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Abstract

Multimodal named entity recognition and re-001
lation extraction (MNER and MRE) is a fun-002
damental and crucial branch in multimodal003
learning. However, existing approaches for004
MNER and MRE mainly suffer from 1) er-005
ror sensitivity when images contain irrele-006
vant concepts not mentioned in texts; and007
2) large modality gap between image and008
text features, especially hierarchical visual fea-009
tures. To deal with these issues, we propose a010
novel Hierarchical Modality fusion NeTwork011
(HMNeT) for visual-enhanced entity and rela-012
tion extraction, aim to reduce the modality gap013
and achieve more effective and robust perfor-014
mance. Specifically, we innovatively leverage015
hierarchical pyramidal visual features to con-016
duct multi-layer internal integration in Trans-017
former. We further present a dynamic gated018
aggregation strategy to decide modality inte-019
gration according to different images. Exten-020
sive experiments on three benchmark datasets021
demonstrate the effectiveness of our method,022
and achieve state-of-the-art performance1.023

1 Introduction024

Named entity recognition (NER) and relation ex-025

traction (RE) are important tasks in information ex-026

traction, due to its research significance in natural027

language processing (NLP) and wide applications,028

such as structural extraction (Hosseini, 2019; Qin029

et al., 2021) from massive news and web product030

information. Currently, with the rapid development031

of multimodal learning, multimodal NER (MNER)032

and Multimodal RE (MRE) methods (Moon et al.,033

2018; Zheng et al., 2021) have been proposed to034

enhance linguistic representations with the aid of vi-035

sual clues from images. It significantly extends the036

text-based models by taking images as additional037

inputs, since the visual contexts help to resolve038

ambiguous multi-sense words.039

1Code and datasets will be released for reproducibility.
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Figure 1: Motivation for robust and effective hierarchi-
cal modality fusion.

Traditional methods for MNER and MRE 040

(Zhang et al., 2018; Moon et al., 2018; Yu et al., 041

2020; Zhang et al., 2021a; Zheng et al., 2021) have 042

demonstrated the effectiveness of modality fusion. 043

However, they mostly neglect two critical issues in 044

modality fusion networks. The first issue is error 045

sensitivity, where existing models are sensitive to 046

wrong images since texts and images paris (e.g., 047

tweets) could be irrelevant. As discussed in Vem- 048

pala and Preotiuc-Pietro (2019), the images convey- 049

ing abstract concepts instead of illustrating what is 050

in the text are categorized as the “Image is irrele- 051

vant to the text” type, which is not rare in real-world 052

data. Therefore, an effective method should be de- 053

rived to learn robust multimodal representations 054

for MNER and MRE tasks. The second issue is the 055

large modality gap of image and text features. Pre- 056

vious models (Yu et al., 2020; Zheng et al., 2021) 057

usually use the final output of Convolution Neural 058

Networks (CNNs) with extremely abstract infor- 059

mation as the visual representation, which ignore 060

hierarchical pyramidal feature encoded in the differ- 061

ent blocks of the visual backbone. Actually, linking 062

such high-level visual features with semantic tex- 063

tual features demands a giant leap for the models 064

to fill in the modality gap. 065

Intuitively, CNNs contain the pyramidal feature 066
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hierarchy, which contain semantics from low to067

