

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOW DOES FINE-TUNED FOUNDATION MODELS HELP FOR LONG-TAILED DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep long-tail learning is a challenging visual recognition problem that trains models on long-tailed distributed datasets. In the last decade, a large number of methods have been proposed to solve the problems caused by imbalanced data. Many methods have been proven useful in learning a deep model from scratch, such as ResNet or ResNeXt, but they have not been validated as effective in fine-tuning the pre-trained foundation models, such as CLIP or ViT. If users inappropriately apply these long-tail learning methods, it may result in worse accuracy than expected. However, there is no scientific guideline for these methods in the existing literature. In this paper, we first collect the widely used methods of existing long-tail learning and then conduct extensive and systematic experiments to provide a guideline for the accurate use of these methods in fine-tuning foundation models. Furthermore, we observe that the current comparison protocol ignores the influence of training cost and hyperparameter selection, which may potentially lead to unfair comparisons and biased results. Motivated by our empirical studies, we propose a unified fine-tuning framework for long-tailed recognition. Experimental results demonstrate that the proposed framework outperforms existing methods on multiple long-tailed datasets, including ImageNet-LT, Places-LT, CIFAR100-LT, and iNaturalist 2018.

1 INTRODUCTION

Deep neural networks have achieved great success in a variety of computer vision tasks, such as image recognition (Voulodimos et al., 2018; Krizhevsky et al., 2012), object detection (Zhao et al., 2019; Zou et al., 2023), etc. These achievements are attributed to the availability of large-scale datasets (Deng et al., 2009; Zhou et al., 2017; Krizhevsky, 2009) and the elaborately designed models (He et al., 2016; Dosovitskiy et al., 2021). However, in the real world, the natural data typically exhibits a long-tailed distribution (Liu et al., 2019; Cao et al., 2019; Kang et al., 2020; Yuan et al., 2021a; Yan et al., 2023; Xu et al., 2023a), where a small number of head classes have the majority of samples, and a large number of tail classes have only a few samples. Such extreme class imbalance poses severe challenges to the training of deep neural networks. The reason lies in that the models are prone to making predictions biased towards the head classes, leading to poor performance on tail classes, thereby decreasing the overall prediction performance (Tan et al., 2020; Zhang et al., 2023).

To solve the long-tail problem, many methods have been proposed in recent years. For example, re-weighting methods (Wu et al., 2020; Khan et al., 2019; Cui et al., 2019) aim to adjust the training loss for each class by multiplying it with a different weight; re-sampling methods (Chawla et al., 2002; Liu et al., 2008; Shi et al., 2023) aim to adjust the number of samples for each class in each sample batch to rebalance the classes; ensemble learning methods (Zhou et al., 2020; Wang et al., 2021b) aim to combine multiple exports to reduce the bias of the model towards the head classes. These existing methods have made significant progress in improving classification accuracy, but the experimental results of these methods are obtained from models trained from scratch, with limited research on fine-tuning pre-trained foundation models.

Recently, some works study long-tail learning with foundation models instead of training from scratch, such as BALLAD (Ma et al., 2021), VL-LTR (Tian et al., 2022), LPT (Dong et al., 2023), LIFT (Shi et al., 2024), and RAC (Long et al., 2022). However, these studies are less comprehensive and lack a systematic investigation. BALLAD and VL-LTR focus on two-stage learning methods,

054 while LPT and LIFT utilize rebalanced loss functions to mitigate the long-tail problem. On the other
 055 hand, BALLAD, VL-LTR, and RAC only apply the full fine-tuning setting, while LPT and LIFT fo-
 056 cuse solely on the parameter-efficient fine-tuning approaches. To the best of our knowledge, there has
 057 not been a systematic study on how to fine-tune foundation models under a long-tailed distribution.
 058

059 In this paper, we delve into the commonly used methods in long-tail learning and apply them to
 060 fine-tune pre-trained CLIP (Radford et al., 2021) and ViT (Dosovitskiy et al., 2021), which are
 061 widely used in various visual tasks (Dehghani et al., 2023; Zhou et al., 2022; Yuan et al., 2021b;
 062 Wang et al., 2021a; Gao et al., 2024). We conduct extensive and systematic experiments to evaluate
 063 whether these methods are equally effective on foundation models as learning from scratch. We
 064 also analyze their training costs and hyperparameter selections. Finally, motivated by the results of
 065 our empirical studies, we integrate the optimal methods and propose a unified training framework.
 066 The proposed framework achieves better results than existing approaches on multiple long-tailed
 067 datasets, including ImageNet-LT (Liu et al., 2019), Places-LT (Sharma et al., 2021), CIFAR100-
 LT (Cao et al., 2019), and iNaturalist 2018 (Van Horn et al., 2018).

068 The main contributions of our work are as follows:
 069

- 070 • We thoroughly explore the effectiveness of commonly used methods in long-tail learning when
 071 applied to foundation models to provide guidance for future research.
- 072 • We propose a unified fine-tuning framework by assembling optimal methods, which outperforms
 073 existing methods on multiple long-tailed datasets.
- 074 • We investigate training costs and hyperparameter selection in experiments to offer comprehen-
 075 sive recommendations for the use of these methods in practical settings.

077 2 RELATED WORK

078 **Long-Tail Learning** There are several methods being proposed to address the long-tail prob-
 079 lem (Liu et al., 2019; Cao et al., 2019; Cui et al., 2019; Kang et al., 2020; Zhou et al., 2020; Zhong
 080 et al., 2021; Yang et al., 2022; Zhang et al., 2023), which can be divided into three categories (Zhang
 081 et al., 2023): 1) Class re-balancing aims to enhance the model’s ability to recognize minority classes
 082 by rebalancing the sample proportions across different classes, including re-sampling (Chawla et al.,
 083 2002; Liu et al., 2008; Shi et al., 2023), class-sensitive re-weighting (Wu et al., 2020; Khan et al.,
 084 2019; Cui et al., 2019), and logit adjustment (Menon et al., 2021; Zhang et al., 2021a; Hong et al.,
 085 2021). 2) Information augmentation aims to improve model performance on long-tailed data by
 086 incorporating additional information during model training, including transfer learning (Cui et al.,
 087 2018; Xiang et al., 2020) and data augmentation (Shorten & Khoshgoftaar, 2019; Zhong et al.,
 088 2021). 3) Module improvement methods seek to address long-tail problems by improving network
 089 modules or representations, including classifier design (Wu et al., 2021; Liu et al., 2021a), con-
 090 trastive learning (Kang et al., 2021; Zhu et al., 2022), and ensemble learning (Zhou et al., 2020;
 091 Wang et al., 2021b). However, these works only study how to train models from scratch and ignore
 092 the development of pre-trained foundation models. In this paper, we aim to further investigate the
 093 specific effects of the representative methods by applying them to the advanced foundation models.
 094

095 **Fine-Tuning Foundation Models** The pre-trained foundation models have attracted widespread
 096 attention in recent years (Vaswani et al., 2017; Dosovitskiy et al., 2021; Radford et al., 2021; Tou-
 097 vron et al., 2021; Liu et al., 2021b). These models are pre-trained on web-scale data to construct so-
 098 phisticated features and transferred to various downstream tasks, such as image classification (Yuan
 099 et al., 2021a), object detection (Yan et al., 2023), and semantic segmentation (Xu et al., 2023a).
 100 Moreover, the adaptation to downstream tasks can be further improved by applying extra data to
 101 fine-tune the foundation model (Dosovitskiy et al., 2021; Zhou et al., 2022). There are two fine-
 102 tuning approaches: full fine-tuning (Kumar et al., 2022) and parameter-efficient fine-tuning (Zaken
 103 et al., 2022; Jia et al., 2022; Chen et al., 2022), where the latter is regarded as a typical efficient
 104 mode by introducing only a few learnable parameters. However, these methods mainly utilize the
 105 balanced data for fine-tuning, which may yield unsatisfactory results when directly applied to the
 106 long-tailed datasets (Shi et al., 2024). Although some works have been proposed to mitigate this
 107 issue (Ma et al., 2021; Tian et al., 2022; Dong et al., 2023; Zhang et al., 2021b), no research has
 systematically studied the impact of long-tail learning algorithms on foundation models. For the

108 first time, we explore the reasonable application of long-tail learning methods on foundation models
 109 to provide a guideline for future applications.
 110

111 3 METHODS GALLERY

112 We commence by introducing the Problem Definition, then categorize classical long-tail learning
 113 methodologies into 7 distinct groups: 1) Re-sampling, 2) Data Augmentation, 3) Class-sensitive
 114 Loss, 4) Balanced Classifier, 5) Knowledge Distillation, 6) Ensemble Learning, and 7) Other tricks.
 115 For each group, we first revisit relevant methods and then compare experimental performance. To
 116 ensure the reliability of our investigation, we experiment under different scenarios, including dif-
 117 ferent foundation models (CLIP and ViT) and different fine-tuning paradigms (FFT and PEFT).
 118 **Comprehensive details regarding the datasets and implementation settings are provided in Appendix**
 119 **Section A.** Due to the page limit, the knowledge distillation method is introduced in Appendix Sec-
 120 tion B, and the ensemble learning method is presented in Appendix Section C.
 121

122 3.1 PROBLEM DEFINITION

123 Long-tailed recognition aims to learn deep classification models from training datasets character-
 124 ized by a long-tailed class distribution, where a small number of classes contain a large number of
 125 samples, while the majority of classes have only a few samples. Formally, we denote the long-tailed
 126 datasets with N samples as $D = \{x_i, y_i\}_{i=1}^N$. Besides, we denote n_i as the sample frequency of
 127 class i ($1 \leq i \leq K$), then we have $N = \sum_{i=1}^K n_i$. In long-tail learning, the class frequencies
 128 are arranged in a descending order (Kang et al., 2020), i.e., if $1 \leq i < j \leq K$, then $n_i \geq n_j$.
 129 The imbalance ratio is defined as $r = \frac{n_1}{n_K}$, representing the ratio between the class with the largest
 130 number of images and the class with the smallest number of images, which can be used to describe
 131 the severity of the long-tailed distribution. In practice, r formulates a large number, which indicates
 132 that $n_1 \gg n_K$ in a long-tailed dataset. The goal of long-tail learning is to learn a model M from the
 133 imbalanced data D so that M can attain optimal predictions on test data.
 134

135 3.2 RE-SAMPLING

136 Due to the intrinsic data imbalance in the long-tailed data, conventional sampling methods result in
 137 more head-class samples than tail-class samples in each training batch (Kang et al., 2020; 2021; Zhu
 138 et al., 2022). Re-sampling tackles this issue by adjusting the sample distribution of each class within
 139 the training data.
 140

141 **Re-sampling Methods** We investigate several classic and widely used re-sampling methods.
 142

- 143 • Random Over-Sampling (ROS) (Buda et al., 2018) balances the data distribution by duplicat-
 144 ing samples from the tail classes to increase their proportion in training data to achieve a more
 145 balanced sample distribution between head classes and tail classes.
- 146 • Random Under-Sampling (RUS) (More, 2016) aims to balance the data distribution by reducing
 147 the number of samples from the head classes to make their sample frequencies closer to those of
 148 the tail classes.
- 149 • Equalized re-sampling (EQ) (Kang et al., 2020; Shi et al., 2023) dynamically applies over-
 150 sampling or under-sampling to different classes by ensuring the total size of the dataset is un-
 151 changed. In this case, it obtains a balanced dataset without adding more training overhead.
- 152 • Square-root sampling (Kang et al., 2020) addresses limitations of balanced re-
 153 sampling—excessive discarding of head-class samples and redundant duplication of tail-class
 154 samples. This approach samples class j with probability $p_j = \frac{n_j^q}{\sum_{i=1}^K n_i^q}$ (n_i = class sample
 155 count). Setting $q = \frac{1}{2}$, it reduces head-class sampling frequency while preventing over-balancing
 156 between head and tail classes.
 157

158 **Experimental Result** Table 1 shows the results of using different re-sampling methods on
 159 CIFAR100-LT and Places-LT datasets. For more detailed results, please refer to Appendix sec-
 160 tion D.1
 161

162 Table 1: Accuracy of re-sampling methods. “Baseline” represents no resampling. **Bold** and
 163 underlined numbers represent the optimal and sub-optimal results, respectively; the same notations
 164 are applied to all tables below.

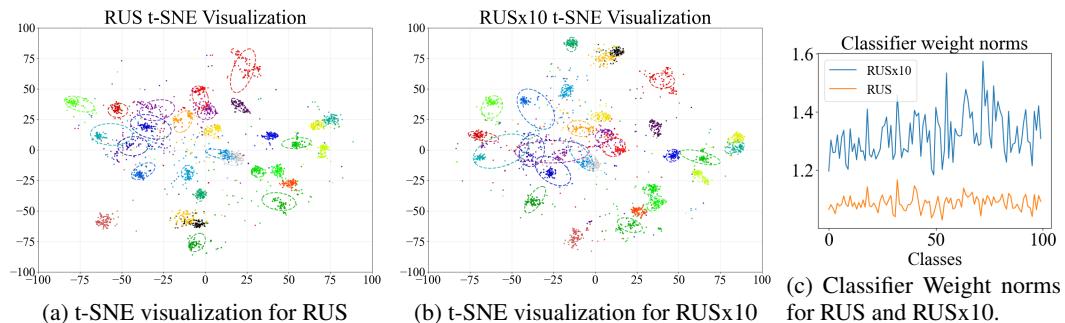
Datasets	CIFAR100-LT				Places-LT			
	Backbone		CLIP		ViT		CLIP	
	FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
Baseline	54.6	71.9	70.3	80.7	24.7	39.8	26.0	32.1
ROS	44.8	68.3	48.3	71.0	12.6	38.3	11.4	32.2
RUS	45.5	77.4	69.3	87.0	42.3	50.8	41.2	45.3
EQ	50.4	72.8	62.0	77.3	21.7	43.7	22.0	33.7
Square-root	56.8	76.4	76.0	84.4	37.1	47.5	32.6	39.7

172 Based on our experimental findings, these sampling methods consistently perform better under the
 173 PEFT setting than under the FFT setting. RUS and Square-root sampling are proven to be more
 174 effective strategies, which can significantly enhance performance by more than 5%. In contrast,
 175 ROS exhibits significant performance deterioration, which is due to the severe overfitting issue. The
 176 performance of EQ is between RUS and ROS.

177 Given that the model is already pre-trained, these results appear to be justifiable: a minimal amount
 178 of data is sufficient to fine-tune the model and improve its performance on long-tailed datasets. We
 179 conduct an additional experiment to verify this point. Specifically, we compare the balanced dataset
 180 obtained through the RUS with 2, 5, and 10 times larger variants. Table 2 reports the results on
 181 the CLIP-ViT-B/16 PEFT setting, showcasing that RUS performs better, particularly on tail classes.
 182 As the data amount grows larger, though the head-class performance slowly increases, the tail-class
 183 performance exhibits significant declines.

