
Reproducibility Report: Deep Fair Clustering for Visual
Learning

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

Deep Fair Clustering (DFC) aims to provide a clustering algorithm that is fair, clustering-favourable, and which can be3

used on high-dimensional and large-scale data. In existing frameworks there is a trade-off between clustering quality4

and fairness. In this report we aim to reproduce a selection of the results of DFC; using two of four datasets and all four5

metrics that were used in the original paper, namely accuracy, Normalized Mutual Information (NMI), balance and6

entropy. We use the authors’ implementation and check whether it is consistent with the description in the paper. As7

extensions to the original paper we look into the effects of 1) using no pretrained cluster centers, 2) using different8

divergence functions as clustering regularizers and 3) using non-binary/corrupted sensitive attributes.9

Methodology10

The open source code of the authors has been used. The datasets and data-preprocessing has been done with our code,11

since the authors did not provide the datasets in their code. Also the pretrained Variational Autoencoder (VAE) dataset12

had to be re-implemented for the Color Reverse MNIST . For the extensions we wrote extra functions. For measuring13

the influence of discarding the pretrained cluster centers, the code was already provided by the authors.14

Results15

For the MNIST-USPS dataset, we report similar accuracy and NMI values that are within 1.2% and 0.5% of the values16

reported in the original paper. However, the balance and entropy differed significantly, where our results were within17

73.1% and 30.3% of the original values respectively. For the Color Reverse MNIST dataset, we report similar values on18

accuracy, balance and entropy, which are within 5.3%, 2.6% and 0.2% respectively. Only the value of the NMI differed19

significantly, name within 12.9% of the original value In general, our results still support the main claim of the original20

paper, even though on some metrics the results differ significantly.21

What was easy22

The open source code of the authors was beneficial; it was well structured and ordered into multiple files. Furthermore,23

the code to use randomly initialized instead of pretrained cluster centers was already provided.24

What was difficult25

First of all, the main difficulty in reproducing the paper was caused by the coding style; due to the lack of comments26

it was difficult to get a good understanding of the code. Secondly, we were required to download the data ourselves.27

However, these filenames and labels did not correspond to the included txt-files by the authors. Therefore, the model did28

not learn and we regenerated train_mnist.txt and train_usps.txt. Finally, the authors only included pretrained29

models for the MNIST-USPS dataset. As a consequence, we had to pre-train some parts of the DFC algorithm for the30

Color Reverse MNIST dataset.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

1 Introduction32

With the increased application of Machine Learning in automated systems, particularly in decision making systems,33

it has become desirable that individuals are treated equally in such automated environments. However, there exists a34

trade-off between the fairness and the performance of machine learning algorithms in a given task [Li et al., 2020].35

In current fair clustering algorithms, fair and effective representations are learned by mainly using small-scale and36

low-dimensional data.37

Deep Fair Clustering (DFC) is an algorithm that aims to learn fair and clustering-favorable representations for large-scale38

and high-dimensional data. In this context, feature representations are considered to be fair if they are statistically39

independent of sensitive attributes. DFC consists of an encoder that produces the representations, and a discriminator40

that tries to predict the value of the sensitive attribute of a representation. A minimax game is used to learn fair41

representations in an adversarial manner. In order to preserve the utility of the representations, clustering is performed42

on all datapoints with the same sensitive attribute. This component is called ’structural preservation’ because it preserves43

the clustering structure in each sensitive attribute. Finally, The KL-divergence is used as a clustering regularizer to44

prevent the formation of large clusters.45

All code is available on Github [Al Gerges et al.].46

2 Scope of reproducibility47

The goal of this work is to validate the reproducibility of the DFC algorithm proposed by Li et al. [2020] beyond the48

scope of the original paper. The main claims of the original paper are as follows:49

Claim 1: DFC produces a fair clustering partition on high dimensional and large-scale visual50

data.51

Claim 2: DFC produces clustering-favorable representations under a fairness constraint.52

To test the validity of claim 1, the balance and entropy scores will be examined and compared with the original53

paper. The validity of claim 2 will be tested similarly, where we instead examine the accuracy and normalized mutual54

information (NMI) score. Important to note is that the original paper mainly evaluated the DFC algorithm on binary55

sensitive attributes. As an example, in Li et al. [2020] a sensitive attribute was defined as whether an image from the56

