

000 001 002 003 004 005 SPECTRUMWORLD: ARTIFICIAL INTELLIGENCE 006 FOUNDATION FOR SPECTROSCOPY 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Deep learning holds immense promise for spectroscopy, yet research and eval-
029 uation in this emerging field often lack standardized formulations. To address
030 this issue, we introduce SpectrumLab, a pioneering unified platform designed to
031 systematize and accelerate deep learning research in spectroscopy. Spectrum-
032 Lab integrates three core components: a comprehensive Python library featur-
033 ing essential data processing and evaluation tools, along with leaderboards; an
034 innovative SpectrumAnnotator module that generates high-quality benchmarks
035 from limited seed data; and SpectrumBench, a multi-layered benchmark suite
036 covering 14 spectroscopic tasks and over 10 spectrum types, featuring spectra
037 curated from over 1.2 million distinct chemical substances. Thorough empir-
038 ical studies on SpectrumBench with 23 cutting-edge multimodal LLMs reveal
039 critical limitations of current approaches. We hope SpectrumLab will serve
040 as a crucial foundation for future advancements in deep learning-driven spec-
041 troscopy. The anonymous code and experimental records are available at <https://anonymous.4open.science/r/SpectrumLab-8C4E/>.
042
043
044
045
046
047
048
049
050
051
052
053

1 INTRODUCTION

028 Spectroscopy, which investigates the interaction between electromagnetic radiation and matter, pro-
029 vides a powerful way to investigate the molecular structure and properties (Elias et al., 2004; Prasad
030 et al., 2025). By capturing characteristic patterns, such as peaks and shifts, in signals analogous
031 to audio waveforms, spectroscopy offers a compact, information-rich representation of molecular
032 systems (Ralbovsky & Lednev, 2020). This low-dimensional encoding is indispensable in chem-
033 istry (Silber et al., 2016; Seo et al., 2017), and life sciences (Ralbovsky & Lednev, 2020; Zhang
034 et al., 2023; Gasparin et al., 2025). It is not only central to molecular structure elucidation (*i.e.*,
035 Spectrum-to-Molecule structure) and property prediction, but also a key enabler for new material
036 discovery and drug screening. In recent years, machine learning methods, especially deep learning,
037 have demonstrated tremendous potential in spectroscopic data analysis, opening a new era of
038 automation and intelligence in spectroscopy research (Gastegger et al., 2017b; Gerrard et al., 2019;
039 Fine et al., 2020; Han et al., 2022; Zou et al., 2023b; Devata et al., 2024; Lu et al., 2025).
040
041

042 Despite recent advances, deep learning for spectroscopy still faces several fundamental challenges.
043 Specifically, high-quality experimental spectral data remain scarce and expensive to acquire (van de
044 Sande et al., 2023; Flanagan et al., 2025), leading to public datasets that are limited in size and suf-
045 fer from highly imbalanced distributions (Bongiorno et al., 2022; Stenning et al., 2024; Peng et al.,
046 2025), which severely restricts model generalization. In addition, a substantial domain gap exists
047 between experimental and computational spectra due to complex measurement conditions (Agar-
048 wala et al., 2022), hindering the deployment of models trained on theoretical data. Furthermore,
049 spectroscopy is inherently multimodal: it encompasses various spectral types (*e.g.*, infrared, Ra-
050 man, nuclear magnetic resonance) represented as either 1D signals or 2D images, often requiring
051 integration with other molecular modalities such as molecular graphs, SMILES strings, and 3D con-
052 formations (Litsa et al., 2021; Devata et al., 2024). The heterogeneous nature and semantics of
053 these data modalities pose significant challenges for deep learning systems. Finally, the field lacks
054 standardized benchmarks, with a fragmented landscape of tasks and datasets making it difficult to
055 systematically evaluate and compare model performance.
056

To address these challenges, we introduce **SpectrumLab**, a modular platform that streamlines the entire lifecycle of AI-driven spectroscopy from data preprocessing to model evaluation. Built on top of **SpectrumLab**, we construct **SpectrumBench**, a unified benchmark suite designed to evaluate machine learning models across diverse spectroscopic tasks and modalities. In contrast to existing approaches such as **DiffSpectra** (Wang et al., 2025b) and **MolSpectra** (Wang et al., 2025a), which rely on contrastive learning and diffusion architectures, we are among the first to incorporate multi-modal large language models (MLLMs) into spectroscopic learning, using their alignment capabilities to bridge heterogeneous data modalities.

Figure 1: Overview of SpectrumBench.

Our main contributions are: (1) We introduce **SpectrumLab**, the first standardized framework tailored for spectroscopic machine learning with multimodal large language models, enabling reproducible pipelines from raw spectra to evaluation. (2) We design **SpectrumAnnotator**, an automatic benchmark generator that constructs task-specific datasets from spectrum seeds, greatly accelerating prototyping and stress-testing of new models. (3) We release **SpectrumBench**, a large-scale benchmark suite covering diverse spectroscopic modalities and tasks, accompanied by unified evaluation protocols and public leaderboards to foster fair comparison and community progress.

2 RELATED WORK

Figure 2: Representative SpectraML methods categorized by **Spectral Type (left Y-axis)** and **Model Type (right Y-axis)**. Each dot indicates the use of a specific spectral modality or model architecture in a given method. Note that Raman is not included; thus, methods using it (e.g., DeepCID (Fan et al., 2019)) are not shown on the left Y-axis.

Machine Learning for Spectroscopy. Spectroscopy is fundamental for molecular structure analysis and scientific discovery, enabling insights into chemical properties and interactions (Guo et al., 2025). Its applications span diverse scientific domains, including chemistry, material science, and drug development (Shao et al., 2025; Sun et al., 2025). Machine learning techniques have been

extensively applied in spectroscopy for tasks such as molecular structure elucidation (spectrum-to-molecule) (Kuhn et al., 2008; De Vijlder et al., 2018; Paruzzo et al., 2018; Fan et al., 2019; Nguyen et al., 2019; Ji et al., 2020; Fine et al., 2020; Huang et al., 2021; Hu et al., 2024; Lu et al., 2025; Liu et al., 2025) and spectral simulation (molecule-to-spectral) (Gastegger et al., 2017a; Zhou et al., 2017; Liu et al., 2017; McGill et al., 2021; Guan et al., 2021; Ren et al., 2021; Young et al., 2024). As illustrated in Figure 2, recent efforts have explored a variety of spectral modalities, such as IR (Hu et al., 2024), NMR (Hu et al., 2024), UV-Vis (De Vijlder et al., 2018), MS (Huber et al., 2021), and Raman (Fan et al., 2019), and have adopted heterogeneous deep learning model architectures, ranging from MLPs (Stienstra et al., 2024) and CNNs (Alberts et al., 2024b) to GNNs (McGill et al., 2021) and Transformers (Alberts et al., 2024a). Despite these rapid progresses, existing methods still face several limitations: (1) most studies are constrained to a single modality (e.g., IR or MS), lacking generalization across spectral types (Beck et al., 2024); (2) the field lacks unified benchmarks and evaluation protocols, making objective comparisons difficult; (3) dataset sizes remain limited and imbalanced, further impeding reproducibility and robustness; (4) previous benchmarks does not support multi-modal large language models. These limitations highlight the need for standardized, cross-modal frameworks to advance machine learning for spectroscopy, especially spectroscopy foundation models.

Spectroscopy Foundation Models. While foundation models have shown promising progress in scientific discovery (Tan et al., 2025; Xia et al., 2025), spectroscopy foundation models are still underexplored. This is largely due to the inherent multimodal nature of spectroscopic data, which combines spectral signals with diverse molecular representations. Although recent efforts such as SpectraFM (Koblischke & Bovy, 2024) and LSM1-MS2 (Asher et al., 2024) have introduced pre-trained foundation models on Stellar and MS spectra for chemical property prediction, these models remain fundamentally single-modal, focusing solely on spectral information. Despite these challenges, the integration of spectroscopy into the foundation model paradigm holds significant promise for advancing automated analysis and multi-modal scientific discovery in the future.

Table 1: Comparison of Benchmark Studies. **Notes:** “Other” in the Spectral Modality column includes modalities not explicitly listed, such as HSQC (Heteronuclear single quantum coherence spectroscopy) and UV-Vis (Ultraviolet-visible spectroscopy). The NMR column refers to both ^1H -NMR and ^{13}C -NMR. We unify tasks’ terminology for clarity.

Benchmark	Reference	Spectral Modality					Task			Understanding			
		Raman	IR	NMR	MS	Other	Molecular Elucidation	Spectrum Simulation	<i>De novo</i> Generation	GR	PA	FM	MR
NovoBench	(Zhou et al., 2024a)				✓					✓			
MolPuzzle	(Guo et al., 2024b)	✓	✓	✓			✓				✓		
Multimodal Spec	(Alberts et al., 2024b)	✓	✓	✓	✓	✓	✓	✓	✓			✓	
MassSpecGym	(Bushuiev et al., 2024b)				✓		✓	✓					
NMRNet	(Xu et al., 2025)			✓									✓
ViBench	(Lu et al., 2025)	✓	✓				✓						
SpectrumBench	Ours	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Abbreviations: GR = Functional Group Recognition, PA = Peak Assignment, FM = Fusing Spectroscopic Modalities, MR = Multimodal Molecular Reasoning.

Benchmark and Toolkits for Spectroscopy. Several benchmarks and toolkits have been developed to support spectroscopic machine learning research (Heid et al., 2023; Zhou et al., 2024b; Bushuiev et al., 2024a; Guo et al., 2024b; Devata et al., 2024; Ruan et al., 2024; Guo et al., 2025). However, many of these efforts remain limited in scope (either spectrum modalities or tasks), lacking extensibility and comprehensive evaluation across diverse spectroscopic tasks and modalities. For example, MassSpecGym (Bushuiev et al., 2024a) focuses solely on MS data and does not incorporate language descriptions, hindering support for multi-modal inputs. Although MolPuzzle (Guo et al., 2024b) enables multi-modal inputs, it omits Raman spectra and lacks support for pure spectral understanding tasks. Furthermore, several toolkits (Bushuiev et al., 2024a; Zhou et al., 2024b) do not provide interfaces for multi-modal large language models (MLLMs), and even MolPuzzle lacks benchmarking for more recent MLLMs. In contrast, our SpectrumLab is a unified, extensible, and reproducible platform that addresses these limitations by supporting a wide range of spectroscopic tasks, modalities, and integration with MLLMs. Table 1 systematically compares representative studies in terms of their spectral modality and task coverage. SpectrumLab not only fills critical gaps in data, evaluation, and tooling, but also establishes a new standard for spectroscopic AI and enables future advances in multi-modal, large-model-driven scientific discovery.

162 3 SPECTRUMBENCH

164 **Overview.** SpectrumBench is a unified benchmark suite for deep learning in spectroscopy, covering
 165 four hierarchical levels and 14 sub-tasks that span from spectroscopy understanding to generation.
 166 All questions and tasks are initially defined by domain experts, and subsequently refined and vali-
 167 dated through expert review and rigorous quality assurance processes. Compared to existing bench-
 168 marks, SpectrumBench offers broad modality and task coverage within a standardized, extensible
 169 framework for fair and reproducible model evaluation.

170 **Spectroscopic Type.** Unlike previous bench-
 171 marks that are limited to a single spectro-
 172 scopic modality or narrowly defined data types
 173 (Bushuiev et al., 2024b), SpectrumBench in-
 174 tegrates a diverse array of spectroscopic data
 175 sources. Our SpectrumBench benchmark cur-
 176 rently includes more than 10 distinct types of
 177 spectroscopic data, such as infrared (IR), nu-
 178 clear magnetic resonance (NMR), and mass
 179 spectrometry (MS). As illustrated in Figure 1,
 180 this comprehensive data foundation accurately
 181 reflects the diverse and complex multi-modal
 182 spectroscopic scenarios encountered in real-
 183 world applications.

184 **Task.** In contrast to previous benchmarks
 185 that primarily focus on molecule elucidation or
 186 spectrum simulation, SpectrumBench encompasses a much broader spectrum of task types. Spec-
 187 trumBench is organized according to a multi-level hierarchical taxonomy that systematically covers
 188 tasks ranging from low-level signal analysis to high-level semantic reasoning and generative chal-
 189 lenges. This taxonomy, developed through expert consultation and iterative refinement, comprises
 190 four principal layers: **signal, perception, semantic, and generation**. Each layer is further divided
 191 into several subcategories, capturing a diverse set of scientific and application-driven tasks. Detailed
 192 definitions and representative examples for each task layer are provided in the Appendix C.

193 3.1 DATA CURATION PIPELINE

211 Figure 3: Overview of the data curation pipeline used in SpectrumBench.

213 **Task Construction.** Spectroscopic machine learning encompasses a wide spectrum of tasks, driven
 214 by the intrinsic complexity of molecular structures and the multifaceted nature of spectroscopic
 215 data. These tasks often involve diverse input modalities (e.g., molecular graphs, SMILES, textual
 216 prompts) and equally varied outputs (e.g., spectra, chemical attributes, structured predictions), which

Table 2: Tasks’ categories and statistics.

Category	Task	# questions
Signal	Spectrum Type Classification (TC)	55
	Spectrum Quality Assessment (QE)	60
	Basic Feature Extraction (FE)	51
	Impurity Peak Detection (ID)	28
Perception	Functional Group Recognition (FG)	45
	Elemental Compositional Prediction (EP)	36
	Peak Assignment (PA)	38
	Basic Property Prediction (PP)	34
Semantic	Molecular Structure Elucidation (SE)	80
	Fusing Spectroscopic Modalities (FM)	39
	Multimodal Molecular Reasoning (MR)	37
Generation	Forward Problems (FP)	30
	Inverse Problems (IP)	20
	De Novo Generation (DnG)	19

reflect the real-world demands of chemical analysis, property reasoning, and molecular generation. To illustrate this diversity, we organize existing spectroscopic tasks into four broad input-output categories: (1) *Molecule-to-Spectrum (Spectrum Simulation)* aims at generating a spectrum based on molecular structure. (2) *Spectrum-to-Molecule (Molecule Elucidation)* refers to the tasks that infer molecular structures from spectra. (3) *Text-to-Any*¹ (*De novo Generation*) refers to the task of generating novel, diverse, and reasonable molecular structures (SMILES string, 2D molecular graph) and/or predicting multimodal information (spectra, properties) according to specific goals (e.g., molecules of a specific nature, ligands of a specific target). Moreover, in previous studies, many tasks involving inferring molecular structures from spectra were also categorized under “*de novo* generation” (Bushuiev et al., 2024a; Lu et al., 2025). While this has some rationality, for the sake of consistency in our task framework, we clarify that our defined *de novo* generation task has distinct characteristics: its input consists solely of textual descriptions, which may include specifications of molecular properties (e.g., desired chemical natures, target-binding affinities), without involving spectral data as input. Meanwhile, the output scope is broader, encompassing not only molecular structures but also spectral and textual descriptions of molecules. (4) *Any-to-Text (Understanding)*. Tasks in signal, perception, semantic layers fall under the “*Understanding*” category. Its task type is presented in the form of multiple-choice questions, which may include tasks such as inferring the molecular structure from spectrum (e.g., functional group recognition, peak attribution tasks). This partially overlaps with the molecular elucidation tasks described above. For a compromise design, we use the output form to distinguish between them. The question format of “*Understanding*” tasks will only be multiple-choice questions, which means the output is text.

Taxonomy Definition. These input-output patterns offer a high-level overview of the task landscape. However, previous works often cover only a subset of them, limiting both their generalizability and their ability to benchmark diverse ML capabilities. We show these patterns in Table 1, which highlights substantial heterogeneity between existing methods. To address this limitation and support more structured and extensible benchmarking, we propose a four-level hierarchical taxonomy tailored to spectroscopic machine learning: *Signal*, *Perception*, *Semantic*, and *Generation*—is designed to reflect the logic of real-world scientific workflows in spectroscopy. As depicted in Figure 3, this layered structure systematically provides a robust framework for our 14 meticulously designed tasks detailed in Table 2.

(1) *Signal level*: This foundational layer focuses on the direct analysis and processing of raw spectral data, such as spectrum type classification and peak detection. Tasks at this level are designed to extract and refine primary features from experimental measurements, mirroring the initial steps taken by chemists to prepare and interpret spectra in the laboratory. This level primarily encompasses Any-to-Text(*Understanding*) tasks that operate directly on raw signal data.