184 We evaluated the models with two RUS and RUSx10 to enable a deeper mechanistic analysis. We ex-
 185 tract the features of **tail-class** test data from CIFAR100-IR100 using these two models and visualize
 186 the results using t-SNE, as shown in Figure 1a 1b. The ellipse is constructed using the eigenvectors
 187 and eigenvalues of the covariance matrix, derived from the data’s mean and covariance, which define
 188 its orientation, major and minor axes, and center.

189 Figure 1: t-SNE visualization and classifier weight norms for RUS and RUSx10.



201 It can be observed that the ellipses in the t-SNE plot for RUS exhibit less overlap. This indicates
 202 more distinct decision boundaries for the tail classes, leading to better tail classification performance.
 203 Additionally, the weight norms of the model’s classifier are presented in Figure 1c. RUS clearly
 204 demonstrates a more balanced distribution across all classes.

205 Furthermore, in terms of the training cost, the samples produced by RUS and Square-root sampling
 206 are significantly fewer, nearly 100 times less than those generated by ROS (the number varying
 207 with the dataset). Therefore, the training time cost is substantially lower than that of ROS and EQ
 208 under the same setting. Considering the above factors, using RUS or Square-root sampling is more
 209 practicable for fine-tuning foundation models with long-tailed datasets.

212 3.3 DATA AUGMENTATION

214 Data augmentation (Shorten & Khoshgoftaar, 2019) aims to increase data diversity by applying
 215 predefined transformations, thereby improving model generalization, especially in scenarios where
 the available data is limited.

216 Table 2: RUSxN indicates that the training dataset size is N times that of the RUS-sampled dataset,
 217 with each class containing N times the data as in RUS; “-” in the table means the corresponding
 218 experiment is not implemented due to the huge amount of data.

Datasets	CIFAR100-LT				Places-LT			
	Mean	Many	Med.	Few	Mean	Many	Med.	Few
RUS	77.7	82.0	80.0	69.9	50.8	49.6	52.2	49.6
RUSx2	77.5	85.3	80.6	64.6	50.6	50.5	52.6	46.1
RUSx5	75.6	87.2	79.7	57.4	49.1	51.5	51.4	39.2
RUSx10	73.4	88.1	77.8	50.7	47.7	52.7	48.9	33.9

225 Table 3: Accuracy of applying augmentation methods.

Datasets	CIFAR100-LT				Places-LT			
	CLIP		ViT		CLIP		ViT	
	FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
No augmentation	48.7	<u>71.9</u>	<u>71.1</u>	81.6	23.7	39.8	25.7	31.7
ColorJitter	54.6	<u>71.9</u>	70.3	80.7	24.7	39.8	26.0	32.1
RandAugment	<u>56.7</u>	72.1	70.0	<u>81.5</u>	25.4	40.4	26.5	32.6
AutoAugment	57.8	70.7	71.6	81.3	24.9	40.7	26.9	32.7

233 **Augmentation Methods** In our paper, in addition to conventional image processing, we apply
 234 several common data augmentation techniques.

235

- 236 ColorJitter is one of the most commonly used methods for color-based data augmentation in
 237 images. It applies random transformations within a specified range to the image’s brightness,
 238 contrast, saturation, and hue.
- 239 AutoAugment (Cubuk et al., 2019) creates a search space of strategies, each containing multiple
 240 sub-strategies. For each mini-batch image, one sub-strategy is randomly selected. Each includes
 241 two processing functions—like rotation, inversion, or shearing—with their probability and mag-
 242 nitude parameters.
- 243 RandAugment (Cubuk et al., 2020) is a simplified version of AutoAugment. The core of Ran-
 244 dAugment is to randomly select a set of predefined augmentation operations with equal probabil-
 245 ity and assign an intensity hyperparameter to each operation to transform the input images.

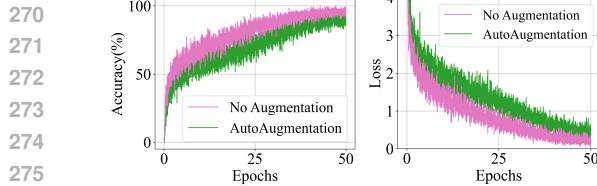
246 **Experimental Results** Table 3 shows the results of different augmentation methods on different
 247 datasets and settings. For more detailed results, please refer to Appendix section D.2.

248 Based on the experimental results, it can be concluded that solely applying data augmentation to
 249 long-tailed datasets can just slightly improve the performance of foundation models by less than
 250 1%. Furthermore, when combined with other long-tail learning methods, data augmentation can not
 251 always gain benefits, which will be discussed in Section **The Ultimate Framework**.

252 Data augmentation introduces computational overhead during data preparation, consequently ex-
 253 tends the total training duration. For example, our experiments demonstrate a 15% increase in
 254 end-to-end training time with RandAugment. In addition, we also research other impact of data
 255 augmentation on model training, as shown in Figure 2. We illustrate the convergence curves of
 256 training loss and accuracy for the ImageNet-LT dataset without augmentation and with AutoAug-
 257 gmentation. Based on the observations from the figures, it can be concluded that data augmentation
 258 slows down the convergence speed of the model. The reason why such kind of data augmentation
 259 without using external data faces difficulty in improving performance may be that foundation mod-
 260 els have already seen various styles of images. Some recent studies have shown that introducing
 261 external data or knowledge for augmentation is effective (Long et al., 2022; Wang et al., 2024a),
 262 which may be an interesting direction in future research.

263 3.4 CLASS-SENSITIVE LOSS

264 Traditional deep learning methods typically employ the softmax cross-entropy loss function for
 265 training. However, this loss function often overlooks the issue of class imbalance among training
 266 data. We revisit some classic class-sensitive losses, which aim to rebalance the training loss for
 267 different classes to deal with the imbalance problem.



276 Figure 2: Convergence curves of training accuracy
277 and loss (right) on ImageNet-LT under
278 CLIP-ViT-B/16 PEFT.



279 Figure 3: Training loss of LADE and CE
280 on Places-LT under CLIP/B-16 FFT (left)
281 and ViT/B-16 PEFT (right) setting

279 Table 4: Summary of losses. In the table, z is the predicted logits, p is the probability obtained by
280 applying softmax to z , where z_y, p_y correspond to class y . $\pi_y = \frac{n_y}{N}$ represents the label frequency
281 of the class y , where n_y represents the number of samples in class y , N is the total sample numbers.

282
283
284
285
286
287
288
289

Loss	Formulation	Hyperparam.	Loss	Formulation	Hyperparam.
CE	$-\log(p_y)$	-	G-RW	$-\frac{(1/\pi_j)^\rho}{\sum_j(1/\pi_j)^\rho} \log(p_y)$	ρ
Focal	$-(1-p_y)^\gamma \log(p_y)$	γ	BS	$-\log\left(\frac{\pi_y \exp(z_y)}{\sum_j \pi_j \exp(z_j)}\right)$	-
LDAM	$-\log\left(\frac{\exp(z_y - \Delta_y)}{\sum_j \exp(z_j - \Delta_j)}\right)$	s	LA	$-\log\left(\frac{\exp(z_y + \mu \cdot \pi_y)}{\sum_j \exp(z_j + \mu \cdot \pi_j)}\right)$	μ
CB	$-\frac{1-\beta}{1-\beta^{n_y}} \log(p_y)$	β	LADE	$L_{BS} + \alpha L_{LADER}$	α, λ

290 **Loss Functions** We study common class-sensitive losses, which are listed in Table 4.
291

- **Focal Loss** (Lin et al., 2017): Modulates CE loss with γ to down-weight easy examples.
- **LDAM** (Cao et al., 2019): Assigns class-dependent margins (Δ) inversely proportional to class frequency.
- **CB Loss** (Cui et al., 2019): Reweights losses by the effective number of samples per class.
- **G-RW** (Zhang et al., 2021a): Generalizes re-weighting with scale parameter ρ .
- **Balanced Softmax** (Ren et al., 2020): Adjusts softmax weights by class sample sizes.
- **Logit-Adjusted** (Menon et al., 2021): Applies label-dependent offsets to logits based on class frequency.
- **LADE** (Hong et al., 2021): Calibrates outputs using test label distribution. Its regularizer L_{LADER} combines class priors π_j and normalization terms. $L_{LADER} = \sum_{j \in K} \pi_j L_{LADER_j}$, given $L_{LADER_j} = -\frac{1}{N_j} \sum_{i=1}^N \mathbf{1}_{y_i=j} \cdot \pi_j + Z + \sum_j \pi_j \lambda Z^2$, where $Z = \log(\frac{1}{N} \sum_{i=1}^N \frac{z_j}{K \pi_j})$.

306 **Experimental Result** We present the experimental result in Table 5. For more parameter settings
307 and results, please refer to Appendix section D.3.

308 Table 5: Accuracy of applying class-sensitive losses.
309

310
311
312
313
314
315
316
317
318
319

Datasets	CIFAR100-LT				Places-LT			
	Backbone		CLIP	ViT	CLIP	ViT		
	FFT	PEFT	FFT	PEFT	FFT	PEFT		
CE	54.6	71.9	70.3	80.7	24.7	39.8	26.0	31.9
Focal	52.7	71.2	69.4	81.4	24.3	39.0	25.9	30.9
LDAM	53.6	73.6	64.4	82.8	24.7	41.1	25.0	30.9
CB	54.7	72.5	69.4	80.3	25.1	40.2	26.0	32.0
G-RW	50.9	71.8	66.9	81.8	22.0	44.5	23.4	34.2
BS	58.0	80.1	75.8	85.1	31.3	48.4	30.3	38.3
LA	62.7	79.8	73.1	86.3	32.0	48.0	31.9	39.7
LADE	18.2	79.9	72.8	86.0	16.8	49.2	27.3	0.3

320 In most cases, we find that Focal loss, Class-Balanced loss and Generalized Re-Weight loss achieve
321 only moderate gains when applied to foundation models in both FFT and PEFT settings, and even
322 impair the performance in some cases. LDAM loss shows a slight improvement only in the PEFT
323 setting, with no improvement observed in the FFT setting. LADE loss is complex and highly sensitive
324 to hyperparameter selection due to its two hyperparameters. We use the same parameters for

324 LADE across all experimental settings; however, in some cases, it provides a significant improvement.
 325 while in others, it leads to a notable performance drop and even causes training collapse.
 326 Figure 3 shows the training loss of the LADE under certain training settings, which fails to converge
 327 to lower values and even crashes during training, indicating the potential risk caused by improper
 328 hyperparameters. **We believe the LADE loss function introduces numerous additional assumptions
 329 based on logit adjustment, making it overly complex. Therefore, it may only be suitable for specific
 330 models, such as CNN models, rather than ViT models.**

331 In contrast, Balanced Softmax and Logit-Adjusted loss consistently proved to be effective methods
 332 for both FFT and PEFT in foundation models and can significantly improve model performance.
 333 Specifically, they sacrifice a little performance of the head class in exchange for significant im-
 334 provements in the performance of the middle and tail classes. Based on the experimental results,
 335 we recommend using Balanced Softmax loss and Logit-Adjusted loss when fine-tuning foundation
 336 models with long-tailed datasets. If time spent on hyperparameter tuning is non-trivial, then the
 337 nonparametric BS loss is a more reliable choice.

338 3.5 BALANCED CLASSIFIER

340 In general visual tasks, a common practice in deep learning is to employ linear classifiers $p =$
 341 $\phi(w \cdot x + b)$ for classification, where ϕ is the softmax function, the bias term b can be discarded.
 342 However, the long-tailed distribution data lead to larger classifier weight norms for head classes than
 343 tail classes (Yin et al., 2019). We investigate diverse classifier types to tackle this challenge.
 344

345 **Classifier Methods** We introduce two representative classifiers, *i.e.*, Cosine classifier and τ -
 346 normalized classifier.

- 347 • Cosine classifier (Wu et al., 2021) uses a scale-invariant metric $p = \phi\left(\frac{w \cdot x}{\|w\| \cdot \|x\|}\right)/t + b$, in
 348 which both the classifier weights and the sample features are normalized. t is the temperature
 349 parameter. This strategy can be motivated by removing the negative impact of imbalanced weight
 350 norms (Kang et al., 2020; Wei et al., 2021).
- 351 • τ -normalized classifier (Kang et al., 2020) adjust the classifier weight norms to solve the im-
 352 balance by τ -normalized procedure, typically used to enhance the performance and stability of
 353 models in high-dimensional data. Formally, $\tilde{w} = \frac{w}{\|w\|_2^\tau}$, where τ is temperature factor for nor-
 354 malization.

356 **Experimental Result** In our experiments, we follow the setting of Shi et al. (2024) and Kang et al.
 357 (2020) and set the t to $\frac{1}{30}$ in Cosine Classifier and τ to 0.5, 1, 2 in τ -normalized classifier. Table 6
 358 shows the accuracy of different classifier methods on CIFAR100-LT and Places-LT datasets. For
 359 more detailed results, please refer to Appendix section D.4.
 360

361 In our experiments, we observed comparable training costs across different classifiers. According
 362 to the experiment results, we can observe that in most cases, the Cosine classifier is a better choice
 363 because it has empirical robustness to imbalances and stronger generalization ability. Note that these
 364 classifiers are exclusive to each other and can't be used simultaneously. We recommend using the
 365 Cosine Classifier to train foundation models.

366 Table 6: Accuracy of applying different classifiers.

Datasets	CIFAR100-LT				Places-LT				
	Backbone	CLIP		ViT		CLIP		ViT	
		FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
Linear	54.6	71.9	70.3	80.7	24.9	39.8	26.0	31.9	
Cosine	56.4	72.2	69.6	83.9	24.9	40.6	27.1	38.1	
τ -norm ($\tau = 0.5$)	55.6	71.7	69.3	80.8	24.7	40.3	25.8	32.1	
τ -norm ($\tau = 1$)	55.6	71.9	68.9	80.9	24.6	40.0	25.4	32.3	
τ -norm ($\tau = 2$)	54.8	71.8	68.8	<u>81.2</u>	23.5	37.6	24.8	32.1	

374 3.6 OTHER TRICKS

375 In addition to the aforementioned methods, we also explore two more tricks: mixup (Zhang et al.,
 376 2018) and label smoothing (Szegedy et al., 2016), which are widely used in various types of deep
 377 models and long-tail learning algorithms (Zhong et al., 2021).

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 7: Accuracy of applying mixup.

Datasets	CIFAR100-LT				Places-LT			
	Backbone		CLIP		ViT		CLIP	
	FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
Baseline	51.5	80.1	75.8	85.1	31.3	48.8	30.3	38.3
Mixup	68.7	79.7	81.6	86.7	35.8	49.8	33.3	45.0

Table 8: Accuracy of applying label smoothing.

