SAGE: Sequential Agent Goal Execution Protocol for Multi-LLM Workflow

Management

Muhammad Saim?

1 National University of Computer & Emerging Sciences (FAST NUCES) Karachi

Abstract

SAGE (Sequential Agent Goal Execution Protocol) is a modular protocol designed to orchestrate complex, multi-step Al workflows by
decomposing user prompts into validated, goal-driven sub-tasks. Each sub-task is dynamically routed to the most suitable language model,
executed, evaluated, and aggregated into a coherent final response. While the current demonstration leverages local language models via
Ollama, SAGE is architected as an extensible and flexible framework, abstracting the workflow logic from any specific model provider or

deployment environment.

Index Terms: Multi-LLM Workflow Orchestration, Workflow Automation, Prompt Decomposition, Model Routing.

1 Introduction

The increasing complexity of Al tasks often requires the coor-
dination of multiple language models (LLMs), each with unique
strengths. SAGE addresses this need by providing a protocol that
decomposes user prompts, assigns sub-tasks to appropriate mod-
els, and ensures each step meets a defined success threshold before
aggregation Saim, 2025. The protocol is designed for extensibility,
reliability, and transparency, making it suitable for a wide range
of Al orchestration scenarios.

2 System Architecture
SAGE is developed with the following core components:

1. Decomposer Agent: Breaks down the main user prompt
into logical sub-prompts (sub-tasks) using rule-based
heuristics.

2. Router Agent: Selects the best available model for each
sub-task, using a meta-router LLM and fallback strategies.

3. Execution Manager: Executes sub-prompts sequentially
using the assigned model, maintaining context between
steps.

4. Evaluator: Judges the output of each sub-task against its
expected goal using an LLM-based evaluation protocol,
returning a success flag and similarity score.

5. Retry/Reassign Handler: Manages retries or
reassignments if a sub-task does not meet the success
threshold.

6. Aggregator: Combines all sub-task results into a final,
coherent response.

The protocol is formally specified in SAGE. spec.yaml and im-
plemented in the src/sage/ directory.

3 Model Support and Demonstration

For demonstration purposes, the current implementation supports
only local LLMs running via 011ama, specifically:

« gemma3:4b
« deepseek-ri1:1.5b
« qwen3:1.7b

These models are configured in config/settings.yaml and
are invoked through the 011ama API. The protocol, however, is de-

signed to be model-agnostic and can be extended to support cloud-
based or other local models with minimal changes.

Figure 1. The SAGE Workflow Flowchart.

4 Workflow
The SAGE workflow proceeds as follows:

1. Prompt Decomposition: The user prompt is split into sub-
prompts, each assigned a task type and expected goal.

2. Model Assignment: Each sub-prompt is routed to the most
suitable model based on task type and meta-router LLM out-
put.

3. Sequential Execution: Sub-prompts are executed in order,
with context chaining as needed.

4. Evaluation: Each result is evaluated for correctness and suf-
ficiency using an LLM-based evaluator.

5. Retry/Reassignment: If a sub-task fails to meet the simi-
larity threshold, it is retried or reassigned to another model,
up to a configurable maximum.

6. Aggregation: Successful results are aggregated into a final
response, with metadata on execution and success rates.

All runs are logged to sage_protocol.log for audit and de-
bugging.



SAGE: Sequential Agent Goal Execution Protocol

5 Extensibility and Flexibility

SAGE is designed as an abstract protocol, not tied to any specific
model provider or workflow. Key extensibility points include:

Adding new agent types (e.g., for planning, validation, or

post-processing)

Integrating additional LLM providers (cloud or local)
Customizing decomposition, routing, or evaluation logic
Plugging in custom similarity metrics or feedback mecha-
nisms

Configuration is managed via a YAML file, allowing easy adap-
tation to new models or strategies.

6 Limitations

Model Support: The current version supports only local
Ollama models for demonstration. Cloud LLMs (e.g., GPT,
Claude) are not yet integrated.

Rule-Based Decomposition: Prompt decomposition is
currently rule-based and may require further development
for more complex prompts.

Evaluation: The evaluator relies on LLM-based judgment,
which may be subject to the limitations of the underlying
model.

7 Conclusion

SAGE establishes a robust and modular protocol for orchestrat-
ing multi-agent, multi-model AI workflows. By abstracting the
decomposition, routing, execution, evaluation, and aggregation of
sub-tasks, SAGE enables flexible integration of diverse language
models and agent strategies. Its extensible architecture allows for
seamless adaptation to evolving Al technologies and workflow re-
quirements, making it a strong foundation for reliable and trans-
parent Al task management across a wide range of applications.

References

+ Project Repository: https://github.com/saim-x/SAGE


https://github.com/saim-x/SAGE

	Introduction
	System Architecture
	Model Support and Demonstration
	Workflow
	Extensibility and Flexibility
	Limitations
	Conclusion