MNIST dataset has been reversed or not. Generally speaking, in the original paper the sensitive attributes could only57

take one out of two possible values. However, sensitive attributes in the real world, like race or gender, can take on58

multiple variables.59

Thus, to evaluate the robustness of claim 1, we will perform the DFC algorithm for non-binary sensitive attributes.60

These will be modelled by ‘corrupting’ the images in the Color Reverse MNIST dataset. The corruption process is done61

by partially replacing the pixels in the background of the images. For the MNIST dataset, some pixels will be whitened,62

while for the Color Reverse MNIST dataset the some pixels will be replaced by black pixels.63

Furthermore, we will investigate the robustness of both claims by testing the DFC algorithm on different model64

configurations. Specifically, we will test out different clustering regularizers by replacing the KL-divergence with other65

divergence measures, namely the Jensen-Shannon divergence (JS-divergence) and the Cauchy-Schwarz divergence66

(CS-divergence).67

Finally, in the original paper it is mentioned that pretrained cluster centers were used in the DFC algorithm. However,68

the motivation of using pretrained cluster centers in DFC is omitted, which might suggest that pre-training cluster69

centers are not a necessary part of the DFC pipeline. Therefore, we will examine the influence of pretrained cluster70

centers in DFC.71

3 Methodology72

3.1 Model descriptions73

Li et al. [2020] use a pretrained convolutional variational autoencoder (VAE). The available code only contained the74

pretrained encoder and decoder for the MNIST-USPS dataset [Li et al.]. We implemented and pretrained a convolutional75

VAE for the Color Reverse MNIST dataset. The encoder is build of four convolutional layers, followed by batch76

normalization and a ReLU activation function. Moreover, the decoder is implemented by reversing the layers of the77

2

encoder. Both the encoder and decoder contained 610K and 58.9K parameters respectively. The VAE is trained using78

the Adam-optimizer and a learning rate of 1e− 3.79

Li et al. [2020] also used pretrained cluster centers to start their DFC algorithm off with high accuracy clusters. They80

only provided pretrained cluster centers for the MNIST-USPS dataset: Therefore, in order to reproduce the results, we81

were required to obtain pretrained cluster centers for the Color Reverse MNIST dataset. For this task we used k-means82

clustering1 with k = 10. Because the original code of the authors used 64-dimensional cluster centers, we first scaled83

our 32× 32 images down with a max pooling layer with 4 sized filters, so that the images would go from 32× 32 to84

8× 8. After dimension reduction every image becomes a 1× 64 vector. We then fit every image in the dataset using85

MiniBatchKMeans from the sklearn package2. With max_iter = 1000 and batch_size = 512. This results in our86

pretrained cluster centers which can be trained for every dataset.87

To examine during clustering whether fair representations are reached, a discriminator is used; when it cannot distinguish88

based on the sensitive attribute the representations are fair. This discriminator is a multilayer perceptron (MLP) using89

three linear layers, of which the first two are followed by a ReLU activation function and a dropout of 0.5: the final90

layer is followed by a sigmoid activation function. The discriminator is trained jointly with the encoder for 2000091

epochs. Finally, the Adam optimizer is used with an initial learning rate of lrinit = 1e− 4. The learning rate is adjusted92

with lr = lrinit(1 + 10t)−0.75, with t = 0 at the start of the training process; with every iteration t is linearly increased93

to t = 1 at the end of the training process.94

The objective function consists of three parts; the fairness-adversarial loss (Lf), the structural preservation loss (Ls)95

and the clustering regularizer term (Lc). The task of the fairness-adversarial loss is to minimize the divergence between96

the cluster assignments of the different subgroups. In this way the term promotes a similar cluster distribution for all97

subgroups, hence, statistical independence between cluster assignments and the particular protected subgroup that the98

sample belongs to. The fairness-adversarial loss can be written as:99

Lf := L(D ◦ A ◦ F(X), G), (1)

where L denotes the cross-entropy loss and ◦ denotes the function composition: moreover, D, A, F denotes the100

discriminator, cluster assignment and encoder respectively.101

The fairness-adversarial loss encourages statistical independence of the cluster assignments and the sensitive attribute102

G, however, only optimizing Lf is not enough as it can lead to a degenerate solution, where the representations that103

are produced by the encoder are all constant. Of course, such a constant representation cannot lead to good clustering104

quality; it would hide, rather than illuminate, the fundamental structure in the data. The structural preservation loss105

prevents such a solution by penalizing it when the inner structure of a particular subgroup is altered in the DFC setting,106

as opposed to clustering the subgroup individually. The preservation loss, which was proposed by the authors [Li et al.,107