high levels. Meanwhile, previous studies (Jawa-068

har et al., 2019) illustrate that BERT (Devlin et al.,069

2019) encodes a rich hierarchy of linguistic infor-070

mation from the bottom to the top. This observa-071

tion inspires us to make each layer of Transformer072

(Vaswani et al., 2017) aware of hierarchical visual073

features to make a more enlightened and compre-074

hensive forecasting decision as shown in Figure 1.075

As the proverb says, “Listen to both sides and076

be enlightened, listen to one side and be in the077

dark.”, we speculate that MNER and MRE would078

benefit more from hierarchically dense learning079

signals like pyramidal visual features instead of080

single output feature of visual backbone2, which081

can reduce the modality gap and also be more ro-082

bust for the irrelevant image-text cases.083

Thus, to tackle the above issues, we propose084

a novel Hierarchical Modality fusion NeTwork085

(HMNeT) for visual-enhanced entity and relation086

extraction. Specifically, we propose to make textual087

features of each layer broadly aware of hierarchical088

visual features through its self-attention module,089

thus reducing the modality gap and improving ro-090

bustness. To automatically decide visual features091

of which block are suitable for Transformer, we092

design a dynamic gate for each layer to generate093

image-dependent paths, so that a variety of aggre-094

gated hierarchical visual features can be considered095

for further improvement. Overall, the major contri-096

butions of our paper can be summarized as follows:097

• We present a hierarchical modality fusion098

framework towards MNER and MRE, incor-099

porating hierarchical pyramidal visual fea-100

tures as visual prompts to generate effective101

and robust textual representation. To the best102

of our knowledge, it is the first work to lever-103

age hierarchical pyramidal visual features for104

multimodal learning.105

• We utilize the exploitation of dynamic gates to106

fully leverage the hierarchical visual features.107

Thus, textual representation of each layer in108

Transformer can be aware of corresponding109

hierarchical visual features adaptively.110

• We evaluate our method on MNER and MRE111

tasks. Our experimental results on three112

2Our method is suitable for various visual backbones,
which refer to the feature extracting network used in CV, such
as VGG (Simonyan and Zisserman, 2015), ResNet (He et al.,
2016), etc.

benchmark datasets validate the effectiveness 113

and superiority of our proposed method. 114

2 Related work 115

Multimodal Entity and Relation Extraction As 116

the crucial components of information extraction, 117

named entity recognition (NER) and relation ex- 118

traction (RE) have attracted much attention in the 119

research community (Liu et al., 2019; Zhang et al., 120

2021b; Liu et al., 2021; Chen et al., 2021b,a). Pre- 121

vious studies typically focus on textual modality 122

and standard text. As multimodal data become in- 123

creasingly popular on social media platforms, early 124

research focusing on textual modality and stan- 125

dard text is limited. Recently, several studies have 126

focused on the MNER and MRE task, aiming to 127

leverage the associate images to better identify the 128

named entities and their relation contained in the 129

text. 130

In the early stages, Zhang et al. (2018),Lu et al. 131

(2018), (Moon et al., 2018) and Arshad et al. 132

(2019) propose to encode the text through RNN 133

and the whole image through CNN, then designing 134

implicit interaction to model information between 135

two modalities to explore multimodal NER tasks. 136

Recently, Yu et al. (2020); Zhang et al. (2021a) 137

propose to leverage regional image features to rep- 138

resent objects in the image to exploit fine-grained 139

semantic correspondences based on Transformer 140

and visual backbones. 141

While most of the current methods ignore the 142

facts that irrelevant image-text instances may mis- 143

lead the final prediction, one exception is that Sun 144

et al. (2021), which proposes to learn a text-image 145

relation classifier to enhance multimodal BERT 146

to reduce the interference from irrelevant images 147

while requiring extensive annotation for the irrele- 148

vance of image-text pairs. 149

Pre-trained Multimodal Representation The 150

pre-trained multimodal BERT has recently 151

achieved significant performance gains in many 152

multimodal tasks (e.g., visual question answer- 153

ing). We summarize and compare the existing 154

visual-linguistic BERT models in two aspects 155

as follows: 1) Architecture. The single-stream 156

structures consist of Unicoder-VL (Li et al., 2020), 157

VisualBERT (Li et al., 2019), VL-BERT (Su 158

et al., 2020), and UNITER (Chen et al., 2020b), 159

where the image and text tokens were com- 160

bined into a sequence and fed into BERT to 161

learn contextual embeddings. The two-streams 162
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structures, LXMERT (Tan and Bansal, 2019)163