Datasets	CIFAR100-LT				Places-LT			
	Backbone		CLIP		ViT		CLIP	
	FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
CE	54.6	71.9	70.3	80.7	24.7	39.8	26.0	31.9
CE (w/ LS)	56.2	71.7	71.3	82.7	25.0	39.7	26.9	34.1
BS	58.0	80.1	75.8	85.1	31.3	48.8	30.3	38.3
BS (w/ LS)	59.8	80.6	78.2	88.1	28.6	49.4	32.4	41.8

For the mixup trick, we follow the setting of Zhang et al. (2018). Specifically, we randomly select two data points $(x_i, y_i), (x_j, y_j)$ from the original dataset and combine them through linear weighting. Formally,

$$\hat{x} = \theta x_i + (1 - \theta) x_j \quad (1)$$

$$\hat{y} = \theta y_i + (1 - \theta) y_j \quad (2)$$

where θ is randomly sampled from a Beta distribution $Beta(\zeta, \zeta)$. The mixup hyper-parameter ζ controls the strength of interpolation between feature-target pairs.

Label smoothing (Szegedy et al., 2016) transforms the training label from hard (one-hot) label to soft label, where the true label is considered to have a probability of $1 - \epsilon$, and the remaining ϵ is shared across all classes. After using label smoothing, the modified probability distribution is formulated as follows:

$$P_i = \begin{cases} 1, & \text{if } y = i \\ 0, & \text{if } y \neq i \end{cases} \Rightarrow P_i = \begin{cases} 1 - \epsilon, & \text{if } y = i \\ \frac{\epsilon}{K-1}, & \text{if } y \neq i \end{cases} \quad (3)$$

where i is the i -th class, K is the total number of classes and the hyperparameter ϵ determine the smooth level.

Experimental Result Table 7 and Table 8 show the test accuracy of using these two tricks. For more detailed results, please refer to Appendix section D.7.

For mixup, we set hyper-parameter ζ to 1. It can be observed that input mixup effectively provides better results compared to the baseline in both FFT and PEFT settings. Mixup can be seen as a form of data augmentation that combines multiple samples linearly, rather than applying transformations to a single sample. This linear behavior helps reduce the oscillations when the model predicts the out-of-distribution samples (Zhang et al., 2018). However, when combined with other long-tail learning methods, mixup may also not always gain benefits like those mentioned above in subsection Data Augmentation.

For label smoothing, we set the ϵ to 0.1 by the setting of Szegedy et al. (2016) and apply it to CE loss and BS loss. We find that label smoothing can effectively improve the final performance of CE loss and BS loss. More specifically, label smoothing enhances the performance of tail classes, as shown in tables 40, 41, 42 in the Appendix. Our results suggest the noise introduced by label smoothing effectively reduces the model’s tendency to overly favor head-class samples, allowing for greater focus on tail-class samples.

4 THE ULTIMATE FRAMEWORK

Framework construction In the previous section, we review several classical methods. In this section, we analyze these methods from a more unified perspective. Specifically, we compare the different combinations of these methods to identify the best framework. It is worth noting that since re-sampling methods and class-sensitive losses both aim to re-balance the data distribution, their

432 Table 9: Results of the ablation experiments. “Avg.” represents the average of all experimental
 433 results listed front in the line. Δ represents the performance change against the previous line. The
 434 abbreviations are defined as follows: “Cos” = Cosine Classifier, “Sqrt” = Square-Root Sampling,
 435 “BS” = Balanced-Softmax, “LS” = Label Smoothing, “Aug” = Auto Augmentation.

Datasets					ImageNet-LT		iNaturalist 2018		Avg.	Δ
Backbone					CLIP	ViT	CLIP	ViT		
Cos	Sqrt	BS	LS	Aug	FFT	PEFT	FFT	PEFT	FFT	PEFT
					48.7	70.5	50.8	78.2	58.4	69.5
✓					48.7	70.4	53.2	80.3	63.3	75.3
✓	✓				60.1	74.7	71.5	82.6	68.4	76.8
✓	✓	✓			63.2	77.0	73.4	83.6	70.9	79.3
✓	✓	✓	✓		64.1	77.2	75.2	84.1	71.5	79.0
✓	✓	✓	✓	✓	64.5	76.6	75.5	84.1	69.6	78.3
✓	✓	✓	✓	✓	65.7	75.5	76.4	84.1	69.4	76.9
✓	✓	✓	✓	✓	63.9	74.9	77.0	84.2	48.7	74.6

449 simultaneous application will over-emphasize tail classes and harm generalization. To balance these
 450 effects, we adopt Square-root sampling (a moderate re-sampling approach) and apply Balanced
 451 Softmax loss to the rectified distribution.

452 For our final framework, we integrate AutoAugment, Cosine classifier, Square-root sampling, Bal-
 453 anced Softmax loss, mixup, and label smoothing – all selected based on their excellent performance
 454 in previous experiments. We conduct ablation experiments on these methods under multiple settings,
 455 including different backbones such as CLIP and IN21K pre-trained ViT, and different fine-tuning
 456 methods such as full fine-tuning (FFT) and parameter-efficient fine-tuning (PEFT). The results are
 457 shown in Table 9. Due to the page limit, we report more detailed results for all datasets in Appendix
 458 section D.8.

459 From the results, we can conclude that 1) The combination methods of **Cosine Classifier**, **Square-**
 460 **root sampling**, **BS loss**, and **label smoothing** can **consistently** enhance the model performance
 461 on foundation models when using long-tailed data. As they achieve the best average performance
 462 across all scenarios, we consider the combination of these four methods as the optimal framework.
 463 2) AutoAugment and mixup, as different forms of data augmentation, have **inconsistent** effects on
 464 performance across different datasets and models. There is no consistent conclusion on whether they
 465 improve or decrease performance based on our experiments, so we exclude them from the optimal
 466 framework.

467 Table 10: The results of applying our framework compared to other methods across four datasets:
 468 Places-LT, ImageNet-LT, CIFAR100-LT, iNaturalist 2018. \dagger denotes VL-LTR uses extra data for
 469 fine-tuning. “-” means the paper has not reported the corresponding result. [We also compare our](#)
 470 [framework with LIFT Shi et al. \(2024\) in Appendix D.9.](#)

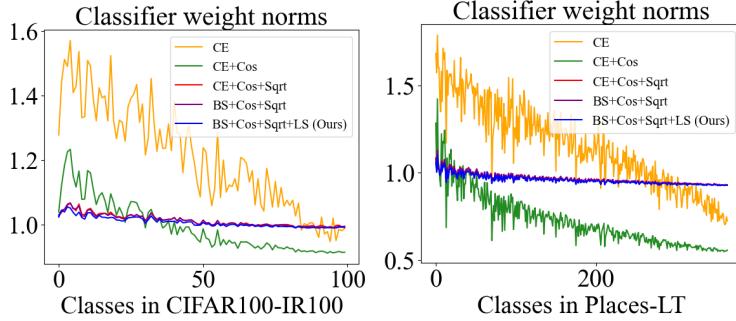
	Places-LT	IN-LT	CIFAR-LT	iNat.
MiSLAS (Zhong et al., 2021)	40.4	52.7	47.0	71.6
PaCo (Cui et al., 2021)	41.2	57.0	52.0	71.8
LiVT (Xu et al., 2023b)	40.8	60.9	58.2	76.1
BALLAD (Ma et al., 2021)	49.5	75.7	77.8	-
Decoder (Wang et al., 2024b)	46.8	73.2	-	59.2
LPT (Dong et al., 2023)	50.1	-	-	76.1
VL-LTR \dagger (Tian et al., 2022)	50.1	77.2	-	76.8
Ours	51.2	77.2	80.5	79.0

481 **Improvements over baselines** We apply our ultimate framework to four datasets on the pre-
 482 trained CLIP-ViT-B/16 backbone and obtain quite competitive results under PEFT settings. The
 483 test accuracy is reported in Table 10. Overall, our framework achieves superior performance on
 484 these challenging datasets, surpassing Decoder, LPT, VL-LTR, and various training-from-scratch
 485 approaches. And VL-LTR relies on extensive auxiliary data to facilitate fine-tuning, the advantage
 486 of our framework is more significant compared with methods that do not use auxiliary data. In ad-

dition, due to the Square-root sampling method included in our framework, the training cost of our framework is significantly reduced compared to other methods.

To provide a deeper mechanistic analysis. We examine the classifier weight norms, which led to some interesting findings. Specifically, we extract the classifier weight norms from models trained under the PEFT setting of CLIP-ViT/B-16 using four different datasets. Figure 4 displays the classifier weight norms for Cifar100-IR100 and Places-LT. The classes on the horizontal axis are arranged in descending order of their number of training samples.

Figure 4: Classifier weight norms for CIFAR100-IR100 and Places-LT.



Due to the pronounced overlap between the curve of our method (blue line) and those of other approaches, visual inspection alone is insufficient to draw a definitive conclusion regarding its superior balance. To facilitate a quantitative comparison, we employ the standard deviation of the classifier weight norms as a metric for balance. The subsequent results are shown in Table 11 .

The results validate the superiority of our proposed method, which attains the most balanced norms — as evidenced by the lowest standard deviation in the comparison.

Table 11: Standard Deviation of classifier weight norms from models trained on different datasets. Each value in the table represents the actual standard deviation when multiplied by 10^{-2} .

	Standard Deviation	Places-LT	IN-LT	CIFAR-LT	iNat.
CE		16.3	23.8	13.6	10.6
CE+Cos		7.9	15.2	7.8	5.7
CE+Cos+Sqrt		1.8	3.0	1.3	3.9
BS+Cos+Sqrt		1.8	3.0	1.3	3.9
BS+Cos+Sqrt+LS	1.5	2.6	1.1	3.6	

Discussions We have taken into account the potential data leakage issue, such as between ImageNet and IN21K-ViT. In response to this, in Table 10, we only present results on CLIP-ViT-B/16. For detailed results across more experimental settings, we report in the Appendix. Looking ahead, we intend to explore the generalizability of our framework by extending it to more models, such as DINO (Oquab et al., 2023), which could further validate its transferability across different foundation models. Preliminary investigations in Appendix D.10 have already shown encouraging alignment with our current findings, suggesting broader applicability.

5 CONCLUSION

In this paper, we systematically revisit the representative long-tail learning methods and provide a scientific empirical guideline for their accurate use in fine-tuning foundation models. Furthermore, we select the optimal methods to construct a unified framework and analyze the contribution of each component through extensive ablation studies. Our proposed framework achieves competitive performance on multiple long-tailed datasets. We hope that our work serves as a convenient guideline for related applications and can inspire further research in the field of long-tail learning.

540 REFERENCES
541

542 Mateusz Buda, Atsuto Maki, and Maciej A Mazurowski. A systematic study of the class imbalance
543 problem in convolutional neural networks. *Neural Networks*, 106:249–259, 2018.

544 Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
545 datasets with label-distribution-aware margin loss. In *Advances in Neural Information Processing
546 Systems*, volume 32, pp. 1565–1576, 2019.

547 Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
548 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.

549 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
550 AdaptFormer: Adapting vision transformers for scalable visual recognition. *Advances in Neural
551 Information Processing Systems*, 35:16664–16678, 2022.

552 Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
553 Learning augmentation strategies from data. In *Proceedings of the IEEE/CVF Conference on
554 Computer Vision and Pattern Recognition*, pp. 113–123, 2019.

555 Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
556 data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF Conference on
557 Computer Vision and Pattern Recognition Workshops*, pp. 702–703, 2020.

558 Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning. In
559 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 715–724, 2021.

560 Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
561 categorization and domain-specific transfer learning. In *Proceedings of the IEEE conference on
562 Computer Vision and Pattern Recognition*, pp. 4109–4118, 2018.

563 Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
564 effective number of samples. In *Proceedings of the IEEE/CVF Conference on Computer Vision
565 and Pattern Recognition*, pp. 9268–9277, 2019.

566 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
567 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
568 vision transformers to 22 billion parameters. In *International Conference on Machine Learning*,
569 pp. 7480–7512. PMLR, 2023.

570 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
571 hierarchical image database. In *IEEE Conference on Computer Vision and Pattern Recognition*,
572 pp. 248–255. Ieee, 2009.

573 Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. LPT: Long-tailed prompt tuning
574 for image classification. In *The Eleventh International Conference on Learning Representations*,
575 2023. URL <https://openreview.net/forum?id=8pOVaeo8ie>.

576 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
577 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
578 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
579 scale. In *International Conference on Learning Representations*, 2021.

580 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
581 and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International
582 Journal of Computer Vision*, 132(2):581–595, 2024.

583 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
584 nition. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp.
585 770–778, 2016.

586 Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
587 entangling label distribution for long-tailed visual recognition. In *Proceedings of the IEEE/CVF
588 Conference on Computer Vision and Pattern Recognition*, pp. 6626–6636, 2021.

594 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
 595 and Ser-Nam Lim. Visual prompt tuning. In *Proceedings of the 17th European Conference on*
 596 *Computer Vision*, pp. 709–727, 2022.

597

598 Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
 599 Kalantidis. Decoupling representation and classifier for long-tailed recognition. In *International*
 600 *Conference on Learning Representations*, 2020.

601 Bingyi Kang, Yu Li, Sa Xie, Zehuan Yuan, and Jiashi Feng. Exploring balanced feature spaces for
 602 representation learning. In *International Conference on Learning Representations*, 2021.

603 Salman Khan, Munawar Hayat, Syed Waqas Zamir, Jianbing Shen, and Ling Shao. Striking the
 604 right balance with uncertainty. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 605 and *Pattern Recognition*, pp. 103–112, 2019.

606

607 A Krizhevsky. Learning multiple layers of features from tiny images. *Master's thesis, University of*
 608 *Tront*, 2009.

609

610 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 611 lutional neural networks. *Advances in Neural Information Processing Systems*, 25, 2012.

612

613 Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
 614 tuning can distort pretrained features and underperform out-of-distribution. In *International Con-*
614 ference on Learning Representations, 2022.

615

616 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 617 object detection. In *Proceedings of the IEEE International Conference on Computer Vision*, pp.
 618 2980–2988, 2017.

619

620 Bo Liu, Haoxiang Li, Hao Kang, Gang Hua, and Nuno Vasconcelos. Gistnet: a geometric struc-
 621 ture transfer network for long-tailed recognition. In *Proceedings of the IEEE/CVF International*
621 Conference on Computer Vision, pp. 8209–8218, 2021a.

622

623 Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance learn-
 624 ing. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 39(2):539–550,
 2008.

625

626 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 627 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
627 IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021b.

628

629 Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
 630 scale long-tailed recognition in an open world. In *Proceedings of the IEEE/CVF Conference on*
631 Computer Vision and Pattern Recognition, pp. 2537–2546, 2019.

632

633 Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg, Alan
 634 Blair, Chunhua Shen, and Anton van den Hengel. Retrieval augmented classification for long-tail
 635 visual recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
635 Recognition, pp. 6959–6969, June 2022.

636

637 Teli Ma, Shijie Geng, Mengmeng Wang, Jing Shao, Jiasen Lu, Hongsheng Li, Peng Gao, and
 638 Yu Qiao. A simple long-tailed recognition baseline via vision-language model. *arXiv preprint*
639 arXiv:2111.14745, 2021.