2020] is given as follows:108

Ls :=
∑
g∈[M]

∣∣∣∣∣∣P̂gP̂Tg − PgPTg ∣∣∣∣∣∣2 , (2)

where [M] denotes the set of sensitive attributes, P̂g and Pg denote the (soft) assignments of the g−th protected109

subgroup when individually clustered and clustered with DFC, respectively.110

Following other work in deep clustering, DFC employs a clustering regularizer to strengthen prediction confidence111

and to prevent large cluster sizes [Li et al., 2020]. Contrary to earlier work, the clustering regularizer is chosen in such112

away that it encourages the members of a particular protected subgroup to be distributed equally over the clusters. To113

increase the confidence of the prediction an auxiliary target distribution Q is defined. This target distribution is defined114

in such a way that it favors current high confidence assignments and is calculated as:115

qk =
(pk)

2/
∑
x∈Xg pk∑

k′∈[K]((pk′)
2/
∑
x∈Xg pk′

, (3)

with pk the probability that sample x belongs to cluster k, and Xg the samples that belong to protected subgroup G.116

Then, the clustering regularizer loss is defined as the KL-divergence between soft assignment P and auxiliary target117

distribution Q:118

Lc := KL(P ||Q) =
∑
g∈[M]

∑
x∈Xg

∑
k∈[K]

pk log
pk
qk
. (4)

1https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
2https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

3

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

Again following the literature, the authors have chosen to use the Student t-distribution for soft cluster assignment [Li119

et al., 2020]. The probability that the representation z (corresponding to a particular sample x) belongs to cluster ck is120

then given by:121

pk =
(1 + 1

α ||z − ck||
2)−

α+1
2∑

k′∈[K](1 +
1
α ||z − ck′ ||2)

−α+1
2

, (5)

with α the degree of freedom of the Student’s t-distribution. In conclusion, the overall objective is defined as the122

following minimax strategy:123

max
F,A

αfLf − αsLs − Lc, (6)

min
D

αfLf (7)

with αf and αs as trade-off hyperparameters.124

3.2 Datasets125

In this study, we have used two publicly available datasets: Color Reverse MNIST and MNIST-USPS datasets. Both126

datasets contain a collection of grey-scale images of hand-written digits (0-9).127

The first dataset, MNIST-USPS , is a combination of the MNIST3 and USPS4 dataset. Both, MNIST and USPS are128

downloaded using the torch.vision.dataset package. The label distributions and total number of examples in the129

training and test set can be found in Table 1. The MNIST dataset contains approximately eight times more images than130

USPS . In the MNIST-USPS dataset, the source, either MNIST or USPS , is chosen to be the sensitive attribute.131

The second dataset, Color Reverse MNIST , was constructed by reversing the images in the MNIST dataset and132

concatenating them to the original. The color reversed images were constructed with pixel = 255 - pixel. The label133

distributions and total number of examples in the training and test set can also be found in Table 1. Equivalent to the134

MNIST-USPS dataset, the sensitive attribute is the source of the image; in this case either MNIST or Color Reverse135

MNIST .136

The images in all datasets are padded to create images of the same size (32× 32); this implies a padding of 2 and 8 for137

the images of MNIST and USPS respectively.138

Dataset 0 1 2 3 4 5 6 7 8 9 Total

MNIST train 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949 60000
USPS train 1194 1005 731 658 652 556 664 645 542 644 7291

Color Reverse MNIST train 11846 13484 11916 12262 11684 10842 11836 12530 11702 11898 120000
MNIST-USPS train 7117 7747 6689 6789 6494 5977 6582 6910 6393 6593 67291

Table 1: Label distribution per dataset

3.3 Extensions139

3.3.1 Divergence Functions140

As mentioned earlier in Section 2, we examined the effect of using different divergence functions as clustering141

regularizers by replacing the KL-divergence with either the Jensen-Shannon divergence (JS-divergence) or the Cauchy-142

Schwarz divergence (CS-divergence).143

The JS-divergence is the smoothed and symmetric version of the KL-divergence and is calculated as follows:144

JS(P ||Q) =
1

2
KL(P ||M) +

1

2
KL(Q||M) (8)

where M = 1
2 (P +Q) and KL(.||.) is the KL-divergence as defined in 4.145

3http://yann.lecun.com/exdb/mnist/
4http://www.kaggle.com/bistaumanga/usps-dataset

