re-Weight loss achieve
only moderate gains when applied to foundation models in both FFT and PEFT settings, and even
impair the performance in some cases. LDAM loss shows a slight improvement only in the PEFT
setting, with no improvement observed in the FFT setting. LADE loss is complex and highly sen-
sitive to hyperparameter selection due to its two hyperparameters. We use the same parameters for
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LADE across all experimental settings; however, in some cases, it provides a significant improve-
ment, while in others, it leads to a notable performance drop and even causes training collapse.
Figure 3 shows the training loss of the LADE under certain training settings, which fails to converge
to lower values and even crashes during training, indicating the potential risk caused by improper
hyperparameters. We believe the LADE loss function introduces numerous additional assumptions
based on logit adjustment, making it overly complex. Therefore, it may only be suitable for specific
models, such as CNN models, rather than ViT models.

In contrast, Balanced Softmax and Logit-Adjusted loss consistently proved to be effective methods
for both FFT and PEFT in foundation models and can significantly improve model performance.
Specifically, they sacrifice a little performance of the head class in exchange for significant im-
provements in the performance of the middle and tail classes. Based on the experimental results,
we recommend using Balanced Softmax loss and Logit-Adjusted loss when fine-tuning foundation
models with long-tailed datasets. If time spent on hyperparameter tuning is non-trivial, then the
nonparametric BS loss is a more reliable choice.

3.5 BALANCED CLASSIFIER

In general visual tasks, a common practice in deep learning is to employ linear classifiers p =
ϕ(w · x + b) for classification, where ϕ is the softmax function, the bias term b can be discarded.
However, the long-tailed distribution data lead to larger classifier weight norms for head classes than
tail classes (Yin et al., 2019). We investigate diverse classifier types to tackle this challenge.

Classifier Methods We introduce two representative classifiers, i.e., Cosine classifier and τ -
normalized classifier.

• Cosine classifier (Wu et al., 2021) uses a scale-invariant metric p = ϕ(( w·x
||w||·||x|| )/t + b), in

which both the classifier weights and the sample features are normalized. t is the temperature
parameter. This strategy can be motivated by removing the negative impact of imbalanced weight
norms (Kang et al., 2020; Wei et al., 2021).

• τ -normalized classifier (Kang et al., 2020) adjust the classifier weight norms to solve the im-
balance by τ -normalized procedure, typically used to enhance the performance and stability of
models in high-dimensional data. Formally, w̃ = w

||w||τ2
, where τ is temperature factor for nor-

malization.

Experimental Result In our experiments, we follow the setting of Shi et al. (2024) and Kang et al.
(2020) and set the t to 1

30 in Cosine Classifier and τ to 0.5, 1, 2 in τ -normalized classifier. Table 6
shows the accuracy of different classifier methods on CIFAR100-LT and Places-LT datasets. For
more detailed results, please refer to Appendix section D.4.

In our experiments, we observed comparable training costs across different classifiers. According
to the experiment results, we can observe that in most cases, the Cosine classifier is a better choice
because it has empirical robustness to imbalances and stronger generalization ability. Note that these
classifiers are exclusive to each other and can’t be used simultaneously. We recommend using the
Cosine Classifier to train foundation models.

Table 6: Accuracy of applying different classifiers.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
Linear 54.6 71.9 70.3 80.7 24.9 39.8 26.0 31.9
Cosine 56.4 72.2 69.6 83.9 24.9 40.6 27.1 38.1

τ -norm (τ = 0.5) 55.6 71.7 69.3 80.8 24.7 40.3 25.8 32.1
τ -norm (τ = 1) 55.6 71.9 68.9 80.9 24.6 40.0 25.4 32.3
τ -norm (τ = 2) 54.8 71.8 68.8 81.2 23.5 37.6 24.8 32.1

3.6 OTHER TRICKS

In addition to the aforementioned methods, we also explore two more tricks: mixup (Zhang et al.,
2018) and label smoothing (Szegedy et al., 2016), which are widely used in various types of deep
models and long-tail learning algorithms (Zhong et al., 2021).
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Table 7: Accuracy of applying mixup.
Datasets CIFAR100-LT Places-LT

Backbone CLIP ViT CLIP ViT
FFT PEFT FFT PEFT FFT PEFT FFT PEFT

Baseline 51.5 80.1 75.8 85.1 31.3 48.8 30.3 38.3
Mixup 68.7 79.7 81.6 86.7 35.8 49.8 33.3 45.0

Table 8: Accuracy of applying label smoothing.
Datasets CIFAR100-LT Places-LT

Backbone CLIP ViT CLIP ViT
FFT PEFT FFT PEFT FFT PEFT FFT PEFT

CE 54.6 71.9 70.3 80.7 24.7 39.8 26.0 31.9
CE (w/ LS) 56.2 71.7 71.3 82.7 25.0 39.7 26.9 34.1

BS 58.0 80.1 75.8 85.1 31.3 48.8 30.3 38.3
BS (w/ LS) 59.8 80.6 78.2 88.1 28.6 49.4 32.4 41.8

For the mixup trick, we follow the setting of Zhang et al. (2018). Specifically, we randomly se-
lect two data points (xi, yi), (xj , yj) from the original dataset and combine them through linear
weighting. Formally,

x̂ = θxi + (1− θ)xj (1)
ŷ = θyi + (1− θ)yj (2)

where θ is randomly sampled from a Beta distribution Beta(ζ, ζ). The mixup hyper-parameter ζ
controls the strength of interpolation between feature-target pairs.

Label smoothing (Szegedy et al., 2016) transforms the training label from hard (one-hot) label to
soft label, where the true label is considered to have a probability of 1 − ϵ, and the remaining ϵ
is shared across all classes. After using label smoothing, the modified probability distribution is
formulated as follows:

Pi =

{
1, if y = i

0, if y ̸= i
⇒ Pi =

{
1− ϵ, if y = i

ϵ
K−1 , if y ̸= i

(3)

where i is the i-th class, K is the total number of classes and the hyperparameter ϵ determine the
smooth level.

Experimental Result Table 7 and Table 8 show the test accuracy of using these two tricks. For
more detailed results, please refer to Appendix section D.7.

For mixup, we set hyper-parameter ζ to 1. It can be observed that input mixup effectively provides
better results compared to the baseline in both FFT and PEFT settings. Mixup can be seen as a form
of data augmentation that combines multiple samples linearly, rather than applying transformations
to a single sample. This linear behavior helps reduce the oscillations when the model predicts
the out-of-distribution samples (Zhang et al., 2018). However, when combined with other long-tail
learning methods, mixup may also not always gain benefits like those mentioned above in subsection
Data Augmentation.

For label smoothing, we set the ϵ to 0.1 by the setting of Szegedy et al. (2016) and apply it to CE
loss and BS loss. We find that label smoothing can effectively improve the final performance of
CE loss and BS loss. More specifically, label smoothing enhances the performance of tail classes,
as shown in tables 40, 41, 42 in the Appendix. Our results suggest the noise introduced by label
smoothing effectively reduces the model’s tendency to overly favor head-class samples, allowing
for greater focus on tail-class samples.

4 THE ULTIMATE FRAMEWORK

Framework construction In the previous section, we review several classical methods. In this
section, we analyze these methods from a more unified perspective. Specifically, we compare the
different combinations of these methods to identify the best framework. It is worth noting that since
re-sampling methods and class-sensitive losses both aim to re-balance the data distribution, their
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Table 9: Results of the ablation experiments. “Avg.” represents the average of all experimental
results listed front in the line. ∆ represents the performance change against the previous line. The
abbreviations are defined as follows: “Cos” = Cosine Classifier, “Sqrt” = Square-Root Sampling,
“BS” = Balanced-Softmax, “LS” = Label Smoothing, “Aug” = Auto Augmentation.

Datasets ImageNet-LT iNaturalist 2018

Avg. ∆
Backbone CLIP ViT CLIP ViT

Cos Sqrt BS LS Aug Mixup FFT PEFT FFT PEFT FFT PEFT FFT PEFT
48.7 70.5 50.8 78.2 58.4 69.5 57.8 73.6 63.4 -

✓ 48.7 70.4 53.2 80.3 63.3 75.3 61.5 75.6 66.0 +2.6
✓ ✓ 60.1 74.7 71.5 82.6 68.4 76.8 72.3 79.0 73.2 +7.2
✓ ✓ ✓ 63.2 77.0 73.4 83.6 70.9 79.3 75.0 81.1 75.4 +2.2
✓ ✓ ✓ ✓ 64.1 77.2 75.2 84.1 71.5 79.0 74.6 81.1 75.9 +0.5
✓ ✓ ✓ ✓ ✓ 64.5 76.6 75.5 84.1 69.6 78.3 74.9 81.1 75.6 –0.3
✓ ✓ ✓ ✓ ✓ 65.7 75.5 76.4 84.1 69.4 76.9 73.3 79.9 75.2 –0.4
✓ ✓ ✓ ✓ ✓ ✓ 63.9 74.9 77.0 84.2 48.7 74.6 72.3 79.4 71.9 –3.3

simultaneous application will over-emphasize tail classes and harm generalization. To balance these
effects, we adopt Square-root sampling (a moderate re-sampling approach) and apply Balanced
Softmax loss to the rectified distribution.

For our final framework, we integrate AutoAugment, Cosine classifier, Square-root sampling, Bal-
anced Softmax loss, mixup, and label smoothing – all selected based on their excellent performance
in previous experiments. We conduct ablation experiments on these methods under multiple settings,
including different backbones such as CLIP and IN21K pre-trained ViT, and different fine-tuning
methods such as full fine-tuning (FFT) and parameter-efficient fine-tuning (PEFT). The results are
shown in Table 9. Due to the page limit, we report more detailed results for all datasets in Appendix
section D.8.

From the results, we can conclude that 1) The combination methods of Cosine Classifier, Square-
root sampling, BS loss, and label smoothing can consistently enhance the model performance
on foundation models when using long-tailed data. As they achieve the best average performance
across all scenarios, we consider the combination of these four methods as the optimal framework.
2) AutoAugment and mixup, as different forms of data augmentation, have inconsistent effects on
performance across different datasets and models. There is no consistent conclusion on whether they
improve or decrease performance based on our experiments, so we exclude them from the optimal
framework.