640

641 Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
 642 Sanjiv Kumar. Long-tail learning via logit adjustment. In *International Conference on Learning*
642 Representations, 2021.

643

644 Ajinkya More. Survey of resampling techniques for improving classification performance in unbal-
 645 anced datasets. *arXiv preprint arXiv:1608.06048*, 2016.

646

647 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 648 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 649 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

648 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 649 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 650 models from natural language supervision. In *International Conference on Machine Learning*,
 651 pp. 8748–8763. PMLR, 2021.

652 Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, et al. Escaping saddle points for effective
 653 generalization on class-imbalanced data. *Advances in Neural Information Processing Systems*,
 654 35:22791–22805, 2022.

655 Harsh Rangwani, Pradipto Mondal, Mayank Mishra, Ashish Ramayee Asokan, and R Venkatesh
 656 Babu. DeiT-LT: Distillation strikes back for vision transformer training on long-tailed datasets.
 657 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 658 23396–23406, 2024.

659 Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
 660 tailed visual recognition. *Advances in Neural Information Processing Systems*, 33:4175–4186,
 661 2020.

662 Saurabh Sharma, Ning Yu, Mario Fritz, and Bernt Schiele. Long-tailed recognition using class-
 663 balanced experts. In *Pattern Recognition: 42nd DAGM German Conference, DAGM GCPR 2020,
 664 Tübingen, Germany, September 28–October 1, 2020, Proceedings 42*, pp. 86–100. Springer, 2021.

665 Jiang-Xin Shi, Tong Wei, Yuke Xiang, and Yu-Feng Li. How re-sampling helps for long-tail learn-
 666 ing? In *Advances in Neural Information Processing Systems*, volume 36, pp. 75669–75687, 2023.

667 Jiang-Xin Shi, Tong Wei, Zhi Zhou, Jie-Jing Shao, Xin-Yan Han, and Yu-Feng Li. Long-tail learn-
 668 ing with foundation model: Heavy fine-tuning hurts. In *Forty-first International Conference on
 669 Machine Learning*, 2024.

670 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
 671 *Journal of Big Data*, 6(1):1–48, 2019.

672 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
 673 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on
 674 Computer Vision and Pattern Recognition*, pp. 2818–2826, 2016.

675 Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan.
 676 Equalization loss for long-tailed object recognition. In *Proceedings of the IEEE/CVF Conference
 677 on Computer Vision and Pattern Recognition*, pp. 11662–11671, 2020.

678 Changyao Tian, Wenhui Wang, Xizhou Zhu, Jifeng Dai, and Yu Qiao. VL-LTR: Learning class-
 679 wise visual-linguistic representation for long-tailed visual recognition. In *Proceedings of the 17th
 680 European Conference on Computer Vision*, pp. 73–91. Springer, 2022.

681 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 682 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 683 *International Conference on Machine Learning*, pp. 10347–10357. PMLR, 2021.

684 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 685 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset.
 686 In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition*, pp. 8769–
 687 8778, 2018.

688 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 689 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
 690 mation Processing Systems*, volume 30, pp. 5998–6008, 2017.

691 Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis.
 692 Deep learning for computer vision: A brief review. *Computational Intelligence and Neuroscience*,
 693 2018(1):7068349, 2018.

694 Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip: A new paradigm for video action
 695 recognition. *arXiv preprint arXiv:2109.08472*, 2021a.

702 Pengkun Wang, Zhe Zhao, HaiBin Wen, Fanfu Wang, Binwu Wang, Qingfu Zhang, and Yang Wang.
 703 LLM-autoDA: Large language model-driven automatic data augmentation for long-tailed prob-
 704 lems. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024a.
 705

706 Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella Yu. Long-tailed recognition by
 707 routing diverse distribution-aware experts. In *International Conference on Learning Representa-
 708 tions*, 2021b.

709 Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing Xie, and
 710 Shikun Zhang. Exploring vision-language models for imbalanced learning. *International Journal
 711 of Computer Vision*, 132(1):224–237, 2024b.

712 Tong Wei, Wei-Wei Tu, Yu-Feng Li, and Guo-Ping Yang. Towards robust prediction on tail labels.
 713 In *Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*,
 714 pp. 1812–1820, 2021.

715 Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and Dahua Lin. Distribution-balanced loss for
 716 multi-label classification in long-tailed datasets. In *Computer Vision–ECCV 2020: 16th European
 717 Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IV 16*, pp. 162–178. Springer,
 718 2020.

719 Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin. Adversarial robustness under long-
 720 tailed distribution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 721 Recognition*, pp. 8659–8668, 2021.

722 Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced knowl-
 723 edge distillation for long-tailed classification. In *Computer Vision–ECCV 2020: 16th European
 724 Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16*, pp. 247–263. Springer,
 725 2020.

726 Mengde Xu, Zheng Zhang, Fangyun Wei, Han Hu, and Xiang Bai. Side adapter network for open-
 727 vocabulary semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer
 728 Vision and Pattern Recognition*, pp. 2945–2954, June 2023a.

729 Zhengzhuo Xu, Ruiyang Liu, Shuo Yang, Zenghao Chai, and Chun Yuan. Learning imbalanced data
 730 with vision transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 731 Pattern Recognition*, pp. 15793–15803, June 2023b.

732 Bin Yan, Yi Jiang, Jiannan Wu, Dong Wang, Ping Luo, Zehuan Yuan, and Huchuan Lu. Universal
 733 instance perception as object discovery and retrieval. In *Proceedings of the IEEE/CVF Conference
 734 on Computer Vision and Pattern Recognition*, pp. 15325–15336, June 2023.

735 Lu Yang, He Jiang, Qing Song, and Jun Guo. A survey on long-tailed visual recognition. *Inter-
 736 national Journal of Computer Vision*, 130(7):1837–1872, 2022.

737 Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chandraker. Feature transfer learn-
 738 ing for face recognition with under-represented data. In *Proceedings of the IEEE/CVF Conference
 739 on Computer Vision and Pattern Recognition*, pp. 5704–5713, 2019.

740 Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating convo-
 741 lution designs into visual transformers. In *Proceedings of the IEEE/CVF International Conference
 742 on Computer Vision*, pp. 579–588, 2021a.

743 Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis E.H. Tay, Jiashi
 744 Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
 745 imnet. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*,
 746 pp. 558–567, October 2021b.

747 Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
 748 for transformer-based masked language-models. In *Proceedings of the 60th Annual Meeting of
 749 the Association for Computational Linguistics (Volume 2: Short Papers)*, pp. 1–9, 2022.

750 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empiri-
 751 cal risk minimization. In *International Conference on Learning Representations*, 2018.

756 Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A
 757 unified framework for long-tail visual recognition. In *Proceedings of the IEEE/CVF Conference*
 758 *on Computer Vision and Pattern Recognition*, pp. 2361–2370, 2021a.

759
 760 Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning:
 761 A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):10795–10816,
 762 2023.

763 Yongshun Zhang, Xiu-Shen Wei, Boyan Zhou, and Jianxin Wu. Bag of tricks for long-tailed visual
 764 recognition with deep convolutional neural networks. In *AAAI*, pp. 3447–3455, 2021b.

765
 766 Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep learning:
 767 A review. *IEEE transactions on Neural Networks and Learning Systems*, 30(11):3212–3232,
 768 2019.

769 Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed recogni-
 770 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 771 pp. 16489–16498, June 2021.

772 Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 mil-
 773 lion image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine*
 774 *Intelligence*, 40(6):1452–1464, 2017.

775
 776 Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network with
 777 cumulative learning for long-tailed visual recognition. In *Proceedings of the IEEE/CVF Confer-
 778 ence on Computer Vision and Pattern Recognition*, pp. 9719–9728, 2020.

779 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 780 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022.

781
 782 Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Balanced
 783 contrastive learning for long-tailed visual recognition. In *Proceedings of the IEEE/CVF Confer-
 784 ence on Computer Vision and Pattern Recognition*, pp. 6908–6917, 2022.

785
 786 Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20
 787 years: A survey. *Proceedings of the IEEE*, 111(3):257–276, 2023.

788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A EXPERIMENTAL SETTINGS
811812 A.1 DATASETS
813

814 **CIFAR100-LT** CIFAR100-LT is the long-tailed version of CIFAR (Krizhevsky, 2009). The latter
815 is a balanced dataset consisting of 100 classes, with each class containing 500 samples for training
816 and 100 samples for test. We construct CIFAR100-LT following the approach in (Cao et al., 2019).
817 Specifically, each class contains $n_i = 500 \cdot r^{(-\frac{i-1}{99})}$ samples in training, where i is class index. In
818 this work, the imbalance factor is set to 100 considering its generality (Shi et al., 2024; Ma et al.,
819 2021; Rangwani et al., 2022).

820 **Places-LT** The Places-LT (Sharma et al., 2021) features a long-tailed dataset consisting of 62,500
821 images across 365 classes from Places-2 (Zhou et al., 2017). The class frequencies follow a nat-
822 ural power law distribution, with the largest class containing 4,980 images and the smallest class
823 containing only 5 images.

825 **ImageNet-LT** ImageNet-LT (Liu et al., 2019) is a long-tailed version of ImageNet ILSVRC
826 2012 (Deng et al., 2009), composed according to a Pareto distribution. This dataset consists of
827 1000 classes and a total of 1158K images, with the largest class containing up to 1,280 images and
828 the smallest class containing as few as 5 images.

829 **iNaturalist 2018** iNaturalist 2018 (Van Horn et al., 2018) is a natural dataset of fine-grained long-
830 tailed categories, consisting of wildlife images across 8,142 species, with a total of 437,513 images.
831 The number of images in each category ranges from a maximum of 1000 to a minimum of 2. It is a
832 standard benchmark for evaluating algorithm performance on long-tailed distribution tasks.

833 A.2 IMPLEMENTATION SETTINGS
834

835 In most of our experiments, we adopt pre-trained model CLIP (Radford et al., 2021) and Vision
836 Transformer (Dosovitskiy et al., 2021) as the backbone and employ full fine-tuning (FFT) and
837 parameter-efficient fine-tuning (PEFT) on these two models. Knowledge distillation is an excep-
838 tion where we use pre-trained DeiT (Touvron et al., 2021) as the student backbone. For the PEFT
839 methods, we choose AdaptFormer (Chen et al., 2022) because of its optimal performance (Shi et al.,
840 2024). Table 12 shows the performance of different PEFT methods under the ultimate framework.
841 We use the SGD optimizer with a batch size of 128, weight decay of $5 \cdot 10^{-4}$, and momentum of
842 0.9. The number of training epochs for iNaturalist 2018 is 100, while for other datasets, it is 50.
843 The learning rate is initialized to 0.1. [The number of epochs and learning rate are carefully selected.](#)
844 [We conduct comprehensive ablation studies on the epochs and learning rates across the CIFAR100-
845 IR100, Places-LT, and ImageNet-LT datasets as shown in Table 13.](#) We use mean accuracy and
846 harmonic mean accuracy to measure the model’s performance. In addition, we also follow the eval-
847 uation protocol introduced by (Liu et al., 2019), reporting accuracy for three categories: many-shot
848 (>100 images), medium-shot (20-100 images), and few-shot (<20 images).

849 Table 12: Accuracy of using different PEFT methods.

Datasets	Places-LT		ImageNet-LT	
Backbone	CLIP	ViT	CLIP	ViT
LoRA	50.7	47.1	76.0	83.8
VPT-deep	50.5	47.5	76.2	84.1
Adapter	50.9	47.7	77.0	84.0
Bias-tuning	50.9	47.3	76.2	83.2
AdapterFormer	51.2	47.9	77.2	84.1

850 B KNOWLEDGE DISTILLATION
851

852 In this subsection, we focus on the knowledge distillation technique and explore whether it can im-
853 prove the performance of long-tailed datasets on foundation models. We follow the setup mentioned
854 in Data Efficient Transformer (DeiT) Touvron et al. (2021) to create the student backbone for our

Table 13: Comparison of different numbers of epochs and learning rate.

		CIFAR100-IR100	Places-LT	ImageNet-LT
Epochs	10	78.7	50.7	75.7
	20	80.2	51.3	77.0
	50	80.8	51.2	77.2
	70	80.7	50.8	77.0
	90	80.4	50.4	76.8
	0.001	78.7	49.8	74.4
LR	0.005	80.8	51.5	76.9
	0.01	80.8	51.2	77.2
	0.05	77.9	48.9	75.7
	0.1	77.1	48.3	75.3

experiments. In addition to the CLS token, DeiT adds a DIST token in the ViT backbone that learns via distillation from the teacher. For both the classification head and the distillation head, training is conducted using cross-entropy loss, and the final loss function Rangwani et al. (2024) is

$$\mathcal{L} = aL_{CE}(f^{cls}(x), y) + (1 - a)L_{CE}(f^{dis}(x), y_t) \quad (4)$$

where $f^{cls}(x)$ and $f^{dis}(x)$ are outputs of the CLS and DIST tokens through their respective layers, y is the ground truth, and y_t is the teacher model’s hard label for sample x .

Experimental Result We simply set the a to 0.5 to ensure the fair status of the ground truth and the teacher’s prediction. Table 14 shows the accuracy of the knowledge distillation methods. For more detailed settings and results, please refer to Appendix section D.5.

Compared to PEFT, the performance enhancement under FFT is significantly more substantial. Experimental results demonstrate that knowledge distillation yields an improvement of approximately 3% in the FFT setting, whereas it contributes almost no gain in the PEFT setting.

We believe this is because knowledge distillation helps mitigate the biases towards the head classes in the student model during training. Since the FFT setting involves substantially more parameters to train compared to the PEFT setting, it is more susceptible to being biased toward head classes. This explains why the performance improvements are more pronounced in the FFT setting.

Table 14: Student results of applying knowledge distillation.

Datasets	CIFAR100-LT				Places-LT				
	Student	DeiT-S		DeiT-Ti		DeiT-S		DeiT-Ti	
		FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
Baseline		67.3	69.9	58.7	60.8	27.1	32.1	24.6	29.4
Distillation		70.4	70.0	61.7	60.6	30.2	32.5	28.6	30.0

C ENSEMBLE LEARNING

Ensemble learning improves model performance by combining the predictions of multiple experts to address the long-tail problem. We conduct an experiment using a framework similar to BBN Zhou et al. (2020). Specifically, we use two branches: the “conventional learning branch”, which employs the uniform sampler to learn the original data distribution, and the “re-balancing branch”, which uses the reversed sampler to sample more tail-class samples for learning a balanced distribution. Both branches use the same backbone and share all the weights except for the last classifier. At last, a cumulative loss weight w is used to shift the learning “attention” smoothly from the head class to the tail class. Formally, the objective loss of the model is illustrated as

$$\mathcal{L} = wL_{CE}(f^c(x^c), y^c) + (1 - w)L_{CE}(f^r(x^r), y^r) \quad (5)$$

$$w = 1 - \left(\frac{t_c}{t_{max}}\right)^2 \quad (6)$$

where the $f^c(x^c)$ and $f^r(x^r)$ respectively represent the predicted output of the conventional learning branch and re-balancing branch. y^c and y^r are the ground truth of x^c and x^r respectively. t_c and t_{max} respectively refer to the current epoch and total training epochs.