and ViLBERT (Lu et al., 2019), separate visual164

and language processing into two streams that165

interact through cross-modality or co-attentional166

transformer layers. 2) Pretraining tasks. The167

pretraining tasks mainly include masked language168

modeling (MLM), masked region classification169

(MRC), and image-text matching (ITM). However,170

most of these techniques are pre-trained on image171

captioning (Sharma et al., 2018; Chen et al.,172

2015) or visual question answering datasets where173

multimodal interactions are required. Applying174

these techniques to the MNER and MRE task may175

not result in a good performance, since MNER176

and MRE mainly focus on leveraging visual177

information to enhance the text rather than178

conducting prediction on the image side.179

3 Methodology180

As illustrated in Figure 2, we present a novel hier-181

archical modality fusion network for multi-modal182

entity and relation extraction. It is worth noting183

that our method can also be applied to other visual-184

enhanced tasks towards text.185

3.1 Collection of Visual Clues186

Language and vision provide complementary in-187

formation. On the one hand, the image associated188

with a sentence maintains several visual objects re-189

lated to the entities in the sentence, further provid-190

ing more semantic knowledge to assist information191

extraction. On the other hand, the global image192

features may express abstract concepts, which play193

the role of a weak learning signal. Thus, we col-194

lect multiple visual clues for multimodal entity and195

relation extraction, which involves taking the re-196

gional image as the vital information and the global197

images as the supplement.198

Given an image, we first conduct object detec-199

tion with Fast-RCNN (Ren et al., 2015) and merely200

choose the top m salient objects with the higher201

object classification scores as the valid visual ob-202

jects for assisting the semantic extraction based203

on the text further processing. Then, we rescale204

the global image and object image to 224 × 224205

pixels as the global image I and visual objects206

O = {o1, o2, ..., om, }.207

3.2 Pyramidal Visual Feature208

The feature fusion method effectively leverag-209

ing features from different blocks in the back-210

bone model is widely used to improve the perfor- 211

mance (Wang et al., 2019; Kim et al., 2018; Lin 212

et al., 2017) of models in CV. Inspired by such 213

practices, we take the first step to pay attention to 214

the application of pyramid features in the field of 215

multi-modality. We propose to fuse hierarchical 216

image features into each Transformer layer; thus, 217

leveraging a feature pyramid is essential. Typically, 218

given an image, we encode it with a backbone 219

model and generate a list of pyramidal feature 220

maps {F1, F2, F3, . . . , Fc} with different scales, 221

then map them with Mθ(·) as follows: 222

Vc =Conv1×1(Fc), (1) 223

Vi =Conv1×1(Pool(Fi)), i = 1, 2, ˙c− 1, (2) 224

where i denotes the i-th block the backbone model, 225

c is the number of blocks in the visual backbone 226

model (here is 4 for ResNet), Pool represents the 227

pooling operation to generate the features respec- 228

tively with the same spatial sizes. The 1×1 con- 229

volutional layer is leveraged to map the pyramidal 230

visual features to match the embedding size of the 231

Transformer. 232

3.3 Dynamic Gated Aggregation 233

Although the visual backbone and Transformer 234

both have the trait of having low-level features at 235

the bottom block and high-level semantic at the top 236

block, it is not trivial to decide which block in the 237

visual backbone is adopted to incorporate into each 238

layer in Transformer. To address this challenge, we 239

propose constructing the densely connected rout- 240

ing space, where hierarchical visual features are 241

connected with each transformer layer. 242

3.3.1 Dynamic Gate Module 243

We conduct routine processes through a dynamic 244

gate module, which can be viewed as a procedure 245

of path decision. The motivation of the dynamic 246

gate aims at predicting a normalized vector, which 247

represents how much to execute the visual feature 248

of each block. In the dynamic gate, g(l)i ∈ [0, 1] 249

denotes the path probability from the i-th block of 250

visual backbone to the l-th layer of Transformer. 251

It is calculated as g(l) = G(l)(V ) ∈ Rc, where 252

G(l)(·) denotes the gating function according to the 253

l-th layer in Transformer, c represents the numbers 254

of the block in backbone. We first produces the 255

logits α(l)
i of the gate signals: 256

α(l) = f(Wl(
1

c

c∑
i=1

P (Vi))), (3) 257
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Figure 2: The overall architecture of our hierarchical modality fusion network.