(2) *Perception level*: Building upon the processed signals, the perception layer addresses pattern recognition and intermediate interpretation tasks, such as functional group identification, peak assignment, and basic molecule properties prediction. This stage reflects the chemist’s effort to translate spectral features into meaningful chemical information, bridging the gap between raw data and higher-level understanding. Many Any-to-Text(*Understanding*) tasks that involve interpreting specific patterns within spectra fall into this category.

(3) *Semantic level*: At this layer, the focus shifts to comprehensive molecular reasoning and property inference, including molecule elucidation and cross-modal correlation (e.g., linking spectra to molecular graphs or textual descriptions). The semantic layer encapsulates the core scientific reasoning that underpins hypothesis generation and validation in spectroscopic research, primarily addressing advanced Any-to-Text(*Understanding*) tasks that require intricate chemical knowledge and contextualization.

(4) *Generation level*: The final layer encompasses creative and generative tasks, where new entities are produced. The level explicitly consolidates all tasks involving the synthesis of new data or structures, including Molecule-to-Spectrum (e.g., spectrum generation from molecular inputs), Spectrum-to-Molecule (e.g., generates a molecular structure from spectra input). These tasks emulate advanced scientific workflows where new hypotheses, molecules, or spectral data are generated to drive discovery and innovation.

¹“Any” encompasses various data modalities, such as molecular representations, spectral data, or peptide sequences.

270
271
272
273
274
275
276
277
278
279
280281 Figure 4: SpectrumLab is the main component of SpectrumWorld, which could be extended conveniently.
282 More multi-modal spectrum data could be included, as well as MLLMs.

283
284 **Seed Data Preparation.** The seed datasets for this work were curated from three primary sources:
285 proprietary data, public repositories, and literature mining. As illustrated in Figure 3, the construction
286 of seed datasets begins with the aggregation of raw data from multiple sources. All collected
287 datasets undergo a unified processing pipeline that systematically maps each entry into three core
288 chemical spaces: SMILES string, molecular formula, and spectra. Rigorous cleaning, normalization,
289 and deduplication ensure data consistency and reliability. Following this, human annotation
290 and alignment are performed to guarantee scientific accuracy and completeness. The resulting seed
291 datasets are organized at the level of individual chemical substances, with each record containing
292 the compound’s SMILES, molecular formula, and a structured set of associated spectra, all stored in
293 a standardized JSON format to facilitate downstream annotation. Detailed descriptions of the seed
294 datasets and the standardization process are provided in Appendix I. We ensure that the curated seed
295 data are not contaminated.

296 **Data Annotation.** We use two annotation methods: automated and manual annotation. (1) *Auto-*
297 *annotation (SpectrumAnnotator).* For tasks characterized by well-defined rules like spectrum
298 recognition , we design SpectrumAnnotator, a core contribution of this work. SpectrumAnnotator
299 is a novel, self-developed annotation framework that harnesses the zero-shot and multi-modal rea-
300 soning capabilities of state-of-the-art MLLMs. Given curated seed datasets and a set of pre-defined
301 benchmark prompts, SpectrumAnnotator automatically designs and generates high-quality, multi-
302 modal benchmark data. Further technical details and implementation specifics of SpectrumAnnotator
303 are provided in Appendix D. (2) *Manual Annotation.* For more complex or open-ended tasks,
304 particularly those involving multi-step reasoning or sophisticated scientific interpretation, manual
305 annotation by domain experts is indispensable. Human annotators ensure the scientific validity and
306 depth of the benchmark, especially in cases where automated methods cannot handle.

307 **Data Quality Assurance.** To ensure the integrity and reliability of SpectrumBench, we implement
308 a comprehensive quality assurance pipeline, as illustrated in Figure 3. The process begins with *Can-*
309 *didate Data* undergoing automated screening by the *SpectrumVerifier (SV)*. This stage efficiently
310 detects and filters out clear errors such as missing options or image-text discrepancies, categorizing
311 them as *Low Quality Data* for removal. Remaining *High Quality Data* proceeds to expert manual
312 evaluation. If issues are identified, a feedback loop through internal annotator update initiates
313 targeted reannotation via *SpectrumAnnotator (SA)*. This multi-stage quality control ensures only
314 high-quality, scientifically robust data are included in our final benchmark.

315

4 SPECTRUMLAB

316

4.1 SYSTEM OVERVIEW

317 **AI-ready Datasets and AI-solvable Tasks.** SpectrumLab is tightly integrated with SpectrumAn-
318 *notator*, which is responsible for generating high-quality benchmarks from seed datasets collected
319 from diverse sources. In this workflow, SpectrumAnnotator curates a wide range of scientifically
320 rigorous benchmarks from these seeds. SpectrumLab then offers a flexible abstraction for users to
321 define and encapsulate specific AI-solvable tasks based on these curated benchmarks. A core ab-
322 straction unique to SpectrumLab is the *Benchmark Group*. Users can combine multiple benchmark

324 instances or select specific subsets to form a *Benchmark Group*, creating tailored task definitions
 325 within a unified framework. By encapsulating benchmarks as tasks, SpectrumLab streamlines the
 326 process of task definition and evaluation.

327 **Toolkits and Ecosystem.** SpectrumLab offers a flexible ecosystem of Python libraries and tools
 328 designed to streamline the entire workflow for spectroscopy, from data preprocessing to model eval-
 329 uation. Its modular design allows seamless integration of custom models and tasks. Distributed
 330 via the Python Package Index(PyPI) for easy installation, SpectrumLab provides a comprehensive
 331 environment for state-of-the-art machine learning research in spectroscopy.

332 **Leaderboards.** To ensure transparency and reproducibility, SpectrumLab incorporates a com-
 333 prehensive public leaderboard system that systematically tracks and compares the performance of a
 334 wide range of models across all tasks. The leaderboard provides fine-grained reporting, recording
 335 each model’s results on both high-level and detailed tasks. The platform currently supports bench-
 336 marking for over 20 MLLMs, including prominent open-source models such as InternVL3 (Zhu
 337 et al., 2025) and proprietary models like GPT-4o (OpenAI, 2024), across 14 specific tasks.

339 4.2 MODULAR DESIGN

341 Model	342 Signal				343 Perception				344 Semantic			345 Generation			346 Avg. Perf.
	347 TC	348 QE	349 FE	350 ID	351 GR	352 EP	353 PA	354 PP	355 SE	356 FM	357 MR	358 FP	359 IP	360 DnG	
<i>Closed-source MLLMs</i>															
Claude-3.5-Sonnet	96.36	28.33	76.47	71.43	60.00	77.78	76.32	85.29	82.50	69.23	94.59	20.00	0	0	59.88
Claude-3.7-Sonnet	96.36	38.33	86.27	82.14	<u>71.43</u>	88.89	<u>71.05</u>	<u>88.24</u>	82.28	74.36	89.19	20.00	0	5.26	63.84
Claude-4-Sonnet	96.36	35.00	88.24	92.86	62.22	63.89	60.53	76.47	16.25	43.59	64.86	3.33	0	<u>21.05</u>	51.76
Claude-3.5-Haiku	94.55	31.67	50.98	92.86	66.67	75.00	76.32	76.47	67.50	64.10	81.08	10.00	0	0	56.23
Claude-4-Opus	96.36	33.33	86.27	92.86	<u>73.33</u>	83.33	71.05	85.29	32.50	<u>76.92</u>	86.49	16.67	0	5.26	59.98
GPT-4o	96.36	33.33	68.63	92.86	59.88	77.78	63.16	79.41	78.75	58.97	89.19	10.00	0	0	57.74
GPT-4.1	94.55	28.33	86.27	85.71	53.33	77.78	63.16	79.41	82.50	66.67	91.89	33.33	<u>10.53</u>	0	60.96
GPT-4-Vision	94.55	33.33	72.55	92.86	<u>73.33</u>	72.22	71.05	82.35	73.75	53.85	<u>97.30</u>	23.33	5.00	0	60.39
Gemini-2.5-pro	96.36	35.00	90.20	67.86	75.56	<u>86.11</u>	65.79	79.41	68.75	84.62	<u>97.30</u>	<u>50.00</u>	5.00	47.37	67.81
Grok-2-Vision	94.55	31.67	74.51	89.29	64.44	80.56	73.68	82.35	37.50	66.67	81.08	23.33	0	0	57.12
Qwen-VL-Max	94.55	36.67	90.20	92.86	60.00	80.56	<u>78.95</u>	<u>88.24</u>	32.50	71.79	91.89	43.33	0	5.26	61.91
Douba0-1.5-Vision-Pro	98.18	33.33	78.43	92.86	66.67	83.33	68.42	<u>88.24</u>	67.50	56.41	89.19	6.67	0	0	59.23
Douba0-1.5-Vision-Pro-Thinking	96.36	35.00	78.43	67.86	53.33	80.56	73.68	91.18	68.75	66.67	91.89	66.67	5.00	5.26	62.90
<i>Open-source MLLMs</i>															
Qwen2.5-VL-32B-Instruct	92.73	26.67	37.25	71.43	57.78	44.44	31.58	61.76	0.00	5.13	45.95	20.00	0	0	35.34
Qwen2.5-VL-72B-Instruct	94.55	38.33	86.27	92.86	42.22	80.56	<u>78.95</u>	<u>88.24</u>	66.25	<u>76.92</u>	91.89	30.00	0	10.53	62.68
InternVL3-78B	96.36	38.33	70.59	71.43	48.49	75.00	81.58	<u>88.24</u>	62.50	69.23	83.78	23.33	0	5.26	58.15
InternVL3.5-241B	98.18	33.33	90.20	92.86	66.67	77.78	71.05	85.29	86.25	61.54	100.00	33.33	10.00	10.53	65.50
Llama-3.2-11B-Vision-Instruct	34.55	11.67	13.73	25.00	20.00	41.67	15.79	29.41	7.50	5.13	21.62	0	0	0	16.15
Llama-3.2-90B-Vision-Instruct	38.18	10.00	35.29	25.00	17.78	27.78	28.95	20.59	21.25	5.13	43.24	0	0	0	19.51
DeepSeek-VL2	52.73	23.33	29.41	28.57	8.89	27.78	28.95	50.00	15.00	15.38	32.43	10.00	5.00	5.26	23.77
GLM-4.5V	100.00	28.33	70.59	92.86	<u>73.33</u>	83.33	71.05	91.18	63.75	69.23	83.78	0	0	10.53	59.85
InternS1-nothink	98.18	36.67	72.55	89.29	51.11	72.22	73.68	79.41	86.25	66.67	94.59	13.33	0	0	59.57
InternS1-think	98.18	25.00	80.39	<u>89.29</u>	64.44	88.89	73.68	91.18	90.00	56.41	91.89	10.00	40.00	15.79	65.37
Overall Avg.	89.09	30.65	70.16	77.95	56.13	71.62	63.84	76.85	56.08	55.85	79.79	20.29	3.50	6.41	54.15

358 Table 3: Accuracies (%) of all models on different levels. Task abbreviations (e.g., TC, QE, FE,
 359 etc.) are defined in Table 2. **best: bold**, second best: underlined. The second last column calculates
 360 the arithmetic mean and the last column calculates the true weighted mean of each row.

362 SpectrumLab adopts a modular architecture to maximize flexibility and extensibility. The core components include:

364 (1) **Benchmark Group:** SpectrumLab organizes SpectrumBench into hierarchical groups corresponding to different levels of spectroscopic reasoning. This structure enables systematic evaluation across various tasks and spectroscopic modalities, while also supporting rapid assessment of specialized models on domain-specific spectroscopic tasks.

369 (2) **Model Integration:** SpectrumLab offers a unified, extensible framework for integrating external models. Using standardized APIs and modular adapters, it connects seamlessly to a wide range of model types, from cloud-based services to locally deployed solutions, enabling consistent benchmarking within a single evaluation environment.

373 (3) **Evaluator:** Serving as the abstract core of the benchmark evaluation engine, the Evaluator module in SpectrumLab is designed for flexible and extensible assessment of model performance across diverse spectroscopic tasks. It enables the customization of evaluation metrics and protocols according to the specific requirements of each task, and can be seamlessly integrated with both the *Benchmark Group* and external model modules. This modular abstraction allows researchers to define and implement tailored evaluation strategies, ensuring rigorous and task-appropriate benchmarking.

378 Currently, SpectrumLab supports the following two types of evaluators: (i) *Choice Evaluator*: Spe-
 379 cially designed for multiple-choice tasks. (ii) *Open Evaluator*: Targeted at generative tasks, this
 380 evaluator supports flexible assessment protocols, enabling comprehensive evaluation of free-form
 381 and creative model outputs.

383 5 EXPERIMENT

385 5.1 BENCHMARK SETUP

387 For signal-, perception-, and semantic-level tasks, SpectrumBench standardizes them into a
 388 multiple-choice question format, with each question having four options. A correct answer is scored
 389 as 1, and an incorrect answer is scored as 0. Generation-level tasks usually do not have fixed-form
 390 answers. For Molecule-to-Spectrum tasks, the input is a molecule, and the output is a spectrum.
 391 For Spectrum-to-Molecule tasks, the input consists of multiple spectral images, and the output is
 392 a molecule. We aim to encourage models to generate meaningful reasoning trajectories rather than
 393 simply providing a final answer. This approach can help circumvent the issue of data leakage. There-
 394 fore, we use an additional MLLM to score the responses following these steps: (1) Model predictions
 395 that do not conform to the specified output format for a given question are assigned a score of zero.
 396 (2) For predictions meeting the required format, a dedicated scoring model evaluates the model’s
 397 output against the answer, assigning a score normalized between 0 and 1. GPT-4o is employed as
 398 the scoring model in our experiment. This design standardizes the primary evaluation metric across
 399 all tasks in SpectrumBench to accuracy (%). Leveraging SpectrumLab’s flexible model interface,
 400 we integrated 23 leading open- and closed-source MLLMs for our experiments. Further details on
 401 benchmarking candidates and cost analysis are provided in Appendix F and J, respectively.

402 5.2 MAIN FINDINGS

404 We draw several key insights from the results in Table 3.

406 **(1) Task complexity reveals model capabilities and limitations.** Models exhibit strong foun-
 407 dational capabilities in basic tasks, with Signal and Perception tasks showing robust performance
 408 across all models. Spectrum Type Classification(TC) achieves an average accuracy of 89.09%, while
 409 Impurity Peak Detection (ID) shows an average of 77.95%. However, performance significantly de-
 410 clines in more complex tasks, particularly within the Generation category, which shows an average
 411 accuracy of only 6.41%. Within the Generation level, there are notable performance differences: FP
 412 achieves an average of 20.29%, significantly outperforming Inverse Problems (IP) at 3.50% and *De*
 413 *Novo* Generation (DnG) at 6.41%. This suggests that models are more adept at forward prediction
 414 tasks (molecule-to-spectrum) than inverse problems. QE tasks prove particularly challenging, with
 415 an average of 30.65% across all models, and many models scoring 0% in IP and DnG tasks. This
 416 performance pattern reveals a clear hierarchy: models excel at basic pattern recognition and sig-
 417 nal processing but struggle with advanced reasoning, creative generation, and complex cross-modal
 418 synthesis tasks that require deeper scientific understanding.

419 **(2) Closed-source models lead overall performance with gemini-2.5-pro achieving best results.**
 420 Gemini-2.5-pro emerges as the top-performing model with an overall average accuracy of 67.81%,
 421 securing top-2 scores in 6 out of 14 tasks. The model demonstrates exceptional capabilities across
 422 multiple dimensions: it leads in Functional Group Recognition (GR) with 75.56%, and ranks sec-
 423 ond in several other tasks, including Elemental Compositional Prediction(EP) and Forward Prob-
 424 lems(FP). Closed-source models generally maintain a performance advantage. However, this gap is
 425 narrowing, models like InternVL3.5-241B(65.50%) and InternS1-think (65.37%) are approaching
 426 or even surpassing some closed-source counterparts.

427 **(3) Reasoning capabilities drive generation task performance.** Doubao-1.5-Vision-Pro-Thinking
 428 demonstrates exceptional performance in generation tasks, achieving 66.67% accuracy in Forward
 429 Problems (FP), significantly outperforming the second-best closed-source model (Gemini-2.5-pro
 430 at 50.00%). This remarkable 16.67% point advantage highlights the critical role of advanced rea-
 431 soning capabilities in complex molecule generation tasks. InternS1-think also outperforms InternS1
 432 (65.37% vs. 59.57%). This superior performance suggests that the “thinking” mode is essential for
 433 tackling sophisticated cross-modal scientific reasoning challenges.