918 **Experimental Result** Ensemble-based methods address the class imbalance at the model level.
 919 Table 15 shows the accuracy of the ensemble method. For more detailed results, please refer to
 920 Appendix section D.6. Ensemble methods can generally improve performance by an average of over
 921 3% in the PEFT setting. However, in the FFT setting, the model improvements are less favorable,
 922 with a maximum increase of 1%, and in some cases, even face a significant decrease.

923 Additionally, it is very important to note that ensemble learning inevitably increases the training
 924 cost. In this experiment, using two branches **doubles** the memory cost and computational time
 925 expenditure, because we need to create two individual data samplers and calculate the corresponding
 926 loss. In practice, though more experts may lead to better performance, the greater time and storage
 927 costs are non-negligible overheads. Therefore, we only recommend employing ensemble learning
 928 in the lightweight PEFT setting on foundation models. Using ensemble learning in the FFT setting
 929 is not cost-effective and does not guarantee performance improvements.

930 Table 15: Accuracy of applying ensemble learning.

Datasets	CIFAR100-LT				Places-LT			
	Backbone		CLIP	ViT	CLIP		ViT	FFT PEFT
	FFT	PEFT	FFT	PEFT	FFT	PEFT	FFT	PEFT
Baseline	54.6	71.9	70.3	80.7	24.9	39.8	26.0	31.9
Ensemble	55.6	76.0	68.6	82.2	18.9	45.0	26.7	36.4

937 D ADDITIONAL RESULTS

938 D.1 RE-SAMPLING DETAILED RESULTS

939 For re-sampling methods, we report detailed results of applying RUS, RUSxN, ROS, EQ, Square-
 940 root sampling and no resampling (Baseline) methods. Tables 16, 17, 18 show the detailed results
 941 of applying re-sampling methods for CIFAR100-LT, Places-LT, ImageNet-LT respectively. Ta-
 942 bles 19, 20, 21 show the detailed results of applying RUSxN for CIFAR100-LT, Places-LT and
 943 ImageNet-LT respectively. We can observe that applying RUS and Square-root sampling can signif-
 944 icantly improve model performance.

945 D.2 DATA AUGMENTATION DETAILED RESULTS

946 For data augmentation methods, we report detailed results of applying ColorJitter, RandAugment,
 947 AutoAugment, and no augmentation (Baseline) methods. Tables 22, 23, 24 show the detailed results
 948 of applying data augmentation methods for CIFAR100-LT, Places-LT, ImageNet-LT respectively.
 949 We can observe that applying data augmentation methods can only slightly improve the model per-
 950 formance and don't play a decisive role.

951 D.3 CLASS-SENSITIVE LOSS DETAILED RESULTS

952 For Class-sensitive loss, we report detailed results of applying CE, Focal, Label-Distribution-Aware
 953 Margin, Class-Balanced, Generalized Re-Weight, Balanced Softmax, Logit Adjustment, LAbel dis-
 954 tribution DisEntangling loss. The selection of hyperparameters for each loss follows the correspond-
 955 ing paper, except for G-RW. The original paper of G-RW proposed $\rho = 1.2$, which performs very
 956 poorly under FFT settings for each backbone. After our experimental attempts, we finally changed
 957 it to 0.5. The selected hyperparameters are shown as follows:

958 Focal loss: $\gamma = 2$; LDAM loss: $s = 25$; Class Balanced loss: $\beta = 0.9$; Generalized Re-weight loss:
 959 $\rho = 0.5$ for FFT setting, $\rho = 1.2$ for PEFT setting; Logit adjustment loss: $\mu = 1.5$; LADE loss:
 960 $\alpha = 0.01$, $\lambda = 0.1$.

961 In practice, we have tried different hyperparameters but only report the best. For example, we have
 962 tried: $\gamma = \{2, 3, 4\}$ for Focal loss; $\beta = \{0.9, 0.99, 0.999\}$ for Class-Balanced loss; $\tau = \{1, 1.5, 2\}$
 963 for LA loss; $\rho = \{0.5, 1, 1.2, 1.5, 2\}$ for G-RW loss.

964 Tables 25, 26, 27 show the detailed results of applying class-sensitive losses for CIFAR100-LT,
 965 Places-LT, ImageNet-LT respectively. We can observe that applying Balanced Softmax loss and
 966 Logit Adjustment loss can greatly gain benefits.

972
973

D.4 BALANCED CLASSIFIER DETAILED RESULTS

974
975
976
977

For the balanced classifier, we report detailed results of using the Cosine classifier, τ -normalized classifier, and Linear classifier methods. Tables 28, 29, 30 show the detailed results of applying different classifiers for CIFAR100-LT, Places-LT, ImageNet-LT respectively. We can observe that Cosine classifier can achieve an improvement in model performance.

978

979

D.5 KNOWLEDGE DISTILLATION DETAILED RESULTS

980
981
982
983
984
985

We use a well-trained CLIP-ViT-B/16 as the teacher backbone for Places-LT and IN21K-ViT-B/16 as the teacher backbone for CIFAR100-LT and ImageNet-LT, while employing the pre-trained DeiT-S and DeiT-Ti backbone architecture as student models for all the datasets. Tables 31, 32, 33 show the detailed results of applying knowledge distillation on CIFAR100-LT, Places-LT, ImageNet-LT respectively. We can observe that knowledge distillation is only effective in the FFT setting.

986

987

D.6 ENSEMBLE LEARNING DETAILED RESULTS

988
989
990

We build a framework similar to BBN and report details results of applying it on CIFAR100-LT, Places-LT and ImageNet-LT as shown in Tables 34, 35, 36 respectively. We can observe that applying ensemble learning is only cost-effective under the PEFT setting.

991

992

D.7 TRICKS DETAILED RESULTS

993
994
995
996
997

For tricks, we report detailed results of applying mixup and label smoothing. Tables 37, 38, 39 show the detailed results of applying mixup for CIFAR100-LT, Places-LT, ImageNet-LT respectively. Tables 40, 41, 42 show the detailed results of applying label smoothing for CIFAR100-LT, Places-LT, ImageNet-LT respectively. We can observe that both tricks can improve model performance.

998
999

D.8 ABLATION EXPERIMENTS DETAILED RESULTS

1000
1001
1002

To build the best framework for fine-tuning pre-trained models, we choose AutoAugment, Cosine classifier, Square-root resampling, Balanced Softmax loss, Mixup, and Label smoothing for the ablation experiments.

1003
1004
1005

Tables 43, 44, 45, 46 show the detailed ablation results for CIFAR100-LT, Places-LT, ImageNet-LT, iNaturalist 2018 datasets respectively.

1006
1007

D.9 COMPARISON WITH LIFT

1008
1009
1010
1011
1012

The performance of our model is comparable to that achieved by LIFT, as shown in the tables 47. Although we have more epochs, due to the sampling strategy of the data, the total training cost is significantly lower compared to LIFT, **with an average saved cost of 21%** (specific values vary depending on the dataset). Notably, it achieves a remarkable 34% reduction on the Places-LT, demonstrating the effectiveness of our method.

1013

1014

D.10 TRANSFERABILITY OF OUR FRAMEWORK

1015
1016
1017
1018
1019

To verify the transferability of our framework, we extend it to DINO and conduct corresponding experiments. The results are shown in Table 48. we are temporarily unable to report results for DINoV2 due to GPU memory limitations. Our framework can also be readily adapted to MAE and SigLIP, which are planned for a future version.

1020

1021

1022

1023

1024

1025

Table 16: Detailed results of applying resampling methods to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	54.6	82.9	55.9	20.1	0.0	0.0
		Random Over-Sampling	44.8	77.7	42.5	9.1	0.0	0.0
		Random Under-Sampling	45.5	51.0	49.8	34.1	31.0	6.0
		Equal resampling	50.4	82.6	50.5	12.8	0.0	0.0
		Square-root resampling	56.8	80.3	60.0	25.8	0.1	0.0
IN21K-ViT-B/16	PEFT	Baseline	71.9	90.2	75.1	46.6	56.0	7.0
		Random Over-Sampling	68.3	89.0	73.1	38.5	36.9	2.0
		Random Under-Sampling	77.4	79.9	79.1	72.5	73.6	26.0
		Equal resampling	72.8	88.6	77.2	49.2	55.9	7.0
		Square-root resampling	76.4	87.1	78.2	61.8	69.8	18.0

Table 17: Detailed results of applying resampling methods to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	24.7	40.5	19.8	6.8	0.1	0.0
		Random Over-Sampling	12.6	25.7	7.2	0.7	0.0	0.0
		Random Under-Sampling	42.3	42.6	45.4	34.5	0.2	0.0
		Equal resampling	21.7	40.2	14.7	3.6	0.0	0.0
		Square-root resampling	37.1	51.0	34.8	16.6	18.8	1.0
IN21K-ViT-B/16	PEFT	Baseline	39.8	54.0	35.7	22.7	0.1	0.0
		Random Over-Sampling	38.3	51.0	35.5	20.9	0.4	0.0
		Random Under-Sampling	50.8	49.6	52.2	49.6	35.7	1.0
		Equal resampling	43.7	53.3	42.8	27.9	25.2	1.0
		Square-root resampling	47.5	55.6	45.7	36.6	32.4	2.0
IN21K-ViT-B/16	FFT	Baseline	26.0	41.4	20.9	9.5	0.1	0.0
		Random Over-Sampling	11.4	24.2	5.7	0.7	0.0	0.0
		Random Under-Sampling	41.2	47.6	43.3	24.6	23.4	1.0
		Equal resampling	22.0	40.4	14.9	4.2	0.0	0.0
		Square-root resampling	32.6	48.6	27.7	14.1	0.2	0.0
IN21K-ViT-B/16	PEFT	Baseline	32.1	45.9	28.4	15.2	0.2	0.0
		Random Over-Sampling	32.2	45.8	28.9	14.9	0.1	0.0
		Random Under-Sampling	45.3	46.7	47.6	37.5	32.2	2.0
		Equal resampling	33.7	47.5	30.7	15.2	0.1	0.0
		Square-root resampling	39.7	50.9	37.7	23.3	23.5	2.0

Table 18: Detailed results of applying resampling methods to the ImageNet-LT dataset.“-” means the corresponding experiment is hard to implement due to the huge amount of data.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	49.9	69.0	44.0	16.6	0.0	0.0
		Random Over-Sampling	-	-	-	-	-	-
		Random Under-Sampling	59.2	62.1	59.0	52.2	44.6	2.0
		Equal resampling	48.6	67.8	41.9	18.0	0.0	0.0
		Square-root resampling	59.9	74.8	56.1	31.2	0.2	0.0
IN21K-ViT-B/16	PEFT	Baseline	70.6	85.5	67.6	38.8	0.1	0.0
		Random Over-Sampling	-	-	-	-	-	-
		Random Under-Sampling	75.4	78.2	75	68.4	67.6	10.0
		Equal resampling	73.6	83.2	72.2	51.1	1.0	0.0
		Square-root resampling	74.5	83.9	72.5	54.7	59.7	2.0
IN21K-ViT-B/16	FFT	Baseline	52.1	70.1	45.9	23.0	0.1	0.0
		Random Over-Sampling	-	-	-	-	-	-
		Random Under-Sampling	72.6	79.2	71.7	57.0	1.0	0.0
		Equal resampling	50.1	70.1	43.1	18.7	0.0	0.0
		Square-root resampling	68.2	80.6	64.8	44.8	1.0	0.0
IN21K-ViT-B/16	PEFT	Baseline	78.2	87.5	75.8	59.9	64.4	2.0
		Random Over-Sampling	-	-	-	-	-	-
		Random Under-Sampling	83.2	85.6	82.9	77.4	78.9	16.0
		Equal resampling	79.2	87.4	77.4	61.8	69.7	8.0
		Square-root resampling	81.0	87.3	79.5	68.6	74.1	8.0

Table 19: Detailed results of applying RUSxN to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	RUS	56.0	71.6	61.3	31.5	21.8	1.0
		RUSx2	58.0	81.3	62.3	25.8	0.0	0.0
		RUSx5	54.0	83.0	55.5	18.3	0.0	0.0
		RUSx10	48.8	79.1	49.5	12.8	0.0	0.0
	PEFT	RUS	77.7	82.0	80.0	69.9	73.7	25.0
		RUSx2	77.5	85.3	80.6	64.6	71.6	20.0
		RUSx5	75.6	87.2	79.7	57.4	63.4	8.0
		RUSx10	73.4	88.1	77.8	50.7	56.8	6.0
IN21K-ViT-B/16	FFT	RUS	75.7	87.9	78.1	58.6	59.6	5.0
		RUSx2	70.8	90.6	73.1	44.9	35.2	1.0
		RUSx5	66.4	90.6	69.5	34.4	26.5	1.0
		RUSx10	59.8	87.7	62.1	24.4	0.1	0.0
	PEFT	RUS	86.3	91.4	87.5	79.2	77.6	11.0
		RUSx2	84.5	92.7	86.4	72.8	71.0	8.0
		RUSx5	81.0	93.5	82.7	64.5	41.6	1.0
		RUSx10	78.2	93.4	80.2	58.3	39.5	1.0

Table 20: Detailed results of applying RUSxN to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	RUS	42.3	42.6	45.4	34.5	0.2	0.0
		RUSx2	41.6	46.6	45.3	24.1	24.8	1.0
		RUSx5	34.6	49.4	32.9	10.9	0.1	0.0
		RUSx10	29.0	48.3	23.3	6.6	0.0	0.0
	PEFT	RUS	50.8	49.6	52.2	49.6	35.7	1.0
		RUSx2	50.6	50.5	52.6	46.1	35.8	1.0
		RUSx5	49.1	51.5	51.4	39.2	35.5	3.0
		RUSx10	47.7	52.7	48.9	33.9	0.4	0.0
IN21K-ViT-B/16	FFT	RUS	41.2	47.6	43.3	24.6	23.4	1.0
		RUSx2	38.0	50.7	36.9	16.8	0.1	0.0
		RUSx5	31.6	49.4	26.3	10.8	0.1	0.0
		RUSx10	27.7	46.3	21.2	8.4	0.1	0.0
	PEFT	RUS	45.3	46.7	47.6	37.5	32.2	2.0
		RUSx2	43.2	48.4	44.9	29.9	29.4	3.0
		RUSx5	39.1	49.2	38.5	21.6	0.2	0.0
		RUSx10	29.0	48.3	23.3	6.6	0.0	0.0