where f(·) denotes the activate function258

Leaky_ReLU, P represents the global aver-259

age pooling layer. The input features Vi with a260

shape of (di, hi, w) from the i-th block in the261

visual backbone model are firstly squeezed by an262

average pooling operation and added the features263

from multiple blocks to generate the average264

vectors. Then we reduce the feature dimension265

by c with the MLP layer Wl. We further consider266

a soft gate via generating continuous values267

as path probabilities. Afterward, we generate268

the probability vector g(l) for the l-th layer of269

Transformer as follows:270

g(l) = Softmax(α(l)) (4)271

3.3.2 Aggregated Hierarchical Visual Feature272

Based on the above dynamic gate g(l), we can de-273

rive the final aggregated hierarchical visual feature274

Vgated to match the l-th layer in Transformer, as:275

V
(l)
gated = g(l)V (l). (5)276

Formally, to further fully exploit the features of277

global and local images, the multi-granularity vi-278

sual features Ṽ (l)
gated corresponding to the l-th layer279

of Transformer is obtained by the following concat280

operation,281

Ṽ
(l)
gated = [V

(l,I)
gated;V

(l,o1)
gated ; . . . ;V

(l,om)
gated ], (6)282

which will be adopted to enhance into layer-level283

representations of textual modality.284

3.4 Multi-layer Internal Integration285

Since we attempt to push each layer of the Trans-286

former to view the hierarchical visual features, it287

is intuitively to leverage the self-attention module 288

of the Transformer rather than extra cross-modal 289

attention independent of visual and textual repre- 290

sentation encoders. In particular, given an input 291

sequence X = {x1, x2, ..., xn}, the contextual rep- 292

resentations H l−1 ∈ Rn×d is first projected into 293

the query/key/value vector: 294

Ql =H l−1WQ
l ,K

l =H l−1WK
l ,V

l =H l−1W V
l .

(7) 295

As for aggregated hierarchical visual features 296

Ṽ
(l)
gated, we use a set of linear transformationsW φ

l ∈ 297

Rd×2×d for l-th layer to project them into the same 298

embedding space3 of textual representation in self- 299

attention module. Besieds, we define the operation 300

of visual prompt φlk, φ
l
v ∈ Rhw(m+1)×d as: 301

{φlk, φlv} = Ṽ
(l)
gatedW

φ
l , (8) 302

where hw(m+ 1) denotes the length of the visual 303

sequences, m is the number of visual objects de- 304

tected by the object detection algorithm. As shown 305

in Figure 2, different from previous co-attention 306

methods, we regard hierarchical visual features as 307

visual prompts at each fusion layer and sequen- 308

tially conduct multi-modal attention to update all 309

textual states. In this way, the final textual states 310

encode both the context and the cross-modal se- 311

mantic information simultaneously. Formally, the 312

visual fusion are calculated as follows: 313

Attentionl = softmax(
Ql[φlk;K

l]T√
d

)[φlv;V
l]. (9) 314

3Remarkably, the key and value in the self-attention mod-
ule contain the different information in two types of semantic
space, here 2 means that we apply two sets of transformation
parameters to project aggregated visual features to match the
state update process, respectively.

4



3.5 Classifier315

Baesd on above description, we get the final rep-316

resentation of BERT, HL = U(X, Ṽ
(l)
gated), where317

U(·) denotes the operation of multi-layer internal318

integration. Finally, we conduct different classifier319

layers for NER and RE, respectively.320

Named Entity Recognition. Follow previous321

works (Moon et al., 2018; Yu et al., 2020), we also322

adopt the CRF decoder to perform the NER task.323

Formally, we feed the final hidden vectors HL =324

of BERT to the CRF model. For a sequence of325

tags y = {y1, . . . , yn}, the probability of the label326

sequence y and the objective of NER are defined327

as follows (Lample et al., 2016a):328

p(y|HL) =

∏n
i=1 Si(yi−1, yi, H

L)∑
y′∈Y

∏n
i=1 Si(y

′
i−1, y

′
i, H

L)
,

Lner = −
M∑
i=1

log(p(y(i)|U(X(i), Ṽgated))).