Table 10: The results of applying our framework compared to other methods across four datasets:
Places-LT, ImageNet-LT, CIFAR100-LT, iNaturalist 2018. † denotes VL-LTR uses extra data for
fine-tuning. “-” means the paper has not reported the corresponding result. We also compare our
framework with LIFT Shi et al. (2024) in Appendix D.9.

Places-LT IN-LT CIFAR-LT iNat.

MiSLAS (Zhong et al., 2021) 40.4 52.7 47.0 71.6
PaCo (Cui et al., 2021) 41.2 57.0 52.0 71.8
LiVT (Xu et al., 2023b) 40.8 60.9 58.2 76.1
BALLAD (Ma et al., 2021) 49.5 75.7 77.8 -
Decoder (Wang et al., 2024b) 46.8 73.2 - 59.2
LPT (Dong et al., 2023) 50.1 - - 76.1
VL-LTR† (Tian et al., 2022) 50.1 77.2 - 76.8
Ours 51.2 77.2 80.5 79.0

Improvements over baselines We apply our ultimate framework to four datasets on the pre-
trained CLIP-ViT-B/16 backbone and obtain quite competitive results under PEFT settings. The
test accuracy is reported in Table 10. Overall, our framework achieves superior performance on
these challenging datasets, surpassing Decoder, LPT, VL-LTR, and various training-from-scratch
approaches. And VL-LTR relies on extensive auxiliary data to facilitate fine-tuning, the advantage
of our framework is more significant compared with methods that do not use auxiliary data. In ad-
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dition, due to the Square-root sampling method included in our framework, the training cost of our
framework is significantly reduced compared to other methods.

To provide a deeper mechanistic analysis. We examine the classifier weight norms, which led to
some interesting findings. Specifically, we extract the classifier weight norms from models trained
under the PEFT setting of CLIP-ViT/B-16 using four different datasets. Figure 4 displays the classi-
fier weight norms for Cifar100-IR100 and Places-LT. The classes on the horizontal axis are arranged
in descending order of their number of training samples.

Figure 4: Classifier weight norms for CIFAR100-IR100 and Places-LT.

Due to the pronounced overlap between the curve of our method (blue line) and those of other ap-
proaches, visual inspection alone is insufficient to draw a definitive conclusion regarding its superior
balance. To facilitate a quantitative comparison, we employ the standard deviation of the classifier
weight norms as a metric for balance. The subsequent results are shown in Table 11 .

The results validate the superiority of our proposed method, which attains the most balanced norms
— as evidenced by the lowest standard deviation in the comparison.

Table 11: Standard Deviation of classifier weight norms from models trained on different datasets.
Each value in the table represents the actual standard deviation when multiplied by 10−2.

Standard Deviation Places-LT IN-LT CIFAR-LT iNat.

CE 16.3 23.8 13.6 10.6
CE+Cos 7.9 15.2 7.8 5.7
CE+Cos+Sqrt 1.8 3.0 1.3 3.9
BS+Cos+Sqrt 1.8 3.0 1.3 3.9
BS+Cos+Sqrt+LS 1.5 2.6 1.1 3.6

Discussions We have taken into account the potential data leakage issue, such as between Ima-
geNet and IN21K-ViT. In response to this, in Table 10, we only present results on CLIP-ViT-B/16.
For detailed results across more experimental settings, we report in the Appendix. Looking ahead,
we intend to explore the generalizability of our framework by extending it to more models, such as
DINO (Oquab et al., 2023), which could further validate its transferability across different founda-
tion models. Preliminary investigations in Appendix D.10 have already shown encouraging align-
ment with our current findings, suggesting broader applicability.

5 CONCLUSION

In this paper, we systematically revisit the representative long-tail learning methods and provide a
scientific empirical guideline for their accurate use in fine-tuning foundation models. Furthermore,
we select the optimal methods to construct a unified framework and analyze the contribution of each
component through extensive ablation studies. Our proposed framework achieves competitive per-
formance on multiple long-tailed datasets. We hope that our work serves as a convenient guideline
for related applications and can inspire further research in the field of long-tail learning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks, 106:249–259, 2018.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In Advances in Neural Information Processing
Systems, volume 32, pp. 1565–1576, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
AdaptFormer: Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, pp. 702–703, 2020.

Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 715–724, 2021.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 4109–4118, 2018.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9268–9277, 2019.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255. Ieee, 2009.

Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. LPT: Long-tailed prompt tuning
for image classification. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=8pOVAeo8ie.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. International
Journal of Computer Vision, 132(2):581–595, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6626–6636, 2021.

11

https://openreview.net/forum?id=8pOVAeo8ie


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. In Proceedings of the 17th European Conference on
Computer Vision, pp. 709–727, 2022.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In International
Conference on Learning Representations, 2020.

Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
representation learning. In International Conference on Learning Representations, 2021.

Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Striking the
right balance with uncertainty. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 103–112, 2019.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in Neural Information Processing Systems, 25, 2012.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International Con-
ference on Learning Representations, 2022.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE International Conference on Computer Vision, pp.
2980–2988, 2017.

Bo Liu, Haoxiang Li, Hao Kang, Gang Hua, and Nuno Vasconcelos. Gistnet: a geometric struc-
ture transfer network for long-tailed recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8209–8218, 2021a.

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance learn-
ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):539–550,
2008.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021b.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Alan
Blair, Chunhua Shen, and Anton van den Hengel. Retrieval augmented classification for long-tail
visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6959–6969, June 2022.

Teli Ma, Shijie Geng, Mengmeng Wang, Jing Shao, Jiasen Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. A simple long-tailed recognition baseline via vision-language model. arXiv preprint
arXiv:2111.14745, 2021.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In International Conference on Learning
Representations, 2021.

Ajinkya More. Survey of resampling techniques for improving classification performance in unbal-
anced datasets. arXiv preprint arXiv:1608.06048, 2016.
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A EXPERIMENTAL SETTINGS

A.1 DATASETS

CIFAR100-LT CIFAR100-LT is the long-tailed version of CIFAR (Krizhevsky, 2009). The latter
is a balanced dataset consisting of 100 classes, with each class containing 500 samples for training
and 100 samples for test. We construct CIFAR100-LT following the approach in (Cao et al., 2019).
Specifically, each class contains ni = 500 · r(− i−1

99 ) samples in training, where i is class index. In
this work, the imbalance factor is set to 100 considering its generality (Shi et al., 2024; Ma et al.,
2021; Rangwani et al., 2022).

Places-LT The Places-LT (Sharma et al., 2021) features a long-tailed dataset consisting of 62,500
images across 365 classes from Places-2 (Zhou et al., 2017). The class frequencies follow a nat-
ural power law distribution, with the largest class containing 4,980 images and the smallest class
containing only 5 images.

ImageNet-LT ImageNet-LT (Liu et al., 2019) is a long-tailed version of ImageNet ILSVRC
2012 (Deng et al., 2009), composed according to a Pareto distribution. This dataset consists of
1000 classes and a total of 1158K images, with the largest class containing up to 1,280 images and
the smallest class containing as few as 5 images.

iNaturalist 2018 iNaturalist 2018 (Van Horn et al., 2018) is a natural dataset of fine-grained long-
tailed categories, consisting of wildlife images across 8,142 species, with a total of 437,513 images.
The number of images in each category ranges from a maximum of 1000 to a minimum of 2. It is a
standard benchmark for evaluating algorithm performance on long-tailed distribution tasks.

A.2 IMPLEMENTATION SETTINGS

In most of our experiments, we adopt pre-trained model CLIP (Radford et al., 2021) and Vision
Transformer (Dosovitskiy et al., 2021) as the backbone and employ full fine-tuning (FFT) and
parameter-efficient fine-tuning (PEFT) on these two models. Knowledge distillation is an excep-
tion where we use pre-trained DeiT (Touvron et al., 2021) as the student backbone. For the PEFT
methods, we choose AdaptFormer (Chen et al., 2022) because of its optimal performance (Shi et al.,
2024). Table 12 shows the performance of different PEFT methods under the ultimate framework.
We use the SGD optimizer with a batch size of 128, weight decay of 5 · 10−4, and momentum of
0.9. The number of training epochs for iNaturalist 2018 is 100, while for other datasets, it is 50.
The learning rate is initialized to 0.1. The number of epochs and learning rate are carefully selected.
We conduct comprehensive ablation studies on the epochs and learning rates across the CIFAR100-
IR100, Places-LT, and ImageNet-LT datasets as shown in Table 13. We use mean accuracy and
harmonic mean accuracy to measure the model’s performance. In addition, we also follow the eval-
uation protocol introduced by (Liu et al., 2019), reporting accuracy for three categories: many-shot
(>100 images), medium-shot (20-100 images), and few-shot (<20 images).

Table 12: Accuracy of using different PEFT methods.
Datasets Places-LT ImageNet-LT

Backbone CLIP ViT CLIP ViT
LoRA 50.7 47.1 76.0 83.8

VPT-deep 50.5 47.5 76.2 84.1
Adapter 50.9 47.7 77.0 84.0

Bias-tuning 50.9 47.3 76.2 83.2
AdapterFormer 51.2 47.9 77.2 84.1

B KNOWLEDGE DISTILLATION

In this subsection, we focus on the knowledge distillation technique and explore whether it can im-
prove the performance of long-tailed datasets on foundation models. We follow the setup mentioned
in Data Efficient Transformer (DeiT) Touvron et al. (2021) to create the student backbone for our
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Table 13: Comparison of different numbers of epochs and learning rate.

CIFAR100-IR100 Places-LT ImageNet-LT

Epochs

10 78.7 50.7 75.7
20 80.2 51.3 77.0
50 80.8 51.2 77.2
70 80.7 50.8 77.0
90 80.4 50.4 76.8

LR

0.001 78.7 49.8 74.4
0.005 80.8 51.5 76.9
0.01 80.8 51.2 77.2
0.05 77.9 48.9 75.7
0.1 77.1 48.3 75.3

experiments. In addition to the CLS token, DeiT adds a DIST token in the ViT backbone that learns
via distillation from the teacher. For both the classification head and the distillation head, training is
conducted using cross-entropy loss, and the final loss function Rangwani et al. (2024) is

L = aLCE(f
cls(x), y) + (1− a)LCE(f

dis(x), yt) (4)

where f cls(x) and fdis(x) are outputs of the CLS and DIST tokens through their respective layers,
y is the ground truth, and yt is the teacher model’s hard label for sample x.

