Listen to Both Sides and be Enlightened!
Hierarchical Modality Fusion Network for Entity and Relation Extraction

Anonymous ACL submission

Abstract

Multimodal named entity recognition and re-
lation extraction (MNER and MRE) is a fun-
damental and crucial branch in multimodal
learning. However, existing approaches for
MNER and MRE mainly suffer from 1) er-
ror sensitivity when images contain irrele-
vant concepts not mentioned in texts; and
2) large modality gap between image and
text features, especially hierarchical visual fea-
tures. To deal with these issues, we propose a
novel Hierarchical Modality fusion NeTwork
(HMNeT) for visual-enhanced entity and rela-
tion extraction, aim to reduce the modality gap
and achieve more effective and robust perfor-
mance. Specifically, we innovatively leverage
hierarchical pyramidal visual features to con-
duct multi-layer internal integration in Trans-
former. We further present a dynamic gated
aggregation strategy to decide modality inte-
gration according to different images. Exten-
sive experiments on three benchmark datasets
demonstrate the effectiveness of our method,
and achieve state-of-the-art performance’.

1 Introduction

Named entity recognition (NER) and relation ex-
traction (RE) are important tasks in information ex-
traction, due to its research significance in natural
language processing (NLP) and wide applications,
such as structural extraction (Hosseini, 2019; Qin
et al., 2021) from massive news and web product
information. Currently, with the rapid development
of multimodal learning, multimodal NER (MNER)
and Multimodal RE (MRE) methods (Moon et al.,
2018; Zheng et al., 2021) have been proposed to
enhance linguistic representations with the aid of vi-
sual clues from images. It significantly extends the
text-based models by taking images as additional
inputs, since the visual contexts help to resolve
ambiguous multi-sense words.

!Code and datasets will be released for reproducibility.
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Figure 1: Motivation for robust and effective hierarchi-
cal modality fusion.

Traditional methods for MNER and MRE
(Zhang et al., 2018; Moon et al., 2018; Yu et al.,
2020; Zhang et al., 2021a; Zheng et al., 2021) have
demonstrated the effectiveness of modality fusion.
However, they mostly neglect two critical issues in
modality fusion networks. The first issue is error
sensitivity, where existing models are sensitive to
wrong images since texts and images paris (e.g.,
tweets) could be irrelevant. As discussed in Vem-
pala and Preotiuc-Pietro (2019), the images convey-
ing abstract concepts instead of illustrating what is
in the text are categorized as the “Image is irrele-
vant to the text” type, which is not rare in real-world
data. Therefore, an effective method should be de-
rived to learn robust multimodal representations
for MNER and MRE tasks. The second issue is the
large modality gap of image and text features. Pre-
vious models (Yu et al., 2020; Zheng et al., 2021)
usually use the final output of Convolution Neural
Networks (CNNs) with extremely abstract infor-
mation as the visual representation, which ignore
hierarchical pyramidal feature encoded in the differ-
ent blocks of the visual backbone. Actually, linking
such high-level visual features with semantic tex-
tual features demands a giant leap for the models
to fill in the modality gap.

Intuitively, CNNs contain the pyramidal feature



hierarchy, which contain semantics from low to
high levels. Meanwhile, previous studies (Jawa-
har et al., 2019) illustrate that BERT (Devlin et al.,
2019) encodes a rich hierarchy of linguistic infor-
mation from the bottom to the top. This observa-
tion inspires us to make each layer of Transformer
(Vaswani et al., 2017) aware of hierarchical visual
features to make a more enlightened and compre-
hensive forecasting decision as shown in Figure 1.
As the proverb says, “Listen to both sides and
be enlightened, listen to one side and be in the
dark.”, we speculate that MNER and MRE would
benefit more from hierarchically dense learning
signals like pyramidal visual features instead of
single output feature of visual backbone?, which
can reduce the modality gap and also be more ro-
bust for the irrelevant image-text cases.