4

http://yann.lecun.com/exdb/mnist/
http://www.kaggle.com/bistaumanga/usps-dataset

Furthermore, the CS-divergence is a divergence function that is inspired by information theory. It is given by the146

following (Jenssen et al. [2006]):147

CS(P ||Q) = − log

∫
p(x)q(x)dx√∫

p2(x)dx
∫
q2(x)dx

(9)

The CS-divergence is, like the JS-divergence, a symmetric measure. Furthermore, the CS-divergence has the range148

0 ≤ CS(P ||Q) ≤ ∞, where the minimum value of 0 is obtained if p(x = q(x)).149

3.3.2 Corrupted Sensitive Attribute150

Another extension mentioned in Section 2 is that we consider the influence of the corrupted sensitive attribute. In151

the Color Reverse MNIST dataset the presence of this attribute is clear in background color. Corrupting the sensitive152

attribute in this dataset implies random modifications in the background color. We compare two corruption rates (0.1153

and 0.4) against the original images; for example, a rate of 0.1 implies that a random 10% of the background pixels are154

changed from black to white or vice versa.155

3.3.3 Pretrained Cluster Centers156

The final extension mentioned in Section 2 is that we would examine the influence of pretrained cluster centers on157

the performance of DFC. If no pretrained cluster centers were used, they would be randomly initialized with Xavier158

initialisation using a uniform distribution.159

3.4 Evaluation160

To evaluate the models, we used the four metrics that were also used by Li et al. [2020]: accuracy and Normalized161

Mutual Information (NMI) were used to evaluate the cluster validity, while balance and entropy were calculated to162

evaluate the fairness of DFC. Equations 10-13 are used to calculate the metrics: the NMI is calculated using sklearn.163

Accuracy =

∑n
i=1 Iyi=map(ŷi)

n
(10)

NMI =

∑
i,j nij log

n·nij
ni+·n+j√

(
∑
i ni+ log ni+

n)(
∑
j n+j log

n+j

n)
(11)

Balance = min
i

ming |Ci ∩Xg|
ni+

(12)

Entropy = −
∑
i

|Ci ∩Xg|
ni+

log
|Ci ∩Xg|
ni+

+ ε (13)

In Eq. 10, yi and ŷi represent the correct and predicted cluster label respectively: map is a function that maps the164

cluster label ŷi to the correct label yi. In Eq. 11, nij denotes the co-occurrence number; ni+ and n+j denote the cluster165

size of the i-th and j-th clusters, in the obtained partition and ground truth, respectively. n is the total data instance166

number. Furthermore, Ci represents the i-th cluster and Xg the g-th protected subgroup. Finally, in Eq. 13, ε = 1e− 5,167

to ensure the log will always be defined.168

As mentioned before, accuracy and NMI are measures for the clustering quality. More specific, accuracy measures the169

correctness of clusters relative to a ground truth and NMI measures the similarity between the clustering obtained by170

DFC and the ground truth. For both metrics, a higher value indicates better clustering quality. Furthermore, balance171

and entropy evaluate the fairness of the obtained clustering. In particular, balance measures the homogeneity of the172

clustering across multiple sensitive attributes. A large value indicates that each cluster contains samples from multiple173

protected subgroups. If one cluster contains only instances of a particular protected subgroup, the balance has a score of174

0. Entropy is a softer fairness metric than balance that measures the diversity of the clustering. Just like balance, a large175

entropy value indicates that samples from a protected subgroup are present in almost every cluster, which indicates a176

more fair clustering and thus more fair representations.177

5

3.5 Computational requirements178

The code was run locally on a GPU. The GPU in question is a GeForce GTX 970 with driver version 456.71. The179

CPU in this machine is an Intel Core i7-4770K. The memory used was 16.0 GB DDR3. For the main training of the180

adversarial network with 20000 iterations at 5000 iterations per evaluation the model ran in approximately 3.5 hours.181

This was the same computational cost to run DFC with a different divergence function. For the corruption extension182

we used 5000 iterations at 500 iterations per evaluation which took about 1.5 hours. The training of the VAE for183

the Color Reverse MNIST dataset took roughly 1 hour. The k-means clustering to obtain the pretrained clusters took184

approximately 15 minutes. Taking all this into account, the reproduction of the Color Reverse MNIST results from185

scratch took a total of circa 6.25 hours to compute. Finally, evaluating all the results with the saved models takes about186