(10)329

where Y is the pre-defined label set with the BIO330

tagging schema, and S(·) are potential functions.331

Details can be referred in (Lample et al., 2016a).332

Relation Extraction. An RE dataset can be de-333

noted as Dre = {(X(i), r(i))}Mi=1, the goal of RE334

is to predict the relation r ∈ Y between subject335

entity and object entity. Specifically, a [CLS]336

head is utilized to compute the probability distribu-337

tion over the class set Y with the softmax function338

p(r|X) = Softmax(WHL
[CLS]), and the pa-339

rameters of L and W are fine-tuned by minimizing340

the cross-entropy loss over p(r|X) on the entire X341

as follows:342

Lre = −
M∑
i=1

log(p(r(i)|U(X(i), Ṽgated))). (11)343

4 Experiments344

In this section, we conduct experiments to eval-345

uate our method on two multimodal information346

extraction tasks, MNER and MRE. Specifically, we347

adopt ResNet50 (He et al., 2016) as visual back-348

bone and BERT-base (Devlin et al., 2019) as textual349

encoder. Results on three datasets demonstrate that350

our HMNeT outperforms a number of unimodal351

and multimodal approaches.352

4.1 Datasets353

We adopt three datasets in our experiments: Twitter-354

2015 (Zhang et al., 2018) and Twitter-2017 (Lu355

et al., 2018) for MNER, MNRE (Zheng et al., 2021)356

for MRE. Statistical details of datasets and exper- 357

imental details are provided in Appendix A and 358

B. 359

4.2 Compared Baselines 360

We compare our HMNeT with several baseline 361

models for a comprehensive comparison to demon- 362

strate the superiority of our HMNeT. Our compar- 363

ison mainly focuses on three groups of models: 364

the text-based models, previous SOTA MNER and 365

MRE models, and the variants of our models. 366

Text-based models: we first consider a group 367

of representative text-based models: 1) CNN- 368

BiLSTM-CRF (Ma and Hovy, 2016), 2) HBiLSTM- 369

CRF (Lample et al., 2016b) and 3) BERT-CRF for 370

NER. The following models are specific for RE: 4) 371

PCNN (Zeng et al., 2015); 5) MTB (Soares et al., 372

2019) is an RE-oriented pretraining model based 373

on BERT. 374

Previous SOTA models: besides, we further 375

consider another group of previous SOTA multi- 376

modal approaches for MNER and MRE: 1) 377

AdapCoAtt-BERT-CRF (Zhang et al., 2018); 2) OC- 378

SGA (Wu et al., 2020); 3) UMT (Yu et al., 2020); 379

4) UMGF (Zhang et al., 2021a), the newest SOTA 380

for MNER, which proposes a unified multi-modal 381

graph fusion approach for MNER. 5) BERT+SG is 382

proposed in Zheng et al. (2021) for MRE, which 383

concatenate the textual representation from BERT 384

with visual features generated with scene graph 385

(SG) tool (Tang et al., 2020). 6) MEGA (Zheng 386

et al., 2021), the newest SOTA for MRE, which 387

develops a dual graph for multi-modal alignment 388

to capture this correlation between entities and ob- 389

jects for better performance. 7) VisualBERT(Li 390

et al., 2019), different from the above SOTA meth- 391

ods mainly based on co-attention, VisualBERT is 392

a single-stream structure, which is a strong base- 393

line for comparison. And the results of Visual- 394

BERT listed in our paper is referred from Chen 395

et al. (2020a) 396

Variants of Our Model: we set the ablation ex- 397

periments to explore the effectiveness of our design. 398

We conduct on the same parameter settings of HM- 399

NeT for each variant model for a fair comparison. 400

HMNeT-Single: This model is an variant of 401

our model without the pyramid structure, which 402

maps the visual features derived from 4-th block of 403

ResNet to the last layer corresponding to BERT. 404
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Modality Methods Twitter-2015 Twitter-2017 MNRE

Precision Recall F1 Precision Recall F1 Precision Recall F1

Text

CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37 - - -
HBiLSTM-CRF 70.32 68.05 69.17 82.69 78.16 80.37 - - -
BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44 - - -
PCNN - - - - - - 62.85 49.69 55.49
MTB - - - - - - 64.46 57.81 60.86

Text+Image

AdapCoAtt-BERT-CRF 69.87 74.59 72.15 85.13 83.20 84.10 - - -
OCSGA 74.71 71.21 72.92 - - - - - -
UMT 71.67 75.23 73.41 85.28 85.34 85.31 - - -
UMGF 74.49 75.21 74.85 86.54 84.50 85.51 - - -
BERT+SG - - - - - - 62.95 62.65 62.80
MEGA - - - - - - 64.51 68.44 66.41
VisualBERT 68.84 71.39 70.09 84.06 85.39 84.72 63.25 66.80 65.00

HMNeT-Single 72.61 74.35 73.48 84.61 84.42 84.51 78.30 75.63 76.94
HMNeT-Flat 73.76 75.32 74.54 84.43 86.42 85.41 79.32 78.20 78.75
HMNeT-1V3 74.25 75.45 74.85 85.42 86.85 86.13 82.48 80.16 81.30
HMNeT-OnlyObj 74.07 76.23 75.15 85.58 87.52 86.55 81.57 80.94 81.25
HMNeT 73.85 78.23 75.98 85.84 87.93 86.87 83.64 80.78 81.85

Table 1: Performance comparison of different competitive baseline approaches for NER and RE.