Thus, to tackle the above issues, we propose
a novel Hierarchical Modality fusion NeTwork
(HMNeT) for visual-enhanced entity and relation
extraction. Specifically, we propose to make textual
features of each layer broadly aware of hierarchical
visual features through its self-attention module,
thus reducing the modality gap and improving ro-
bustness. To automatically decide visual features
of which block are suitable for Transformer, we
design a dynamic gate for each layer to generate
image-dependent paths, so that a variety of aggre-
gated hierarchical visual features can be considered
for further improvement. Overall, the major contri-
butions of our paper can be summarized as follows:

* We present a hierarchical modality fusion
framework towards MNER and MRE, incor-
porating hierarchical pyramidal visual fea-
tures as visual prompts to generate effective
and robust textual representation. To the best
of our knowledge, it is the first work to lever-
age hierarchical pyramidal visual features for
multimodal learning.

* We utilize the exploitation of dynamic gates to
fully leverage the hierarchical visual features.
Thus, textual representation of each layer in
Transformer can be aware of corresponding
hierarchical visual features adaptively.

* We evaluate our method on MNER and MRE
tasks. Our experimental results on three

2Qur method is suitable for various visual backbones,
which refer to the feature extracting network used in CV, such
as VGG (Simonyan and Zisserman, 2015), ResNet (He et al.,
2016), etc.

benchmark datasets validate the effectiveness
and superiority of our proposed method.

2 Related work

Multimodal Entity and Relation Extraction As
the crucial components of information extraction,
named entity recognition (NER) and relation ex-
traction (RE) have attracted much attention in the
research community (Liu et al., 2019; Zhang et al.,
2021b; Liu et al., 2021; Chen et al., 2021b,a). Pre-
vious studies typically focus on textual modality
and standard text. As multimodal data become in-
creasingly popular on social media platforms, early
research focusing on textual modality and stan-
dard text is limited. Recently, several studies have
focused on the MNER and MRE task, aiming to
leverage the associate images to better identify the
named entities and their relation contained in the
text.

In the early stages, Zhang et al. (2018),Lu et al.
(2018), (Moon et al., 2018) and Arshad et al.
(2019) propose to encode the text through RNN
and the whole image through CNN, then designing
implicit interaction to model information between
two modalities to explore multimodal NER tasks.
Recently, Yu et al. (2020); Zhang et al. (2021a)
propose to leverage regional image features to rep-
resent objects in the image to exploit fine-grained
semantic correspondences based on Transformer
and visual backbones.

While most of the current methods ignore the
facts that irrelevant image-text instances may mis-
lead the final prediction, one exception is that Sun
et al. (2021), which proposes to learn a text-image
relation classifier to enhance multimodal BERT
to reduce the interference from irrelevant images
while requiring extensive annotation for the irrele-
vance of image-text pairs.

Pre-trained Multimodal Representation The
pre-trained multimodal BERT has recently
achieved significant performance gains in many
multimodal tasks (e.g., visual question answer-
ing). We summarize and compare the existing
visual-linguistic BERT models in two aspects
as follows: 1) Architecture. The single-stream
structures consist of Unicoder-VL (Li et al., 2020),
VisualBERT (Li et al., 2019), VL-BERT (Su
et al., 2020), and UNITER (Chen et al., 2020b),
where the image and text tokens were com-
bined into a sequence and fed into BERT to
learn contextual embeddings. The two-streams



structures, LXMERT (Tan and Bansal, 2019)
and VILBERT (Lu et al., 2019), separate visual
and language processing into two streams that
interact through cross-modality or co-attentional
transformer layers. 2) Pretraining tasks. The
pretraining tasks mainly include masked language
modeling (MLM), masked region classification
(MRC), and image-text matching (ITM). However,
most of these techniques are pre-trained on image
captioning (Sharma et al., 2018; Chen et al.,
2015) or visual question answering datasets where
multimodal interactions are required. Applying
these techniques to the MNER and MRE task may
not result in a good performance, since MNER
and MRE mainly focus on leveraging visual
information to enhance the text rather than
conducting prediction on the image side.

3 Methodology

As illustrated in Figure 2, we present a novel hier-
archical modality fusion network for multi-modal
entity and relation extraction. It is worth noting
that our method can also be applied to other visual-
enhanced tasks towards text.