Table 21: Detailed results of applying RUSxN to the ImageNet-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	RUS	59.2	62.1	59.0	52.2	44.6	2.0
		RUSx2	61.3	68.5	61.2	41.4	1.0	0.0
		RUSx5	59.0	72.8	56.0	30.6	0.2	0.0
		RUSx10	55.2	72.2	50.2	24.3	0.1	0.0
	PEFT	RUS	75.4	78.2	75.0	68.4	67.6	10.0
		RUSx2	75.9	80.0	75.5	65.9	67.9	6.0
		RUSx5	75.7	81.5	75.4	60.3	66.6	8.0
		RUSx10	75.0	82.4	74.3	56.0	62.5	4.0
IN21K-ViT-B/16	FFT	RUS	72.6	79.2	71.7	57.0	1.0	0.0
		RUSx2	71.5	80.9	69.6	51.5	58.2	2.0
		RUSx5	66.0	79.9	61.9	40.9	1.0	0.0
		RUSx10	60.5	77.2	55.7	30.7	0.2	0.0
	PEFT	RUS	83.2	85.6	82.9	77.4	78.9	16.0
		RUSx2	82.7	86.0	82.3	74.5	78.3	18.0
		RUSx5	80.6	86.7	79.3	67.8	73.7	10.0
		RUSx10	79.3	87.0	77.6	63.7	70.6	8.0

1134

1135

1136

Table 22: Detailed results of applying augmentation methods to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	48.7	77.9	48.1	15.4	12.2	1.0
		ColorJitter	55.0	83.2	56.3	20.7	0.1	0.0
		RandAugment	56.7	84.1	57.9	23.5	0.1	0.0
		AutoAugment	57.8	85.5	58.5	24.7	0.1	0.0
	PEFT	Baseline	71.9	90.0	75.3	46.9	57.6	9.0
		ColorJitter	71.9	90.2	75.1	46.6	56.0	7.0
		RandAugment	72.1	90.1	75.4	47.3	54.7	7.0
		AutoAugment	70.1	90.1	73.8	44.5	36.1	1.0
IN21K-ViT-B/16	FFT	Baseline	71.1	89.3	72.6	48.0	50.6	3.0
		ColorJitter	70.3	89.6	71.9	45.8	48.0	3.0
		RandAugment	70.0	89.6	70.7	46.3	45.4	2.0
		AutoAugment	71.6	90.7	72.3	48.4	54.2	7.0
	PEFT	Baseline	81.6	93.3	81.9	67.6	41.9	1.0
		ColorJitter	80.7	93.5	80.9	65.4	41.2	1.0
		RandAugment	81.5	93.7	81.5	67.2	54.7	3.0
		AutoAugment	81.3	93.3	81.8	66.7	42.2	1.0

1151

1152

1153

Table 23: Detailed results of applying augmentation methods to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	23.7	39.8	18.5	6.0	0.1	0.0
		ColorJitter	24.7	40.5	19.8	6.8	0.1	0.0
		RandAugment	25.4	41.6	20.4	6.9	0.1	0.0
		AutoAugment	24.9	41.8	19.8	5.6	0.0	0.0
	PEFT	Baseline	39.8	54.5	35.7	22.3	0.1	0.0
		ColorJitter	39.8	54.0	35.7	22.7	0.1	0.0
		RandAugment	40.4	54.7	36.5	23.1	0.1	0.0
		AutoAugment	40.7	54.9	36.8	23.2	0.1	0.0
IN21K-ViT-B/16	FFT	Baseline	25.7	40.9	20.5	9.4	0.1	0.0
		ColorJitter	26.0	41.4	20.9	9.5	0.1	0.0
		RandAugment	26.5	41.9	21.6	9.4	0.1	0.0
		AutoAugment	26.9	42.1	22.1	9.7	0.1	0.0
	PEFT	Baseline	31.7	45.5	27.8	15.1	0.1	0.0
		ColorJitter	32.1	45.9	28.4	15.2	0.2	0.0
		RandAugment	32.6	46.8	28.8	15.4	0.2	0.0
		AutoAugment	32.7	46.8	29.1	15.2	0.2	0.0

1169

1170

1171

1172

Table 24: Detailed results of applying augmentation methods to the ImageNet-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	48.7	67.9	42.5	16.0	0.0	0.0
		ColorJitter	49.9	69.0	44.0	16.6	0.0	0.0
		RandAugment	51.0	70.2	45.1	17.6	0.0	0.0
		AutoAugment	51.8	71.3	45.9	17.0	0.0	0.0
	PEFT	Baseline	70.5	85.5	67.5	38.3	0.1	0.0
		ColorJitter	70.6	85.5	67.6	38.8	0.1	0.0
		RandAugment	70.5	85.5	67.5	38.3	0.1	0.0
		AutoAugment	70.3	81.0	67.2	38.2	0.1	0.0
IN21K-ViT-B/16	FFT	Baseline	50.8	69.1	44.4	21.8	0.1	0.0
		ColorJitter	52.1	70.1	45.9	23.0	0.1	0.0
		RandAugment	53.4	71.4	47.1	24.5	0.1	0.0
		AutoAugment	54.1	72.1	48.1	24.2	0.1	0.0
	PEFT	Baseline	78.2	87.4	76.0	59.8	1.0	0.0
		ColorJitter	78.2	87.5	75.8	59.9	64.4	2.0
		RandAugment	78.1	87.5	75.7	59.6	63.8	2.0
		AutoAugment	78.2	87.5	75.9	60.1	66.2	6.0

1187

1188

1189

1190

Table 25: Detailed results of applying different losses to the CIFAR100-LT dataset.

1191

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE loss	54.6	82.9	55.9	20.1	0.0	0.0
		Focal loss	52.7	81.4	53.0	19.0	17.9	1.0
		LDAM loss	53.6	78.5	52.9	25.4	0.1	0.0
		Class Balanced loss	54.7	83.4	56.1	19.4	0.1	0.0
		Generalized Re-Weight	50.9	80.4	50.9	16.5	0.0	0.0
		Balanced Softmax Loss	58.0	75.5	58.9	36.5	42.3	6.0
		Logit Adjustment loss	62.7	74.8	62.1	49.4	55.3	18.0
	PEFT	LADE loss	18.2	26.3	19.9	6.9	0.0	0.0
		CE loss	71.9	90.2	75.1	46.6	56.0	7.0
		Focal loss	71.2	89.5	74.0	46.7	58.3	10.0
		LDAM loss	73.6	89.5	77.4	50.7	0.1	0.0
		Class Balanced loss	72.5	90.2	75.3	48.6	57.7	9.0
		Generalized Re-Weight	71.8	84.0	78.3	50.1	55.8	9.0
		Balanced Softmax Loss	80.1	86.5	80.0	72.9	77.5	38.0
IN21K-ViT-B/16	FFT	Logit Adjustment loss	79.8	80.6	79.3	79.5	77.8	47.0
		LADE loss	79.9	85.7	79.0	74.1	77.1	42.0
		CE loss	70.3	89.6	71.9	45.8	48.0	3.0
		Focal loss	69.4	89.3	71.1	44.3	43.9	2.0
		LDAM loss	64.4	85.9	67.0	36.3	41.5	4.0
		Class Balanced loss	69.4	89.6	71.3	43.7	50.1	5.0
		Generalized Re-Weight	66.9	88.9	69.5	38.1	0.0	0.1
	PEFT	Balanced Softmax Loss	75.8	88.7	76.4	59.9	63.0	6.0
		Logit Adjustment loss	73.1	88.4	73.1	55.1	64.7	15.0
		LADE loss	72.8	89.9	72.4	53.2	48.8	2.0
		CE loss	80.7	93.5	80.9	65.4	41.2	1.0
		Focal loss	81.4	93.5	81.3	67.5	52.9	2.0
		LDAM loss	82.8	93.3	83.3	70.0	67.6	6.0
		Class Balanced loss	80.3	93.4	80.7	64.6	41.7	1.0
	PEFT	Generalized Re-Weight	81.8	93.0	84.0	66.3	62.9	5.0
		Balanced Softmax Loss	85.1	92.0	84.8	77.4	79.5	18.0
		Logit Adjustment loss	86.3	91.9	85.9	81.3	83.2	28.0
		LADE loss	86.0	93.0	85.0	79.2	81.6	23.0

1214

1215

1216

1217

1218

Table 26: Detailed results of applying different losses to the Places-LT dataset.

1219

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE loss	24.7	40.5	19.8	6.8	0.1	0.0
		Focal loss	24.3	40.5	19.2	6.3	0.1	0.0
		LDAM loss	24.7	37.9	21.2	8.6	0.0	0.0
		Class Balanced loss	25.1	40.7	20.3	7.3	0.0	0.0
		Generalized Re-Weight	22.0	38.8	16.3	4.1	0.0	0.0
		Balanced Softmax Loss	31.3	39.7	28.0	23.3	20.6	3.0
		Logit Adjustment loss	32.0	36.2	29.9	29.3	21.6	3.0
	PEFT	LADE loss	16.8	23.0	16.7	5.5	0.0	0.0
		CE loss	39.8	53.9	35.9	22.5	0.1	0.0
		Focal loss	39.0	52.9	35.1	22.1	0.2	0.0
		LDAM loss	41.1	54.7	37.4	24.3	0.0	0.0
		Class Balanced loss	40.2	54.0	35.8	24.6	0.1	0.0
		Generalized Re-Weight	44.5	51.1	46.3	28.2	0.4	0.0
		Balanced Softmax Loss	48.8	49.7	49.0	46.9	39.4	4.0
IN21K-ViT-B/16	FFT	Logit Adjustment loss	48.0	41.4	50.5	54.7	0.4	0.0
		LADE loss	49.2	49.9	49.3	47.6	35.4	1.0
		CE loss	26.0	41.4	20.9	9.5	0.1	0.0
		Focal loss	25.9	41.2	21.0	8.8	0.1	0.0
		LDAM loss	25.0	39.9	20.0	9.1	0.1	0.0
		Class Balanced loss	26.0	41.2	21.2	8.7	0.1	0.0
		Generalized Re-Weight	23.4	39.8	17.8	6.2	0.0	0.0
	PEFT	Balanced Softmax Loss	30.3	41.3	26.8	18.1	16.9	2.0
		Logit Adjustment loss	31.9	40.3	29.0	23.2	20.1	2.0
		LADE loss	27.3	38.8	22.7	16.5	15.2	2.0
		CE loss	31.9	45.8	28.2	15.0	0.2	0.0
		Focal loss	30.9	45.0	26.9	14.0	0.1	0.0
		LDAM loss	34.9	46.9	31.5	20.5	0.4	0.0
		Class Balanced loss	32.0	45.9	28.1	15.0	0.1	0.0

1240

1241

1242

1243

1244

1245

1246 Table 27: Detailed results of applying different losses to the ImageNet-LT dataset.

1247

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE loss	49.9	69.0	44.0	16.6	0.0	0.0
		Focal loss	48.2	67.4	41.8	16.4	0.0	0.0
		LDAM loss	50.4	67.0	45.7	20.3	0.0	0.0
		Class Balanced loss	50.0	68.8	43.9	18.2	0.0	0.0
		Generalized Re-Weight	49.0	67.7	42.8	18.0	0.0	0.0
		Balanced Softmax Loss	54.6	64.8	51.0	38.2	0.3	0.0
		Logit Adjustment loss	54.0	59.8	51.5	46.5	1.0	0.0
		LADE loss	53.0	63.4	50.7	32.1	0.1	0.0
IN21K-ViT-B/16	PEFT	CE loss	70.6	85.5	67.6	38.8	0.1	0.0
		Focal loss	70.1	84.8	67.1	39.1	0.3	0.0
		LDAM loss	71.6	85.4	69.3	40.7	0.1	0.0
		Class Balanced loss	71.2	85.5	67.7	43.2	0.5	0.0
		Generalized Re-Weight	74.5	81.8	74.2	54.6	59.8	2.0
		Balanced Softmax Loss	76.7	81.2	75.4	68.5	70.2	12.0
		Logit Adjustment loss	75.6	75.0	75.7	76.7	67.9	4.0
		LADE loss	76.3	81.1	75.3	66.6	69.3	8.0
CLIP-ViT-B/16	FFT	CE loss	52.1	70.1	45.9	23.0	0.1	0.0
		Focal loss	51.0	69.1	44.5	22.6	0.1	0.0
		LDAM loss	52.2	69.6	45.8	25.2	0.1	0.0
		Class Balanced loss	52.3	70.3	46.1	23.6	0.1	0.0
		Generalized Re-Weight	50.9	69.3	44.5	21.0	0.1	0.0
		Balanced Softmax Loss	55.6	68.4	51.5	35.3	36.7	0.0
		Logit Adjustment loss	56.2	66.2	52.6	40.5	1.0	0.0
		LADE loss	48.4	61.3	43.1	30.7	0.3	0.0
IN21K-ViT-B/16	PEFT	CE loss	78.2	87.5	75.8	59.9	64.4	2.0
		Focal loss	77.4	86.9	74.7	59.7	63.9	2.0
		LDAM loss	79.4	87.2	77.3	64.9	69.5	4.0
		Class Balanced loss	78.2	87.5	75.8	60.5	64.3	2.0
		Generalized Re-Weight	78.8	87.0	77.2	61.3	66.4	4.0
		Balanced Softmax Loss	81.2	85.6	79.8	73.6	76.3	16.0
		Logit Adjustment loss	81.6	83.7	80.6	78.7	77.6	16.0
		LADE loss	81.2	86.1	79.4	74.0	76.6	16.0

1269

1270

1271

1272

1273

1274

1275

1276 Table 28: Detailed results of applying different classifiers to the CIFAR100-LT dataset.

1277

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Linear classifier	54.6	82.9	55.9	20.1	0.0	0.0
		Cosine classifier	56.4	84.3	57.1	22.9	0.0	0.0
		τ -normalized classifier ($\tau = 0.5$)	55.6	83.5	56.8	21.6	0.1	0.0
		τ -normalized classifier ($\tau = 1$)	55.6	83.6	56.2	22.2	0.1	0.0
		τ -normalized classifier ($\tau = 2$)	54.8	83.1	55.1	21.3	0.1	0.0
		Linear classifier	71.9	90.2	75.1	46.6	56.0	7.0
		Cosine classifier	72.2	90.2	74.5	48.5	37.9	1.0
		τ -normalized classifier ($\tau = 0.5$)	71.7	89.9	74.3	47.3	54.9	6.0
IN21K-ViT-B/16	PEFT	τ -normalized classifier ($\tau = 1$)	71.9	90.0	74.6	47.6	54.1	5.0
		τ -normalized classifier ($\tau = 2$)	71.8	89.9	73.7	48.4	56.7	8.0
		Linear classifier	70.3	89.6	71.9	45.8	48.0	3.0
		Cosine classifier	69.6	90.2	70.7	44.3	31.6	1.0
		τ -normalized classifier ($\tau = 0.5$)	69.3	89.6	69.0	46.1	49.0	4.0
		τ -normalized classifier ($\tau = 1$)	68.9	89.9	70.1	42.9	48.3	4.0
		τ -normalized classifier ($\tau = 2$)	68.8	89.5	69.7	43.6	45.8	3.0
		Linear classifier	80.7	93.5	80.9	65.4	41.2	1.0
CLIP-ViT-B/16	PEFT	Cosine classifier	83.9	94.8	84.1	71.0	65.0	6.0
		τ -normalized classifier ($\tau = 0.5$)	80.8	93.3	80.6	66.2	41.7	1.0
		τ -normalized classifier ($\tau = 1$)	80.9	93.4	80.7	66.5	42.6	1.0
		τ -normalized classifier ($\tau = 2$)	81.2	93.3	81.0	67.2	58.7	3.0