Experimental Result We simply set the a to 0.5 to ensure the fair status of the ground truth and
the teacher’s prediction. Table 14 shows the accuracy of the knowledge distillation methods. For
more detailed settings and results, please refer to Appendix section D.5.

Compared to PEFT, the performance enhancement under FFT is significantly more substantial. Ex-
perimental results demonstrate that knowledge distillation yields an improvement of approximately
3% in the FFT setting, whereas it contributes almost no gain in the PEFT setting.

We believe this is because knowledge distillation helps mitigate the biases towards the head classes
in the student model during training. Since the FFT setting involves substantially more parameters
to train compared to the PEFT setting, it is more susceptible to being biased toward head classes.
This explains why the performance improvements are more pronounced in the FFT setting.

Table 14: Student results of applying knowledge distillation.

Datasets CIFAR100-LT Places-LT
Student DeiT-S DeiT-Ti DeiT-S DeiT-Ti

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
Baseline 67.3 69.9 58.7 60.8 27.1 32.1 24.6 29.4

Distillation 70.4 70.0 61.7 60.6 30.2 32.5 28.6 30.0

C ENSEMBLE LEARNING

Ensemble learning improves model performance by combining the predictions of multiple experts to
address the long-tail problem. We conduct an experiment using a framework similar to BBN Zhou
et al. (2020). Specifically, we use two branches: the “conventional learning branch”, which employs
the uniform sampler to learn the original data distribution, and the “re-balancing branch”, which
uses the reversed sampler to sample more tail-class samples for learning a balanced distribution.
Both branches use the same backbone and share all the weights except for the last classifier. At last,
a cumulative loss weight w is used to shift the learning “attention” smoothly from the head class to
the tail class. Formally, the objective loss of the model is illustrated as

L = wLCE(f
c(xc),yc) + (1− w)LCE(f

r(xr), yr) (5)

w = 1− (
tc

tmax
)2 (6)

where the f c(xc) and fr(xr) respectively represent the predicted output of the conventional learning
branch and re-balancing branch. yc and yr are the ground truth of xc and xr respectively. tc and
tmax respectively refer to the current epoch and total training epochs.
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Experimental Result Ensemble-based methods address the class imbalance at the model level.
Table 15 shows the accuracy of the ensemble method. For more detailed results, please refer to
Appendix section D.6. Ensemble methods can generally improve performance by an average of over
3% in the PEFT setting. However, in the FFT setting, the model improvements are less favorable,
with a maximum increase of 1%, and in some cases, even face a significant decrease.

Additionally, it is very important to note that ensemble learning inevitably increases the training
cost. In this experiment, using two branches doubles the memory cost and computational time
expenditure, because we need to create two individual data samplers and calculate the corresponding
loss. In practice, though more experts may lead to better performance, the greater time and storage
costs are non-negligible overheads. Therefore, we only recommend employing ensemble learning
in the lightweight PEFT setting on foundation models. Using ensemble learning in the FFT setting
is not cost-effective and does not guarantee performance improvements.

Table 15: Accuracy of applying ensemble learning.

Datasets CIFAR100-LT Places-LT
Backbone CLIP ViT CLIP ViT

FFT PEFT FFT PEFT FFT PEFT FFT PEFT
Baseline 54.6 71.9 70.3 80.7 24.9 39.8 26.0 31.9

Ensemble 55.6 76.0 68.6 82.2 18.9 45.0 26.7 36.4

D ADDITIONAL RESULTS

D.1 RE-SAMPLING DETAILED RESULTS

For re-sampling methods, we report detailed results of applying RUS, RUSxN, ROS, EQ, Square-
root sampling and no resampling (Baseline) methods. Tables 16, 17, 18 show the detailed results
of applying re-sampling methods for CIFAR100-LT. Places-LT, ImageNet-LT respectively. Ta-
bles 19, 20, 21 show the detailed results of applying RUSxN for CIFAR100-LT, Places-LT and
ImageNet-LT respectively. We can observe that applying RUS and Square-root sampling can signif-
icantly improve model performance.

D.2 DATA AUGMENTATION DETAILED RESULTS

For data augmentation methods, we report detailed results of applying ColorJitter, RandAugment,
AutoAugment, and no augmentation (Baseline) methods. Tables 22, 23, 24 show the detailed results
of applying data augmentation methods for CIFAR100-LT, Places-LT, ImageNet-LT respectively.
We can observe that applying data augmentation methods can only slightly improve the model per-
formance and don’t play a decisive role.

D.3 CLASS-SENSITIVE LOSS DETAILED RESULTS

For Class-sensitive loss, we report detailed results of applying CE, Focal, Label-Distribution-Aware
Margin, Class-Balanced, Generalized Re-Weight, Balanced Softmax, Logit Adjustment, LAbel dis-
tribution DisEntangling loss. The selection of hyperparameters for each loss follows the correspond-
ing paper, except for G-RW. The original paper of G-RW proposed ρ = 1.2, which performs very
poorly under FFT settings for each backbone. After our experimental attempts, we finally changed
it to 0.5. The selected hyperparameters are shown as follows:

Focal loss: γ = 2; LDAM loss: s = 25; Class Balanced loss: β = 0.9; Generalized Re-weight loss:
ρ = 0.5 for FFT setting, ρ = 1.2 for PEFT setting; Logit adjustment loss: µ = 1.5; LADE loss:
α = 0.01, λ = 0.1.

In practice, we have tried different hyperparameters but only report the best. For example, we have
tried: γ = {2, 3, 4} for Focal loss; β = {0.9, 0.99, 0.999} for Class-Balanced loss; τ = {1, 1.5, 2}
for LA loss; ρ = {0.5, 1, 1.2, 1.5, 2} for G-RW loss.

Tables 25, 26, 27 show the detailed results of applying class-sensitive losses for CIFAR100-LT,
Places-LT, ImageNet-LT respectively. We can observe that applying Balanced Softmax loss and
Logit Adjustment loss can greatly gain benefits.
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D.4 BALANCED CLASSIFIER DETAILED RESULTS

For the balanced classifier, we report detailed results of using the Cosine classifier, τ -normalized
classifier, and Linear classifier methods. Tables 28, 29, 30 show the detailed results of applying
different classifiers for CIFAR100-LT, Places-LT, ImageNet-LT respectively. We can observe that
Cosine classifier can achieve an improvement in model performance.

D.5 KNOWLEDGE DISTILLATION DETAILED RESULTS

We use a well-trained CLIP-ViT-B/16 as the teacher backbone for Places-LT and IN21K-ViT-B/16
as the teacher backbone for CIFAR100-LT and ImageNet-LT, while employing the pre-trained DeiT-
S and DeiT-Ti backbone architecture as student models for all the datasets. Tables 31, 32, 33 show
the detailed results of applying knowledge distillation on CIFAR100-LT, Places-LT, ImageNet-LT
respectively. We can observe that knowledge distillation is only effective in the FFT setting.

D.6 ENSEMBLE LEARNING DETAILED RESULTS

We build a framework similar to BBN and report details results of applying it on CIFAR100-LT,
Places-LT and ImageNet-LT as shown in Tables 34, 35, 36 respectively. We can observe that apply-
ing ensemble learning is only cost-effective under the PEFT setting.

D.7 TRICKS DETAILED RESULTS

For tricks, we report detailed results of applying mixup and label smoothing. Tables 37, 38, 39 show
the detailed results of applying mixup for CIFAR100-LT, Places-LT, ImageNet-LT respectively. Ta-
bles 40, 41, 42 show the detailed results of applying label smoothing for CIFAR100-LT, Places-LT,
ImageNet-LT respectively. We can observe that both tricks can improve model performance.

D.8 ABLATION EXPERIMENTS DETAILED RESULTS

To build the best framework for fine-tuning pre-trained models, we choose AutoAugment, Cosine
classifier, Square-root resampling, Balanced Softmax loss, Mixup, and Label smoothing for the
ablation experiments.

Tables 43, 44, 45, 46 show the detailed ablation results for CIFAR100-LT, Places-LT, ImageNet-LT,
iNaturalist 2018 datasets respectively.

D.9 COMPARISON WITH LIFT

The performance of our model is comparable to that achieved by LIFT, as shown in the tables 47.
Although we have more epochs, due to the sampling strategy of the data, the total training cost is
significantly lower compared to LIFT, with an average saved cost of 21% (specific values vary de-
pending on the dataset). Notably, it achieves a remarkable 34% reduction on the Places-LT, demon-
strating the effectiveness of our method.