3.1 Collection of Visual Clues

Language and vision provide complementary in-
formation. On the one hand, the image associated
with a sentence maintains several visual objects re-
lated to the entities in the sentence, further provid-
ing more semantic knowledge to assist information
extraction. On the other hand, the global image
features may express abstract concepts, which play
the role of a weak learning signal. Thus, we col-
lect multiple visual clues for multimodal entity and
relation extraction, which involves taking the re-
gional image as the vital information and the global
images as the supplement.

Given an image, we first conduct object detec-
tion with Fast-RCNN (Ren et al., 2015) and merely
choose the top m salient objects with the higher
object classification scores as the valid visual ob-
jects for assisting the semantic extraction based
on the text further processing. Then, we rescale
the global image and object image to 224 x 224
pixels as the global image 7 and visual objects
O ={o01,02,...,0m, }.

3.2 Pyramidal Visual Feature

The feature fusion method effectively leverag-
ing features from different blocks in the back-

bone model is widely used to improve the perfor-
mance (Wang et al., 2019; Kim et al., 2018; Lin
et al., 2017) of models in CV. Inspired by such
practices, we take the first step to pay attention to
the application of pyramid features in the field of
multi-modality. We propose to fuse hierarchical
image features into each Transformer layer; thus,
leveraging a feature pyramid is essential. Typically,
given an image, we encode it with a backbone
model and generate a list of pyramidal feature
maps {Fy, Fy, F3, ..., F.} with different scales,
then map them with Mpy(-) as follows:

Ve =Convix1(Fe), )
Vi =Convix1(Pool(F;)), i =1,2,c—1, (2)

where 7 denotes the -th block the backbone model,
c is the number of blocks in the visual backbone
model (here is 4 for ResNet), Pool represents the
pooling operation to generate the features respec-
tively with the same spatial sizes. The 1x1 con-
volutional layer is leveraged to map the pyramidal
visual features to match the embedding size of the
Transformer.

3.3 Dynamic Gated Aggregation

Although the visual backbone and Transformer
both have the trait of having low-level features at
the bottom block and high-level semantic at the top
block, it is not trivial to decide which block in the
visual backbone is adopted to incorporate into each
layer in Transformer. To address this challenge, we
propose constructing the densely connected rout-
ing space, where hierarchical visual features are
connected with each transformer layer.

3.3.1 Dynamic Gate Module

We conduct routine processes through a dynamic
gate module, which can be viewed as a procedure
of path decision. The motivation of the dynamic
gate aims at predicting a normalized vector, which
represents how much to execute the visual feature
of each block. In the dynamic gate, g(l) € [0,1]

7
denotes the path probability from the ¢-th block of
visual backbone to the [-th layer of Transformer.
It is calculated as g) = GW(V) € R®, where
G®(-) denotes the gating function according to the
[-th layer in Transformer, c represents the numbers

of the block in backbone. We first produces the
@

logits ;" of the gate signals:

ol = FOM(2 3 PV 3)
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Figure 2: The overall architecture of our hierarchical modality fusion network.

where f(-) denotes the activate function
Leaky_ReLU, P represents the global aver-
age pooling layer. The input features V; with a
shape of (d;, h;,w) from the i-th block in the
visual backbone model are firstly squeezed by an
average pooling operation and added the features
from multiple blocks to generate the average
vectors. Then we reduce the feature dimension
by c with the MLP layer W;. We further consider
a soft gate via generating continuous values
as path probabilities. Afterward, we generate
the probability vector g() for the I-th layer of
Transformer as follows:

gV = Softmax(a\V) 4)

3.3.2 Aggregated Hierarchical Visual Feature
Based on the above dynamic gate ¢(¥), we can de-

rive the final aggregated hierarchical visual feature
Vyated to match the [-th layer in Transformer, as:

v =gV, 5)

gated

Formally, to further fully exploit the features of
global and local images, the multi-granularity vi-
sual features f/g((z o4 corresponding to the [-th layer
of Transformer is obtained by the following concat

operation,

V(l ) . V(l ,01).