HMNeT-Flat: This is another variant of our405

model without the pyramid structure. Specifically,406

we assign the output of the 4-th block of ResNet as407

the visual features and then map the visual features408

to each layer corresponding to BERT to conduct409

image-text fusion.410

HMNeT-1V3: As ResNet and BERT have four411

blocks and 12 layers, respectively thus, it is intu-412

itive to directly map visual features in one block413

to the three layers in BERT. We denote this variant414

as HMNeT-1V3 to compare with our final version415

with dynamic gate mechanism.416

HMNeT-OnlyObj: Visual objects are consid-417

ered as fine-grained image representations. We418

conduct ablation by only adopting the object-level419

features in this model to validate the effect of the420

object features.421

4.3 Overall Performance Comparison422

4.3.1 Main Results423

The experimental results of HMNeT and all base-424

lines on three testing sets are presented in Table 1.425

From the experimental results, we can observe that:426

Firstly, we can find that incorporating the visual427

features is generally helpful for NER and RE tasks428

by comparing the SOTA multimodal approaches429

with their corresponding text-based baselines. De-430

spite previous multimodal approaches can gener-431

ally achieve better performance, the enormous im-432

provement of F1 score for NER is only about 2.0%433

(compare UMGF with BERT-CRF), which for RE434

is about 5.55% (compare MEGA with MTB). This435

observation reveals that the performance improve-436

ment of images on text-based NER tasks is rela-437

tively limited compared with RE tasks.438
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Figure 3: Performances on low-resource setting on
MNER and MRE task.

Secondly, our method is superior to the newest 439

SOTA models UMGF and MEGA, which improves 440

1.14%, 1.36%, and 15.44% F1 scores for Twitter- 441

2015, Twitter-2017, and MNRE datasets, respec- 442

tively. While previous multimodal methods all 443

merely leverage the highest-level features of two 444

modalities based on extra co-attention networks, 445

which belong to the two-stream structure. This 446

results indicate that elaborately establishing hier- 447

archical fusion with pyramidal visual features is 448

beneficial for multimodal tasks. 449

Finally, we also compare with VisualBERT, 450

which is a pre-trained multimodal BERT with a 451

single-stream structure. We notice that even as the 452

pre-trained multimodal model, VisualBERT leaves 453

much to be desired in MNER and MRE tasks, 454

which performs worse than UMGF and MEGA, 455

let alone our methods. We hold that VisualBERT 456

is truly dissatisfactory since the datasets and pre- 457

training process are less relevant to information 458

extraction tasks. 459

4.3.2 Low-resource Scenario 460

Figure 3 shows the performance of our method 461

in a low-resource scenario compared with several 462

baselines. By analyzing this results, we can ob- 463
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Relevant Image-text Pair Weak Relevant Image-text Pair Irrelevant Image-text Pair

Taylor Hill holding Jun ’s GQ japan lol. Cold front over Blyde River Canyon in
Limpopo Province , South Africa.

President Bush when he sees the lights
of America .

Text-Images Attention of HMNeT

Gold Relations: per/per/couple loc/loc/contain per/loc/place_of_residence

BERT: per / per /couple 7
VisualBERT: per / per /peer 4
MEGA: per / per /peer 4
HMNeT(Ours): per / per /peer 4

misc / misc /part_of 7
misc / misc /part_of 7
per / per /peer 7

loc / loc /contain 4

per / loc /place_of_residence 4

misc / loc /held_on 7
misc / loc /held_on 7
per / loc /place_of_residence 4

Table 2: The first row shows the split of the relevance of image-text pairs, and the several middle rows indicate
representative samples together with their entity-object attention in the test set of MNRE datasets, and the bottom
four rows show predicted relation of different approaches on these test samples.