432 5.3 ERROR ANALYSIS
433
434446 Figure 5: Error types and distributions in SpectrumBench.
447
448
449

450 **Error Analysis.** For our error analysis, we group the 14 tasks in *SpectrumBench* into five families:
451 *Basic recognition* (elemental composition, functional-group recognition, spectrum-type classification,
452 spectrum-quality assessment), *Peak analysis* (peak assignment, impurity-peak detection, basic
453 feature extraction), *Property prediction* (basic property prediction, molecular structure elucidation),
454 *Complex reasoning* (multimodal molecular reasoning, fusing spectroscopic modalities, forward/in-
455 verse problems), and *Generation* (de novo spectrum generation).

456 **Family-wise minima.** On **Basic recognition**, **Gemini-2.5-Pro** attains the lowest error (**29.1%**), in-
457 dicating comparatively stronger grounding in spectrum type/quality and functional-group cues. For
458 **Peak analysis**, **Qwen2.5-VL-72B** achieves the lowest error (**14.5%**), suggesting effective handling
459 of isotopic/fragment patterns and impurity peaks. Within **Property prediction**, **Intern-S1** yields the
460 best result (**10.5%**), followed by **InternVL-3.5** (**13.2%**); both exhibit more reliable mapping from
461 spectral evidence to molecular properties/structures. The **Complex reasoning** slice is the sub-most
462 challenging: although **Gemini-2.5-Pro** leads with **30.7%** error, the majority of models exceed 50%
463 in this family, underscoring difficulties with long-horizon, cross-modal deduction. For **Generation**,
464 **Gemini-2.5-Pro** again performs best (**52.6%** error), while several models approach failure on nearly
465 all instances (errors near 100%).

466 **Observations and implications.** The error profiles reveal two principal bottlenecks: (i) *low-level*
467 *spectral grounding* (spectrum type/quality and functional-group perception) and (ii) *multi-step* *sym-
468 bolic integration* across modalities and tasks. The former dominates early-stage perception failures
469 that cascade to peak interpretation, whereas the latter manifests as brittle chains when executing
470 forward/inverse reasoning or modality fusion. We hypothesize that tighter coupling to spectroscopic
471 priors (fragmentation and isotopic rules, impurity models) and reasoning-aware supervision (tool-
472 augmented peak→property mappings, intermediate targets) are necessary to reduce both recognition
473 errors and brittle deduction.

474
475 6 CONCLUSION
476

477 In this work, we have presented two key contributions to advance machine learning in spectroscopy:
478 *SpectrumBench* and *SpectrumLab*. *SpectrumBench* is a comprehensive, extensible benchmark suite
479 covering over 10 spectrum modalities and 14 tasks, grounded in real-world chemical practices, en-
480 abling rigorous and reproducible evaluation across hierarchical taxonomy (signal, perception, se-
481 mantic, generation). *SpectrumLab* is a unified, modular platform for dataset management, anno-
482 tation, evaluation, and public leaderboards, offering a robust Python ecosystem with standardized
483 interfaces that significantly lower the barrier for developing and deploying advanced models. To-
484 gether, *SpectrumBench* and *SpectrumLab* set a new standard for spectroscopic machine learning,
485 fostering systematic comparison, reproducibility, and innovation, and catalyzing future research for
more powerful and interpretable models.

486 REFERENCES
487

488 Neva Agarwala, Leyla Rohani, and Gary Hastings. Experimental and calculated infrared spectra
489 of disubstituted naphthoquinones. *Spectrochimica Acta Part A: Molecular and Biomolecular
490 Spectroscopy*, 268:120674, 2022.

491 Marvin Alberts, Teodoro Laino, and Alain C Vaucher. Leveraging infrared spectroscopy for auto-
492 mated structure elucidation. *Communications Chemistry*, 7(1):268, 2024a.

493 Marvin Alberts, Oliver Schilter, Federico Zipoli, Nina Hartrampf, and Teodoro Laino. Unraveling
494 molecular structure: A multimodal spectroscopic dataset for chemistry. In Amir Globersons,
495 Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng
496 Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on
497 Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
498 ber 10 - 15, 2024*, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/e38e60b33bb2c6993e0865160cdb5cf1-Abstract-Datasets_and_Benchmarks_Track.html.

499 500 501

502 Anthropic. Model Card Addendum: Claude 3.5 Haiku and Upgraded Claude 3.5 Sonnet,
503 October 2024. URL <https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf>. Accessed July 28,
504 2025.

505 506 Anthropic. Claude 3.7 Sonnet and Claude Code, February 2025a. URL <https://www.anthropic.com/news/clause-3-7-sonnet>. Accessed July 28, 2025.

507 508 Anthropic, May 2025b. URL <https://www.anthropic.com/clause/sonnet>. Accessed
509 July 28, 2025.

510 511 Gabriel Asher, Mimoun Cadosh Delmar, Jennifer M Campbell, Jack Geremia, and Timothy Kassis.
512 Lsm1-ms2: A foundation model for ms/ms, encompassing chemical property predictions, search
513 and de novo generation. 2024.

514 515 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
516 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
517 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
518 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv
519 preprint arXiv:2502.13923*, 2025.

520 Armen G Beck, Matthew Muhoberac, Caitlin E Randolph, Connor H Beveridge, Prageeth R Wijew-
521 ardhane, Hilkka I Kenttämaa, and Gaurav Chopra. Recent developments in machine learning for
522 mass spectrometry. *ACS Meas. Sci. Au*, 4(3):233–246, June 2024.

523 524 V Bongiorno, S Gibbon, E Michailidou, and MJCS Curioni. Exploring the use of machine learning
525 for interpreting electrochemical impedance spectroscopy data: evaluation of the training dataset
526 size. *Corrosion Science*, 198:110119, 2022.

527 528 Roman Bushuiev, Anton Bushuiev, Niek F. de Jonge, Adamo Young, Fleming Kretschmer, Raman
529 Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, Marcus Ludwig, Nils A.
530 Haupt, Apurva Kalia, Corinna Brungs, Robin Schmid, Russell Greiner, Bo Wang, David S.
531 Wishart, Li-Ping Liu, Juho Rousu, Wout Bittremieux, Hannes Rost, Tytus D. Mak, Soha Hassoun,
532 Florian Huber, Justin J.J. van der Hooft, Michael A. Stravs, Sebastian Böcker, Josef Sivic, and
533 Tomáš Pluskal. Massspecgym: A benchmark for the discovery and identification of molecules.
534 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
535 *Advances in Neural Information Processing Systems*, volume 37, pp. 110010–110027. Curran
536 Associates, Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c6c31413d5c53b7d1c343c1498734b0f-Paper-Datasets_and_Benchmarks_Track.pdf.

537 538 539 Roman Bushuiev, Anton Bushuiev, Niek F. de Jonge, Adamo Young, Fleming Kretschmer,
Raman Samusevich, Janne Heirman, Fei Wang, Luke Zhang, Kai Dührkop, Marcus Ludwig,
Nils A. Haupt, Apurva Kalia, Corinna Brungs, Robin Schmid, Russell Greiner, Bo Wang,

540 David S. Wishart, Liping Liu, Juho Rousu, Wout Bittremieux, Hannes Rost, Tytus D.
 541 Mak, Soha Hassoun, Florian Huber, Justin J. J. van der Hooft, Michael A. Stravs, Se-
 542 bastian Böcker, Josef Sivic, and Tomás Pluskal. Massspecgym: A benchmark for the
 543 discovery and identification of molecules. In Amir Globersons, Lester Mackey, Danielle
 544 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances*
 545 in *Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 546 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 547 15, 2024*, 2024b. URL http://papers.nips.cc/paper_files/paper/2024/hash/c6c31413d5c53b7d1c343c1498734b0f-Abstract-Datasets_and_Benchmarks_Track.html.

548
 549
 550 Yuzhuo Chen, Sebastian V Pios, Maxim F Gelin, and Lipeng Chen. Accelerating molecular vibra-
 551 tional spectra simulations with a physically informed deep learning model. *Journal of Chemical*
 552 *Theory and Computation*, 20(11):4703–4710, 2024a.

553
 554 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
 555 glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
 556 multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*,
 557 2024b.

558 A S Curry, J F Read, and C Brown. A simple infrared spectrum retrieval system. *Journal of*
 559 *Pharmacy and Pharmacology*, 21(4):224–231, April 1969. ISSN 0022-3573. doi: 10.1111/j.2042-7158.1969.tb08236.x. URL <http://dx.doi.org/10.1111/j.2042-7158.1969.tb08236.x>.

560
 561 Thomas De Vijlder, Dirk Valkenborg, Filip Lemière, Edwin P Romijn, Kris Laukens, and Filip Cuy-
 562 ckens. A tutorial in small molecule identification via electrospray ionization-mass spectrometry:
 563 The practical art of structural elucidation. *Mass spectrometry reviews*, 37(5):607–629, 2018.

564
 565 Sriram Devata, Bhuvanesh Sridharan, Sarvesh Mehta, Yashaswi Pathak, Siddhartha Laghuvarapu,
 566 Girish Varma, and U Deva Priyakumar. Deepspinn–deep reinforcement learning for molecular
 567 structure prediction from infrared and ^{13}C nmr spectra. *Digital Discovery*, 3(4):818–829, 2024.

568
 569 Doubao Team. Doubao 1.5pro - Doubao Team. https://seed.bytedance.com/zh/special/douba_1_5_pro, January 2025. Accessed July 28, 2025.

570
 571 Joshua E Elias, Francis D Gibbons, Oliver D King, Frederick P Roth, and Steven P Gygi. Intensity-
 572 based protein identification by machine learning from a library of tandem mass spectra. *Nature*
 573 *Biotechnology*, 22(2):214–219, February 2004. ISSN 1546-1696. doi: 10.1038/nbt930. URL
 574 <https://doi.org/10.1038/nbt930>.

575
 576 Xiaqiong Fan, Wen Ming, Huitao Zeng, Zhimin Zhang, and Hongmei Lu. Deep learning-based
 577 component identification for the raman spectra of mixtures. *Analyst*, 144(5):1789–1798, 2019.

578
 579 Jonathan A Fine, Anand A Rajasekar, Krupal P Jethava, and Gaurav Chopra. Spectral deep learning
 580 for prediction and prospective validation of functional groups. *Chemical science*, 11(18):4618–
 581 4630, 2020.

582
 583 Aaron R Flanagan, Dhairyा Dalal, and Frank G Glavin. Exploring generative artificial intelligence
 584 and data augmentation techniques for spectroscopy analysis. *Chem. Rev.*, 125(13):6130–6155,
 585 July 2025.

586
 587 Francesca Gasparin, Marlène R. Tietje, Eslam Katab, Aizada Nurdinova, Tao Yuan, Andriy Chmy-
 588 rov, Nasire Uluç, Dominik Jüstel, Florian Bassermann, Vasilis Ntziachristos, and Miguel A.
 589 Pleitez. Label-free protein-structure-sensitive live-cell microscopy for patient-specific as-
 590 sessment of myeloma therapy. *Nature Biomedical Engineering*, July 2025. ISSN 2157-
 591 846X. doi: 10.1038/s41551-025-01443-3. URL <https://www.nature.com/articles/s41551-025-01443-3>. Publisher: Springer Science and Business Media LLC.

592
 593 Michael Gastegger, Jörg Behler, and Philipp Marquetand. Machine learning molecular dynamics
 for the simulation of infrared spectra. *Chemical science*, 8(10):6924–6935, 2017a.

594 Michael Gastegger, Jörg Behler, and Philipp Marquetand. Machine learning molecular dy-
 595 namics for the simulation of infrared spectra. *Chem. Sci.*, 8(10):6924–6935, 2017b. doi:
 596 10.1039/C7SC02267K. URL <http://dx.doi.org/10.1039/C7SC02267K>. Publisher:
 597 The Royal Society of Chemistry.

598 Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
 599 long context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

600 Will Gerrard, Lars Andersen Bratholm, Martin Packer, Adrian J. Mulholland, David R. Glowacki,
 601 and Craig P. Butts. IMPRESSION – Prediction of NMR Parameters for 3-dimensional chemical
 602 structures using Machine Learning with near quantum chemical accuracy, October 2019. URL
 603 <http://arxiv.org/abs/1908.08501>. arXiv:1908.08501 [physics].

604 Yanfei Guan, S V Shree Sowndarya, Liliana C Gallegos, Peter C St John, and Robert S Paton.
 605 Real-time prediction of ¹H and ¹³C chemical shifts with DFT accuracy using a 3D graph neural
 606 network. *Chem. Sci.*, 12(36):12012–12026, September 2021.

607 Gabe Guo, Judah Goldfeder, Ling Lan, Aniv Ray, Albert Hanming Yang, Boyuan Chen, Simon
 608 J. L. Billinge, and Hod Lipson. Towards end-to-end structure determination from x-ray diffrac-
 609 tion data using deep learning. *npj Computational Materials*, 10(1), September 2024a. ISSN
 610 2057-3960. doi: 10.1038/s41524-024-01401-8. URL <http://dx.doi.org/10.1038/s41524-024-01401-8>.

611 Kehan Guo, Bozhao Nan, Yujun Zhou, Taicheng Guo, Zhichun Guo, Mihir Survé, Zhenwen
 612 Liang, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. Can llms solve molecule puzzles?
 613 a multimodal benchmark for molecular structure elucidation. In A. Globerson, L. Mackey,
 614 D. Belgrave, A. Fan, U. Paquet, J. Tomeczak, and C. Zhang (eds.), *Advances in Neural Infor-
 615 mation Processing Systems*, volume 37, pp. 134721–134746. Curran Associates, Inc., 2024b.
 616 URL https://proceedings.neurips.cc/paper_files/paper/2024/file/f2b9e8e7a36d43ddfd3d55113d56b1e0-Paper-Datasets_and_Benchmarks_Track.pdf.

617 Kehan Guo, Yili Shen, Gisela Abigail Gonzalez-Montiel, Yue Huang, Yujun Zhou, Mihir Survé,
 618 Zhichun Guo, Prayel Das, Nitesh V. Chawla, Olaf Wiest, and Xiangliang Zhang. Artificial intel-
 619 ligence in spectroscopy: Advancing chemistry from prediction to generation and beyond. *CoRR*,
 620 abs/2502.09897, 2025. doi: 10.48550/ARXIV.2502.09897. URL <https://doi.org/10.48550/arXiv.2502.09897>.

621 Ruocheng Han, Rangsiman Ketkaew, and Sandra Luber. A concise review on recent developments
 622 of machine learning for the prediction of vibrational spectra. *The Journal of Physical Chemistry*
 623 A, 126(6):801–812, 2022.

624 Esther Heid, Kevin P Greenman, Yunsie Chung, Shih-Cheng Li, David E Graff, Florence H Ver-
 625 meire, Haoyang Wu, William H Green, and Charles J McGill. Chemprop: a machine learning
 626 package for chemical property prediction. *Journal of Chemical Information and Modeling*, 64(1):
 627 9–17, 2023.

628 Frank Hu, Michael S Chen, Grant M Rotskoff, Matthew W Kanan, and Thomas E Markland. Accu-
 629 rate and efficient structure elucidation from routine one-dimensional nmr spectra using multitask
 630 machine learning. *ACS Central Science*, 10(11):2162–2170, 2024.

631 Zhaorui Huang, Michael S Chen, Cristian P Woroch, Thomas E Markland, and Matthew W Kanan.
 632 A framework for automated structure elucidation from routine nmr spectra. *Chemical Science*, 12
 633 (46):15329–15338, 2021.

634 Florian Huber, Sven van der Burg, Justin JJ van der Hooft, and Lars Ridder. Ms2deepscore: a novel
 635 deep learning similarity measure to compare tandem mass spectra. *Journal of cheminformatics*,
 636 13(1):84, 2021.

637 Shanghai AI Laboratory Intern-S1 Team. Intern-s1: A scientific multimodal foundation model,
 638 2025. URL <https://arxiv.org/abs/2508.15763>.

648 Hongchao Ji, Hanzi Deng, Hongmei Lu, and Zhimin Zhang. Predicting a molecular fingerprint from
 649 an electron ionization mass spectrum with deep neural networks. *Analytical chemistry*, 92(13):
 650 8649–8653, 2020.

651

652 Nolan Koblischke and Jo Bovy. Spectrafm: Tuning into stellar foundation models. *arXiv preprint*
 653 *arXiv:2411.04750*, 2024.

654 Stefan Kuhn, Björn Egert, Steffen Neumann, and Christoph Steinbeck. Building blocks for auto-
 655 mated elucidation of metabolites: Machine learning methods for nmr prediction. *BMC bioinfor-
 656 matics*, 9(1):400, 2008.

657

658 Eleni Litsa, Vijil Chenthamarakshan, Payel Das, and Lydia Kavraki. Spec2mol: An end-to-end deep
 659 learning framework for translating ms/ms spectra to de-novo molecules. 2021.