D.10 TRANSFERABILITY OF OUR FRAMEWORK

To verify the transferability of our framework, we extend it to DINO and conduct corresponding
experiments. The results are shown in Table 48. we are temporarily unable to report results for
DINOv2 due to GPU memory limitations. Our framework can also be readily adapted to MAE and
SigLIP, which are planned for a future version.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 16: Detailed results of applying resampling methods to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 54.6 82.9 55.9 20.1 0.0 0.0
Random Over-Sampling 44.8 77.7 42.5 9.1 0.0 0.0
Random Under-Sampling 45.5 51.0 49.8 34.1 31.0 6.0
Equal resampling 50.4 82.6 50.5 12.8 0.0 0.0
Square-root resampling 56.8 80.3 60.0 25.8 0.1 0.0

PEFT

Baseline 71.9 90.2 75.1 46.6 56.0 7.0
Random Over-Sampling 68.3 89.0 73.1 38.5 36.9 2.0
Random Under-Sampling 77.4 79.9 79.1 72.5 73.6 26.0
Equal resampling 72.8 88.6 77.2 49.2 55.9 7.0
Square-root resampling 76.4 87.1 78.2 61.8 69.8 18.0

IN21K-ViT-B/16

FFT

Baseline 70.3 89.6 71.9 45.8 48.0 3.0
Random Over-Sampling 48.3 83.4 46.0 10.0 0.0 0.0
Random Under-Sampling 69.3 74.6 71.6 60.3 58.5 5.0
Equal resampling 62.0 90.0 64.6 26.2 0.0 0.0
Square-root resampling 76.0 90.5 78.1 56.6 60.2 5.0

PEFT

Baseline 80.7 93.5 80.9 65.4 41.2 1.0
Random Over-Sampling 71.0 93.0 76.3 39.2 0.1 0.0
Random Under-Sampling 87.0 90.5 87.3 82.6 81.9 15.0
Equal resampling 77.3 93.1 80.3 55.3 37.3 1.0
Square-root resampling 84.4 93.8 85.1 72.6 69.2 7.0

Table 17: Detailed results of applying resampling methods to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 24.7 40.5 19.8 6.8 0.1 0.0
Random Over-Sampling 12.6 25.7 7.2 0.7 0.0 0.0
Random Under-Sampling 42.3 42.6 45.4 34.5 0.2 0.0
Equal resampling 21.7 40.2 14.7 3.6 0.0 0.0
Square-root resampling 37.1 51.0 34.8 16.6 18.8 1.0

PEFT

Baseline 39.8 54.0 35.7 22.7 0.1 0.0
Random Over-Sampling 38.3 51.0 35.5 20.9 0.4 0.0
Random Under-Sampling 50.8 49.6 52.2 49.6 35.7 1.0
Equal resampling 43.7 53.3 42.8 27.9 25.2 1.0
Square-root resampling 47.5 55.6 45.7 36.6 32.4 2.0

IN21K-ViT-B/16

FFT

Baseline 26.0 41.4 20.9 9.5 0.1 0.0
Random Over-Sampling 11.4 24.2 5.7 0.7 0.0 0.0
Random Under-Sampling 41.2 47.6 43.3 24.6 23.4 1.0
Equal resampling 22.0 40.4 14.9 4.2 0.0 0.0
Square-root resampling 32.6 48.6 27.7 14.1 0.2 0.0

PEFT

Baseline 32.1 45.9 28.4 15.2 0.2 0.0
Random Over-Sampling 32.2 45.8 28.9 14.9 0.1 0.0
Random Under-Sampling 45.3 46.7 47.6 37.5 32.2 2.0
Equal resampling 33.7 47.5 30.7 15.2 0.1 0.0
Square-root resampling 39.7 50.9 37.7 23.3 23.5 2.0

Table 18: Detailed results of applying resampling methods to the ImageNet-LT dataset.“-” means
the corresponding experiment is hard to implement due to the huge amount of data.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 49.9 69.0 44.0 16.6 0.0 0.0
Random Over-Sampling - - - - -
Random Under-Sampling 59.2 62.1 59.0 52.2 44.6 2.0
Equal resampling 48.6 67.8 41.9 18.0 0.0 0.0
Square-root resampling 59.9 74.8 56.1 31.2 0.2 0.0

PEFT

Baseline 70.6 85.5 67.6 38.8 0.1 0.0
Random Over-Sampling - - - - - -
Random Under-Sampling 75.4 78.2 75 68.4 67.6 10.0
Equal resampling 73.6 83.2 72.2 51.1 1.0 0.0
Square-root resampling 74.5 83.9 72.5 54.7 59.7 2.0

IN21K-ViT-B/16

FFT

Baseline 52.1 70.1 45.9 23.0 0.1 0.0
Random Over-Sampling - - - - - -
Random Under-Sampling 72.6 79.2 71.7 57.0 1.0 0.0
Equal resampling 50.1 70.1 43.1 18.7 0.0 0.0
Square-root resampling 68.2 80.6 64.8 44.8 1.0 0.0

PEFT

Baseline 78.2 87.5 75.8 59.9 64.4 2.0
Random Over-Sampling - - - - - -
Random Under-Sampling 83.2 85.6 82.9 77.4 78.9 16.0
Equal resampling 79.2 87.4 77.4 61.8 69.7 8.0
Square-root resampling 81.0 87.3 79.5 68.6 74.1 8.0
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Table 19: Detailed results of applying RUSxN to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

RUS 56.0 71.6 61.3 31.5 21.8 1.0
RUSx2 58.0 81.3 62.3 25.8 0.0 0.0
RUSx5 54.0 83.0 55.5 18.3 0.0 0.0
RUSx10 48.8 79.1 49.5 12.8 0.0 0.0

PEFT

RUS 77.7 82.0 80.0 69.9 73.7 25.0
RUSx2 77.5 85.3 80.6 64.6 71.6 20.0
RUSx5 75.6 87.2 79.7 57.4 63.4 8.0
RUSx10 73.4 88.1 77.8 50.7 56.8 6.0

IN21K-ViT-B/16

FFT

RUS 75.7 87.9 78.1 58.6 59.6 5.0
RUSx2 70.8 90.6 73.1 44.9 35.2 1.0
RUSx5 66.4 90.6 69.5 34.4 26.5 1.0
RUSx10 59.8 87.7 62.1 24.4 0.1 0.0

PEFT

RUS 86.3 91.4 87.5 79.2 77.6 11.0
RUSx2 84.5 92.7 86.4 72.8 71.0 8.0
RUSx5 81.0 93.5 82.7 64.5 41.6 1.0
RUSx10 78.2 93.4 80.2 58.3 39.5 1.0

Table 20: Detailed results of applying RUSxN to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

RUS 42.3 42.6 45.4 34.5 0.2 0.0
RUSx2 41.6 46.6 45.3 24.1 24.8 1.0
RUSx5 34.6 49.4 32.9 10.9 0.1 0.0
RUSx10 29.0 48.3 23.3 6.6 0.0 0.0

PEFT

RUS 50.8 49.6 52.2 49.6 35.7 1.0
RUSx2 50.6 50.5 52.6 46.1 35.8 1.0
RUSx5 49.1 51.5 51.4 39.2 35.5 3.0
RUSx10 47.7 52.7 48.9 33.9 0.4 0.0

IN21K-ViT-B/16

FFT

RUS 41.2 47.6 43.3 24.6 23.4 1.0
RUSx2 38.0 50.7 36.9 16.8 0.1 0.0
RUSx5 31.6 49.4 26.3 10.8 0.1 0.0
RUSx10 27.7 46.3 21.2 8.4 0.1 0.0

PEFT

RUS 45.3 46.7 47.6 37.5 32.2 2.0
RUSx2 43.2 48.4 44.9 29.9 29.4 3.0
RUSx5 39.1 49.2 38.5 21.6 0.2 0.0
RUSx10 29.0 48.3 23.3 6.6 0.0 0.0

Table 21: Detailed results of applying RUSxN to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

RUS 59.2 62.1 59.0 52.2 44.6 2.0
RUSx2 61.3 68.5 61.2 41.4 1.0 0.0
RUSx5 59.0 72.8 56.0 30.6 0.2 0.0
RUSx10 55.2 72.2 50.2 24.3 0.1 0.0

PEFT

RUS 75.4 78.2 75.0 68.4 67.6 10.0
RUSx2 75.9 80.0 75.5 65.9 67.9 6.0
RUSx5 75.7 81.5 75.4 60.3 66.6 8.0
RUSx10 75.0 82.4 74.3 56.0 62.5 4.0

IN21K-ViT-B/16

FFT

RUS 72.6 79.2 71.7 57.0 1.0 0.0
RUSx2 71.5 80.9 69.6 51.5 58.2 2.0
RUSx5 66.0 79.9 61.9 40.9 1.0 0.0
RUSx10 60.5 77.2 55.7 30.7 0.2 0.0

PEFT

RUS 83.2 85.6 82.9 77.4 78.9 16.0
RUSx2 82.7 86.0 82.3 74.5 78.3 18.0
RUSx5 80.6 86.7 79.3 67.8 73.7 10.0
RUSx10 79.3 87.0 77.6 63.7 70.6 8.0

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 22: Detailed results of applying augmentation methods to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 48.7 77.9 48.1 15.4 12.2 1.0
ColorJitter 55.0 83.2 56.3 20.7 0.1 0.0
RandAugment 56.7 84.1 57.9 23.5 0.1 0.0
AutoAugment 57.8 85.5 58.5 24.7 0.1 0.0

PEFT

Baseline 71.9 90.0 75.3 46.9 57.6 9.0
ColorJitter 71.9 90.2 75.1 46.6 56.0 7.0
RandAugment 72.1 90.1 75.4 47.3 54.7 7.0
AutoAugment 70.1 90.1 73.8 44.5 36.1 1.0

IN21K-ViT-B/16

FFT

Baseline 71.1 89.3 72.6 48.0 50.6 3.0
ColorJitter 70.3 89.6 71.9 45.8 48.0 3.0
RandAugment 70.0 89.6 70.7 46.3 45.4 2.0
AutoAugment 71.6 90.7 72.3 48.4 54.2 7.0

PEFT

Baseline 81.6 93.3 81.9 67.6 41.9 1.0
ColorJitter 80.7 93.5 80.9 65.4 41.2 1.0
RandAugment 81.5 93.7 81.5 67.2 54.7 3.0
AutoAugment 81.3 93.3 81.8 66.7 42.2 1.0

Table 23: Detailed results of applying augmentation methods to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 23.7 39.8 18.5 6.0 0.1 0.0
ColorJitter 24.7 40.5 19.8 6.8 0.1 0.0
RandAugment 25.4 41.6 20.4 6.9 0.1 0.0
AutoAugment 24.9 41.8 19.8 5.6 0.0 0.0

PEFT

Baseline 39.8 54.5 35.7 22.3 0.1 0.0
ColorJitter 39.8 54.0 35.7 22.7 0.1 0.0
RandAugment 40.4 54.7 36.5 23.1 0.1 0.0
AutoAugment 40.7 54.9 36.8 23.2 0.1 0.0