serve: 1) UMT and MEGA consistently outper-464

form the compared baselines in the low-resource465

scenario; the improvement indicates that incorpo-466

rating the visual features is still helpful for NER467

and RE tasks in low-resource scenarios. 2) More-468

over, it can be observed that the performance of469

HMNeT still outperforms the other baselines. It470

further proves the effectiveness and robustness of471

our proposed method. This may be attributed to472

letting BERT listen to hierarchical visual features473

rather than only the final high-level features, thus,474

effectively injecting visual knowledge.475

4.3.3 Cross-task Scenario476

Table 3 shows performance comparison of HMNeT477

and UMGF in a cross-task scenario for versatility478

analysis. For the first part, Twitter2017 → MNRE479

denotes that the trained model on Twitter-2017 is480

further used to train and test on MNRE. For the sec-481

ond part, MNRE → Twitter-2017 represents that482

the trained model on Twitter-2017 is used to further483

train and test on Twitter-2017. From this Table, we484

can observe that our HMNeT significantly outper-485

forms UMGF by a more considerable margin. It486

is worth noting that our method can achieve fur-487

ther improvement in a cross-task scenario, while488

UMGF performs worse than previous results on489

the corresponding dataset. This justifies that our490

HMNeT is robust to automatically reduce the inter-491

ference of visual information of irrelevant picture;492

thus, more image-text data may facilitate learning493

better parameters for modality fusion. Besides, it494

is also interesting to extend our work to multi-task495

learning or multi-modal pre-training and we leave496

these for further works.497

Methods Twitter-2017→ MNRE MNRE→ Twitter-2017

UMGF 63.85→ 62.90 ↓ (0.95) 85.51→ 84.35 ↓ (1.16)
HMNeT 81.85→ 82.50 ↑ (0.75) 86.87→ 87.13 ↑ (0.26)

Table 3: Performance comparison of HMNeT and
UMGF in cross-task scenario.

4.4 Detailed Model Analysis 498

Ablation Study. In this part, we conduct exten- 499

sive experiments with the variants of our model 500

to further analyze the effectiveness of our model. 501

Table 1 shows the results of the variant set. We 502

observe that: 503

(1) Multi-layer Internal Integration. To gain 504

insights into our design of multi-layer fusion, we 505

conduct ablation studies incrementally to compared 506

previous SOTA models with the following variants: 507

1) HMNeT-Single and 2) HMNeT-Flat. On the 508

one hand, compared with HMNeT and HMNeT- 509

Flat, the performance of HMNeT-Single degrades 510

dramatically on all criteria of three datasets. On the 511

other hand, HMNeT-Flat is comparable to previous 512

SOTA models and even perform much better than 513

MEGA in multimodal RE task. Note that these 514

empirical findings indicate that layer-wise visual 515

knowledge guidance (Allow every layer of BERT 516

to see high-level visual features.) is beneficial. 517

(2) Dynamic Gated Aggregation. To validate 518

the impact of our proposed dynamic gate mech- 519

anism, we carry out experiments by introducing 520

two variants: 1) HMNeT-Flat, crudely conduct- 521

ing multi-layer fusion with single visual feature; 522

and 2) HMNeT-1V3, intuitively leveraging hierar- 523

chical visual features from low-level to high-level 524

blocks. We observe that HMNeT with dynamic 525
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Figure 4: Visualization of dynamic gate learned on MNER task. Each subgraph denotes one layer in BERT, and
the ordinate and abscissa respectively represent the instance id in a batch and the block id of ResNet.