660 Jinchao Liu, Margarita Osadchy, Lorna Ashton, Michael Foster, Christopher J Solomon, and Stuart J
 661 Gibson. Deep convolutional neural networks for raman spectrum recognition: a unified solution.
 662 *Analyst*, 142(21):4067–4074, 2017.

663

664 Youzhong Liu, Thomas De Vijlder, Wout Bittremieux, Kris Laukens, and Wouter Heyndrickx. Cur-
 665 rent and future deep learning algorithms for tandem mass spectrometry (ms/ms)-based small
 666 molecule structure elucidation. *Rapid Communications in Mass Spectrometry*, 39:e9120, 2025.

667 Xinyu Lu, Hao Ma, Hui Li, Jia Li, Tong Zhu, Guokun Liu, and Bin Ren. Vib2Mol: from vibrational
 668 spectra to molecular structures-a versatile deep learning model, April 2025. URL <http://arxiv.org/abs/2503.07014>. arXiv:2503.07014 [physics].

669

670 Charles McGill, Michael Forsuelo, Yanfei Guan, and William H Green. Predicting infrared spectra
 671 with message passing neural networks. *Journal of Chemical Information and Modeling*, 61(6):
 672 2594–2609, 2021.

673

674 Meta AI. Llama 3.2: Revolutionizing edge AI and vision with open, cus-
 675 tomizable models, September 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>. Accessed July
 676 28, 2025.

677

678 Dai Hai Nguyen, Canh Hao Nguyen, and Hiroshi Mamitsuka. Recent advances and prospects of
 679 computational methods for metabolite identification: a review with emphasis on machine learning
 680 approaches. *Briefings in bioinformatics*, 20(6):2028–2043, 2019.

681

682 National Institute of Advanced Industrial Science and Technology (AIST). Sdbs (spectral database
 683 for organic compounds), 2025. URL <https://sdbs.db.aist.go.jp/>. Accessed: 2025-
 684 07-24.

685

686 OpenAI. Gpt-4v(ision) system card. OpenAI, 2023. URL <https://api.semanticscholar.org/CorpusID:263218031>.

687

688 OpenAI. GPT-4o System Card. *CoRR*, abs/2410.21276, 2024. doi: 10.48550/ARXIV.2410.21276.
 689 URL <https://doi.org/10.48550/arXiv.2410.21276>.

690

691 OpenAI. Introducing GPT-4.1 in the API, April 2025. URL <https://openai.com/index/gpt-4-1/>. Accessed July 28, 2025.

692

693 C. A. Parker and W. T. Rees. Fluorescence spectrometry. A review. *Analyst*, 87(1031):83–111, 1962.
 694 doi: 10.1039/AN9628700083. URL <http://dx.doi.org/10.1039/AN9628700083>.
 695 Publisher: The Royal Society of Chemistry.

696

697 Federico M Paruzzo, Albert Hofstetter, Félix Musil, Sandip De, Michele Ceriotti, and Lyndon Ems-
 698 ley. Chemical shifts in molecular solids by machine learning. *Nature communications*, 9(1):4501,
 699 2018.

700

701 Johnny Peng, Thanh Tung Khuat, Katarzyna Musial, and Bogdan Gabrys. Machine learning meth-
 702 ods for small data and upstream bioprocessing applications: A comprehensive review. *arXiv*
 703 *preprint arXiv:2506.12322*, 2025.

702 Rai Dhirendra. Prasad, Prashant D Sarvalkar, Nirmala Prasad, Saurabh R. Prasad, Rai Surendra
 703 Prasad, Rai Bishwendra Prasad, Rai Rajnarayan Prasad, CB Desai, Anil Kumar Vaidya, . B. Teli,
 704 Mamata Saxena, Vasant B Kale, RS P. ey ey, Naresh Charmode, RN Deshmukh, V.N V.N.Pati,
 705 Anant Samant, rashekhar Chiplunkar, Zhanhu Guo, AA Ramteke, and Jay Ghosh. A Review
 706 on Spectroscopic Techniques for Analysis of Nanomaterials and Biomaterials. *ES Energy &*
 707 *Environment*, 27:1264, 2025. ISSN 2576-9898. doi: 10.30919/esee1264. URL <http://dx.doi.org/10.30919/esee1264>.

709 Nicole M. Ralbovsky and Igor K. Lednev. Towards development of a novel universal medical diag-
 710 nóstic method: Raman spectroscopy and machine learning. *Chem. Soc. Rev.*, 49(20):7428–7453,
 711 2020. doi: 10.1039/D0CS01019G. URL <http://dx.doi.org/10.1039/D0CS01019G>.
 712 Publisher: The Royal Society of Chemistry.

713 Hao Ren, Hao Li, Qian Zhang, Lijun Liang, Wenyue Guo, Fang Huang, Yi Luo, and Jun Jiang. A
 714 machine learning vibrational spectroscopy protocol for spectrum prediction and spectrum-based
 715 structure recognition. *Fundamental Research*, 1(4):488–494, 2021.

716 Yixiang Ruan, Chenyin Lu, Ning Xu, Yuchen He, Yixin Chen, Jian Zhang, Jun Xuan, Jianzhang
 717 Pan, Qun Fang, Hanyu Gao, et al. An automatic end-to-end chemical synthesis development
 718 platform powered by large language models. *Nature communications*, 15(1):10160, 2024.

719 Jerardo E. Salgado, Samuel Lerman, Zhaotong Du, Chenliang Xu, and Niaz Abdolrahim. Auto-
 720 mated classification of big x-ray diffraction data using deep learning models. *npj Computational*
 721 *Materials*, 9(1), December 2023. ISSN 2057-3960. doi: 10.1038/s41524-023-01164-8. URL
 722 <http://dx.doi.org/10.1038/s41524-023-01164-8>.

723 Jongcheol Seo, Stephan Warnke, Kevin Pagel, Michael T. Bowers, and Gert Von Helden. Infrared
 724 spectrum and structure of the homochiral serine octamer–dichloride complex. *Nature Chemistry*,
 725 9(12):1263–1268, December 2017. ISSN 1755-4330, 1755-4349. doi: 10.1038/nchem.2821.
 726 URL <https://www.nature.com/articles/nchem.2821>. Publisher: Springer Sci-
 727 ence and Business Media LLC.

728 Yun Shao, Chenghui Yang, Shenhuan Ni, Mingwei Pang, Xiaojie Liu, Ren Kong, and Shan Chang.
 729 Applications and prospects of artificial intelligence in proteomics via mass spectrometry: A re-
 730 view. *Curr. Protein Pept. Sci.*, June 2025.

731 David Silber, Piotr M. Kowalski, Franziska Traeger, Maria Buchholz, Fabian Bebensee, Bernd
 732 Meyer, and Christof Wöll. Adsorbate-induced lifting of substrate relaxation is a general mecha-
 733 nism governing titania surface chemistry. *Nature Communications*, 7(1), September 2016. ISSN
 734 2041-1723. doi: 10.1038/ncomms12888. URL <https://www.nature.com/articles/ncomms12888>. Publisher: Springer Science and Business Media LLC.

735 Kilian D Stenning, Jack C Gartside, Luca Manneschi, Christopher TS Cheung, Tony Chen, Alex
 736 Vanstone, Jake Love, Holly Holder, Francesco Caravelli, Hidekazu Kurebayashi, et al. Neu-
 737 romorphic overparameterisation and few-shot learning in multilayer physical neural networks.
 738 *Nature Communications*, 15(1):7377, 2024.

739 Cailum MK Stienstra, Liam Hebert, Patrick Thomas, Alexander Haack, Jason Guo, and W Scott
 740 Hopkins. Graphomer-ir: Graph transformers predict experimental ir spectra using highly spe-
 741 cialized attention. *Journal of chemical information and modeling*, 64(12):4613–4629, 2024.

742 Yingying Sun, Jun A, Zhiwei Liu, Rui Sun, Liuqia Qian, Samuel H. Payne, Wout Bittremieux,
 743 Markus Ralser, Chen Li, Yi Chen, Zhen Dong, Yasset Pérez-Riverol, Asif Khan, Chris Sander,
 744 Ruedi Aebersold, Juan Antonio Vizcaíno, Jonathan R. Krieger, Jianhua Yao, Han Wen, Lin-
 745 feng Zhang, Yunping Zhu, Yue Xuan, Benjamin Boyang Sun, Liang Qiao, Henning Hermjakob,
 746 Haixu Tang, Huanhuan Gao, Yamin Deng, Qing Zhong, Cheng Chang, Nuno Bandeira, Ming
 747 Li, Weinan E, Siqi Sun, Yuedong Yang, Gilbert S. Omenn, Yue Zhang, Ping Xu, Yan Fu, Xi-
 748 aowen Liu, Christopher M. Overall, Yu Wang, Eric W. Deutsch, Luonan Chen, Jürgen Cox, Vadim
 749 Demichev, Fuchu He, Jiaxing Huang, Huilin Jin, Chao Liu, Nan Li, Zhongzhi Luan, Jiangning
 750 Song, Kaicheng Yu, Wanggen Wan, Tai Wang, Kang Zhang, Le Zhang, Peter A. Bell, Matthias
 751 Mann, Bing Zhang, and Tiannan Guo. Strategic priorities for transformative progress in advanc-
 752 ing biology with proteomics and artificial intelligence. *CoRR*, abs/2502.15867, 2025. doi: 10.
 753 48550/ARXIV.2502.15867. URL <https://doi.org/10.48550/arXiv.2502.15867>.

756 Qian Tan, Dongzhan Zhou, Peng Xia, Wanhai Liu, Wanli Ouyang, Lei Bai, Yuqiang Li, and Tianfan
 757 Fu. Chemmlm: Chemical multimodal large language model. *CoRR*, abs/2505.16326, 2025.
 758 doi: 10.48550/ARXIV.2505.16326. URL <https://doi.org/10.48550/arXiv.2505.16326>.

760 Dennis M J van de Sande, Julian P Merkofer, Sina Amirrajab, Mitko Veta, Ruud J G van Sloun,
 761 Maarten J Versluis, Jacobus F A Jansen, Johan S van den Brink, and Marcel Breeuwer. A review
 762 of machine learning applications for the proton MR spectroscopy workflow. *Magn. Reson. Med.*,
 763 90(4):1253–1270, October 2023.

765 VTeam. GLM-4.5V and GLM-4.1V-Thinking: Towards versatile multimodal reasoning with scal-
 766 able reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

767 Jen-Hung Wang, Wai-Kok Choong, Ching-Tai Chen, and Ting-Yi Sung. Calibr improves spectral
 768 library search for spectrum-centric analysis of data independent acquisition proteomics. *Scientific
 769 Reports*, 12(1), February 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-06026-9. URL
 770 <http://dx.doi.org/10.1038/s41598-022-06026-9>.

772 Liang Wang, Shaozhen Liu, Yu Rong, Deli Zhao, Qiang Liu, and Shu Wu. Molspectra: Pre-training
 773 3d molecular representation with multi-modal energy spectra. *arXiv preprint arXiv:2502.16284*,
 774 2025a.

776 Liang Wang, Yu Rong, Tingyang Xu, Zhenyi Zhong, Zhiyuan Liu, Pengju Wang, Deli Zhao, Qiang
 777 Liu, and Shu Wu. Diffspectra: Molecular structure elucidation from spectra using diffusion mod-
 778 els. *arXiv preprint arXiv:2507.06853*, 2025b.

779 Qinggong Wang, Wei Zhang, Mingan Chen, Xutong Li, Zhaoping Xiong, Jiacheng Xiong, Zunyun
 780 Fu, and Mingyue Zheng. Nmrextractor: leveraging large language models to construct an ex-
 781 perimental nmr database from open-source scientific publications. *Chem. Sci.*, 16:11548–11558,
 782 2025c. doi: 10.1039/D4SC08802F. URL <http://dx.doi.org/10.1039/D4SC08802F>.

784 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 785 Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun,
 786 Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu,
 787 Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts
 788 vision-language models for advanced multimodal understanding. *CoRR*, abs/2412.10302, 2024.
 789 doi: 10.48550/ARXIV.2412.10302. URL <https://doi.org/10.48550/arXiv.2412.10302>.

791 xAI. Grok-2 Beta Release, August 2024. URL <https://x.ai/news/grok-2>. Accessed July
 792 28, 2025.

794 Yingce Xia, Peiran Jin, Shufang Xie, Liang He, Chuan Cao, Renqian Luo, Guoqing Liu, Yue Wang,
 795 Zequn Liu, Yuan-Jyue Chen, Zekun Guo, Yeqi Bai, Pan Deng, Yaosen Min, Ziheng Lu, Hongxia
 796 Hao, Han Yang, Jielan Li, Chang Liu, Jia Zhang, Jianwei Zhu, Kehan Wu, Wei Zhang, Kaiyuan
 797 Gao, Qizhi Pei, Qian Wang, Xixian Liu, Yanting Li, Houtian Zhu, Yeqing Lu, Mingqian Ma,
 798 Zun Wang, Tian Xie, Krzysztof Maziarz, Marwin H. S. Segler, Zhao Yang, Zilong Chen, Yu Shi,
 799 Shuxin Zheng, Lijun Wu, Chen Hu, Peggy Dai, Tie-Yan Liu, Haiguang Liu, and Tao Qin. Na-
 800 turelm: Deciphering the language of nature for scientific discovery. *CoRR*, abs/2502.07527, 2025.
 801 doi: 10.48550/ARXIV.2502.07527. URL <https://doi.org/10.48550/arXiv.2502.07527>.

803 Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, Fujie Tang, Zhifeng Gao, Linfeng
 804 Zhang, Weinan E, Zhong-Qun Tian, and Jun Cheng. Toward a unified benchmark and framework
 805 for deep learning-based prediction of nuclear magnetic resonance chemical shifts. *Nat. Comput.
 806 Sci.*, 5(4):292–300, April 2025.

808 Adamo Young, Hannes L. Röst, and Bo Wang. Tandem mass spectrum prediction for small
 809 molecules using graph transformers. *Nat. Mac. Intell.*, 6(4):404–416, 2024. doi: 10.1038/
 S42256-024-00816-8. URL <https://doi.org/10.1038/s42256-024-00816-8>.

810 Shuyan Zhang, Yi Qi, Sonia Peng Hwee Tan, Renzhe Bi, and Malini Olivo. Molecular Fin-
 811 gerprint Detection Using Raman and Infrared Spectroscopy Technologies for Cancer Detec-
 812 tion: A Progress Review. *Biosensors*, 13(5):557, May 2023. ISSN 2079-6374. doi: 10.
 813 3390/bios13050557. URL <https://www.mdpi.com/2079-6374/13/5/557>. Publisher:
 814 MDPI AG.

815 Jingbo Zhou, Shaorong Chen, Jun Xia, Sizhe Liu, Tianze Ling, Wenjie Du, Yue Liu, Jianwei Yin,
 816 and Stan Z. Li. Novobench: Benchmarking deep learning-based de novo peptide sequencing
 817 methods in proteomics. *CoRR*, abs/2406.11906, 2024a. doi: 10.48550/ARXIV.2406.11906. URL
 818 <https://doi.org/10.48550/arXiv.2406.11906>.

819 Jingbo Zhou, Shaorong Chen, Jun Xia, Sizhe Liu, Tianze Ling, Wenjie Du, Yue Liu, Jianwei Yin,
 820 and Stan Z. Li. Novobench: Benchmarking deep learning-based *De Novo*
 821 sequencing methods in proteomics. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 822 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Process-
 823 ing Systems*, volume 37, pp. 104776–104791. Curran Associates, Inc., 2024b. URL
 824 https://proceedings.neurips.cc/paper_files/paper/2024/file/bd281779e603522d92aa4f59c36012e4-Paper-Datasets_and_Benchmarks_Track.pdf.

825 Xie-Xuan Zhou, Wen-Feng Zeng, Hao Chi, Chunjie Luo, Chao Liu, Jianfeng Zhan, Si-Min He,
 826 and Zhifei Zhang. pdeep: predicting ms/ms spectra of peptides with deep learning. *Analytical
 827 chemistry*, 89(23):12690–12697, 2017.

828 Jinguo Zhu, Weiyun Wang, Zhe Chen, et al. InternVL3: Exploring advanced training and test-
 829 time recipes for open-source multimodal models. *CoRR*, abs/2504.10479, 2025. URL <https://doi.org/10.48550/arXiv.2504.10479>.