gated [ gatcd’ gated * * *

V(l Om)] (6)

gated

which will be adopted to enhance into layer-level
representations of textual modality.
3.4 Multi-layer Internal Integration

Since we attempt to push each layer of the Trans-
former to view the hierarchical visual features, it

is intuitively to leverage the self-attention module
of the Transformer rather than extra cross-modal
attention independent of visual and textual repre-
sentation encoders. In particular, given an input
sequence X = {z1, z2, ..., ,, }, the contextual rep-
resentations H'~! € R"*? is first projected into
the query/key/value vector:

=H""'w/.
(M
As for aggregated hierarchical visual features

Ql — HZ_IW?,KZ — HZ_IWf(,Vl

l
Vg(aie 4 We use a set of linear transformations W¢

R¥*2%d for [-th layer to project them into the same
embedding space’ of textual representation in self-
attention module. Besieds, we define the operation
of visual prompt ¢!, ¢!, € Rhw(m+1)xd a4

{¢§€7 QﬁJ} Vg(i>tedWl¢’ (8)

where hw(m + 1) denotes the length of the visual
sequences, m is the number of visual objects de-
tected by the object detection algorithm. As shown
in Figure 2, different from previous co-attention
methods, we regard hierarchical visual features as
visual prompts at each fusion layer and sequen-
tially conduct multi-modal attention to update all
textual states. In this way, the final textual states
encode both the context and the cross-modal se-
mantic information simultaneously. Formally, the
visual fusion are calculated as follows:

Lr ol nrT
il e ”’f/’EK] ICEA SO

3Remarkably, the key and value in the self-attention mod-
ule contain the different information in two types of semantic
space, here 2 means that we apply two sets of transformation

parameters to project aggregated visual features to match the
state update process, respectively.

Attention' = softmaz(



3.5 Classifier

Baesd on above description, we get the final rep-

resentation of BERT, H! = U(X, Vg(ai od)» Where
U(+) denotes the operation of multi-layer internal
integration. Finally, we conduct different classifier

layers for NER and RE, respectively.

Named Entity Recognition. Follow previous
works (Moon et al., 2018; Yu et al., 2020), we also
adopt the CRF decoder to perform the NER task.
Formally, we feed the final hidden vectors H* =
of BERT to the CRF model. For a sequence of
tags y = {y1, ..., Yn}, the probability of the label
sequence y and the objective of NER are defined
as follows (Lample et al., 2016a):

H?:l Si(yiflayivHL)
Zy eYH? 1 Si(yi_ 17y£7HL)7

Lner = _Zlog

where Y is the pre-defined label set with the BIO
tagging schema, and S(-) are potential functions.
Details can be referred in (Lample et al., 2016a).

pylH") =

(10)
U (XD, Vyatea))-

Relation Extraction. An RE dataset can be de-
noted as Dy = {(X®, r)}M the goal of RE
is to predict the relation » € ) between subject
entity and object entity. Specifically, a [CLS]

head is utilized to compute the probability distribu-
tion over the class set Y with the softmax function
p(r|X) = Softmax(WHY c1s;), and the pa-
rameters of £ and W are fine-tuned by minimizing
the cross-entropy loss over p(r|X') on the entire X
as follows:

( )‘U X( Y anted))) 1n

Zlog

4 Experiments

In this section, we conduct experiments to eval-
uate our method on two multimodal information
extraction tasks, MNER and MRE. Specifically, we
adopt ResNet50 (He et al., 2016) as visual back-
bone and BERT-base (Devlin et al., 2019) as textual
encoder. Results on three datasets demonstrate that
our HMNeT outperforms a number of unimodal
and multimodal approaches.

4.1 Datasets

We adopt three datasets in our experiments: Twitter-
2015 (Zhang et al., 2018) and Twitter-2017 (Lu
etal., 2018) for MNER, MNRE (Zheng et al., 2021)

for MRE. Statistical details of datasets and exper-
imental details are provided in Appendix A and
B.