IN21K-ViT-B/16

FFT

Baseline 25.7 40.9 20.5 9.4 0.1 0.0
ColorJitter 26.0 41.4 20.9 9.5 0.1 0.0
RandAugment 26.5 41.9 21.6 9.4 0.1 0.0
AutoAugment 26.9 42.1 22.1 9.7 0.1 0.0

PEFT

Baseline 31.7 45.5 27.8 15.1 0.1 0.0
ColorJitter 32.1 45.9 28.4 15.2 0.2 0.0
RandAugment 32.6 46.8 28.8 15.4 0.2 0.0
AutoAugment 32.7 46.8 29.1 15.2 0.2 0.0

Table 24: Detailed results of applying augmentation methods to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Baseline 48.7 67.9 42.5 16.0 0.0 0.0
ColorJitter 49.9 69.0 44.0 16.6 0.0 0.0
RandAugment 51.0 70.2 45.1 17.6 0.0 0.0
AutoAugment 51.8 71.3 45.9 17.0 0.0 0.0

PEFT

Baseline 70.5 85.5 67.5 38.3 0.1 0.0
ColorJitter 70.6 85.5 67.6 38.8 0.1 0.0
RandAugment 70.5 85.5 67.5 38.3 0.1 0.0
AutoAugment 70.3 81.0 67.2 38.2 0.1 0.0

IN21K-ViT-B/16

FFT

Baseline 50.8 69.1 44.4 21.8 0.1 0.0
ColorJitter 52.1 70.1 45.9 23.0 0.1 0.0
RandAugment 53.4 71.4 47.1 24.5 0.1 0.0
AutoAugment 54.1 72.1 48.1 24.2 0.1 0.0

PEFT

Baseline 78.2 87.4 76.0 59.8 1.0 0.0
ColorJitter 78.2 87.5 75.8 59.9 64.4 2.0
RandAugment 78.1 87.5 75.7 59.6 63.8 2.0
AutoAugment 78.2 87.5 75.9 60.1 66.2 6.0
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Table 25: Detailed results of applying different losses to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE loss 54.6 82.9 55.9 20.1 0.0 0.0
Focal loss 52.7 81.4 53.0 19.0 17.9 1.0
LDAM loss 53.6 78.5 52.9 25.4 0.1 0.0
Class Balanced loss 54.7 83.4 56.1 19.4 0.1 0.0
Generalized Re-Weight 50.9 80.4 50.9 16.5 0.0 0.0
Balanced Softmax Loss 58.0 75.5 58.9 36.5 42.3 6.0
Logit Adjustment loss 62.7 74.8 62.1 49.4 55.3 18.0
LADE loss 18.2 26.3 19.9 6.9 0.0 0.0

PEFT

CE loss 71.9 90.2 75.1 46.6 56.0 7.0
Focal loss 71.2 89.5 74.0 46.7 58.3 10.0
LDAM loss 73.6 89.5 77.4 50.7 0.1 0.0
Class Balanced loss 72.5 90.2 75.3 48.6 57.7 9.0
Generalized Re-Weight 71.8 84.0 78.3 50.1 55.8 9.0
Balanced Softmax Loss 80.1 86.5 80.0 72.9 77.5 38.0
Logit Adjustment loss 79.8 80.6 79.3 79.5 77.8 47.0
LADE loss 79.9 85.7 79.0 74.1 77.1 42.0

IN21K-ViT-B/16

FFT

CE loss 70.3 89.6 71.9 45.8 48.0 3.0
Focal loss 69.4 89.3 71.1 44.3 43.9 2.0
LDAM loss 64.4 85.9 67.0 36.3 41.5 4.0
Class Balanced loss 69.4 89.6 71.3 43.7 50.1 5.0
Generalized Re-Weight 66.9 88.9 69.5 38.1 0.0 0.1
Balanced Softmax Loss 75.8 88.7 76.4 59.9 63.0 6.0
Logit Adjustment loss 73.1 88.4 73.1 55.1 64.7 15.0
LADE loss 72.8 89.9 72.4 53.2 48.8 2.0

PEFT

CE loss 80.7 93.5 80.9 65.4 41.2 1.0
Focal loss 81.4 93.5 81.3 67.5 52.9 2.0
LDAM loss 82.8 93.3 83.3 70.0 67.6 6.0
Class Balanced loss 80.3 93.4 80.7 64.6 41.7 1.0
Generalized Re-Weight 81.8 93.0 84.0 66.3 62.9 5.0
Balanced Softmax Loss 85.1 92.0 84.8 77.4 79.5 18.0
Logit Adjustment loss 86.3 91.9 85.9 81.3 83.2 28.0
LADE loss 86.0 93.0 85.0 79.2 81.6 23.0

Table 26: Detailed results of applying different losses to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE loss 24.7 40.5 19.8 6.8 0.1 0.0
Focal loss 24.3 40.5 19.2 6.3 0.1 0.0
LDAM loss 24.7 37.9 21.2 8.6 0.0 0.0
Class Balanced loss 25.1 40.7 20.3 7.3 0.0 0.0
Generalized Re-Weight 22.0 38.8 16.3 4.1 0.0 0.0
Balanced Softmax Loss 31.3 39.7 28.0 23.3 20.6 3.0
Logit Adjustment loss 32.0 36.2 29.9 29.3 21.6 3.0
LADE loss 16.8 23.0 16.7 5.5 0.0 0.0

PEFT

CE loss 39.8 53.9 35.9 22.5 0.1 0.0
Focal loss 39.0 52.9 35.1 22.1 0.2 0.0
LDAM loss 41.1 54.7 37.4 24.3 0.0 0.0
Class Balanced loss 40.2 54.0 35.8 24.6 0.1 0.0
Generalized Re-Weight 44.5 51.1 46.3 28.2 0.4 0.0
Balanced Softmax Loss 48.8 49.7 49.0 46.9 39.4 4.0
Logit Adjustment loss 48.0 41.4 50.5 54.7 0.4 0.0
LADE loss 49.2 49.9 49.3 47.6 35.4 1.0

IN21K-ViT-B/16

FFT

CE loss 26.0 41.4 20.9 9.5 0.1 0.0
Focal loss 25.9 41.2 21.0 8.8 0.1 0.0
LDAM loss 25.0 39.9 20.0 9.1 0.1 0.0
Class Balanced loss 26.0 41.2 21.2 8.7 0.1 0.0
Generalized Re-Weight 23.4 39.8 17.8 6.2 0.0 0.0
Balanced Softmax Loss 30.3 41.3 26.8 18.1 16.9 2.0
Logit Adjustment loss 31.9 40.3 29.0 23.2 20.1 2.0
LADE loss 27.3 38.8 22.7 16.5 15.2 2.0

PEFT

CE loss 31.9 45.8 28.2 15.0 0.2 0.0
Focal loss 30.9 45.0 26.9 14.0 0.1 0.0
LDAM loss 34.9 46.9 31.5 20.5 0.4 0.0
Class Balanced loss 32.0 45.9 28.1 15.0 0.1 0.0
Generalized Re-Weight 34.2 47.0 32.1 15.7 0.1 0.0
Balanced Softmax Loss 38.3 45.3 36.6 29.5 26.7 3.0
Logit Adjustment loss 39.7 42.2 39.7 35.2 29.9 4.0
LADE loss 0.3 0.0 0.0 1.5 0.0 0.0
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Table 27: Detailed results of applying different losses to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE loss 49.9 69.0 44.0 16.6 0.0 0.0
Focal loss 48.2 67.4 41.8 16.4 0.0 0.0
LDAM loss 50.4 67.0 45.7 20.3 0.0 0.0
Class Balanced loss 50.0 68.8 43.9 18.2 0.0 0.0
Generalized Re-Weight 49.0 67.7 42.8 18.0 0.0 0.0
Balanced Softmax Loss 54.6 64.8 51.0 38.2 0.3 0.0
Logit Adjustment loss 54.0 59.8 51.5 46.5 1.0 0.0
LADE loss 53.0 63.4 50.7 32.1 0.1 0.0

PEFT

CE loss 70.6 85.5 67.6 38.8 0.1 0.0
Focal loss 70.1 84.8 67.1 39.1 0.3 0.0
LDAM loss 71.6 85.4 69.3 40.7 0.1 0.0
Class Balanced loss 71.2 85.5 67.7 43.2 0.5 0.0
Generalized Re-Weight 74.5 81.8 74.2 54.6 59.8 2.0
Balanced Softmax Loss 76.7 81.2 75.4 68.5 70.2 12.0
Logit Adjustment loss 75.6 75.0 75.7 76.7 67.9 4.0
LADE loss 76.3 81.1 75.3 66.6 69.3 8.0

IN21K-ViT-B/16

FFT

CE loss 52.1 70.1 45.9 23.0 0.1 0.0
Focal loss 51.0 69.1 44.5 22.6 0.1 0.0
LDAM loss 52.2 69.6 45.8 25.2 0.1 0.0
Class Balanced loss 52.3 70.3 46.1 23.6 0.1 0.0
Generalized Re-Weight 50.9 69.3 44.5 21.0 0.1 0.0
Balanced Softmax Loss 55.6 68.4 51.5 35.3 36.7 0.0
Logit Adjustment loss 56.2 66.2 52.6 40.5 1.0 0.0
LADE loss 48.4 61.3 43.1 30.7 0.3 0.0

PEFT

CE loss 78.2 87.5 75.8 59.9 64.4 2.0
Focal loss 77.4 86.9 74.7 59.7 63.9 2.0
LDAM loss 79.4 87.2 77.3 64.9 69.5 4.0
Class Balanced loss 78.2 87.5 75.8 60.5 64.3 2.0
Generalized Re-Weight 78.8 87.0 77.2 61.3 66.4 4.0
Balanced Softmax Loss 81.2 85.6 79.8 73.6 76.3 16.0
Logit Adjustment loss 81.6 83.7 80.6 78.7 77.6 16.0
LADE loss 81.2 86.1 79.4 74.0 76.6 16.0

Table 28: Detailed results of applying different classifiers to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Linear classifier 54.6 82.9 55.9 20.1 0.0 0.0
Cosine classifier 56.4 84.3 57.1 22.9 0.0 0.0
τ -normalized classifier (τ = 0.5) 55.6 83.5 56.8 21.6 0.1 0.0
τ -normalized classifier (τ = 1) 55.6 83.6 56.2 22.2 0.1 0.0
τ -normalized classifier (τ = 2) 54.8 83.1 55.1 21.3 0.1 0.0