1293

1294

1295

1296 Table 29: Detailed results of applying different classifiers to the Places-LT dataset.
1297

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Linear classifier	24.9	40.7	20.1	6.8	0.0	0.0
		Cosine classifier	24.9	40.9	19.9	6.6	0.0	0.0
		τ -normalized classifier ($\tau = 0.5$)	24.7	40.9	19.8	6.2	0.0	0.0
		τ -normalized classifier ($\tau = 1$)	24.6	41.3	19.2	6.0	0.0	0.0
		τ -normalized classifier ($\tau = 2$)	23.5	40.3	17.8	5.9	0.0	0.0
	PEFT	Linear classifier	39.8	53.9	35.9	22.5	0.1	0.0
IN21K-ViT-B/16	FFT	Cosine classifier	40.6	55.2	35.9	24.2	0.2	0.0
		τ -normalized classifier ($\tau = 0.5$)	40.3	54.9	36.1	22.8	0.1	0.0
		τ -normalized classifier ($\tau = 1$)	40.0	54.7	35.4	23.4	0.2	0.0
		τ -normalized classifier ($\tau = 2$)	37.6	53.1	32.8	20.2	0.1	0.0
		Linear classifier	26.0	41.4	20.9	9.5	0.1	0.0
		Cosine classifier	27.1	43.3	21.8	9.1	0.1	0.0
		τ -normalized classifier ($\tau = 0.5$)	25.8	41.5	20.6	8.7	0.1	0.0
		τ -normalized classifier ($\tau = 1$)	25.4	41.3	20.1	8.1	0.0	0.0
		τ -normalized classifier ($\tau = 2$)	24.8	41.8	19.2	6.3	0.0	0.0
	PEFT	Linear classifier	31.9	45.8	28.2	15.0	0.2	0.0
	Cosine classifier	38.1	53.4	33.7	20.2	0.4	0.0	
	τ -normalized classifier ($\tau = 0.5$)	32.1	46.4	28.2	14.7	0.1	0.0	
	τ -normalized classifier ($\tau = 1$)	32.3	47.3	27.9	14.9	0.1	0.0	
	τ -normalized classifier ($\tau = 2$)	32.1	47.6	27.2	14.7	0.1	0.0	

1313 Table 30: Detailed results of applying different classifiers to the ImageNet-LT dataset.
1314

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Linear classifier	49.9	69.0	44.0	16.6	0.0	0.0
		Cosine classifier	50.0	69.6	43.7	16.8	0.1	0.0
		τ -normalized classifier ($\tau = 0.5$)	49.8	69.0	43.8	16.5	0.0	0.0
		τ -normalized classifier ($\tau = 1$)	49.0	68.5	42.7	16.2	0.0	0.0
		τ -normalized classifier ($\tau = 2$)	45.8	66.0	38.4	14.5	0.0	0.0
	PEFT	Linear classifier	70.6	85.5	67.6	38.8	0.1	0.0
IN21K-ViT-B/16	FFT	Cosine classifier	70.5	85.4	67.0	40.6	0.2	0.0
		τ -normalized classifier ($\tau = 0.5$)	70.5	85.5	67.3	39.5	0.2	0.0
		τ -normalized classifier ($\tau = 1$)	70.1	85.4	66.6	39.5	0.2	0.0
		τ -normalized classifier ($\tau = 2$)	67.2	84.0	63.0	34.8	0.2	0.0
		Linear classifier	52.1	70.1	45.9	23	0.1	0.0
		Cosine classifier	54.4	72.7	48.4	23.6	0.1	0.0
		τ -normalized classifier ($\tau = 0.5$)	51.6	69.4	45.4	23	0.1	0.0
		τ -normalized classifier ($\tau = 1$)	50.5	69.1	44.1	20.1	0.1	0.0
		τ -normalized classifier ($\tau = 2$)	49.4	68.9	42.3	18.8	0.1	0.0
	PEFT	Linear classifier	78.2	87.5	75.8	59.9	64.4	2.0
	Cosine classifier	80.2	88.9	78.1	63.1	0.5	0.0	
	τ -normalized classifier ($\tau = 0.5$)	76.9	86.9	74.4	57.4	61.7	2.0	
	τ -normalized classifier ($\tau = 1$)	75.5	86.3	72.6	54.7	59.4	2.0	
	τ -normalized classifier ($\tau = 2$)	74.6	85.5	71.3	55.4	1.0	0.0	

1330 Table 31: Detailed results of applying knowledge distillation to the CIFAR100-LT dataset.
1331

			Mean	Many	Med.	Few	Harmonic mean	Worst case
Teacher	IN21K-ViT-B/16	PEFT	88.8	91.8	88.0	86.3	81.4	9.0
Student	DeiT-S	FFT	Baseline distillation	67.3	88.9	67.9	41.5	29.4
			Baseline distillation	70.4	91.0	71.4	45.3	31.4
	DeiT-Ti	FFT	Baseline distillation	69.9	89.5	70.5	46.4	0.1
			Baseline distillation	70.0	89.3	70.4	47.0	0.1
Student	DeiT-Ti	PEFT	Baseline distillation	58.7	84.3	60.1	27.2	26.6
			Baseline distillation	61.7	86.7	62.3	31.7	24.5
		PEFT	Baseline distillation	60.8	84.3	61.6	32.6	0.1
			Baseline distillation	60.6	84.3	61.3	32.3	0.0

1340 Table 32: Detailed results of applying knowledge distillation to the Places-LT dataset.
1341

			Mean	Many	Med.	Few	Harmonic mean	Worst case
Teacher	CLIP-ViT-B/16	PEFT	51.5	50.9	52.2	50.9	37.1	1.0
Student	DeiT-S	FFT	Baseline distillation	27.1	43.0	22.5	7.9	0.1
			Baseline distillation	30.2	46.5	25.6	10.8	0.1
	DeiT-Ti	PEFT	Baseline distillation	32.1	48.4	27.3	13.1	0.1
			Baseline distillation	32.5	49.0	27.5	13.8	0.1
Student	DeiT-Ti	FFT	Baseline distillation	24.6	41.1	19.5	5.9	0.0
			Baseline distillation	28.6	45.2	23.8	9.0	0.1
		PEFT	Baseline distillation	29.4	45.5	24.4	11.2	0.1
			Baseline distillation	30.0	46.2	25.0	11.3	0.1

1350
1351

Table 33: Detailed results of applying knowledge distillation to the ImageNet-LT dataset.

				Mean	Many	Med.	Few	Harmonic mean	Worst case
Teacher	IN21K-ViT-B/16	PEFT		83.6	85.8	83.0	80.0	80.1	16.0
Student	DeiT-S	FFT	Baseline distillation	58.3 60.5	74.1 75.8	53.7 56.2	29.9 32.6	0.1 0.2	0.0 0.0
		PEFT	Baseline distillation	74.6 74.9	84.6 84.6	72.3 72.6	54.5 55.9	1.0 57.6	0.0 2.0
	DeiT-Ti	FFT	Baseline distillation	50.8 52.7	68.7 70.3	45.2 47.2	20.2 22.4	0.0 0.1	0.0 0.0
		PEFT	Baseline distillation	65.6 65.9	78.8 78.9	62.3 62.6	40.2 40.5	0.5 1.0	0.0 0.0

1360

1361
1362

Table 34: Detailed results of applying ensemble learning to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	54.6	82.9	55.9	20.1	0.0	0.0
		Ensemble	55.6	83.7	56.4	22.0	0.1	0.0
	PEFT	Baseline	71.9	90.2	75.1	46.6	56.0	7.0
		Ensemble	76	89.4	78.8	57.1	65.7	10.0
IN21K-ViT-B/16	FFT	Baseline	70.3	89.6	71.9	45.8	48.0	3.0
		Ensemble	68.6	90.7	70.0	41.3	46.2	4.0
	PEFT	Baseline	80.7	93.5	80.9	65.4	41.2	1.0
		Ensemble	82.2	93.6	82.9	68.1	60.7	4.0

1371

1372

1373

Table 35: Detailed results of applying ensemble learning to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	24.9	40.7	20.1	6.8	0.0	0.0
		Ensemble	18.9	34.8	13.4	2.4	0.0	0.0
	PEFT	Baseline	39.8	53.9	35.9	22.5	0.1	0.0
		Ensemble	45.0	55.5	43.5	28.9	0.4	0.0
IN21K-ViT-B/16	FFT	Baseline	26.0	41.4	20.9	9.5	0.1	0.0
		Ensemble	26.7	43.1	21.4	8.6	0.1	0.0
	PEFT	Baseline	31.9	45.8	28.2	15.0	0.2	0.0
		Ensemble	36.4	49.2	33.6	19.2	17.3	1.0

1382

1383

1384

Table 36: Detailed results of applying ensemble learning to the ImageNet-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	49.9	69.0	44.0	16.6	0.0	0.0
		Ensemble	36.7	54.7	29.8	9.7	0.0	0.0
	PEFT	Baseline	70.6	85.5	67.6	38.8	0.1	0.0
		Ensemble	73.4	84.4	71.6	48.8	0.5	0.0
IN21K-ViT-B/16	FFT	Baseline	52.1	70.1	45.9	23.0	0.1	0.0
		Ensemble	54.2	71.9	48.6	24.1	0.1	0.0
	PEFT	Baseline	78.2	87.5	75.8	59.9	64.4	2.0
		Ensemble	80.4	87.9	78.7	65.1	70.3	4.0

1393

1394

1395

Table 37: Detailed results of applying mixup to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	51.0	70.3	51.0	30.3	36.4	7.0
		Mixup	68.7	81.9	69.7	51.9	61.1	19.0
	PEFT	Baseline	80.1	86.5	80.0	72.9	77.5	38.0
		Mixup	79.7	82.5	80.5	75.1	78.1	21.0
IN21K-ViT-B/16	FFT	Baseline	75.8	88.7	76.4	59.9	63.0	6.0
		Mixup	81.6	86.7	82.5	74.5	73.6	8.0
	PEFT	Baseline	85.1	92.0	84.8	77.4	79.5	18.0
		Mixup	86.7	89.3	86.2	84.1	84.0	29.0

1404

1405

1406

Table 38: Detailed results of applying mixup to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	31.3	39.7	28.0	23.3	20.6	3.0
		Mixup	35.8	41.8	34.6	27.6	25.5	3.0
	PEFT	Baseline	48.8	49.7	49.0	46.9	39.4	4.0
		Mixup	49.8	49.9	50.5	48.1	37.5	2.0
IN21K-ViT-B/16	FFT	Baseline	30.3	41.3	26.8	18.1	16.9	2.0
		Mixup	33.3	42.0	30.9	23.0	21.7	3.0
	PEFT	Baseline	38.3	45.3	36.6	29.5	26.7	3.0
		Mixup	45.0	48.1	44.9	39.8	35.2	5.0

1414

1415

1416

Table 39: Detailed results of applying mixup to the ImageNet-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	Baseline	54.6	64.8	51.0	38.2	0.3	0.0
		Mixup	58.7	67.9	56.8	39.1	0.2	0.0
	PEFT	Baseline	76.7	81.2	75.4	68.5	70.2	12.0
		Mixup	75.2	78.9	74.8	66.2	67.3	8.0
IN21K-ViT-B/16	FFT	Baseline	55.6	68.4	51.5	35.3	36.7	0.0
		Mixup	61.5	72.0	57.6	45.6	1.0	0.0
	PEFT	Baseline	81.2	85.6	79.8	73.6	76.3	16.0
		Mixup	83.3	85.1	82.6	80.8	79.2	10.0

1425

1426

1427

Table 40: Detailed results of applying label smoothing to the CIFAR100-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE	54.6	82.9	55.9	20.1	0.0	0.0
		CE (w/ LS)	56.2	85.2	56.8	21.7	15.4	1.0
		BS	58.0	75.5	58.9	36.5	42.3	6.0
		BS (w/ LS)	59.8	71.4	57.0	49.6	51.0	12.0
	PEFT	CE	71.9	90.2	75.1	46.6	56.0	7.0
		CE (w/ LS)	71.7	89.8	75.2	46.6	36.1	1.0
		BS	80.1	86.5	80.0	72.9	77.5	38.0
		BS (w/ LS)	80.6	84.1	80.1	77.2	78.5	44.0
IN21K-ViT-B/16	FFT	CE	70.3	89.6	71.9	45.8	48.0	3.0
		CE (w/ LS)	71.3	91.1	72.7	46.6	42.0	2.0
		BS	75.8	88.7	76.4	59.9	63.0	6.0
		BS (w/ LS)	78.2	90.1	76.8	65.8	71.9	23.0
	PEFT	CE	80.7	93.5	80.9	65.4	41.2	1.0
		CE (w/ LS)	82.7	94.5	82.5	69.2	61.7	4.0
		BS	85.1	92.0	84.8	77.4	79.5	18.0
		BS (w/ LS)	88.1	89.5	86.6	88.2	86.6	50.0

1442

1443

1444

Table 41: Detailed results of applying label smoothing to the Places-LT dataset.

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE	24.7	40.5	19.8	6.8	0.1	0.0
		CE (w/ LS)	25.0	40.5	19.7	8.3	0.1	0.0
		BS	31.3	39.7	28.0	23.3	20.6	3.0
		BS (w/ LS)	28.6	31.9	25.5	29.7	0.4	0.0
	PEFT	CE	39.8	53.9	35.9	22.5	0.1	0.0
		CE (w/ LS)	39.7	54.6	35.7	21.2	0.0	0.0
		BS	48.8	49.7	49.0	46.9	39.4	4.0
		BS (w/ LS)	49.4	48.9	49.7	49.4	37.9	3.0
IN21K-ViT-B/16	FFT	CE	26.0	41.4	20.9	9.5	0.1	0.0
		CE (w/ LS)	26.9	43.1	21.7	8.8	0.1	0.0
		BS	30.3	41.3	26.8	18.1	16.9	2.0
		BS (w/ LS)	32.4	38.7	29.4	27.5	0.4	0.0
	PEFT	CE	31.9	45.8	28.2	15.0	0.2	0.0
		CE (w/ LS)	34.1	48.3	30.0	17.3	0.1	0.0
		BS	38.3	45.3	36.6	29.5	26.7	3.0
		BS (w/ LS)	41.8	44.6	41.2	37.8	30.6	5.0

1458

1459

1460

1461

1462

Table 42: Detailed results of applying label smoothing to the ImageNet-LT dataset.