4.2 Compared Baselines

We compare our HMNeT with several baseline
models for a comprehensive comparison to demon-
strate the superiority of our HMNeT. Our compar-
ison mainly focuses on three groups of models:
the text-based models, previous SOTA MNER and
MRE models, and the variants of our models.

Text-based models: we first consider a group
of representative text-based models: 1) CNN-
BiLSTM-CRF (Ma and Hovy, 2016), 2) HBiLSTM-
CRF (Lample et al., 2016b) and 3) BERT-CRF for
NER. The following models are specific for RE: 4)
PCNN (Zeng et al., 2015); 5) MTB (Soares et al.,
2019) is an RE-oriented pretraining model based
on BERT.

Previous SOTA models: besides, we further
consider another group of previous SOTA multi-
modal approaches for MNER and MRE: 1)
AdapCoAtt-BERT-CRF (Zhang et al., 2018); 2) OC-
SGA (Wu et al., 2020); 3) UMT (Yu et al., 2020);
4) UMGF (Zhang et al., 2021a), the newest SOTA
for MNER, which proposes a unified multi-modal
graph fusion approach for MNER. 5) BERT+SG is
proposed in Zheng et al. (2021) for MRE, which
concatenate the textual representation from BERT
with visual features generated with scene graph
(SG) tool (Tang et al., 2020). 6) MEGA (Zheng
et al., 2021), the newest SOTA for MRE, which
develops a dual graph for multi-modal alignment
to capture this correlation between entities and ob-
jects for better performance. 7) VisualBERT(Li
et al., 2019), different from the above SOTA meth-
ods mainly based on co-attention, VisualBERT is
a single-stream structure, which is a strong base-
line for comparison. And the results of Visual-
BERT listed in our paper is referred from Chen
et al. (2020a)

Variants of Our Model: we set the ablation ex-
periments to explore the effectiveness of our design.
We conduct on the same parameter settings of HM-
NeT for each variant model for a fair comparison.
HMNeT-Single: This model is an variant of
our model without the pyramid structure, which
maps the visual features derived from 4-th block of
ResNet to the last layer corresponding to BERT.



Modality ‘Metho ds | Twitter-2015 | Twitter-2017 | MNRE
| | Precision  Recall Fl | Precision Recall F1 | Precision Recall F1
CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76  79.37 - -
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16  80.37 - -
Text BERT-CRF 69.22 7459  71.81 83.32 83.57 83.44 - - -
PCNN - - - - - - 62.85 49.69 5549
MTB - - - 64.46 57.81 60.86
AdapCoAtt-BERT-CRF 69.87 7459  72.15 85.13 83.20 84.10 - -
OCSGA 74.71 7121 7292 - - - - -
UMT 71.67 7523 7341 85.28 85.34 85.31 - -
UMGF 74.49 7521  74.85 86.54 84.50 85.51 - - -
BERT+SG - - - - - - 62.95 62.65 62.80
Text+Image MEGA - - - - - - 64.51 68.44  66.41
Visual BERT 68.84 71.39  70.09 84.06 85.39 84.72 63.25 66.80  65.00
HMNeT-Single 72.61 7435  73.48 84.61 84.42 8451 78.30 75.63 76.94
HMNeT-Flat 73.76 7532 7454 84.43 86.42 85.41 79.32 78.20  78.75
HMNeT-1V3 74.25 7545  74.85 85.42 86.85 86.13 82.48 80.16  81.30
HMNeT-OnlyObj 74.07 76.23  75.15 85.58 87.52  86.55 81.57 80.94  81.25
HMNeT 73.85 78.23  75.98 85.84 87.93 86.87 83.64 80.78 81.85

Table 1: Performance comparison of different competitive baseline approaches for NER and RE.

HMNeT-Flat: This is another variant of our
model without the pyramid structure. Specifically,
we assign the output of the 4-th block of ResNet as
the visual features and then map the visual features
to each layer corresponding to BERT to conduct
image-text fusion.

HMNeT-1V3: As ResNet and BERT have four
blocks and 12 layers, respectively thus, it is intu-
itive to directly map visual features in one block
to the three layers in BERT. We denote this variant
as HMNeT-1V3 to compare with our final version
with dynamic gate mechanism.