830 Zihan Zou, Yujin Zhang, Lijun Liang, Mingzhi Wei, Jiancai Leng, Jun Jiang, Yi Luo, and Wei Hu.
 831 A deep learning model for predicting selected organic molecular spectra. *Nat. Comput. Sci.*, 3
 832 (11):957–964, November 2023a.

833 Zihan Zou, Yujin Zhang, Lijun Liang, Mingzhi Wei, Jiancai Leng, Jun Jiang, Yi Luo, and Wei Hu.
 834 A deep learning model for predicting selected organic molecular spectra. *Nature Computational
 835 Science*, 3(11):957–964, 2023b.

836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A ABLATION STUDY**
865866 **A.1 SCORING MODEL**
867868 The automatic evaluation at the Generation level uses a standardized prompt to guide the scoring
869 models. This prompt, shown in the box below, instructs the evaluator to rate model answers on a
870 scale from 0 to 1 based on specific rules.
871872 **Prompt Templates for OpenEvaluator**
873874 "You are an expert evaluator. Given the following question, reference answer, and model
875 answer. Rate the model answer on a scale of 0-1 and provide a BRIEF explanation.",
876877 **Scoring Rules:**
878879 **1. Modality:**
880881

- 882 • Reference answers are images. Model outputs may be images or text descriptions.
883
- 884 • If the model outputs an image (matching modality): max score 0.8.
885
- 886 • If the model outputs text (different modality): text descriptions are *valid* and should
887 be evaluated, max score 0.8.
888
- 889 • Many models cannot output images; text descriptions are acceptable alternatives.
890

891 **2. Scale (0.1 increments):**
892893

- 894 • 0.0: Incorrect, irrelevant, or fails to address the question.
895
- 896 • 0.1–0.2: Mostly incorrect, minimal relevance.
897
- 898 • 0.3–0.4: Partially correct, significant errors or omissions.
899
- 900 • 0.5–0.6: Moderately correct, missing key information.
901
- 902 • 0.7–0.8: Mostly correct, minor errors.
903
- 904 • 0.9–1.0: Excellent to perfect (1.0 reserved for flawless answers with matching
905 modality).
906

907 **3. Evaluation Criteria (weights: Correctness 60%, Completeness 25%, Relevance
908 15%):**
909910

- 911 • **CRITICAL:** Focus on *final answer* accuracy, not the reasoning process.
912
- 913 • **CONCISENESS:** Long explanations do not earn higher scores.
914
- 915 • **STRICTNESS:** High scores (0.7+) are only for genuinely accurate and complete
916 answers.
917

918 **4. Guidelines:**
919920

- 921 • Be **strict**: high scores (0.7) only for genuinely accurate answers.
922
- 923 • Wrong final answer → low score regardless of reasoning.
924
- 925 • Use discrete scores: 0.0, 0.1, 0.2, ..., 1.0.
926

927 "Output format: \score{X} where X [0.0, 1.0]."
928929 **Question:** f"Question: {question}"
930931 To assess the robustness and evaluator-independence of our scoring protocol, we evaluate the same
932 set of model-generated outputs using multiple scoring models. Our evaluation includes GPT-4o
933 (with two independent runs for test-retest validation), Intern-S1, and Claude-Opus-4. Applying
934 these evaluators to the identical generation set allows direct, controlled comparison of scoring
935 consistency across models.
936937 Figure 6 presents the Pearson correlation matrix across all evaluator pairs. All off-diagonal cor-
938 relation coefficients exceed $r > 0.91$ (mean $r = 0.939$, SD = 0.014), indicating extremely high
939

918 consistency among evaluators. Notably, the two independent runs of GPT-4o achieve the highest
 919 correlation ($r = 0.962$), demonstrating strong test-retest reliability.
 920

949 Figure 6: **Evaluator Correlation Matrix.** Pearson correlation coefficients between all scoring
 950 models. Higher values (darker colors) indicate stronger agreement.
 951

952 Figure 7 further visualizes pairwise evaluator agreement using scatter plot matrices. The scatter
 953 plots exhibit highly linear alignment along the $y = x$ diagonal for all evaluator pairs, confirming
 954 that different scoring models produce nearly identical score distributions. Minor deviations appear
 955 consistently across models.

956 **Together, these results show that our evaluation protocol is stable, evaluator-agnostic, and does
 957 not rely on any specific LLM.**
 958

959 A.2 TEMPERATURE

Temp	Qwen2.5 VL-32B				Qwen2.5 VL-72B				InternVL3-78B			
	Signal	Perception	Semantic	Generation	Signal	Perception	Semantic	Generation	Signal	Perception	Semantic	Generation
1.0	57.02	48.89	17.03	6.67	78.00	72.49	78.35	13.51	69.18	73.33	71.84	9.53
0.5	63.40	68.63	29.49	36.23	66.49	65.36	58.97	17.39	66.49	65.36	58.97	17.39
0.0	63.92	70.59	28.85	37.68	63.92	60.78	66.03	17.39	63.92	60.78	66.03	17.39

966 Table 4: Performance of three models under varying temperature settings.(Top- p fixed to 1)
 967

968 Table 4 presents the impact of varying temperature settings on three models: Qwen2.5-VL-32B,
 969 Qwen2.5-VL-72B, and InternVL3-78B.
 970

971 For Qwen2.5-VL-32B, lower temperatures ($T = 0.5$ and $T = 0$) yield substantial improvements
 972 over $T = 1.0$, particularly on the Perception, Semantic, and Generation levels. A similar trend

Figure 7: **Pairwise Evaluator Agreement.** Scatter plot matrix comparing the scores produced by different evaluators. Each off-diagonal cell shows a pairwise comparison, with the diagonal showing score distributions.

is observed for InternVL3-78B, where deterministic decoding ($T = 0$ or $T = 0.5$) leads to a more balanced performance profile compared to the stochastic setting. In contrast, Qwen2.5-VL-72B behaves differently: while it achieves the highest Signal and Semantic scores at $T = 1.0$, its Generation accuracy remains relatively low across all settings.

These observations indicate that smaller models tend to benefit from reduced sampling variability, as lower temperatures enhance stability and reliability. Conversely, larger models may require higher temperatures to fully exploit their expressive capacity, though this comes at the cost of weaker generative consistency.

Top- p	Qwen2.5 VL-32B				Qwen2.5 VL-72B				InternVL3-78B			
	Signal	Perception	Semantic	Generation	Signal	Perception	Semantic	Generation	Signal	Perception	Semantic	Generation
1.0	57.02	48.89	17.03	6.67	78.00	72.49	78.35	13.51	69.18	73.33	71.84	9.53
0.5	63.92	69.93	29.49	39.13	62.89	62.09	65.38	13.04	70.62	68.63	72.44	5.80
0.1	63.40	66.67	30.77	44.93	66.49	54.25	64.74	23.19	69.07	69.93	72.44	11.59

Table 5: Performance of three models under varying Top- p settings.(temperature fixed to 1).

1026 A.3 Top- p
10271028 We further investigate the role of nucleus sampling while fixing the temperature to 1.0. The results
1029 in Table 5 show heterogeneous effects across models.1030 For Qwen2.5-VL-32B, reducing Top- p from 1.0 to 0.1 consistently improves Semantic and Generation
1031 scores, suggesting that constraining the sampling space mitigates low-quality outputs and
1032 enhances reliability. By contrast, Qwen2.5-VL-72B attains its best Signal and Semantic results at
1033 $p = 1.0$, but its Generation score is substantially reduced. Interestingly, setting $p = 0.1$ recovers
1034 part of this loss, implying a trade-off between precision and diversity.1035 For InternVL3-78B, performance remains comparatively stable across Top- p values, with minor
1036 fluctuations in Generation accuracy. This stability suggests that larger-scale models are less sensitive
1037 to sampling truncation, reflecting stronger intrinsic consistency.1039 B TASK HIERARCHY
10401071 **Figure 8: Task Hierarchy of Our Benchmark.** The hierarchical structure of tasks spanning
1072 different difficulty levels, modalities, and evaluation criteria.1073 Figure 8 summarizes the construction of the SpectrumBench taxonomy. Starting from a broad view
1074 of spectrum-related problems (left side), we organize all tasks according to their input–output struc-
1075 ture, forming four high-level families: (1) forward problems (molecule → spectrum), (2) inverse
1076 problems (spectrum → molecule), (3) de novo generation (text → molecular, spectral, or peptide
1077 sequences), and (4) understanding tasks (any → text).1078 Each of these families is then instantiated as the 14 concrete sub-tasks included in SpectrumBench
1079 (shown in the middle of the figure). These sub-tasks are further abstracted into four semantic lev-

1080 els—*Signal, Perception, Semantic, and Generation*—which are consistently used throughout the
 1081 paper.
 1082

1083 In spectroscopy, predicting a spectrum from a known molecular structure is typically categorized
 1084 as a forward problem: the molecular configuration (geometry, bonding, electronic structure) deter-
 1085 mines the physico-chemical state, while the observed spectrum is a compressed manifestation of
 1086 that state. This view is consistent with standard formulations of forward modelling in computational
 1087 chemistry and spectroscopy. Conversely, recovering a molecular structure from spectral measure-
 1088 ments constitutes an inverse problem: the task seeks to reconstruct a richer latent representation
 1089 from partial, noisy, and sometimes ambiguous observations. Lu et al. (2025)
 1090

1091 We make this distinction explicit to ensure clarity for ML readers, as the forward-inverse terminol-
 1092 ogy is widely used in the spectroscopy and inverse-problem literature but may be unfamiliar outside
 1093 these communities.
 1094

1093 C SPECTRUMBENCH DETAILED INFORMATION

1094 C.1 EXPLORATORY DATA ANALYSIS

1095 To ensure the transparency, reliability, and scientific relevance of SpectrumBench, we conducted a
 1096 comprehensive exploratory data analysis (EDA) of all datasets included in SpectrumBench. This
 1097 analysis summarizes the provenance, spectral modalities, molecular coverage, and data-generating
 1098 processes (experimental or computed) for each dataset. Our goal is to provide a clear characteriza-
 1099 tion of the benchmark’s multimodal landscape and to help practitioners understand the heterogeneity
 1100 of real-world spectroscopic data.
 1101

1102 Table 6 presents the EDA summary across ten datasets. For each dataset, we report: (1) Source Type
 1103 (public or in-house), (2) Modalities Included (e.g., NMR, MS, IR, Raman, SMILES), (3) Number of
 1104 Molecules, (4) Spectrum Origin (experimental or computed), and (5) A brief description capturing
 1105 data provenance and major properties.
 1106

1107 These datasets span diverse use cases, from quantum-chemistry-based simulated spectra (QM9S,
 1108 Private Lab) to large-scale experimental NMR collections (NMRBank, NMRShiftDB, SupportInfo-
 1109 Crawl), peptide MS/MS corpora (NovoBench), and curated textbook-level structure elucidation
 1110 tasks (MolPuzzle). Importantly, many datasets include multiple modalities per molecule, reflect-
 1111 ing natural co-occurrence patterns observed in real analytical workflows. This multimodal overlap
 1112 further supports the design choice of unifying spectroscopy tasks within a single benchmark frame-
 1113 work.
 1114

1115 C.2 JUSTIFICATION FOR A MULTIMODAL BENCHMARK

1116 Spectroscopic analysis in practice is intrinsically multimodal: a single molecule is frequently char-
 1117 acterized by MS/MS, NMR, IR, Raman, and a symbolic structure representation (e.g., SMILES).
 1118 SpectrumBench therefore aims to evaluate not only single-modality reasoning, but also a model’s
 1119 ability to integrate these complementary signals.
 1120

1121 Table 7 reports the multimodal coverage across the core datasets used in SpectrumBench. QM9S,
 1122 the Multimodal-Spectroscopic-Datasets, and MolPuzzle provide fully paired modalities for every
 1123 molecule, supporting clean multimodal training. In contrast, SDDBS exhibits partial pairing across
 1124 modalities; Table 8 quantifies this variation (e.g., IR covers 91% of molecules, ESR only 2%).
 1125

1126 These observations motivate a multimodal benchmark for two reasons: (i) many real datasets nat-
 1127 urally contain paired modalities, making multimodal learning realistic rather than synthetic; and
 1128 (ii) incomplete pairing, as seen in SDDBS, reflects common real-world scenarios where cross-modal
 1129 reasoning is crucial. For these reasons, multimodality is treated as a first-class design principle in
 1130 SpectrumWorld.
 1131

1132 C.3 SIGNAL LEVEL

1133 This layer focuses on the direct processing and understanding of raw, fundamental data formats,
 1134 much like extracting information from physical signals, as exemplified in Figure 9.
 1135

	Dataset	Source	Modalities	#Molecules	Origin	Description
1134	QM9S2023a	Public	SMILES, UV, IR, Raman	130,000	Computed	Derived from the QM9 small-molecule set, QM9S contains 130,831 synthetically feasible organic molecules with up to nine heavy atoms (C, N, O, F). UV, IR and Raman spectra are computed via high-level quantum-chemical simulations for each molecule.
1135	Multimodal-Spectroscopic-Datasets 2024b	Public	SMILES, ^1H NMR, ^{13}C NMR, HSQC-NMR, MS $^+$, MS $^-$, IR	790,000	Computed	This dataset includes simulated multi-modal spectra for approximately 790,000 molecules extracted from a large patent-reaction corpus, providing paired NMR, MS (positive/negative) and IR spectra for each structure.
1136	MolPuzzle2024b	Public	SMILES, IR, MS, ^1H NMR, ^{13}C NMR	217	Experimental	Derived from 217 unique molecule-elucidation problems curated from a chemistry textbook, where each molecule is paired with IR, MS, ^1H and ^{13}C NMR spectra to support structure reasoning.
1137	NMRBank 2025c	Public	SMILES, ^1H NMR, ^{13}C NMR	225,809	Experimental	A large-scale experimental NMR database built via automated extraction from roughly 5.73 million open-access scientific publications. Each entry includes IUPAC name, SMILES (for a large subset), experimental conditions (solvent, field strength), ^1H / ^{13}C chemical shifts, and confidence scores.
1138	NovoBench2024a	Public	SMILES, MS/MS spectra	N/A	Experimental	NovoBench aggregates three widely used MS/MS resources for de novo peptide sequencing: a Seven-Species collection of low-resolution spectra from seven organisms, a Nine-Species collection of high-resolution spectra from nine species including common PTMs, and the HC-PT set of high-confidence human peptide spectra. Together they provide paired MS/MS spectra and peptide labels for standardized benchmarking.
1139	MassSpecGym2024a	Public	SMILES, MS/MS spectra	\sim 29,000	Experimental	MassSpecGym aggregates 231,104 high-quality tandem MS (MS/MS) spectra corresponding to 28,995 unique molecular structures. Spectra are sourced from public spectral libraries such as GNPS, MoNA and MassBank, as well as additional in-house measurements, and each spectrum is linked to a canonical SMILES string with standardized acquisition metadata.
1140	NMRShiftDB2024	Public	SMILES, ^1H NMR, ^{13}C NMR	\sim 40,000	Experimental	NMRShiftDB contains experimental ^1H and ^{13}C NMR spectra collected from the literature and community submissions. All entries undergo structural validation and manual curation, making it one of the largest open databases of real NMR chemical shifts.
1141	SDBS	Public	SMILES, IR, MS, ^1H NMR, ^{13}C NMR, Raman, ESR	43,628	Experimental	The SDBS dataset aggregates 43,628 experimental spectral records from the Spectral Database for Organic Compounds maintained by AIST (Japan). For each compound, it provides IR, MS, ^1H / ^{13}C NMR, Raman or ESR spectra, together with detailed measurement conditions (solvent, field strength, sample preparation, laser parameters, reaction conditions) and standardized metadata such as molecular formula, molecular weight, compound name and CAS registry number.
1142	Private Lab Dataset	In-house	SMILES, IR, Raman	417,012	Computed	An in-house quantum-chemistry dataset containing IR and Raman simulations for 417,012 molecules with 3D atomic coordinates and electronic properties. Each record includes a canonical SMILES string, 3D coordinates, Hartree-Fock energy, dipole moment and derivatives, polarizability and polarizability derivatives for molecules ranging from 2 to 70 atoms.
1143	SupportInfo-Crawl	To be released	SMILES, ^1H NMR, ^{13}C NMR, MS, ^{19}F / ^{11}B / ^{31}P NMR	\sim 320,000	Experimental	Our crawled NMR dataset contains experimentally measured spectra (primarily ^1H and ^{13}C NMR) extracted from chemical literature via a custom end-to-end pipeline that retrieves Supporting Information using DOI links and performs automated spectrum extraction and scaling. From 388,831 papers, we obtained about 320,000 valid molecular entries (around six per article); most molecules have paired ^1H / ^{13}C NMR spectra, and additional modalities such as MS, ^{19}F , ^{11}B and ^{31}P NMR are also covered.