gate achieves the best performance consistently526

compared with the other variants. Although the527

HMNeT-1V3 performs slightly lower than the ver-528

sion of dynamic gate, it still outperforms the crude529

variant HMNeT-Flat. It reveals that the dynamic530

gate can automatically learn appropriate weights531

for different visual clues, enabling the model to532

explore possible optimal visual pyramidal features533

polymerization for each Transformer layer.534

(3) Visual Clues Term. As recent SOTA mod-535

els such as UMT, UMGF, and MEGA all adopt536

visual objects to enhance textual representation,537

we conduct experiments by ablating global images538

to explore the impact of the visual clues. As ex-539

pected, we find that HMNeT-OnlyObj performs540

slightly worse than HMNeT, which is consistent541

with the observation of previous works. This can be542

attributed to that abstract clues maybe not be asso-543

ciated with the text in information extraction tasks.544

In other words, this empirical finding demonstrates545

the flexibility of our methods to infuse visual clues546

with different granularity.547

Case Analysis for Image-text Relevance To548

validate the effectiveness and robustness of our549

method, we conduct case analysis for image-text550

relevance as indicated in Table 2 We notice that Vi-551

sualBERT, MEGA, and our method can recognize552

the relation for the relevant image-text pair. We553

can further find that the attention between relevant554

entities and objects is significant. While in the sit-555

uation that image represents the abstract semantic556

that is weak relevant to the text, only our method557

success in prediction due to HMNeT captures the558

more hierarchical features. It should be noted that559

another two multimodal baselines fail in irrelevant560

image-text pairs while text-based BERT and ours561

still predict correctly. These observations reveal562

that our model can learn more robust multimodal563

representation dynamically, which is essential for564

the noise of uncorrelated image-text samples.565

Gate Visualization We hypothesis that the key 566

component of HMNeT achieving the superior per- 567

formance is the dynamic gated aggregation in multi- 568

layer internal integration, which can adaptively as- 569

sign different modality integration paths for differ- 570

ent input images. To this end, we randomly sample 571

eight images in a batch and visualize their gate 572

vectors learned by HMNeT according to 12 lay- 573

ers of BERT in Figure 4. Note that HMNeT-1V3 574

perform a little worse than our HMNeT, and the op- 575

timized gate vectors follow the trend of matching 576

low-level textual semantics with low-level visual se- 577

mantics and matching high-level textual semantics 578

with high-level visual semantics. Meanwhile, the 579

modality fusion obtained by dynamic gate learning 580

may provide some valuable insights for efficient 581

visual-language approaches in the future. 582

5 Conclusion and Future Work 583

In this paper, inspired by the proverb “Listen to 584

both sides and be enlightened, listen to one side 585

and be in the dark.”, we propose a hierarchical 586

modality fusion framework towards multimodal 587

NER and RE to reduce modality gap and bias of 588

irrelevant image-text pairs, which is the first work 589

leveraging hierarchical pyramidal visual features 590

to conduct multi-layer internal integration in Trans- 591

former. Concretely, we propose a multi-layer in- 592

ternal integration network for modality fusion, and 593

design a dynamic gated aggregation strategy to ex- 594

tract hierarchical visual features automatically. Ex- 595

tensive experimental results on three benchmarks 596

have demonstrated the effectiveness and robustness 597

of our proposed method. 598

In the future, we plan to 1) explore more appli- 599

cations of hierarchical modality fusion framework 600

in multimodal representation learning, making it 601

more flexible and extensible; 2) apply the reverse 602

version of our approach to boost visual represen- 603

tation with text for CV; 3) extend our approach to 604

multitask multimodal pre-training. 605
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A Detailed Statistics of Dataset 902

Dataset Train Dev Test Avg length
(characters)

Twitter-2015 4,000 1,000 3,257 95
Twitter-2017 4,290 1,432 1,459 64

Table 4: Size of the datasets in numbers of tweets.

Dataset # Sent. # Ent. # Rel. # Img.
TACRED 53,791 152,527 41 -
MNRE 14,796 20,178 31 10,089

Table 5: Comparison of MNRE with existing sentence-
level Relation Extraction dataset TACRED ( Sent.: sen-
tence, Ent.: entity, Rel.: relation,Img.: image.

B Experimental Details 903

This section details the training procedures and 904

hyperparameters for each of the datasets. Consider- 905

ing the instability of the few-shot learning, we run 906

each experiment 5 times on the random seed [1, 49, 907

1234, 2021, 4321] and report the averaged perfor- 908

mance. We utilize Pytorch to conduct experiments 909

with 1 Nvidia 3090 GPUs. All optimizations are 910

performed with the AdamW optimizer with a linear 911

warmup of learning rate over the first 10% of gradi- 912

ent updates to a maximum value, then linear decay 913

over the remainder of the training. And weight de- 914

cay on all non-bias parameters is set to 0.01. We set 915

the number of image objects m to 3. We describe 916

the details of the training hyper-parameters in the 917

following sections. 918

B.1 Standard Supervised Setting 919

In the MNER task, we fix the batch size as 8 and 920

search for the learning rates in varied intervals [1e- 921

5, 3e-5]. We train the model for 30 epochs and 922

do evaluation after the 16th epoch. In the MRE 923

task, we fix the batch size as 32 and learning rates 924

as 1e-5. We train the model for 12 epochs and do 925

evaluation after the 8th epoch. In the two tasks, we 926

all choices the model performing the best on the 927

validation set and evaluate it on the test set. 928
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B.2 Low-Resource Setting929

For different instances per class, we sample five930

times on the random seed [1, 2, 49, 4321, 1234] and931

report the averaged performance. For all models,932

we fix the batch size as 8 and search for the learning933

rates in varied intervals [3e-5, 5e-5]. We train the934

model for 30 epochs and do evaluation after the935

16th epoch. We choose the model performing the936

best on the validation set and evaluate it on the test937

set.938

B.3 Cross-Task Setting939

In the MNER task and RE task, we all use ResNet940

and BERT-base as the backbone, we transfer the941

same parameters except the classifier layer and942

CRF layer when we do cross-task. In further train-943

ing, we fix the batch size as 8 and search for the944

learning rates in varied intervals [1e-5, 3e-5]. We945

train the model for12 epochs and do evaluation af-946

ter the 8th epoch. We choose the model performing947

the best on the validation set and evaluate it on the948

test set.949
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