HMNeT-OnlyObj: Visual objects are consid-
ered as fine-grained image representations. We
conduct ablation by only adopting the object-level
features in this model to validate the effect of the
object features.

4.3 Overall Performance Comparison

4.3.1

The experimental results of HMNeT and all base-
lines on three testing sets are presented in Table 1.
From the experimental results, we can observe that:

Main Results

Firstly, we can find that incorporating the visual
features is generally helpful for NER and RE tasks
by comparing the SOTA multimodal approaches
with their corresponding text-based baselines. De-
spite previous multimodal approaches can gener-
ally achieve better performance, the enormous im-
provement of F1 score for NER is only about 2.0%
(compare UMGF with BERT-CRF), which for RE
is about 5.55% (compare MEGA with MTB). This
observation reveals that the performance improve-
ment of images on text-based NER tasks is rela-
tively limited compared with RE tasks.

Twitter2017 MNER
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Figure 3: Performances on low-resource setting on

MNER and MRE task.

Secondly, our method is superior to the newest
SOTA models UMGF and MEGA, which improves
1.14%, 1.36%, and 15.44% F1 scores for Twitter-
2015, Twitter-2017, and MNRE datasets, respec-
tively. While previous multimodal methods all
merely leverage the highest-level features of two
modalities based on extra co-attention networks,
which belong to the two-stream structure. This
results indicate that elaborately establishing hier-
archical fusion with pyramidal visual features is
beneficial for multimodal tasks.

Finally, we also compare with VisualBERT,
which is a pre-trained multimodal BERT with a
single-stream structure. We notice that even as the
pre-trained multimodal model, VisualBERT leaves
much to be desired in MNER and MRE tasks,
which performs worse than UMGF and MEGA,
let alone our methods. We hold that VisualBERT
is truly dissatisfactory since the datasets and pre-
training process are less relevant to information
extraction tasks.

4.3.2 Low-resource Scenario

Figure 3 shows the performance of our method
in a low-resource scenario compared with several
baselines. By analyzing this results, we can ob-



Relevant Image-text Pair

Weak Relevant Image-text Pair

Irrelevant Image-text Pair

Taylor Hill holding Jun’s GQ japan lol.

Limpopo Province , South Africa.

Cold front over Blyde River Canyon in President Bush when he sees the lights

of America.

loc/loc/contain

Gold Relations: per/per/couple

per/loc/place_of_residence

BERT: per/ per/couple X misc / misc /part_of X per/loc /place_of_residence ¢/
Visual BERT: per / per /peer v misc / misc /part_of X misc / loc /held_on X
MEGA: per/per/peer ¥V per/ per /peer X misc / loc /held_on X
HMNeT(Ours): per/per/peer ¢ loc/ loc /contain (4 per/loc /place_of _residence ¢

Table 2: The first row shows the split of the relevance of image-text pairs, and the several middle rows indicate
representative samples together with their entity-object attention in the test set of MNRE datasets, and the bottom
four rows show predicted relation of different approaches on these test samples.

serve: 1) UMT and MEGA consistently outper-
form the compared baselines in the low-resource
scenario; the improvement indicates that incorpo-
rating the visual features is still helpful for NER
and RE tasks in low-resource scenarios. 2) More-
over, it can be observed that the performance of
HMNeT still outperforms the other baselines. It
further proves the effectiveness and robustness of
our proposed method. This may be attributed to
letting BERT listen to hierarchical visual features
rather than only the final high-level features, thus,
effectively injecting visual knowledge.

4.3.3 Cross-task Scenario

Table 3 shows performance comparison of HMNeT
and UMGF in a cross-task scenario for versatility
analysis. For the first part, Twitter2017 — MNRE
denotes that the trained model on Twitter-2017 is
further used to train and test on MNRE. For the sec-
ond part, MNRE — Twitter-2017 represents that
the trained model on Twitter-2017 is used to further
train and test on Twitter-2017. From this Table, we
can observe that our HMNeT significantly outper-
forms UMGF by a more considerable margin. It
is worth noting that our method can achieve fur-
ther improvement in a cross-task scenario, while
UMGEF performs worse than previous results on
the corresponding dataset. This justifies that our
HMNeT is robust to automatically reduce the inter-
ference of visual information of irrelevant picture;
thus, more image-text data may facilitate learning
better parameters for modality fusion. Besides, it
is also interesting to extend our work to multi-task
learning or multi-modal pre-training and we leave
these for further works.