PEFT

Linear classifier 71.9 90.2 75.1 46.6 56.0 7.0
Cosine classifier 72.2 90.2 74.5 48.5 37.9 1.0
τ -normalized classifier (τ = 0.5) 71.7 89.9 74.3 47.3 54.9 6.0
τ -normalized classifier (τ = 1) 71.9 90.0 74.6 47.6 54.1 5.0
τ -normalized classifier (τ = 2) 71.8 89.9 73.7 48.4 56.7 8.0

IN21K-ViT-B/16

FFT

Linear classifier 70.3 89.6 71.9 45.8 48.0 3.0
Cosine classifier 69.6 90.2 70.7 44.3 31.6 1.0
τ -normalized classifier (τ = 0.5) 69.3 89.6 69.0 46.1 49.0 4.0
τ -normalized classifier (τ = 1) 68.9 89.9 70.1 42.9 48.3 4.0
τ -normalized classifier (τ = 2) 68.8 89.5 69.7 43.6 45.8 3.0

PEFT

Linear classifier 80.7 93.5 80.9 65.4 41.2 1.0
Cosine classifier 83.9 94.8 84.1 71.0 65.0 6.0
τ -normalized classifier (τ = 0.5) 80.8 93.3 80.6 66.2 41.7 1.0
τ -normalized classifier (τ = 1) 80.9 93.4 80.7 66.5 42.6 1.0
τ -normalized classifier (τ = 2) 81.2 93.3 81.0 67.2 58.7 3.0
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Table 29: Detailed results of applying different classifiers to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Linear classifier 24.9 40.7 20.1 6.8 0.0 0.0
Cosine classifier 24.9 40.9 19.9 6.6 0.0 0.0
τ -normalized classifier (τ = 0.5) 24.7 40.9 19.8 6.2 0.0 0.0
τ -normalized classifier (τ = 1) 24.6 41.3 19.2 6.0 0.0 0.0
τ -normalized classifier (τ = 2) 23.5 40.3 17.8 5.9 0.0 0.0

PEFT

Linear classifier 39.8 53.9 35.9 22.5 0.1 0.0
Cosine classifier 40.6 55.2 35.9 24.2 0.2 0.0
τ -normalized classifier (τ = 0.5) 40.3 54.9 36.1 22.8 0.1 0.0
τ -normalized classifier (τ = 1) 40.0 54.7 35.4 23.4 0.2 0.0
τ -normalized classifier (τ = 2) 37.6 53.1 32.8 20.2 0.1 0.0

IN21K-ViT-B/16

FFT

Linear classifier 26.0 41.4 20.9 9.5 0.1 0.0
Cosine classifier 27.1 43.3 21.8 9.1 0.1 0.0
τ -normalized classifier (τ = 0.5) 25.8 41.5 20.6 8.7 0.1 0.0
τ -normalized classifier (τ = 1) 25.4 41.3 20.1 8.1 0.0 0.0
τ -normalized classifier (τ = 2) 24.8 41.8 19.2 6.3 0.0 0.0

PEFT

Linear classifier 31.9 45.8 28.2 15.0 0.2 0.0
Cosine classifier 38.1 53.4 33.7 20.2 0.4 0.0
τ -normalized classifier (τ = 0.5) 32.1 46.4 28.2 14.7 0.1 0.0
τ -normalized classifier (τ = 1) 32.3 47.3 27.9 14.9 0.1 0.0
τ -normalized classifier (τ = 2) 32.1 47.6 27.2 14.7 0.1 0.0

Table 30: Detailed results of applying different classifiers to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

Linear classifier 49.9 69.0 44.0 16.6 0.0 0.0
Cosine classifier 50.0 69.6 43.7 16.8 0.1 0.0
τ -normalized classifier (τ = 0.5) 49.8 69.0 43.8 16.5 0.0 0.0
τ -normalized classifier (τ = 1) 49.0 68.5 42.7 16.2 0.0 0.0
τ -normalized classifier (τ = 2) 45.8 66.0 38.4 14.5 0.0 0.0

PEFT

Linear classifier 70.6 85.5 67.6 38.8 0.1 0.0
Cosine classifier 70.5 85.4 67.0 40.6 0.2 0.0
τ -normalized classifier (τ = 0.5) 70.5 85.5 67.3 39.5 0.2 0.0
τ -normalized classifier (τ = 1 70.1 85.4 66.6 39.5 0.2 0.0
τ -normalized classifier (τ = 2) 67.2 84.0 63.0 34.8 0.2 0.0

IN21K-ViT-B/16

FFT

Linear classifier 52.1 70.1 45.9 23 0.1 0.0
Cosine classifier 54.4 72.7 48.4 23.6 0.1 0.0
τ -normalized classifier (τ = 0.5) 51.6 69.4 45.4 23 0.1 0.0
τ -normalized classifier (τ = 1) 50.5 69.1 44.1 20.1 0.1 0.0
τ -normalized classifier (τ = 2) 49.4 68.9 42.3 18.8 0.1 0.0

PEFT

Linear classifier 78.2 87.5 75.8 59.9 64.4 2.0
Cosine classifier 80.2 88.9 78.1 63.1 0.5 0.0
τ -normalized classifier (τ = 0.5) 76.9 86.9 74.4 57.4 61.7 2.0
τ -normalized classifier (τ = 1) 75.5 86.3 72.6 54.7 59.4 2.0
τ -normalized classifier (τ = 2) 74.6 85.5 71.3 55.4 1.0 0.0

Table 31: Detailed results of applying knowledge distillation to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Teacher IN21K-ViT-B/16 PEFT 88.8 91.8 88.0 86.3 81.4 9.0

Student

DeiT-S
FFT Baseline 67.3 88.9 67.9 41.5 29.4 1.0

distillation 70.4 91.0 71.4 45.3 31.4 1.0

PEFT Baseline 69.9 89.5 70.5 46.4 0.1 0.0
distillation 70.0 89.3 70.4 47.0 0.1 0.0

DeiT-Ti
FFT Baseline 58.7 84.3 60.1 27.2 26.6 2.0

distillation 61.7 86.7 62.3 31.7 24.5 1.0

PEFT Baseline 60.8 84.3 61.6 32.6 0.1 0.0
distillation 60.6 84.3 61.3 32.3 0.0 0.0

Table 32: Detailed results of applying knowledge distillation to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Teacher CLIP-ViT-B/16 PEFT 51.5 50.9 52.2 50.9 37.1 1.0

Student

DeiT-S
FFT Baseline 27.1 43.0 22.5 7.9 0.1 0.0

distillation 30.2 46.5 25.6 10.8 0.1 0.0

PEFT Baseline 32.1 48.4 27.3 13.1 0.1 0.0
distillation 32.5 49.0 27.5 13.8 0.1 0.0

DeiT-Ti
FFT Baseline 24.6 41.1 19.5 5.9 0.0 0.0

distillation 28.6 45.2 23.8 9.0 0.1 0.0

PEFT Baseline 29.4 45.5 24.4 11.2 0.1 0.0
distillation 30.0 46.2 25.0 11.3 0.1 0.0
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Table 33: Detailed results of applying knowledge distillation to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case
Teacher IN21K-ViT-B/16 PEFT 83.6 85.8 83.0 80.0 80.1 16.0

Student

DeiT-S
FFT Baseline 58.3 74.1 53.7 29.9 0.1 0.0

distillation 60.5 75.8 56.2 32.6 0.2 0.0

PEFT Baseline 74.6 84.6 72.3 54.5 1.0 0.0
distillation 74.9 84.6 72.6 55.9 57.6 2.0

DeiT-Ti
FFT Baseline 50.8 68.7 45.2 20.2 0.0 0.0

distillation 52.7 70.3 47.2 22.4 0.1 0.0

PEFT Baseline 65.6 78.8 62.3 40.2 0.5 0.0
distillation 65.9 78.9 62.6 40.5 1.0 0.0

Table 34: Detailed results of applying ensemble learning to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 54.6 82.9 55.9 20.1 0.0 0.0

Ensemble 55.6 83.7 56.4 22.0 0.1 0.0

PEFT Baseline 71.9 90.2 75.1 46.6 56.0 7.0
Ensemble 76 89.4 78.8 57.1 65.7 10.0

IN21K-ViT-B/16
FFT Baseline 70.3 89.6 71.9 45.8 48.0 3.0

Ensemble 68.6 90.7 70.0 41.3 46.2 4.0

PEFT Baseline 80.7 93.5 80.9 65.4 41.2 1.0
Ensemble 82.2 93.6 82.9 68.1 60.7 4.0

Table 35: Detailed results of applying ensemble learning to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 24.9 40.7 20.1 6.8 0.0 0.0

Ensemble 18.9 34.8 13.4 2.4 0.0 0.0

PEFT Baseline 39.8 53.9 35.9 22.5 0.1 0.0
Ensemble 45.0 55.5 43.5 28.9 0.4 0.0

IN21K-ViT-B/16
FFT Baseline 26.0 41.4 20.9 9.5 0.1 0.0

Ensemble 26.7 43.1 21.4 8.6 0.1 0.0

PEFT Baseline 31.9 45.8 28.2 15.0 0.2 0.0
Ensemble 36.4 49.2 33.6 19.2 17.3 1.0

Table 36: Detailed results of applying ensemble learning to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 49.9 69.0 44.0 16.6 0.0 0.0

Ensemble 36.7 54.7 29.8 9.7 0.0 0.0

PEFT Baseline 70.6 85.5 67.6 38.8 0.1 0.0
Ensemble 73.4 84.4 71.6 48.8 0.5 0.0

IN21K-ViT-B/16
FFT Baseline 52.1 70.1 45.9 23.0 0.1 0.0

Ensemble 54.2 71.9 48.6 24.1 0.1 0.0

PEFT Baseline 78.2 87.5 75.8 59.9 64.4 2.0
Ensemble 80.4 87.9 78.7 65.1 70.3 4.0

Table 37: Detailed results of applying mixup to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 51.0 70.3 51.0 30.3 36.4 7.0