1463

			Mean	Many	Med.	Few	Harmonic mean	Worst case
CLIP-ViT-B/16	FFT	CE	49.9	69.0	44.0	16.6	0.0	0.0
		CE (w/ LS)	51.4	69.7	45.8	19.1	0.0	0.0
		BS	54.6	64.8	51.0	38.2	0.3	0
		BS (w/ LS)	55.5	63.2	52.2	45.3	41.0	4.0
	PEFT	CE	70.6	85.5	67.6	38.8	0.1	0.0
		CE (w/ LS)	70.5	85.7	67.7	37.5	0.1	0.0
		BS	76.7	81.2	75.4	68.5	70.2	12.0
		BS (w/ LS)	76.7	80.1	75.7	70.3	70.5	12.0
IN21K-ViT-B/16	FFT	CE	52.1	70.1	45.9	23.0	0.1	0.0
		CE (w/ LS)	54.5	73.2	48.2	24.2	0.1	0.0
		BS	55.6	68.4	51.5	35.3	36.7	0.0
		BS (w/ LS)	59.0	68.9	54.5	43.8	43.4	2.0
	PEFT	CE	78.2	87.5	75.8	59.9	64.4	2.0
		CE (w/ LS)	80.4	88.3	78.3	65.4	66.4	2.0
		BS	81.2	85.6	79.8	73.6	76.3	16.0
		BS (w/ LS)	83.0	85.0	82.1	80.3	79.1	16.0

1477

1478

1479

1480

1481

1482

1483

1484

1485

Table 43: Ablation experiment on CIFAR100-LT.

1486

		Cosine Classifier	Square-root sampling	Balanced Softmax	Label Smoothing	Auto Augment	Mixup	Mean	Many	Med.	Few	Hmean	Worst
CLIP-ViT-B/16	FFT	✓						46.9	75.6	46.3	14.1	10.7	1.0
		✓	✓					41.5	70.6	39.1	10.2	0.0	0.0
		✓	✓	✓				60.0	82.7	64.5	28.2	20.6	1.0
		✓	✓	✓	✓			65.7	80.3	69.1	44.7	51.0	6.0
		✓	✓	✓	✓	✓		67.4	80.8	70.3	48.6	55.5	8.0
	PEFT	✓	✓	✓	✓	✓	✓	29.7	38.9	31.8	16.4	0.0	0.0
		✓	✓	✓	✓	✓	✓	49.6	61.5	52.6	32.3	25.2	1.0
		✓	✓	✓	✓	✓	✓	14.4	15.3	17.2	10.0	0.0	0.0
		✓	✓	✓	✓	✓	✓	71.9	90.1	75.2	47.0	56.5	8.0
		✓	✓	✓	✓	✓	✓	72.8	90.2	75.5	49.2	56.2	5.0
IN21K-ViT-B/16	FFT	✓						77.0	87.7	78.9	62.3	68.7	11.0
		✓	✓					80.1	84.5	81.0	74.0	77.0	28.0
		✓	✓	✓				80.5	84.1	81.1	75.7	77.9	35.0
		✓	✓	✓	✓			79.3	80.9	80.2	76.4	76.4	35.0
		✓	✓	✓	✓	✓		79.3	81.2	80.1	76.2	74.5	17.0
	PEFT	✓	✓	✓	✓	✓	✓	77.5	79.3	78.1	74.9	73.1	28.0
		✓	✓	✓	✓	✓	✓	71.1	89.3	72.6	48.0	50.6	3.0
		✓	✓	✓	✓	✓	✓	71.4	91.0	73.0	46.8	39.0	2.0
		✓	✓	✓	✓	✓	✓	75.1	91.4	76.6	54.3	53.3	3.0
		✓	✓	✓	✓	✓	✓	82.7	90.6	83.1	72.9	74.4	9.0
	FFT	✓	✓	✓	✓	✓	✓	81.5	91.7	81.3	69.8	75.6	16.0
		✓	✓	✓	✓	✓	✓	82.2	91.5	82.9	70.3	76.8	23.0
		✓	✓	✓	✓	✓	✓	83.9	91.2	83.7	75.7	77.8	15.0
		✓	✓	✓	✓	✓	✓	84.7	89.5	85.3	78.4	81.6	26.0
		✓	✓	✓	✓	✓	✓	81.6	93.3	81.9	67.6	41.9	1.0
	PEFT	✓	✓	✓	✓	✓	✓	84.2	94.9	84.1	71.8	62.0	4.0
		✓	✓	✓	✓	✓	✓	87.2	94.2	87.1	79.2	79.2	12.0
		✓	✓	✓	✓	✓	✓	89.1	92.6	88.5	85.8	86.5	28.0
		✓	✓	✓	✓	✓	✓	89.2	91.7	88.4	87.2	87.3	40.0
		✓	✓	✓	✓	✓	✓	88.9	90.8	88.2	87.5	87.3	43.0

1509

1510

1511

1512

1513

1514

1515

Table 44: Ablation experiment on Places-LT.

		Cosine Classifier	Square-root sampling	Balanced Softmax	Label Smoothing	Auto Augment	Mixup	Mean	Many	Med.	Few	Hmean	Worst
CLIP -ViT -B/16	FFT	✓						23.7	39.8	18.5	6.0	0.1	0.0
		✓	✓					24.5	41.0	19.2	6.3	0.0	0.0
		✓	✓	✓				36.9	50.9	34.4	16.7	18.7	1.0
		✓	✓	✓	✓			42.1	17.4	42.8	31.1	31.7	4.0
		✓	✓	✓	✓	✓		42.2	49.2	42.5	28.6	31.3	5.0
		✓	✓	✓	✓	✓	✓	43.7	47.3	45.3	33.3	32.0	4.0
	PEFT	✓	✓	✓	✓	✓	✓	45.6	48.0	47.1	37.7	30.8	1.0
		✓	✓	✓	✓	✓	✓	45.4	46.4	47.1	39.4	32.4	5.0
		✓	✓	✓	✓	✓	✓	39.8	54.5	35.7	22.3	0.1	0.0
		✓	✓	✓	✓	✓	✓	40.6	55.1	36.2	24.0	0.1	0.0
IN21K -ViT -B/16	FFT	✓						48.0	56.1	46.0	37.7	31.8	1.0
		✓	✓					51.3	51.3	51.9	49.9	40.4	3.0
		✓	✓	✓				51.2	51.2	51.9	49.8	39.0	2.0
		✓	✓	✓	✓			51.1	50.6	51.9	50.1	38.8	2.0
		✓	✓	✓	✓	✓		50.7	50.6	51.3	49.6	39.1	4.0
		✓	✓	✓	✓	✓	✓	50.2	49.9	50.9	48.9	35.8	2.0
	PEFT	✓						25.7	40.9	20.5	9.4	0.1	0.0
		✓	✓					26.6	42.9	21.3	8.4	0.2	0.0
		✓	✓	✓				38.2	51.9	34.8	21.0	19.3	2.0
		✓	✓	✓	✓			42.3	50.3	41.1	30.0	30.1	4.0
	IN21K -ViT -B/16	✓	✓	✓	✓	✓		42.5	51.1	41.5	29.2	29.6	3.0
		✓	✓	✓	✓	✓	✓	43.8	50.5	43.9	31.1	31.8	3.0
		✓	✓	✓	✓	✓	✓	45.4	50.4	46.0	34.9	33.2	3.0
		✓	✓	✓	✓	✓	✓	46.0	49.9	47.0	36.6	33.4	3.0

1538

1539

1540

1541

Table 45: Ablation experiment on ImageNet-LT.

		Cosine Classifier	Square-root sampling	Balanced Softmax	Label Smoothing	Auto Augment	Mixup	Mean	Many	Med.	Few	Hmean	Worst
CLIP -ViT -B/16	FFT	✓						48.7	67.9	42.5	16.0	0.0	0.0
		✓	✓					48.7	68.6	42.2	15.5	0.0	0.0
		✓	✓	✓				60.1	75.0	56.0	32.1	0.1	0.0
		✓	✓	✓	✓			63.2	71.9	60.9	46.6	1.0	0.0
		✓	✓	✓	✓	✓		64.1	73.1	61.6	47.4	51.2	4.0
		✓	✓	✓	✓	✓	✓	64.5	71.4	63.0	50.1	51.9	2.0
	PEFT	✓	✓	✓	✓	✓		65.7	72.0	64.2	53.2	54.6	6.0
		✓	✓	✓	✓	✓	✓	63.9	70.0	62.7	51.0	50.1	2.0
		✓	✓	✓	✓	✓	✓	70.5	85.5	67.5	38.3	0.1	0.0
		✓	✓	✓	✓	✓	✓	70.4	85.5	67.0	39.9	0.1	0.0
IN21K -ViT -B/16	FFT	✓						74.7	84.0	72.7	55.4	60.8	4.0
		✓	✓					77.0	80.8	75.9	69.6	71.1	14.0
		✓	✓	✓				77.2	80.5	76.3	71.5	71.2	14.0
		✓	✓	✓	✓			76.6	79.3	75.9	71.2	69.8	6.0
		✓	✓	✓	✓	✓		75.5	78.3	74.6	70.4	68.1	8.0
		✓	✓	✓	✓	✓	✓	74.9	77.3	74.4	69.8	66.6	6.0
	PEFT	✓						50.8	69.1	44.4	21.8	0.1	0.0
		✓	✓					53.1	71.4	46.9	23.0	0.1	0.0
		✓	✓	✓				71.5	82.3	68.5	51.5	55.8	2.0
		✓	✓	✓	✓			73.4	81.3	71.0	59.3	65.5	6.0
	IN21K -ViT -B/16	✓	✓	✓	✓	✓		75.2	82.1	73.1	62.8	67.7	10.0
		✓	✓	✓	✓	✓	✓	75.5	81.9	74.0	62.8	68.4	10.0
		✓	✓	✓	✓	✓	✓	76.4	82.1	74.8	65.7	69.8	10.0
		✓	✓	✓	✓	✓	✓	77.0	82.1	75.7	67.1	70.8	10.0
	PEFT	✓						78.2	87.4	76.0	59.8	1.0	0.0
		✓	✓					80.3	88.8	78.2	63.6	0.5	0.0
		✓	✓	✓				82.6	88.1	81.3	71.5	75.1	6.0
		✓	✓	✓	✓			83.6	86.4	83.0	78.2	79.6	10.0
	IN21K -ViT -B/16	✓	✓	✓	✓	✓		84.1	85.8	83.6	80.6	80.2	16.0
		✓	✓	✓	✓	✓	✓	84.1	85.8	83.6	80.9	80.2	14.0
		✓	✓	✓	✓	✓	✓	84.1	85.1	83.8	82.8	80.1	12.0
		✓	✓	✓	✓	✓	✓	84.2	85.1	83.9	82.8	80.3	14.0

1565

1566

1567

1568

Table 46: Ablation experiment on iNaturalist 2018.

1569

		Cosine Classifier	Square-root sampling	Balanced Softmax	Label Smoothing	Auto Augment	Mixup	Mean	Many	Med.	Few	Hmean	Worst
CLIP -ViT -B/16	FFT	✓						58.4	73.6	62.6	49.1	0.0	0.0
		✓	✓					63.3	72.2	64.6	59.5	0.0	0.0
		✓	✓	✓				68.4	70.3	69.4	66.7	0.0	0.0
		✓	✓	✓	✓			70.9	66.1	71.3	71.5	0.0	0.0
		✓	✓	✓	✓	✓		71.5	65.1	71.9	72.7	0.0	0.0
	PEFT	✓	✓	✓	✓	✓	✓	69.6	61.3	69.9	71.4	0.0	0.0
		✓	✓	✓	✓	✓	✓	69.4	59.9	69.6	71.6	0.0	0.0
		✓	✓	✓	✓	✓	✓	48.7	34.2	47.2	54.4	0.0	0.0
		✓						69.5	82.1	73.1	61.7	0.0	0.0
		✓	✓					75.3	81.6	76.0	72.7	0.0	0.0
IN21K -ViT -B/16	FFT	✓						76.8	78.6	77.4	75.5	0.0	0.0
		✓	✓					79.3	73.5	79.1	81.0	0.0	0.0
		✓	✓	✓				79.0	73.0	78.9	80.6	0.0	0.0
		✓	✓	✓	✓			78.3	72.0	78.4	79.8	0.0	0.0
		✓	✓	✓	✓	✓		76.9	69.1	77.0	78.8	0.0	0.0
	PEFT	✓	✓	✓	✓	✓	✓	74.6	66.3	74.4	76.9	0.0	0.0
		✓						57.8	65.3	59.1	54.2	0.0	0.0
		✓	✓					61.5	70.3	62.9	57.5	0.0	0.0
		✓	✓	✓				72.3	75.0	73.4	70.1	0.0	0.0
		✓	✓	✓	✓			75.0	70.0	75.7	75.4	0.0	0.0
	IN21K -ViT -B/16	✓	✓	✓	✓	✓	✓	74.6	69.8	75.1	75.2	0.0	0.0
		✓	✓	✓	✓	✓	✓	74.9	68.8	75.5	75.7	0.0	0.0
		✓	✓	✓	✓	✓	✓	73.3	65.7	73.9	74.6	0.0	0.0
		✓	✓	✓	✓	✓	✓	72.3	63.5	72.9	73.9	0.0	0.0
		✓						73.6	79.2	75.8	69.5	0.0	0.0
	PEFT	✓						75.6	81.2	77.2	72.2	0.0	0.0
		✓	✓					79.0	80.6	80.2	77.1	0.0	0.0
		✓	✓	✓				81.1	75.6	81.7	81.9	0.1	0.0
		✓	✓	✓	✓			81.1	75.8	81.8	81.7	0.1	0.0
		✓	✓	✓	✓	✓		81.1	74.6	81.8	81.8	0.1	0.0
		✓	✓	✓	✓	✓	✓	79.9	71.9	80.4	81.4	0.0	0.0
		✓	✓	✓	✓	✓	✓	79.4	71.2	79.9	80.8	0.0	0.0

1592

1593

1594

1595

1596

Table 47: Comparison of LIFT and our method on accuracy and training cost. "S/E" represents the number of training samples in each epoch, and "Samples" represents the total number of training samples.

1599

Datasets		Acc	Epochs	S/E	Samples
CIFAR100-IR100	LIFT	80.3	10	10.8K	108K
	Ours	80.5	50	1.9K	95K (\downarrow)
Places-LT	LIFT	51.5	10	62.5K	625K
	Ours	51.2	50	8.2K	410K (\downarrow)
ImageNet-LT	LIFT	77.0	10	117.0K	1.17M
	Ours	77.2	50	20.7K	1.03M (\downarrow)
iNaturalist 2018	LIFT	79.1	20	437.5K	8.75M
	Ours	79.0	100	65.0K	6.5M (\downarrow)

1609

1610

1611

1612

1613

Table 48: Accuracy of our method with DINO.

1614

Datasets	Overall	Many	Med.	Few
CIFAR100-IR100	80.3	85.1	81.7	73.0
Places-LT	43.9	45.5	45.4	37.3
ImageNet-LT	73.5	77.6	72.8	64.0

1618

1619