Methods \ Twitter-2017 — MNRE =~ MNRE — Twitter-2017

UMGF | 63.85 — 62.90/ (0.95) 8551 — 84.35 ] (1.16)
HMNeT | 81.85 — 82.50 1 (0.75)  86.87 — 87.13 1 (0.26)
Table 3: Performance comparison of HMNeT and

UMGTF in cross-task scenario.

4.4 Detailed Model Analysis

Ablation Study. In this part, we conduct exten-
sive experiments with the variants of our model
to further analyze the effectiveness of our model.
Table 1 shows the results of the variant set. We
observe that:

(1) Multi-layer Internal Integration. To gain
insights into our design of multi-layer fusion, we
conduct ablation studies incrementally to compared
previous SOTA models with the following variants:
1) HMNeT-Single and 2) HMNeT-Flat. On the
one hand, compared with HMNeT and HMNeT-
Flat, the performance of HMNeT-Single degrades
dramatically on all criteria of three datasets. On the
other hand, HMNeT-Flat is comparable to previous
SOTA models and even perform much better than
MEGA in multimodal RE task. Note that these
empirical findings indicate that layer-wise visual
knowledge guidance (Allow every layer of BERT
to see high-level visual features.) is beneficial.

(2) Dynamic Gated Aggregation. To validate
the impact of our proposed dynamic gate mech-
anism, we carry out experiments by introducing
two variants: 1) HMNeT-Flat, crudely conduct-
ing multi-layer fusion with single visual feature;
and 2) HMNeT-1V3, intuitively leveraging hierar-
chical visual features from low-level to high-level
blocks. We observe that HMNeT with dynamic
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Figure 4: Visualization of dynamic gate learned on MNER task. Each subgraph denotes one layer in BERT, and
the ordinate and abscissa respectively represent the instance id in a batch and the block id of ResNet.

gate achieves the best performance consistently
compared with the other variants. Although the
HMNeT-1V3 performs slightly lower than the ver-
sion of dynamic gate, it still outperforms the crude
variant HMNeT-Flat. It reveals that the dynamic
gate can automatically learn appropriate weights
for different visual clues, enabling the model to
explore possible optimal visual pyramidal features
polymerization for each Transformer layer.

(3) Visual Clues Term. As recent SOTA mod-
els such as UMT, UMGF, and MEGA all adopt
visual objects to enhance textual representation,
we conduct experiments by ablating global images
to explore the impact of the visual clues. As ex-
pected, we find that HMNeT-OnlyObj performs
slightly worse than HMNeT, which is consistent
with the observation of previous works. This can be
attributed to that abstract clues maybe not be asso-
ciated with the text in information extraction tasks.
In other words, this empirical finding demonstrates
the flexibility of our methods to infuse visual clues
with different granularity.

Case Analysis for Image-text Relevance To
validate the effectiveness and robustness of our
method, we conduct case analysis for image-text
relevance as indicated in Table 2 We notice that Vi-
sualBERT, MEGA, and our method can recognize
the relation for the relevant image-text pair. We
can further find that the attention between relevant
entities and objects is significant. While in the sit-
uation that image represents the abstract semantic
that is weak relevant to the text, only our method
success in prediction due to HMNeT captures the
more hierarchical features. It should be noted that
another two multimodal baselines fail in irrelevant
image-text pairs while text-based BERT and ours
still predict correctly. These observations reveal
that our model can learn more robust multimodal
representation dynamically, which is essential for
the noise of uncorrelated image-text samples.