20 minutes. In conclusion, the code is not fast but it can be run on a local machine. A GPU is heavily recommended,187

because without one the code is about eight times slower.188

4 Results189

4.1 Reproduced Results190

The original results from Li et al. [2020] as well as the reproduced results can be found in Table 2.191

Dataset Method Accuracy NMI Balance Entropy

Color Reverse MNIST Li et al. [2020] 0.577 0.679 0.763 2.294/2.301

Reproduced 0.548 0.591 0.783 2.301/2.299

MNIST-USPS Li et al. [2020] 0.825 0.789 0.067 2.301/2.265

Reproduced 0.835 0.785 0.018 2.301/1.579
Table 2: Reproduced and original quantitative results, for all metrics, on Color Reverse MNIST and MNIST-USPS
dataset.

First of all, the reproduced accuracies on both datasets are very similar to the original values of Li et al. [2020]; differing192

0.029 and 0.01 on Color Reverse MNIST and MNIST-USPS respectively. Secondly, similar to accuracy, the original and193

reproduced NMI values do not differ much; 0.88 on Color Reverse MNIST and 0.004 on MNIST-USPS . Thirdly, the194

reproduced balance on Color Reverse MNIST is close to the original; differing 0.02: however, the difference is larger on195

the MNIST-USPS dataset (0.049). Finally, the entropy values on Color Reverse MNIST are very similar in contrast to196

the original and reproduced entropy on MNIST-USPS .197

4.2 Results beyond original paper198

4.2.1 Divergence Functions199

Table 3 shows the results for different divergence functions as clustering regularizers.200

Dataset Divergence Function Accuracy NMI Balance Entropy

Color Reverse MNIST
KL-divergence 0.548 0.591 0.783 2.301/2.299

JS-divergence 0.517 0.397 0.701 2.301/2.289

CS-divergence 0.592 0.408 0.025 2.301/2.084

MNIST-USPS
KL-divergence 0.835 0.785 0.018 2.301/1.579

JS-divergence 0.816 0.753 0.000 2.301/1.056

CS-divergence 0.815 0.755 0.000 2.301/0.737
Table 3: Quantitative results for the Color Reverse MNIST and MNIST-USPS dataset, for all four metrics, with varying
divergence measures.

6

On the Color Reverse MNIST dataset it can be observed that the accuracy do not differ significantly. Furthermore,201

using the CS-divergence seems to yield the highest accuracy. However, the NMI decreases significantly with JS-202

and CS-divergence as clustering regularizer. On top of that, the balance and entropy decrease significantly with203

CS-divergence. Using the JS-divergence also results in a decrease in balance and entropy on the Color Reverse MNIST204

dataset, even though that decrease is minor compared to the CS-divergence. In general, the KL-divergence outperforms205

the other two divergences on three of the four metrics on the Color Reverse MNIST dataset.206

On the MNIST-USPS dataset, it can be seen that the difference in accuracy and NMI is even less significant compared to207

the Color Reverse MNIST dataset. However, on the MNIST-USPS dataset all four metrics decrease when using the JS-208

or CS-divergence instead of the KL-divergence. Moreover, the balance and entropy seem to decrease more significantly209

than the accuracy and NMI. In general, on the MNIST-USPS dataset the JS- and CS-divergence perform worse than the210

KL-divergence.211

4.2.2 Corrupted Sensitive Attribute212

The results of the corruption extension can be found in Table 4.213

Dataset Corruption (in %) Accuracy NMI Balance Entropy

MNIST 0.1 0.451 0.487 0.639 2.301/2.288

0.4 0.342 0.314 0.001 0.837/2.258

Color Reverse MNIST 0.1 0.635 0.606 0.645 2.301/2.289

0.4 0.474 0.483 0.002 2.164/2.198

Both 0.1 0.446 0.531 0.659 2.299/2.285

0.4 0.313 0.213 0.000 1.615/1.583
Table 4: Quantitative results, on all four metrics, with varying corruption rates.