Table 6: Exploratory Data Analysis (EDA) summary of all datasets included in Spectrum-Bench. For each dataset we report its source type, included modalities, molecular scale, spectrum origin, and a brief description.

C.4 PERCEPTION LEVEL

This layer associates the features identified at the signal layer with chemical entities (functional groups, fragments, elements, and basic properties), as illustrated in Figure 10.

C.5 SEMANTIC LEVEL

This layer involves higher-level reasoning and comprehensive interpretation, connecting fragmented information to form complete insights or generate novel chemical structures, as depicted in Figure 11.

Dataset	Modalities Included	Fully Paired?	% Molecules with Complete Set
QM9S	UV, IR, Raman	Yes	100%
Multimodal-Spectroscopic-Datasets	C-NMR, H-NMR, HSQC-NMR, MS ⁺ , MS ⁻ , IR	Yes	100%
MolPuzzle	IR, MS, HNMR, CNMR	Yes	100%
SDBS	IR, MS, HNMR, CNMR, Raman, ESR	No	Variable (2–91%)

Table 7: Multimodal completeness and modality pairing across datasets in SpectrumWorld. “Fully paired” indicates that each molecule contains all listed modalities.

Modality	#Spectra	% Molecules Containing This Modality
IR	39,980	91.64%
MS	32,838	75.27%
HNMR	18,317	41.98%
CNMR	17,688	40.54%
Raman	4,569	10.47%
ESR	924	2.12%

Table 8: Distribution of spectral modalities within the SDBS dataset. Each row reports the number of spectra and the percentage of molecules containing that modality.

C.6 GENERATION LEVEL

This layer focuses on creating novel data, such as generating a 2D image of a molecule from its SMILES string, predicting the Mass Spectrum for a given chemical structure, or designing a new molecule with specific properties, as illustrated in Figure 13.

C.7 DATA DISTRIBUTION

To provide an overview of the data landscape, Figure 12 presents two pie charts: the left illustrates the distribution of different spectrum types (*e.g.*, NMR, IR), while the right shows the categorization of spectroscopic task types. These distributions reflect the diversity of data and tasks within our study. It should be noted that the spectrum type statistics were generated by having GPT-4o scan and summarize all spectra in the benchmark. However, there are potential limitations: GPT may have recognition errors, and some spectrum-involving benchmarks lack actual image data (*e.g.*, predicting NMR spectrum properties from molecular characteristics in *de novo* generation tasks). Additionally, in tasks like multimodal fusion reasoning and forward generation problems, a single benchmark instance might include multiple spectra. Thus, the number of spectra does not align with the number of benchmarks, and this pie chart is provided only as a general reference.

D SPECTRUMANNOTATOR TECHNICAL DETAILS

In the main text, we briefly introduced the function of SpectrumAnnotator. In this section, we will introduce its specific technical details.

MolPuzzle (Guo et al., 2024b) represents the first benchmark specifically designed for LLMs in spectroscopic analysis, employing a three-stage approach to generate question-answer pairs. While this template-based generation method offers efficiency, it suffers from limited coverage of spectroscopic domains and overly simplistic question formats. In the field of spectroscopy, high-quality data and benchmarks are crucial to advance AI research. The design of SpectrumAnnotator originates from two key insights: First, the process of creating benchmarks shares similarities with the supervised data generation methods used in LLM pre-training and post-processing. Just as high-quality training data is essential for model performance, well-designed benchmarks are equally critical for evaluating and advancing the field. Second, we aim to utilize LLMs’ few-shot and zero-shot capabilities to generate diverse benchmarks, enabling batch processing of seed datasets to construct large-scale pre-training and post-processing data. Additionally, we leverage LLMs’ discriminative abilities for preliminary data screening and establish closed-loop mechanisms for continuous improvement.

Examples	
Identifying the type of a spectrum, assessing its data quality, extracting basic features (e.g., peak position, peak intensity), and identifying impurity peaks..	
Sub-Category	Metadata
Spectrum Type Classification	<p>Question: What type of spectrum is this?</p> <p>Choices & Answer:</p> <ul style="list-style-type: none"> A. Infrared Spectrum (IR). B. Proton Nuclear Magnetic Resonance (H-NMR). C. Heteronuclear Single Quantum Coherence (HSQC). D. Raman Spectrum. <p>Explanation: The spectrum uses ppm as units, which is a chemical shift unit specific to NMR. The chemical shift range typically falls between -2 ppm and 15 ppm, confirming this is a ^1H NMR spectrum.</p>
Spectrum Quality Assessment	<p>Question: Does this spectrum show obvious signal quality issues?</p> <p>Choices & Answer:</p> <ul style="list-style-type: none"> A. Yes. B. No, the signal is very clear. C. Localized noise. D. Very low noise, eligible. <p>Explanation:....</p>
Basic Feature Extraction	<p>Question: Please select the chemical shift range corresponding to the most concentrated signal area in the HSQC spectrum.</p> <p>Choices & Answer:</p> <ul style="list-style-type: none"> A. δH 2-4 ppm, δC 30-60 ppm. B. δH 6-8 ppm, δC 120-140 ppm. C. δH 9-10 ppm, δC 180-200 ppm. D. δH 0-1 ppm, δC 10-20 ppm. <p>Explanation: HSQC spectrum plots ^1H chemical shift on the horizontal axis and ^{13}C on the vertical. Most signals cluster in the 2-4 ppm (^1H) and 30-60 ppm (^{13}C) region.</p>
Impurity Peak Detection	<p>Question: Please observe this spectrum carefully. Besides the signals from the target compound, there is also a distinct additional peak around 1 ppm in the image. What is this peak most likely?</p> <p>Choices & Answer:</p> <ul style="list-style-type: none"> A. Solvent impurity. B. Target compound. C. Instrument noise. D. Reference standard. <p>Explanation: In NMR spectrum, the peak near 1 ppm is often from impurities introduced during sample processing. Given it's an "extra" signal not part of the target compound, it's likely an impurity.</p>

Figure 9: Example tasks and question formats at the Signal Level.

As illustrated in Figure 14, SpectrumAnnotator consists of several key components that work together to generate high-quality spectroscopic benchmarks. **Configuration & Seed Datasets** form the foundation of the system. Seed datasets are extracted from multiple data sources containing essential spectroscopic information, while the configuration is a YAML configuration file that primarily configures prompt templates, instructing the generator on what prompts to use, along with model configurations and other parameters. As shown in Figure 15, taking property prediction as an example, the configuration specifies the seed datasets from MolPuzzle and provides question templates to guide the generator's output.

DataLoader addresses the challenge of integrating diverse data sources. Ideally, we would like to standardize all seed datasets into a uniform format. However, in practice, this proves challenging as original data may possess complex nested file structures and diverse storage formats. To reduce adaptation complexity, we allow customized DataLoader designs. This design is inspired by Py-

1296	Examples											
1297	Identifying functional groups like -OH from a mass spectrum; determining the presence of isotopes like ^{13}C ; assigning a ^1H NMR triplet to a methyl group; predicting molecular weight from a mass spectrum.											
1300	<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 5px;">Sub-Category</th> <th style="text-align: left; padding: 5px;">Metadata</th> </tr> </thead> <tbody> <tr> <td style="padding: 10px; vertical-align: top;"> Basic Property Prediction </td> <td style="padding: 10px;"> <p>Question: Given the mass spectrum image, what is the most likely molecular ion peak (m/z) observed for this compound?</p> <p>Choices & Answer: A. 85. B. 107. C. 120. D. 150.</p> <p>Explanation: The strongest peak at m/z 107.0 is the molecular ion (M^+), with an adjacent m/z 109.0 peak ($\sim 1/3$ intensity) indicating one chlorine atom ($^{35}\text{Cl}/^{37}\text{Cl} \approx 3:1$). Smaller peaks ($m/z$ 93.0, 108.0) are fragments.</p> </td> </tr> <tr> <td style="padding: 10px; vertical-align: top;"> Elemental Composition Prediction </td> <td style="padding: 10px;"> <p>Question: Observe the provided mass spectrum image. The significant M^+ peak suggests the presence of which element?</p> <p>Choices & Answer: A. Fluorine (F). B. Chlorine (Cl). C. Bromine (Br). D. Iodine (I).</p> <p>Explanation: The intensity ratio of the m/z 51 and 53 peaks ($\sim 3:1$) reflects chlorine's natural isotopes, ^{35}Cl (75.77%) and ^{37}Cl (24.23%), giving an M^+ peak about one-third the main peak.</p> </td> </tr> <tr> <td style="padding: 10px; vertical-align: top;"> Functional Group Recognition </td> <td style="padding: 10px;"> <p>Question: Based on this infrared spectrum, what functional group is most likely present in the molecule?</p> <p>Choices & Answer: A. Carbonyl group ($\text{C}=\text{O}$). B. Hydroxyl group (-OH). C. Amino group (-NH₂). D. Nitro group (-NO₂).</p> <p>Explanation: In the infrared spectrum, a pair of sharp absorption peaks around 3300 cm^{-1} are typical of the symmetric and asymmetric N-H stretching vibrations in a primary amino group (-NH₂).</p> </td> </tr> <tr> <td style="padding: 10px; vertical-align: top;"> Peak Assignment </td> <td style="padding: 10px;"> <p>Question: Given the chemical formula $\text{C}_6\text{H}_5\text{F}$. Observe this H-NMR spectrum. The singlet peak around ~ 7.3 ppm in the image is most likely assigned to which part of the molecule?</p> <p>Choices & Answer: A. Methyl group. B. Fluoro-substituted carbon. C. Aromatic ring protons. D. Alkene protons</p> <p>Explanation: The 7.3 ppm shift is typical for aromatic protons in fluorobenzene ($\text{C}_6\text{H}_5\text{F}$). Though misdescribed as a singlet, it's a complex multiplet from H-H and H-F coupling, with the shift confirming its aromatic nature.</p> </td> </tr> </tbody> </table>		Sub-Category	Metadata	Basic Property Prediction	<p>Question: Given the mass spectrum image, what is the most likely molecular ion peak (m/z) observed for this compound?</p> <p>Choices & Answer: A. 85. B. 107. C. 120. D. 150.</p> <p>Explanation: The strongest peak at m/z 107.0 is the molecular ion (M^+), with an adjacent m/z 109.0 peak ($\sim 1/3$ intensity) indicating one chlorine atom ($^{35}\text{Cl}/^{37}\text{Cl} \approx 3:1$). Smaller peaks ($m/z$ 93.0, 108.0) are fragments.</p>	Elemental Composition Prediction	<p>Question: Observe the provided mass spectrum image. The significant M^+ peak suggests the presence of which element?</p> <p>Choices & Answer: A. Fluorine (F). B. Chlorine (Cl). C. Bromine (Br). D. Iodine (I).</p> <p>Explanation: The intensity ratio of the m/z 51 and 53 peaks ($\sim 3:1$) reflects chlorine's natural isotopes, ^{35}Cl (75.77%) and ^{37}Cl (24.23%), giving an M^+ peak about one-third the main peak.</p>	Functional Group Recognition	<p>Question: Based on this infrared spectrum, what functional group is most likely present in the molecule?</p> <p>Choices & Answer: A. Carbonyl group ($\text{C}=\text{O}$). B. Hydroxyl group (-OH). C. Amino group (-NH₂). D. Nitro group (-NO₂).</p> <p>Explanation: In the infrared spectrum, a pair of sharp absorption peaks around 3300 cm^{-1} are typical of the symmetric and asymmetric N-H stretching vibrations in a primary amino group (-NH₂).</p>	Peak Assignment	<p>Question: Given the chemical formula $\text{C}_6\text{H}_5\text{F}$. Observe this H-NMR spectrum. The singlet peak around ~ 7.3 ppm in the image is most likely assigned to which part of the molecule?</p> <p>Choices & Answer: A. Methyl group. B. Fluoro-substituted carbon. C. Aromatic ring protons. D. Alkene protons</p> <p>Explanation: The 7.3 ppm shift is typical for aromatic protons in fluorobenzene ($\text{C}_6\text{H}_5\text{F}$). Though misdescribed as a singlet, it's a complex multiplet from H-H and H-F coupling, with the shift confirming its aromatic nature.</p>
Sub-Category	Metadata											
Basic Property Prediction	<p>Question: Given the mass spectrum image, what is the most likely molecular ion peak (m/z) observed for this compound?</p> <p>Choices & Answer: A. 85. B. 107. C. 120. D. 150.</p> <p>Explanation: The strongest peak at m/z 107.0 is the molecular ion (M^+), with an adjacent m/z 109.0 peak ($\sim 1/3$ intensity) indicating one chlorine atom ($^{35}\text{Cl}/^{37}\text{Cl} \approx 3:1$). Smaller peaks ($m/z$ 93.0, 108.0) are fragments.</p>											
Elemental Composition Prediction	<p>Question: Observe the provided mass spectrum image. The significant M^+ peak suggests the presence of which element?</p> <p>Choices & Answer: A. Fluorine (F). B. Chlorine (Cl). C. Bromine (Br). D. Iodine (I).</p> <p>Explanation: The intensity ratio of the m/z 51 and 53 peaks ($\sim 3:1$) reflects chlorine's natural isotopes, ^{35}Cl (75.77%) and ^{37}Cl (24.23%), giving an M^+ peak about one-third the main peak.</p>											
Functional Group Recognition	<p>Question: Based on this infrared spectrum, what functional group is most likely present in the molecule?</p> <p>Choices & Answer: A. Carbonyl group ($\text{C}=\text{O}$). B. Hydroxyl group (-OH). C. Amino group (-NH₂). D. Nitro group (-NO₂).</p> <p>Explanation: In the infrared spectrum, a pair of sharp absorption peaks around 3300 cm^{-1} are typical of the symmetric and asymmetric N-H stretching vibrations in a primary amino group (-NH₂).</p>											
Peak Assignment	<p>Question: Given the chemical formula $\text{C}_6\text{H}_5\text{F}$. Observe this H-NMR spectrum. The singlet peak around ~ 7.3 ppm in the image is most likely assigned to which part of the molecule?</p> <p>Choices & Answer: A. Methyl group. B. Fluoro-substituted carbon. C. Aromatic ring protons. D. Alkene protons</p> <p>Explanation: The 7.3 ppm shift is typical for aromatic protons in fluorobenzene ($\text{C}_6\text{H}_5\text{F}$). Though misdescribed as a singlet, it's a complex multiplet from H-H and H-F coupling, with the shift confirming its aromatic nature.</p>											

Figure 10: Example tasks and question formats at the perception level.

1343 Torch's DataLoader, which can properly load, batch, and post-process raw data. Our DataLoader
 1344 aims to integrate various "seed datasets" into formats that can be processed by generators. The foun-
 1345 dation consists of two base classes: DataSample, which represents the minimal granular information
 1346 unit in SpectrumAnnotator and serves as reference information for the Generator to generate indi-
 1347 vidual samples; and Dataset, a collection of DataSample objects that provides standardized access
 1348 methods. As demonstrated in Figure 16, the DataLoader adopts a plugin-based architecture with an
 1349 abstract registry. For different seed datasets, researchers only need to register their custom loaders
 using simple registration code, enabling seamless integration of diverse data sources.