Gate Visualization We hypothesis that the key
component of HMNeT achieving the superior per-
formance is the dynamic gated aggregation in multi-
layer internal integration, which can adaptively as-
sign different modality integration paths for differ-
ent input images. To this end, we randomly sample
eight images in a batch and visualize their gate
vectors learned by HMNeT according to 12 lay-
ers of BERT in Figure 4. Note that HMNeT-1V3
perform a little worse than our HMNeT, and the op-
timized gate vectors follow the trend of matching
low-level textual semantics with low-level visual se-
mantics and matching high-level textual semantics
with high-level visual semantics. Meanwhile, the
modality fusion obtained by dynamic gate learning
may provide some valuable insights for efficient
visual-language approaches in the future.

5 Conclusion and Future Work

In this paper, inspired by the proverb “Listen to
both sides and be enlightened, listen to one side
and be in the dark.”, we propose a hierarchical
modality fusion framework towards multimodal
NER and RE to reduce modality gap and bias of
irrelevant image-text pairs, which is the first work
leveraging hierarchical pyramidal visual features
to conduct multi-layer internal integration in Trans-
former. Concretely, we propose a multi-layer in-
ternal integration network for modality fusion, and
design a dynamic gated aggregation strategy to ex-
tract hierarchical visual features automatically. Ex-
tensive experimental results on three benchmarks
have demonstrated the effectiveness and robustness
of our proposed method.

In the future, we plan to 1) explore more appli-
cations of hierarchical modality fusion framework
in multimodal representation learning, making it
more flexible and extensible; 2) apply the reverse
version of our approach to boost visual represen-
tation with text for CV; 3) extend our approach to
multitask multimodal pre-training.
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A Detailed Statistics of Dataset
Dataset Train  Dev Test Avg length
(characters)
Twitter-2015 | 4,000 1,000 3,257 95
Twitter-2017 | 4,290 1,432 1,459 64

Table 4: Size of the datasets in numbers of tweets.

Dataset #Sent. #Ent. #Rel. #Img.
TACRED | 53,791 152,527 41
MNRE 14,796 20,178 31 10,089

Table 5: Comparison of MNRE with existing sentence-
level Relation Extraction dataset TACRED ( Sent.: sen-
tence, Ent.: entity, Rel.: relation,Img.: image.

B Experimental Details

This section details the training procedures and
hyperparameters for each of the datasets. Consider-
ing the instability of the few-shot learning, we run
each experiment 5 times on the random seed [1, 49,
1234, 2021, 4321] and report the averaged perfor-
mance. We utilize Pytorch to conduct experiments
with 1 Nvidia 3090 GPUs. All optimizations are
performed with the AdamW optimizer with a linear
warmup of learning rate over the first 10% of gradi-
ent updates to a maximum value, then linear decay
over the remainder of the training. And weight de-
cay on all non-bias parameters is set to 0.01. We set
the number of image objects m to 3. We describe
the details of the training hyper-parameters in the
following sections.

B.1 Standard Supervised Setting

In the MNER task, we fix the batch size as 8 and
search for the learning rates in varied intervals [1e-
5, 3e-5]. We train the model for 30 epochs and
do evaluation after the 16th epoch. In the MRE
task, we fix the batch size as 32 and learning rates
as le-5. We train the model for 12 epochs and do
evaluation after the 8th epoch. In the two tasks, we
all choices the model performing the best on the
validation set and evaluate it on the test set.
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B.2 Low-Resource Setting

For different instances per class, we sample five
times on the random seed [1, 2, 49, 4321, 1234] and
report the averaged performance. For all models,
we fix the batch size as 8 and search for the learning
rates in varied intervals [3e-5, 5e-5]. We train the
model for 30 epochs and do evaluation after the
16th epoch. We choose the model performing the
best on the validation set and evaluate it on the test
set.

B.3 Cross-Task Setting

In the MNER task and RE task, we all use ResNet
and BERT-base as the backbone, we transfer the
same parameters except the classifier layer and
CRF layer when we do cross-task. In further train-
ing, we fix the batch size as 8 and search for the
learning rates in varied intervals [le-5, 3e-5]. We
train the model for12 epochs and do evaluation af-
ter the 8th epoch. We choose the model performing
the best on the validation set and evaluate it on the
test set.
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