Mixup 68.7 81.9 69.7 51.9 61.1 19.0

PEFT Baseline 80.1 86.5 80.0 72.9 77.5 38.0
Mixup 79.7 82.5 80.5 75.1 78.1 21.0

IN21K-ViT-B/16
FFT Baseline 75.8 88.7 76.4 59.9 63.0 6.0

Mixup 81.6 86.7 82.5 74.5 73.6 8.0

PEFT Baseline 85.1 92.0 84.8 77.4 79.5 18.0
Mixup 86.7 89.3 86.2 84.1 84.0 29.0
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Table 38: Detailed results of applying mixup to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 31.3 39.7 28.0 23.3 20.6 3.0

Mixup 35.8 41.8 34.6 27.6 25.5 3.0

PEFT Baseline 48.8 49.7 49.0 46.9 39.4 4.0
Mixup 49.8 49.9 50.5 48.1 37.5 2.0

IN21K-ViT-B/16
FFT Baseline 30.3 41.3 26.8 18.1 16.9 2.0

Mixup 33.3 42.0 30.9 23.0 21.7 3.0

PEFT Baseline 38.3 45.3 36.6 29.5 26.7 3.0
Mixup 45.0 48.1 44.9 39.8 35.2 5.0

Table 39: Detailed results of applying mixup to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16
FFT Baseline 54.6 64.8 51.0 38.2 0.3 0.0

Mixup 58.7 67.9 56.8 39.1 0.2 0.0

PEFT Baseline 76.7 81.2 75.4 68.5 70.2 12.0
Mixup 75.2 78.9 74.8 66.2 67.3 8.0

IN21K-ViT-B/16
FFT Baseline 55.6 68.4 51.5 35.3 36.7 0.0

Mixup 61.5 72.0 57.6 45.6 1.0 0.0

PEFT Baseline 81.2 85.6 79.8 73.6 76.3 16.0
Mixup 83.3 85.1 82.6 80.8 79.2 10.0

Table 40: Detailed results of applying label smoothing to the CIFAR100-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE 54.6 82.9 55.9 20.1 0.0 0.0
CE (w/ LS) 56.2 85.2 56.8 21.7 15.4 1.0
BS 58.0 75.5 58.9 36.5 42.3 6.0
BS (w/ LS) 59.8 71.4 57.0 49.6 51.0 12.0

PEFT

CE 71.9 90.2 75.1 46.6 56.0 7.0
CE (w/ LS) 71.7 89.8 75.2 46.6 36.1 1.0
BS 80.1 86.5 80.0 72.9 77.5 38.0
BS (w/ LS) 80.6 84.1 80.1 77.2 78.5 44.0

IN21K-ViT-B/16

FFT

CE 70.3 89.6 71.9 45.8 48.0 3.0
CE (w/ LS) 71.3 91.1 72.7 46.6 42.0 2.0
BS 75.8 88.7 76.4 59.9 63.0 6.0
BS (w/ LS) 78.2 90.1 76.8 65.8 71.9 23.0

PEFT

CE 80.7 93.5 80.9 65.4 41.2 1.0
CE (w/ LS) 82.7 94.5 82.5 69.2 61.7 4.0
BS 85.1 92.0 84.8 77.4 79.5 18.0
BS (w/ LS) 88.1 89.5 86.6 88.2 86.6 50.0

Table 41: Detailed results of applying label smoothing to the Places-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE 24.7 40.5 19.8 6.8 0.1 0.0
CE (w/ LS) 25.0 40.5 19.7 8.3 0.1 0.0
BS 31.3 39.7 28.0 23.3 20.6 3.0
BS (w/ LS) 28.6 31.9 25.5 29.7 0.4 0.0

PEFT

CE 39.8 53.9 35.9 22.5 0.1 0.0
CE (w/ LS) 39.7 54.6 35.7 21.2 0.0 0.0
BS 48.8 49.7 49.0 46.9 39.4 4.0
BS (w/ LS) 49.4 48.9 49.7 49.4 37.9 3.0

IN21K-ViT-B/16

FFT

CE 26.0 41.4 20.9 9.5 0.1 0.0
CE (w/ LS) 26.9 43.1 21.7 8.8 0.1 0.0
BS 30.3 41.3 26.8 18.1 16.9 2.0
BS (w/ LS) 32.4 38.7 29.4 27.5 0.4 0.0

PEFT

CE 31.9 45.8 28.2 15.0 0.2 0.0
CE (w/ LS) 34.1 48.3 30.0 17.3 0.1 0.0
BS 38.3 45.3 36.6 29.5 26.7 3.0
BS (w/ LS) 41.8 44.6 41.2 37.8 30.6 5.0
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Table 42: Detailed results of applying label smoothing to the ImageNet-LT dataset.

Mean Many Med. Few Harmonic mean Worst case

CLIP-ViT-B/16

FFT

CE 49.9 69.0 44.0 16.6 0.0 0.0
CE (w/ LS) 51.4 69.7 45.8 19.1 0.0 0.0
BS 54.6 64.8 51.0 38.2 0.3 0
BS (w/ LS) 55.5 63.2 52.2 45.3 41.0 4.0

PEFT

CE 70.6 85.5 67.6 38.8 0.1 0.0
CE (w/ LS) 70.5 85.7 67.7 37.5 0.1 0.0
BS 76.7 81.2 75.4 68.5 70.2 12.0
BS (w/ LS) 76.7 80.1 75.7 70.3 70.5 12.0

IN21K-ViT-B/16

FFT

CE 52.1 70.1 45.9 23.0 0.1 0.0
CE (w/ LS) 54.5 73.2 48.2 24.2 0.1 0.0
BS 55.6 68.4 51.5 35.3 36.7 0.0
BS (w/ LS) 59.0 68.9 54.5 43.8 43.4 2.0

PEFT

CE 78.2 87.5 75.8 59.9 64.4 2.0
CE (w/ LS) 80.4 88.3 78.3 65.4 66.4 2.0
BS 81.2 85.6 79.8 73.6 76.3 16.0
BS (w/ LS) 83.0 85.0 82.1 80.3 79.1 16.0

Table 43: Ablation experiment on CIFAR100-LT.

Cosine
Classifier

Square-root
sampling

Balanced
Softmax

Label
Smoothing

Auto
Augment

Mixup Mean Many Med. Few Hmean Worst

CLIP
-ViT
-B/16

FFT

46.9 75.6 46.3 14.1 10.7 1.0
✓ 41.5 70.6 39.1 10.2 0.0 0.0
✓ ✓ 60.0 82.7 64.5 28.2 20.6 1.0
✓ ✓ ✓ 65.7 80.3 69.1 44.7 51.0 6.0
✓ ✓ ✓ ✓ 67.4 80.8 70.3 48.6 55.5 8.0
✓ ✓ ✓ ✓ ✓ 29.7 38.9 31.8 16.4 0.0 0.0
✓ ✓ ✓ ✓ ✓ 49.6 61.5 52.6 32.3 25.2 1.0
✓ ✓ ✓ ✓ ✓ ✓ 14.4 15.3 17.2 10.0 0.0 0.0

PEFT

71.9 90.1 75.2 47.0 56.5 8.0
✓ 72.8 90.2 75.5 49.2 56.2 5.0
✓ ✓ 77.0 87.7 78.9 62.3 68.7 11.0
✓ ✓ ✓ 80.1 84.5 81.0 74.0 77.0 28.0
✓ ✓ ✓ ✓ 80.5 84.1 81.1 75.7 77.9 35.0
✓ ✓ ✓ ✓ ✓ 79.3 80.9 80.2 76.4 76.4 35.0
✓ ✓ ✓ ✓ ✓ 79.3 81.2 80.1 76.2 74.5 17.0
✓ ✓ ✓ ✓ ✓ ✓ 77.5 79.3 78.1 74.9 73.1 28.0

IN21K
-ViT
-B/16

FFT

71.1 89.3 72.6 48.0 50.6 3.0
✓ 71.4 91.0 73.0 46.8 39.0 2.0
✓ ✓ 75.1 91.4 76.6 54.3 53.3 3.0
✓ ✓ ✓ 82.7 90.6 83.1 72.9 74.4 9.0
✓ ✓ ✓ ✓ 81.5 91.7 81.3 69.8 75.6 16.0
✓ ✓ ✓ ✓ ✓ 82.2 91.5 82.9 70.3 76.8 23.0
✓ ✓ ✓ ✓ ✓ 83.9 91.2 83.7 75.7 77.8 15.0
✓ ✓ ✓ ✓ ✓ ✓ 84.7 89.5 85.3 78.4 81.6 26.0

PEFT

81.6 93.3 81.9 67.6 41.9 1.0
✓ 84.2 94.9 84.1 71.8 62.0 4.0
✓ ✓ 87.2 94.2 87.1 79.2 79.2 12.0
✓ ✓ ✓ 89.1 92.6 88.5 85.8 86.5 28.0
✓ ✓ ✓ ✓ 89.2 91.7 88.4 87.2 87.3 40.0
✓ ✓ ✓ ✓ ✓ 88.9 90.8 88.2 87.5 87.3 43.0
✓ ✓ ✓ ✓ ✓ 88.1 89.6 88.0 86.5 84.4 19.0
✓ ✓ ✓ ✓ ✓ ✓ 87.6 88.9 87.1 86.6 84.6 24.0
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Table 44: Ablation experiment on Places-LT.