1350	Examples Elucidating a complete molecular structure from one or more spectra; verifying a proposed structure against spectral data; and reasoning across different modalities (e.g., text and spectrum) to answer complex questions.	
1351		
1352		
1353		
1354	Sub-Category	Metadata
1355	Question: The molecular formula of the compound is C ₆ H ₁₁ NO. Use this information together with the provided IR spectrum to infer possible structural features. Choices & Answer: A. Amide. B. Alcohol. C. Ester. D. Alkene. Explanation: Infrared spectroscopy shows a strong 1650 cm ⁻¹ peak (C=O) and a 3300–3500 cm ⁻¹ peak (N–H). Their coexistence, along with N and O in the formula, clearly indicates an amide group.	
1356		
1357		
1358	Question: Given the mass spectrum of an unknown compound with a molecular formula C ₁₁ H ₁₆ , predict the most likely molecular structure (SMILES) consistent with the observed fragments. Choices & Answer: A. CC(C)=C1=CC=CC=C1. B. CC(C)C1=CC=CC2=CC=CC=C12. C. CC(C)(C)CC1=CC=CC=C1. D. CCC(C)C1=CC=CC2=CC=CC=C12. Explanation: The base peak at m/z 91 indicates a benzyl (C ₆ H ₅ CH ₂ –) structure, while m/z 133 represents loss of a methyl group. Only CC(C)(C)CC1=CC=CC=C1 fits both fragmentations.	
1359		
1360		
1361		
1362		
1363		
1364		
1365		
1366		
1367	Question: The Raman spectrum of the molecule OC1CCC1=O (2-hydroxycyclopentanone) shows a series of strong peaks in the 2800–3000 cm ⁻¹ region. These peaks are most likely attributed to which type of molecular vibration? Choices & Answer: A. C–H stretching. B. O–H stretching. C. C=O stretching. D. N–H stretching. Explanation: In Raman spectroscopy, 2800–3000 cm ⁻¹ is characteristic of C–H stretching. The strong peak here arises from cycloalkane C–H vibrations, while O–H (3200–3600 cm ⁻¹) and C=O (~1700 cm ⁻¹) peaks are absent.	
1368		
1369		
1370		
1371		
1372		
1373		
1374		
1375		
1376		
1377		
1378		
1379	Question: The Raman spectrum of the molecule OC1CCC1=O (2-hydroxycyclopentanone) shows a series of strong peaks in the 2800–3000 cm ⁻¹ region. These peaks are most likely attributed to which type of molecular vibration? Choices & Answer: A. C–H stretching. B. O–H stretching. C. C=O stretching. D. N–H stretching. Explanation: In Raman spectroscopy, 2800–3000 cm ⁻¹ is characteristic of C–H stretching. The strong peak here arises from cycloalkane C–H vibrations, while O–H (3200–3600 cm ⁻¹) and C=O (~1700 cm ⁻¹) peaks are absent.	
1380		
1381		
1382		
1383		
1384		

Figure 11: Example tasks and question formats at the semantic level.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457**Examples**

Generating a 2D image of a molecule from its SMILES string; predicting the Mass Spectrum for a given chemical structure; designing a new molecule with specific properties.

1. Forward Problems**Question Text:**

Please generate the structural formula of the molecule based on the provided NMR spectrum.

Question Image:**Answer Image:**

Smiles: FC(F)(F)c1ccc(CN[C@H](CC)N2CCOCC2)cc1

2. Inverse Problems**Question Text:**

Generate the proton NMR spectrum of the molecule based on the given structural information.

Question Image:

Smiles: Cc1ccccc1/C=C(C)/C=C

Answer Image

3. De Novo Generation**Question Text:**

A molecule needs to be generated in the form of a picture, with a HOMO-LUMO energy gap of 0.2868 a.u.

Answer Image:

Smiles: CCOC=O

Figure 13: Example tasks and question formats at the Generation Level.

Generator operates through a three-stage workflow: First, it receives question templates from Configuration (including few-shot examples). Second, for each sample in the seed dataset, the generator uses question templates combined with sample metadata (such as molecular formulas, spectrum paths, SMILES strings, etc.) to render a prompt, which is then passed to the large language model. Third, the model's output is parsed into standard formats (e.g., question/choices/answer).

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 14: Technical architecture of SpectrumAnnotator, illustrating the data flow from seed datasets through generation to quality verification.

Figure 15: Example configuration for property prediction tasks, demonstrating how prompt templates and model parameters are specified.

```

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

    DataLoader
    @dataclass
    class DataSample:
        id: str
        text: Optional[str] = None
        images: Optional[List[str]] = None
        metadata: Dict[str, Any] = field(default_factory=dict)

    @dataclass
    class Dataset:
        samples: List[DataSample]
        metadata: Dict[str, Any] = field(default_factory=dict)
        def __len__(self) -> int:
            pass
        def __getitem__(self, index: int) -> DataSample:
            pass

    from .base import BaseDataLoader
    @register_loader
    class MoleculeDataLoader(BaseDataLoader):
        def can_handle(self, data_path: Path) -> bool:
            pass
        def load(self, data_path: Path) -> Dataset:
            pass

```

Figure 16: Plugin-based DataLoader architecture showing the registration mechanism for custom data loaders.

1566
 1567 **Quality Assurance Pipeline** ensures the reliability of generated benchmarks. After data genera-
 1568 tion, the system employs a multi-stage quality assurance process: Initial screening using rule-based
 1569 methods to check data format and remove non-compliant samples, followed by SpectrumVerifier,
 1570 a large model-based verification system that identifies suspicious samples requiring manual anno-
 1571 tation. This closed-loop mechanism ensures that only high-quality, scientifically valid benchmarks
 1572 are included in the final dataset. SpectrumAnnotator will be open-sourced to collaborate with the
 1573 research community in building a robust ecosystem and collectively addressing challenges in spec-
 1574 troscopic data generation and curation.

1575 E QUANTITATIVE EVALUATION OF ANNOTATION QUALITY

1577 SpectrumBench adopts a mixed automatic–human curation workflow. In early iterations, the Spec-
 1578 trumAnnotator prompts and filtering rules produced a non-trivial amount of noisy or underspecified
 1579 samples. We therefore carried out several rounds of prompt redesign, rule refinement, and human-
 1580 in-the-loop verification, and here report the corresponding quantitative evidence.

1581 Figure 17 compares automatic annotations from SpectrumAnnotator with independent manual anno-
 1582 tations on a stratified sample of tasks across the four semantic levels (Signal, Perception, Semantic,
 1583 Generation). For each task, we plot the number of samples judged correct by human annotators and
 1584 by the automatic pipeline. Overall, the distributions are well aligned, indicating that the automatic
 1585 pipeline can approximate human labeling quality at scale.

1604 Figure 17: Comparison between automatic (SpectrumAnnotator) and manual annotations across all
 1605 SpectrumBench tasks. Bars report, for each task type and semantic level, the number of samples
 1606 judged correct by human annotators (blue) and by the automatic pipeline (orange).

1607 To further quantify annotation quality, Table 9 reports the aggregate error rates of the *automatically*
 1608 *generated* annotations (before human verification) across the three semantic levels. Signal and Per-
 1609 ception tasks show reductions from 57.4% to 21.2% and from 52.8% to 19.8%, respectively, while
 1610 Semantic tasks improve from 74.6% to 26.2%. Generation tasks are excluded because they are fully
 1611 manual annotation and therefore do not rely on automatic annotation.

1613 These results demonstrate that iterative refinement, substantially improves the reliability of *auto-*
 1614 *matic* annotations. Importantly, the reported error rates refer only to raw auto-generated outputs; all
 1615 benchmark data released in SpectrumBench undergo a subsequent human-verification stage, and the
 1616 final benchmark does not contain these errors.

1617 A further benefit of this workflow is efficiency: instead of manually designing and writing thou-
 1618 sands of benchmark items, curators only need to validate and correct model-proposed annotations.
 1619 This dramatically reduces the human labor required for benchmark construction while preserving
 scientific rigor.

We also note that the remaining errors after refinement primarily stem from model limitations (our pipeline currently uses Intern-S1). Stronger models would further reduce these residual issues, and for several simpler tasks—such as spectrum-type classification—the refined prompts already achieve near-zero automatic error. This indicates that the annotation pipeline scales with model capability and can continue to improve as foundation models advance.

Error rate	Signal	Perception	Semantic	Generation
Before refinement	57.4%	52.8%	74.6%	N/A
After refinement	21.2%	19.8%	26.2%	N/A

Table 9: Annotation error rates for SpectrumAnnotator before and after iterative prompt and rule refinements, aggregated at each semantic level. Generation tasks are open-ended and are not included in this calculation.

F BENCHMARKING CANDIDATES

Figure 18: Performance ranking of various LLMs.

F.1 OPEN-SOURCE MODELS

Qwen2.5-VL-32B-Instruct(Bai et al., 2025). Alibaba’s open-source Vision-Language multimodal large model that handles reasoning and generation for images, text and video. It employs a hierarchical tagging architecture, supports multi-turn conversations and complex reasoning, and both the model weights and code are publicly available.

Qwen2.5-VL-72B-Instruct(Bai et al., 2025). Qwen2.5’s larger-scale model enhances cross-modal reasoning and instruction-following capabilities, delivering superior performance on benchmarks such as MMMU and M3Exam while supporting multitasking and multilingual inputs - and is completely open-source.

InternVL3-78B (Chen et al., 2024b). Shanghai AI Lab releases the multimodal model, combining native multimodal pre-training, variable visual position encoding (V2PE), MPO, and test-time scaling to approach GPT-4o performance.

Llama-3.2-11b-Vision-Instruct(Meta AI, 2024). Meta’s 11 B lightweight multimodal model locks Llama-3.1 8 B text and pairs it with a ViT encoder. Two-stage training: image-text alignment then SFT+DPO, using RoPE-2D. Open-source.

Llama-3.2-90b-Vision-Instruct(Meta AI, 2024). The 90B features a more advanced vision adapter with cross-attention layers to inject image features into the LLM core. It is tuned with SFT and RLHF for enhanced performance on complex visual reasoning tasks.

DeepSeek-VL-2(Wu et al., 2024). An open-source model from DeepSeek-AI featuring a Mixture-of-Experts (MoE) backbone and a dynamic tiling vision encoder for high-resolution images. It

1674 achieves or exceeds the state-of-the-art performance at the time on benchmarks like MMMU and
 1675 DocVQA, with its code and weights fully available on GitHub.
 1676

1677 **Doubao-1.5-Vision-Pro (Doubao Team, 2025).** It features a dynamic resolution visual encoder and
 1678 MoE architecture, supporting visual QA, text-image matching, and image description. With billions
 1679 of parameters, it shows strong generalization across scenarios and is available for self-hosting and
 1680 fine-tuning.

1681 **Doubao-1.5-Vision-Pro-Thinking (Doubao Team, 2025).** It integrates a “Deep Thinking Mode”
 1682 and is trained with multi-round Reward Learning and reasoning style training. It excels in scientific,
 1683 mathematical, and chain-of-thought reasoning. Supports open-source calling and API integration.

1684 **GLM-4.5V(VTeam, 2025).** An open-source vision-language model from Zhipu AI and Tsinghua
 1685 University that introduces a versatile “thinking paradigm” for enhanced reasoning. It leverages
 1686 scalable reinforcement learning and supports full-spectrum vision reasoning, including GUI agent
 1687 operations and code generation from screenshots.

1688 **InternS1(Intern-S1 Team, 2025).** A vision-language model developed by Shanghai AI Laboratory
 1689 that features a specialized “Thinking” mode for enhanced multi-step reasoning. This mode allows
 1690 the model to perform a series of self-guided logical steps to solve complex problems, particularly in
 1691 scientific, mathematical, and logical domains.

1693 F.2 CLOSED-SOURCE MODELS

1694 **GPT-4o (OpenAI, 2024).** OpenAI’s flagship “omni” model natively supports text, audio, and image
 1695 modalities. Delivers GPT-4-level intelligence with significantly faster response times and enhanced
 1696 multimodal capabilities.

1697 **GPT-4.1(OpenAI, 2025).** A reinforced version of GPT-4 deployed through the OpenAI API, offering
 1698 improved handling of complex instructions and logical reasoning; accepts multimodal inputs but
 1699 is primarily geared toward text-centric tasks.

1700 **GPT-4-Vision(OpenAI, 2023).** A version of GPT-4 equipped with image input capabilities, optimized
 1701 for understanding images and text and for the generation of conversational content, widely
 1702 used for image-based Q&A.

1703 **Claude-3.5-Haiku.** Anthropic’s fastest and most cost-effective model in the Claude3.5 family—offers
 1704 very low latency, strong coding and reasoning ability, and often exceeds Claude Opus on
 1705 intelligence benchmarks despite being lightweight.

1706 **Claude-3.5-Sonnet (Anthropic, 2024).** Anthropic’s multimodal large language model has mixed
 1707 inference capabilities and powerful visual understanding functions. It supports a context of 200K
 1708 tokens and is skilled in natural writing and code generation.

1709 **Claude-3.7-Sonnet (Anthropic, 2025a).** An evolution of Claude3.5 Sonnet that introduces hybrid
 1710 reasoning—users can choose between fast modes or step-by-step logical chains; offers strong task
 1711 flexibility, extended context windows, and deep instruction-following in multimodal settings.

1712 **Claude-4-Opus (Anthropic, 2025b).** Anthropic’s flagship model, designed for complex tasks. It
 1713 boasts a powerful memory architecture and parallel tool invocation capabilities, and integrates with
 1714 Claude Code, performing exceptionally in coding and reasoning benchmark tests.

1715 **Claude-4-Sonnet (Anthropic, 2025b).** Claude-3.7-Sonnet’s successor, balancing performance and
 1716 speed, with low latency and high resource efficiency, excels in code generation.

1717 **Grok-2-Vision(xAI, 2024).** The multi-modal model of xAI combines language and visual processing
 1718 capabilities to handle various images and documents, and supports multilingual recognition and
 1719 style analysis.

1720 **Qwen-VL-Max.** The closed-source flagship model of Alibaba’s Qwen series has been optimized
 1721 for deployment in enterprise-level multimodal tasks, supporting joint input of images, text, videos,
 1722 and others, with ultra-large parameter volume and high inference capability.

1723 **Gemini-2.5-Pro(Gemini Team, 2025).** A multimodal model from Google DeepMind that achieves
 1724 state-of-the-art performance on frontier reasoning and coding benchmarks. It excels at multimodal

understanding, including the ability to process up to 3 hours of video content and convert it into interactive code. Its combination of long context, multimodality, and enhanced reasoning capabilities unlocks new agentic workflows and complex problem-solving.

G ERROR CASES STUDY

G.1 SIGNAL LEVEL

We observe that the model struggles to distinguish localized noise from clean signals in the spectrum quality assessment task. For example, given the question “Does this spectrum show obvious signal quality issues?”, the ground-truth label was “Localized noise” or “Very low noise, eligible”, indicating minor but noticeable signal interference. However, the model incorrectly predicted “No, the signal is very clear”, resulting in a failed case. This misclassification reveals a key limitation: the model tends to overestimate the clarity of the spectrum when the noise is not global or strongly pronounced. In visual inspection, localized artifacts—though subtle—can be clearly identified by human annotators, whereas the model often dismisses them as negligible. It lacks sufficient sensitivity to weak or local signal distortions, or has overfit to globally noisy or clean examples during training, causing it to ignore partial imperfections. This insight aligns with our general observation: the model often fails to distinguish noise from true signal, especially when the noise is spatially sparse or located at the margins of the image. Such behavior may stem from the fact that the model treats the entire spectrum as a holistic input, and lacks mechanisms to perform fine-grained regional quality assessment. Additionally, for models not inherently multi-modal, spectra are often encoded as image representations and then passed through vision encoders or captioning modules, potentially discarding low-level noise patterns. As a result, noise may not be retained in the model’s internal representation, leading to overly optimistic predictions.

G.2 PERCEPTION LEVEL

Figure 19: A Case of Functional Group Recognition

We found that for functional group recognition and peak assignment tasks, large language models such as Doubao-1.5-pro-thinking often fail to produce chemically accurate predictions, even when the visual features in the spectra are clear to human experts. For instance, in the functional group recognition task (Figure 19), the infrared (IR) spectrum exhibits a strong absorption band characteristic of a **carbonyl group (C=O)**, typically near 1700 cm^{-1} . However, the model incorrectly predicted **hydroxyl group (-OH)**. This suggests that the model likely over-relied on the presence of a broad peak or baseline shift, possibly mistaking low-intensity or overlapping signals for OH-stretching vibrations. In the peak assignment task (Figure 20), given the molecular formula $\text{C}_{10}\text{H}_7\text{Cl}$ and a clear singlet near 6.8 ppm in the $^1\text{H-NMR}$ spectrum, the expected answer was **aromatic CH**

Figure 20: A Case of Peak Assignment

next to a double bond, i.e., a non-substituted position in the naphthalene ring. Yet the model responded with **aromatic CH adjacent to Cl**, a chemically invalid assignment considering the splitting pattern and electronic environment. This indicates a lack of fine-grained chemical reasoning and possibly an overemphasis on token-level keyword association rather than structural context. These cases expose the model’s semantic-level misunderstanding, which goes beyond visual misinterpretation and highlights a deficiency in chemically grounded reasoning. We hypothesize two contributing factors. Firstly, the model may rely heavily on language priors, rather than truly integrating spectral visual features with molecular structure. Secondly, it lacks domain-specific supervision. Pretraining on generic data may not sufficiently expose the model to physical rules of spectroscopy, such as electron-withdrawing effects, chemical shift theory, or group frequency ranges.