As can be seen, both the accuracy and the NMI decrease when data has been corrupted. However, the decrease in214

accuracy and NMI seems to be more significant when the Color Reverse MNIST dataset is corrupted. On top of that,215

the balance and entropy decrease as well when the data is corrupted. In general, a higher corruption leads to lower216

values on all metrics.217

4.2.3 Pretrained Cluster Centers218

The final extension researches the influence of the pretrained cluster centers on the utility and fairness of the clusters.219

The results for both datasets can be found in Table 5.220

Dataset Pretrained Accuracy NMI Balance Entropy

Color Reverse MNIST Yes 0.548 0.591 0.783 2.301/2.299

No 0.468 0.494 0.872 2.301/2.302

MNIST-USPS Yes 0.835 0.785 0.018 2.301/1.579

No 0.822 0.770 0.000 2.301/1.568
Table 5: Quantitative results for all metrics, on Color Reverse MNIST and MNIST-USPS datasets, with and without
using pretrained cluster centers.

As can be seen, for both datasets accuracy and NMI are higher when pretrained cluster centers are used. The difference221

in accuracy is larger on the MNIST-USPS dataset, whereas the difference in NMI is smaller on this dataset, compared222

to Color Reverse MNIST . Moreover, the difference in balance on MNIST-USPS is not significant (0.018) while this223

is approximately five times larger (0.089) on the Color Reverse MNIST dataset. Finally, the entropy does not change224

significantly on both datasets.225

7

5 Discussion226

Our experimental results support the main claims of the original paper; namely that DFC is able to produce fair and227

clustering-favorable representations of large-scale and high dimensional data, such as images.228

Furthermore, our extensions seem to add to the robustness of the model and strengthen the choices made by the original229

paper. First of all, the results of the different divergence functions show that both, CS- and JS-divergence, work but the230

default, KL-divergence, outperforms the two researched alternatives. Moreover, even though the Color Reverse MNIST231

dataset required the training of a new VAE and k-means clustering the results were still comparable; this speaks to the232

robustness of the algorithm that the original authors designed.233

5.1 What was easy234

The open source code of the authors was conveniently arranged. For example, the divergence function was put in the235

utils file, which made it easy to test other divergence functions as well. Also, the code had an implementation that236

randomly initialises cluster centers; to discard the pretrained cluster centers only modifications in the main file were237

needed. Once we understood the code base, the code structure became intuitive and easy to work with.238

5.2 What was difficult239

First of all, a difficulty while reproducing the research was caused by the coding style; due to the lack of comments it240

was difficult at the start to get a good understanding of the code. Secondly, we were required to download the data241

ourselves. However, these filenames and labels did not correspond to the included .txt-files by the authors. Therefore,242

the model did not learn and we were forced to produce our own train_mnist.txt and train_usps.txt. Thirdly,243

the algorithm uses pretrained models, a pretrained VAE, and a file with pretrained cluster centers. However, the authors244

solely provided these for one of the four datasets, namely MNIST-USPS . Thus, for Color Reverse MNIST we had245

to build our own VAE based on their structure and calculate our own cluster centers. The latter came with an extra246

difficulty since in the paper it is not stated how the clustering was performed. Therefore, we had to guess and chose247

k-means clustering. This made the reproduction of the Color Reverse MNIST dataset much harder than anticipated.248

References249

Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering for visual learning. In The IEEE/CVF Conference on250

Computer Vision and Pattern Recognition (CVPR), June 2020.251

Chris Al Gerges, Pauline Baanders, Nienke Reints, and Tobias Teule. Reproducing deep fair clustering. URL252

https://github.com/topteulen/UVA-FACT.253

Peizhao Li, Han Zhao, and Hongfu Liu. Deep fair clustering. URL https://github.com/254

brandeis-machine-learning/DeepFairClustering.255

Robert Jenssen, Jose C. Principe, Denis Erdogmus, and Torbjørn Eltoft. The cauchy-schwarz divergence and parzen256

windowing: Connections to graph theory and mercer kernels. Journal of the Franklin Institute, 343(6):614–629,257

September 2006.258

8

https://github.com/topteulen/UVA-FACT
https://github.com/brandeis-machine-learning/DeepFairClustering
https://github.com/brandeis-machine-learning/DeepFairClustering
https://github.com/brandeis-machine-learning/DeepFairClustering

	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Datasets
	Extensions
	Divergence Functions
	Corrupted Sensitive Attribute
	Pretrained Cluster Centers

	Evaluation
	Computational requirements

	Results
	Reproduced Results
	Results beyond original paper
	Divergence Functions
	Corrupted Sensitive Attribute
	Pretrained Cluster Centers

	Discussion
	What was easy
	What was difficult