Cosine
Classifier

Square-root
sampling

Balanced
Softmax

Label
Smoothing

Auto
Augment

Mixup Mean Many Med. Few Hmean Worst

CLIP
-ViT
-B/16

FFT

23.7 39.8 18.5 6.0 0.1 0.0
✓ 24.5 41.0 19.2 6.3 0.0 0.0
✓ ✓ 36.9 50.9 34.4 16.7 18.7 1.0
✓ ✓ ✓ 42.1 17.4 42.8 31.1 31.7 4.0
✓ ✓ ✓ ✓ 42.2 49.2 42.5 28.6 31.3 5.0
✓ ✓ ✓ ✓ ✓ 43.7 47.3 45.3 33.3 32.0 4.0
✓ ✓ ✓ ✓ ✓ 45.6 48.0 47.1 37.7 30.8 1.0
✓ ✓ ✓ ✓ ✓ ✓ 45.4 46.4 47.1 39.4 32.4 5.0

PEFT

39.8 54.5 35.7 22.3 0.1 0.0
✓ 40.6 55.1 36.2 24.0 0.1 0.0
✓ ✓ 48.0 56.1 46.0 37.7 31.8 1.0
✓ ✓ ✓ 51.3 51.3 51.9 49.9 40.4 3.0
✓ ✓ ✓ ✓ 51.2 51.2 51.9 49.8 39.0 2.0
✓ ✓ ✓ ✓ ✓ 51.1 50.6 51.9 50.1 38.8 2.0
✓ ✓ ✓ ✓ ✓ 50.7 50.6 51.3 49.6 39.1 4.0
✓ ✓ ✓ ✓ ✓ ✓ 50.2 49.9 50.9 48.9 35.8 2.0

IN21K
-ViT
-B/16

FFT

25.7 40.9 20.5 9.4 0.1 0.0
✓ 26.6 42.9 21.3 8.4 0.2 0.0
✓ ✓ 38.2 51.9 34.8 21.0 19.3 2.0
✓ ✓ ✓ 42.3 50.3 41.1 30.0 30.1 4.0
✓ ✓ ✓ ✓ 42.5 51.1 41.5 29.2 29.6 3.0
✓ ✓ ✓ ✓ ✓ 43.8 50.5 43.9 31.1 31.8 3.0
✓ ✓ ✓ ✓ ✓ 45.4 50.4 46.0 34.9 33.2 3.0
✓ ✓ ✓ ✓ ✓ ✓ 46.0 49.9 47.0 36.6 33.4 3.0

PEFT

31.7 45.5 27.8 15.1 0.1 0.0
✓ 37.8 53.5 33.5 18.9 0.1 0.0
✓ ✓ 44.7 53.4 42.8 32.9 29.8 4.0
✓ ✓ ✓ 48.4 49.4 49.6 43.7 36.7 4.0
✓ ✓ ✓ ✓ 47.9 49.0 49.1 43.1 36.0 4.0
✓ ✓ ✓ ✓ ✓ 48.2 49.3 49.3 43.5 36.6 5.0
✓ ✓ ✓ ✓ ✓ 48.4 48.3 49.4 46.0 34.0 1.0
✓ ✓ ✓ ✓ ✓ ✓ 48.3 47.7 49.6 46.2 34.9 2.0

Table 45: Ablation experiment on ImageNet-LT.

Cosine
Classifier

Square-root
sampling

Balanced
Softmax

Label
Smoothing

Auto
Augment

Mixup Mean Many Med. Few Hmean Worst

CLIP
-ViT
-B/16

FFT

48.7 67.9 42.5 16.0 0.0 0.0
✓ 48.7 68.6 42.2 15.5 0.0 0.0
✓ ✓ 60.1 75.0 56.0 32.1 0.1 0.0
✓ ✓ ✓ 63.2 71.9 60.9 46.6 1.0 0.0
✓ ✓ ✓ ✓ 64.1 73.1 61.6 47.4 51.2 4.0
✓ ✓ ✓ ✓ ✓ 64.5 71.4 63.0 50.1 51.9 2.0
✓ ✓ ✓ ✓ ✓ 65.7 72.0 64.2 53.2 54.6 6.0
✓ ✓ ✓ ✓ ✓ ✓ 63.9 70.0 62.7 51.0 50.1 2.0

PEFT

70.5 85.5 67.5 38.3 0.1 0.0
✓ 70.4 85.5 67.0 39.9 0.1 0.0
✓ ✓ 74.7 84.0 72.7 55.4 60.8 4.0
✓ ✓ ✓ 77.0 80.8 75.9 69.6 71.1 14.0
✓ ✓ ✓ ✓ 77.2 80.5 76.3 71.5 71.2 14.0
✓ ✓ ✓ ✓ ✓ 76.6 79.3 75.9 71.2 69.8 6.0
✓ ✓ ✓ ✓ ✓ 75.5 78.3 74.6 70.4 68.1 8.0
✓ ✓ ✓ ✓ ✓ ✓ 74.9 77.3 74.4 69.8 66.6 6.0

IN21K
-ViT
-B/16

FFT

50.8 69.1 44.4 21.8 0.1 0.0
✓ 53.1 71.4 46.9 23.0 0.1 0.0
✓ ✓ 71.5 82.3 68.5 51.5 55.8 2.0
✓ ✓ ✓ 73.4 81.3 71.0 59.3 65.5 6.0
✓ ✓ ✓ ✓ 75.2 82.1 73.1 62.8 67.7 10.0
✓ ✓ ✓ ✓ ✓ 75.5 81.9 74.0 62.8 68.4 10.0
✓ ✓ ✓ ✓ ✓ 76.4 82.1 74.8 65.7 69.8 10.0
✓ ✓ ✓ ✓ ✓ ✓ 77.0 82.1 75.7 67.1 70.8 10.0

PEFT

78.2 87.4 76.0 59.8 1.0 0.0
✓ 80.3 88.8 78.2 63.6 0.5 0.0
✓ ✓ 82.6 88.1 81.3 71.5 75.1 6.0
✓ ✓ ✓ 83.6 86.4 83.0 78.2 79.6 10.0
✓ ✓ ✓ ✓ 84.1 85.8 83.6 80.6 80.2 16.0
✓ ✓ ✓ ✓ ✓ 84.1 85.8 83.6 80.9 80.2 14.0
✓ ✓ ✓ ✓ ✓ 84.1 85.1 83.8 82.8 80.1 12.0
✓ ✓ ✓ ✓ ✓ ✓ 84.2 85.1 83.9 82.8 80.3 14.0
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Table 46: Ablation experiment on iNaturalist 2018.

Cosine
Classifier

Square-root
sampling

Balanced
Softmax

Label
Smoothing

Auto
Augment

Mixup Mean Many Med. Few Hmean Worst

CLIP
-ViT
-B/16

FFT

58.4 73.6 62.6 49.1 0.0 0.0
✓ 63.3 72.2 64.6 59.5 0.0 0.0
✓ ✓ 68.4 70.3 69.4 66.7 0.0 0.0
✓ ✓ ✓ 70.9 66.1 71.3 71.5 0.0 0.0
✓ ✓ ✓ ✓ 71.5 65.1 71.9 72.7 0.0 0.0
✓ ✓ ✓ ✓ ✓ 69.6 61.3 69.9 71.4 0.0 0.0
✓ ✓ ✓ ✓ ✓ 69.4 59.9 69.6 71.6 0.0 0.0
✓ ✓ ✓ ✓ ✓ ✓ 48.7 34.2 47.2 54.4 0.0 0.0

PEFT

69.5 82.1 73.1 61.7 0.0 0.0
✓ 75.3 81.6 76.0 72.7 0.0 0.0
✓ ✓ 76.8 78.6 77.4 75.5 0.0 0.0
✓ ✓ ✓ 79.3 73.5 79.1 81.0 0.0 0.0
✓ ✓ ✓ ✓ 79.0 73.0 78.9 80.6 0.0 0.0
✓ ✓ ✓ ✓ ✓ 78.3 72.0 78.4 79.8 0.0 0.0
✓ ✓ ✓ ✓ ✓ 76.9 69.1 77.0 78.8 0.0 0.0
✓ ✓ ✓ ✓ ✓ ✓ 74.6 66.3 74.4 76.9 0.0 0.0

IN21K
-ViT
-B/16

FFT

57.8 65.3 59.1 54.2 0.0 0.0
✓ 61.5 70.3 62.9 57.5 0.0 0.0
✓ ✓ 72.3 75.0 73.4 70.1 0.0 0.0
✓ ✓ ✓ 75.0 70.0 75.7 75.4 0.0 0.0
✓ ✓ ✓ ✓ 74.6 69.8 75.1 75.2 0.0 0.0
✓ ✓ ✓ ✓ ✓ 74.9 68.8 75.5 75.7 0.0 0.0
✓ ✓ ✓ ✓ ✓ 73.3 65.7 73.9 74.6 0.0 0.0
✓ ✓ ✓ ✓ ✓ ✓ 72.3 63.5 72.9 73.9 0.0 0.0

PEFT

73.6 79.2 75.8 69.5 0.0 0.0
✓ 75.6 81.2 77.2 72.2 0.0 0.0
✓ ✓ 79.0 80.6 80.2 77.1 0.0 0.0
✓ ✓ ✓ 81.1 75.6 81.7 81.9 0.1 0.0
✓ ✓ ✓ ✓ 81.1 75.8 81.8 81.7 0.1 0.0
✓ ✓ ✓ ✓ ✓ 81.1 74.6 81.8 81.8 0.1 0.0
✓ ✓ ✓ ✓ ✓ 79.9 71.9 80.4 81.4 0.0 0.0
✓ ✓ ✓ ✓ ✓ ✓ 79.4 71.2 79.9 80.8 0.0 0.0

Table 47: Comparison of LIFT and our method on accuracy and training cost. ”S/E” represents the
number of training samples in each epoch, and ”Samples” represents the total number of training
samples.

Datasets Acc Epochs S/E Samples

CIFAR100-IR100 LIFT 80.3 10 10.8K 108K
Ours 80.5 50 1.9K 95K(↓)

Places-LT LIFT 51.5 10 62.5K 625K
Ours 51.2 50 8.2K 410K(↓)

ImageNet-LT LIFT 77.0 10 117.0K 1.17M
Ours 77.2 50 20.7K 1.03M(↓)

iNaturalist 2018 LIFT 79.1 20 437.5K 8.75M
Ours 79.0 100 65.0K 6.5M(↓)

Table 48: Accuracy of our method with DINO.
Datasets Overall Many Med. Few

CIFAR100-IR100 80.3 85.1 81.7 73.0
Places-LT 43.9 45.5 45.4 37.3

ImageNet-LT 73.5 77.6 72.8 64.0
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