G.3 SEMANTIC LEVEL

At the semantic level, tasks involving **molecular structure elucidation** and **multi-modal reasoning** remain particularly challenging. Consider the example below:

In this case, the model is asked: “*The molecular formula of the compound is $C_4H_8O_2$. Use this information together with the provided IR spectrum image to infer possible structural features.*” The correct answer should be **Ether**, based on the absence of a strong carbonyl absorption near 1700 cm^{-1} and the elemental composition. However, the model incorrectly predicts **Carboxylic acid**, likely due to over-reliance on superficial signal patterns that resemble O–H stretching or C=O bands.

Even when the molecular formula is omitted (pure spectrum-based reasoning), the model continues to produce incorrect predictions, revealing a deficiency in cross-modal semantic alignment. This suggests that while LLMs may perform well on shallow text-image associations, they struggle with integrating spectral data and chemical constraints in a chemically meaningful way.

Figure 21: A Case of Fusing Multi-Modalities

1856 G.4 GENERATION LEVEL

1858 Not surprisingly, the performance on generation tasks—especially structure generation—is significantly worse. This suggests that while models like **Claude-3.7-Sonnet** perform well on earlier
 1859 levels such as perception, syntactic understanding, and basic semantic reasoning, they still struggle
 1860 with more complex **forward problems** that require inferring new molecular structures from spectral
 1861 data. **De novo generation** and **inverse problems** (e.g., predicting spectra from structure) pose even
 1862 greater challenges, as they demand deeper chemical understanding and cross-modal generalization.
 1863 In these settings, most models exhibit clear signs of overfitting or default to high-frequency patterns
 1864 seen in training data.

1865 Surprisingly, **Doubaο-1.5-Vision-Pro-Thinking** demonstrates promising performance on forward
 1866 problems, aligning well with its strong results in earlier semantic-level tasks such as functional
 1867 group recognition, peak assignment, and molecular structure elucidation. This consistency suggests
 1868 that the model may have a better internal representation of cross-modal chemical semantics, though
 1869 its capability still falls short in full generation settings.

1872 H MODEL ACCURACY VS. TOKEN ASSUMPTIONS

1874 We conduct a comparative analysis of several Multimodal Large Language Models (MLLMs) from
 1875 both semantic and generative levels, focusing on three representative tasks: Molecule Elucidation
 1876 (ME), Fusing Spectroscopic Modalities (FM), and Forward Problems (FP). As shown in Figure 22,
 1877 the performance gap among models is significant. Notably, models with lower average token as-
 1878 sumptions, such as *DeepSeek-VL2*, tend to exhibit lower accuracy. In contrast, models with higher
 1879 token assumptions, such as *Doubaο-1.5-Vision-Pro-Thinking*, achieve superior performance, espe-
 1880 cially on complex *de novo* generation tasks like FP. This suggests that a longer reasoning chain, re-
 1881 flected in higher token usage, benefits complex problem-solving. However, the trade-off is increased
 1882 computational cost and significantly longer inference time. These results highlight the efficiency-
 1883 performance dilemma in MLLMs.

1886 I DETAILED DATA STRUCTURE

1888 This section details the comprehensive seed datasets curation pipeline and the three primary data
 1889 structures that underpin our framework: the foundational **seed datasets**, the structured **benchmark**
data, and the standardized **evaluation results**.

Figure 22: Model accuracy aligns with the model size.

I.1 SEED DATA CURATION DETAILS

The seed datasets are curated from three primary sources to ensure both diversity and scientific rigor:

- Proprietary collections and in-house experimental data:** These include unpublished spectroscopic measurements and curated datasets from our collaborating laboratories. This source comprises approximately 238,869 molecular data points covering 8 types of spectra, offering higher authenticity and usability compared to most computationally generated spectra.
- Public repositories and benchmark datasets:** We integrate data from a range of widely recognized and authoritative sources, including SDBS (of Advanced Industrial Science & Technology, AIST), QM9S (Zou et al., 2023b), NovoBench (Zhou et al., 2024a), and MolPuzzle (Guo et al., 2024b), among others. In total, seven distinct repositories and public datasets are used, collectively encompassing over 1.01 million unique chemical compounds.
- Literature mining:** Spectral data are systematically extracted from the *Supporting Information* sections of peer-reviewed publications, with a focus on articles from leading journals such as the *Journal of the American Chemical Society (JACS)* and *ACS Catalysis*.

All collected datasets undergo a unified processing pipeline that systematically maps each entry into three core chemical spaces: SMILES, molecular formula, and spectra. The resulting seed datasets are organized at the level of individual chemical substances, with each record containing the compound's SMILES, molecular formula, and a structured set of associated spectra, all stored in a standardized JSON format. This robust foundation facilitates downstream annotation and interoperability.

I.2 SEED DATASETS STRUCTURE

The seed dataset is constructed by extracting essential information from raw experimental data, serving as the foundation for benchmark generation. Each entry contains a molecular index, SMILES string, molecular formula, and a list of associated spectra. An illustrative structure is provided in Listing 1. The path field is a list that may contain multiple files for a given spectrum type, accommodating cases such as multiple mass spectra for a single molecule.

Listing 1: Example structure of a seed dataset entry.

```

1939
1940
1941 {
1942     "molecule_index": "MOL_0001",
1943     "smiles": "CCCCC1=CC=CC=C1",
1944     "formula": "C10H14",
1945     "spectra": [
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
210010
210011
210012
210013
210014
210015
210016
210017
210018
210019
210020
210021
210022
210023
210024
210025
210026
210027
210028
210029
210030
210031
210032
210033
210034
210035
210036
210037
210038
210039
210040
210041
210042
210043
210044
210045
210046
210047
210048
210049
210050
210051
210052
210053
210054
210055
210056
210057
210058
210059
210060
210061
210062
210063
210064
210065
210066
210067
210068
210069
210070
210071
210072
210073
210074
210075
210076
210077
210078
210079
210080
210081
210082
210083
210084
210085
210086
210087
210088
210089
210090
210091
210092
210093
210094
210095
210096
210097
210098
210099
2100100
2100101
2100102
2100103
2100104
2100105
2100106
2100107
2100108
2100109
2100110
2100111
2100112
2100113
2100114
2100115
2100116
2100117
2100118
2100119
2100120
2100121
2100122
2100123
2100124
2100125
2100126
2100127
2100128
2100129
2100130
2100131
2100132
2100133
2100134
2100135
2100136
2100137
2100138
2100139
2100140
2100141
2100142
2100143
2100144
2100145
2100146
2100147
2100148
2100149
2100150
2100151
2100152
2100153
2100154
2100155
2100156
2100157
2100158
2100159
2100160
2100161
2100162
2100163
2100164
2100165
2100166
2100167
2100168
2100169
2100170
2100171
2100172
2100173
2100174
2100175
2100176
2100177
2100178
2100179
2100180
2100181
2100182
2100183
2100184
2100185
2100186
2100187
2100188
2100189
2100190
2100191
2100192
2100193
2100194
2100195
2100196
2100197
2100198
2100199
2100200
2100201
2100202
2100203
2100204
2100205
2100206
2100207
2100208
2100209
2100210
2100211
2100212
2100213
2100214
2100215
2100216
2100217
2100218
2100219
2100220
2100221
2100222
2100223
2100224
2100225
2100226
2100227
2100228
2100229
2100230
2100231
2100232
2100233
2100234
2100235
2100236
2100237
2100238
2100239
2100240
2100241
2100242
2100243
2100244
2100245
2100246
2100247
2100248
2100249
2100250
2100251
2100252
2100253
2100254
2100255
2100256
2100257
2100258
2100259
2100260
2100261
2100262
2100263
2100264
2100265
2100266
2100267
2100268
2100269
2100270
2100271
2100272
2100273
2100274
2100275
2100276
2100277
2100278
2100279
2100280
2100281
2100282
2100283
2100284
2100285
2100286
2100287
2100288
2100289
2100290
2100291
2100292
2100293
2100294
2100295
2100296
2100297
2100298
2100299
2100300
2100301
2100302
2100303
2100304
2100305
2100306
2100307
2100308
2100309
2100310
2100311
2100312
2100313
2100314
2100315
2100316
2100317
2100318
2100319
2100320
2100321
2100322
2100323
2100324
2100325
2100326
2100327
2100328
2100329
2100330
2100331
2100332
2100333
2100334
2100335
2100336
2100337
2100338
2100339
2100340
2100341
2100342
2100343
2100344
2100345
2100346
2100347
2100348
2100349
2100350
2100351
2100352
2100353
2100354
2100355
2100356
2100357
2100358
2100359
2100360
2100361
2100362
2100363
2100364
2100365
2100366
2100367
2100368
2100369
2100370
2100371
2100372
2100373
2100374
2100375
2100376
2100377
2100378
2100379
2100380
2100381
2100382
2100383
2100384
2100385
2100386
2100387
2100388
2100389
2100390
2100391
2100392
2100393
2100394
2100395
2100396
2100397
2100398
2100399
2100400
2100401
2100402
2100403
2100404
2100405
2100406
2100407
2100408
2100409
2100410
2100411
2100412
2100413
2100414
2100415
2100416
2100417
2100418
2100419
2100420
2100421
2100422
2100423
2100424
2100425

```

```

1944     {"spectrum_type": "IR", "path": ["IR/MOL_0001.png"]},
1945     {"spectrum_type": "MASS", "path": ["MASS/MOL_0001.jpg",
1946         "MASS/MOL_0001_2.jpg"]},
1947     {"spectrum_type": "C-NMR", "path": ["C-NMR/MOL_0001.png"]},
1948     {"spectrum_type": "H-NMR", "path": ["H-NMR/MOL_0001.png"]}
1949 ]
1950 }
1951

```

1952 I.3 SPECTRUMBENCH DATA STRUCTURE

1953 The benchmark data structure is designed to support a diverse range of tasks, including signal interpretation, perception, and semantic understanding. Each entry includes a unique identifier, image path(s), question, answer choices, ground truth answer, category, sub-category, data source, and timestamp. A representative example is shown in Listing 2. After processing by Spectrum-
1954 Lab, three additional fields are appended: `model_response` (the model’s reasoning and output),
1955 `model_prediction` (the answer extracted from the model response), and `pass` (a boolean indicating
1956 whether the model’s prediction matches the ground truth).

1961 Listing 2: Example of a benchmark data entry.

```

1962 {
1963     "id": "Perception_a9cf_250723_235951_318294",
1964     "image_path": [
1965         "data/Perception/Basic Property Prediction/Perception_a9cf_q.png"
1966     ],
1967     "question": "Given the mass spectrum image, what is the most likely
1968     molecular ion peak (m/z) observed for this compound?",
1969     "choices": ["85", "90", "120", "133"],
1970     "answer": "133",
1971     "category": "Perception",
1972     "sub_category": "Basic Property Prediction",
1973     "source": "",
1974     "timestamp": "2025-07-23 23:59:51"
1975 }
1976

```

1977 I.4 EVALUATION RESULTS STRUCTURE

1978 The evaluation results structure records the model’s predictions and performance for each bench-
1979 mark instance. Listing 3 illustrates the format. For all data structures, the `image_path` field is
1980 specified relative to the `data` directory to ensure clarity and reproducibility. This standardized
1981 design facilitates systematic benchmarking and transparent evaluation across a wide range of spec-
1982 troscopic machine learning tasks.

1983 Listing 3: Example of an evaluation results entry.

```

1984 {
1985     "id": "Signal_9131_250723_110552_245529_2",
1986     "image_path": [
1987         "data/Signal/Spectrum Type Classification/Signal_9131_2_q.png"
1988     ],
1989     "question": "What type of spectrum is shown in the image?",
1990     "choices": [
1991         "Infrared Spectrum (IR)",
1992         "Proton Nuclear Magnetic Resonance (H-NMR)",
1993         "Mass Spectrometry (MS)",
1994         "Carbon Nuclear Magnetic Resonance (C-NMR)"
1995     ],
1996     "answer": "Mass Spectrometry (MS)",
1997     "category": "Signal",
1998     "sub_category": "Spectrum Type Classification",
1999     "source": "",
2000     "timestamp": "2025-07-23 11:05:52",
2001     "model_prediction": "Mass Spectrometry (MS)",
2002 }
2003

```

```

1998     "model_response": "\answer{Mass Spectrometry (MS)}",
1999     "pass": true
2000   }
2001
2002
2003
```

J COST ANALYSIS

To ensure consistency and fairness across all experiments, SpectrumLab employs a unified model interface and conducts all inference via API services, regardless of whether the underlying models are open-source or proprietary. This standardized evaluation pipeline enables direct and equitable comparison of model performance. With the exception of the generation-level scoring model, each benchmark run requires an average of 572 model invocations. The use of remote APIs introduces network latency, resulting in variability in inference times. Depending on the model architecture and complexity, the total time required to complete the full SpectrumBench benchmark ranges from approximately 40 minutes to 2 hours. For each model, we systematically record the overall inference time and the estimated monetary cost associated with completing the benchmark.

Given the current benchmark prompts and SpectrumLab’s prompt engineering design, a complete run of the benchmark requires approximately 1,219,083 input tokens and 41,522 output tokens (as measured on InternVL3-78B, this figure is provided for reference only). Models with more elaborate reasoning or “thinking” capabilities may incur even higher token consumption.

Table 10 summarizes the key statistics for representative models evaluated in this study.

Table 10: Resource consumption and cost for representative models on the full SpectrumBench benchmark.

Model	Inference Time (min)	Cost (USD)
Claude-3.5-Haiku	99	\$0.94
Claude-3.5-Sonnet	70	\$7.47
Claude-4-Opus	123	\$24.00
Claude-4-Sonnet	90	\$11.66
GPT-4o	103	\$4.23
GPT-4-Vision-Preview	113	\$8.08
GPT-4.1-2025-04-14	103	\$1.54
Grok-2-Vision	62	\$2.12
InternVL3-78B	120	N/A

K USAGE OF LARGE LANGUAGE MODELS IN THIS MANUSCRIPT

In preparing this manuscript, we used a large language model (LLM) solely for editorial purposes. Its functions were limited to proofreading for typographical errors, correcting grammatical mistakes, and enhancing the clarity and readability of the text.

L LIMITATIONS

While this work introduces the concept of SpectrumWorld, it is important to acknowledge that the field of AI for Spectroscopy remains in its nascent stages, we recognize several limitations within our primary contributions, SpectrumBench and SpectrumLab.

Limitations of SpectrumBench First, regarding Task Format, SpectrumBench currently supports only multiple-choice and a limited number of open-ended questions. While this design is suitable for Large Language Models (LLMs), it is insufficient for evaluating a broader range of machine learning models, such as Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs), as discussed in our introduction. Second, concerning Spectrum Type, although we have incorporated a wide array of spectrum types compared to previous works (Lu et al., 2025; Xu et al., 2025; Bushuev et al., 2024b; Zhou et al., 2024a), several crucial spectroscopic modalities remain uncovered. Notable examples include X-ray Diffraction (XRD) (Guo et al., 2024a; Salgado et al., 2023)

2052 and fluorescence spectra (Parker & Rees, 1962), which are vital for comprehensive material charac-
2053 terization. Finally, addressing Spectroscopic Task Type, spectroscopy techniques are fundamental
2054 across diverse scientific disciplines, including physics, astronomy, chemistry, and biology, primarily
2055 for characterizing substances like molecules, proteins, peptides, and SMILES sequences. From the
2056 perspective of LLMs, a generic categorization of modalities into “text” and “images” is inadequate
2057 for representing the complexity of data. The inherent diversity of spectroscopic modalities compli-
2058 cates the immediate definition of all possible tasks. Consequently, SpectrumBench presently lacks
2059 important benchmarks in several areas, such as spectrum-spectrum retrieval (Curry et al., 1969;
2060 Wang et al., 2022; Lu et al., 2025) and peptide sequence analysis (Zhou et al., 2024a). We ac-
2061 knowledge that it will be challenging for SpectrumBench to encompass all relevant tasks in the near
2062 future, and we aim to foster collaborative efforts with the community and various laboratories to
2063 collectively advance the development of AI in spectroscopy.

2064 **Limitations of SpectrumLab** Our second main contribution, SpectrumLab, also presents certain
2065 limitations. Firstly, regarding its data functionality, while SpectrumLab successfully unifies seed
2066 datasets and provides data curation tools-SpectrumAnnotator, it currently lacks tools for the prepro-
2067 cessing and segmentation of raw data across multiple spectroscopic modalities. Secondly, concerning
2068 metrics, the current evaluation framework within SpectrumLab is relatively simplistic, relying
2069 primarily on accuracy and a lenient, LLM-based scoring method for open-ended questions. In future
2070 iterations, we plan to define and incorporate a broader array of task-specific metrics to enable more
2071 nuanced and robust model evaluation.

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105