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ABSTRACT

Deep learning holds immense promise for spectroscopy, yet research and eval-
uation in this emerging field often lack standardized formulations. To address
this issue, we introduce SpectrumLab, a pioneering unified platform designed to
systematize and accelerate deep learning research in spectroscopy. Spectrum-
Lab integrates three core components: a comprehensive Python library featur-
ing essential data processing and evaluation tools, along with leaderboards; an
innovative SpectrumAnnotator module that generates high-quality benchmarks
from limited seed data; and SpectrumBench, a multi-layered benchmark suite
covering 14 spectroscopic tasks and over 10 spectrum types, featuring spectra
curated from over 1.2 million distinct chemical substances. Thorough empir-
ical studies on SpectrumBench with 23 cutting-edge multimodal LLMs reveal
critical limitations of current approaches. We hope SpectrumLab will serve
as a crucial foundation for future advancements in deep learning-driven spec-
troscopy. The anonymous code and experimental records are available at https:
//anonymous.4open.science/r/SpectrumLab-8C4E/.

1 INTRODUCTION

Spectroscopy, which investigates the interaction between electromagnetic radiation and matter, pro-
vides a powerful way to investigate the molecular structure and properties (Elias et al., 2004; Prasad
et al., 2025). By capturing characteristic patterns, such as peaks and shifts, in signals analogous
to audio waveforms, spectroscopy offers a compact, information-rich representation of molecular
systems (Ralbovsky & Lednev, 2020). This low-dimensional encoding is indispensable in chem-
istry (Silber et al., 2016; Seo et al., 2017), and life sciences (Ralbovsky & Lednev, 2020; Zhang
et al., 2023; Gasparin et al., 2025). It is not only central to molecular structure elucidation (i.e.,
Spectrum-to-Molecule structure) and property prediction, but also a key enabler for new material
discovery and drug screening. In recent years, machine learning methods, especially deep learn-
ing, have demonstrated tremendous potential in spectroscopic data analysis, opening a new era of
automation and intelligence in spectroscopy research (Gastegger et al., 2017b; Gerrard et al., 2019;
Fine et al., 2020; Han et al., 2022; Zou et al., 2023b; Devata et al., 2024; Lu et al., 2025).

Despite recent advances, deep learning for spectroscopy still faces several fundamental challenges.
Specifically, high-quality experimental spectral data remain scarce and expensive to acquire (van de
Sande et al., 2023; Flanagan et al., 2025), leading to public datasets that are limited in size and suf-
fer from highly imbalanced distributions (Bongiorno et al., 2022; Stenning et al., 2024; Peng et al.,
2025), which severely restricts model generalization. In addition, a substantial domain gap exists
between experimental and computational spectra due to complex measurement conditions (Agar-
wala et al., 2022), hindering the deployment of models trained on theoretical data. Furthermore,
spectroscopy is inherently multimodal: it encompasses various spectral types (e.g., infrared, Ra-
man, nuclear magnetic resonance) represented as either 1D signals or 2D images, often requiring
integration with other molecular modalities such as molecular graphs, SMILES strings, and 3D con-
formations (Litsa et al., 2021; Devata et al., 2024). The heterogeneous nature and semantics of
these data modalities pose significant challenges for deep learning systems. Finally, the field lacks
standardized benchmarks, with a fragmented landscape of tasks and datasets making it difficult to
systematically evaluate and compare model performance.
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To address these challenges, we introduce SpectrumLab, a modular platform that streamlines the
entire lifecycle of AI-driven spectroscopy from data preprocessing to model evaluation. Built on
top of SpectrumLab, we construct SpectrumBench, a unified benchmark suite designed to evaluate
machine learning models across diverse spectroscopic tasks and modalities. In contrast to exist-
ing approaches such as DiffSpectra (Wang et al., 2025b) and MolSpectra (Wang et al., 2025a),
which rely on contrastive learning and diffusion architectures, we are among the first to incorporate
multi-modal large language models (MLLMs) into spectroscopic learning, using their alignment
capabilities to bridge heterogeneous data modalities.
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Figure 1: Overview of SpectrumBench.

Our main contributions are: (1) We introduce SpectrumLab, the first standardized framework tai-
lored for spectroscopic machine learning with multimodal large language models, enabling repro-
ducible pipelines from raw spectra to evaluation. (2) We design SpectrumAnnotator, an automatic
benchmark generator that constructs task-specific datasets from spectrum seeds, greatly accelerating
prototyping and stress-testing of new models. (3) We release SpectrumBench, a large-scale bench-
mark suite covering diverse spectroscopic modalities and tasks, accompanied by unified evaluation
protocols and public leaderboards to foster fair comparison and community progress.

2 RELATED WORK

Figure 2: Representative SpectraML methods categorized by Spectral Type (left Y-axis) and Model
Type (right Y-axis). Each dot indicates the use of a specific spectral modality or model architecture
in a given method. Note that Raman is not included; thus, methods using it (e.g., DeepCID (Fan
et al., 2019)) are not shown on the left Y-axis.
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Alberts et al. (2024a)

Machine Learning for Spectroscopy. Spectroscopy is fundamental for molecular structure analy-
sis and scientific discovery, enabling insights into chemical properties and interactions (Guo et al.,
2025). Its applications span diverse scientific domains, including chemistry, material science, and
drug development (Shao et al., 2025; Sun et al., 2025). Machine learning techniques have been
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extensively applied in spectroscopy for tasks such as molecular structure elucidation (spectrum-to-
molecule) (Kuhn et al., 2008; De Vijlder et al., 2018; Paruzzo et al., 2018; Fan et al., 2019; Nguyen
et al., 2019; Ji et al., 2020; Fine et al., 2020; Huang et al., 2021; Hu et al., 2024; Lu et al., 2025;
Liu et al., 2025) and spectral simulation (molecule-to-spectral) (Gastegger et al., 2017a; Zhou et al.,
2017; Liu et al., 2017; McGill et al., 2021; Guan et al., 2021; Ren et al., 2021; Young et al., 2024). As
illustrated in Figure 2, recent efforts have explored a variety of spectral modalities, such as IR (Hu
et al., 2024), NMR (Hu et al., 2024), UV-Vis (De Vijlder et al., 2018), MS (Huber et al., 2021), and
Raman (Fan et al., 2019), and have adopted heterogeneous deep learning model architectures, rang-
ing from MLPs (Stienstra et al., 2024) and CNNs (Alberts et al., 2024b) to GNNs (McGill et al.,
2021) and Transformers (Alberts et al., 2024a). Despite these rapid progresses, existing methods
still face several limitations: (1) most studies are constrained to a single modality (e.g., IR or MS),
lacking generalization across spectral types (Beck et al., 2024); (2) the field lacks unified bench-
marks and evaluation protocols, making objective comparisons difficult; (3) dataset sizes remain
limited and imbalanced, further impeding reproducibility and robustness; (4) previous benchmarks
does not support multi-modal large language models. These limitations highlight the need for stan-
dardized, cross-modal frameworks to advance machine learning for spectroscopy, especially spec-
troscopy foundation models.

Spectroscopy Foundation Models. While foundation models have shown promising progress in
scientific discovery (Tan et al., 2025; Xia et al., 2025), spectroscopy foundation models are still
underexplored. This is largely due to the inherent multimodal nature of spectroscopic data, which
combines spectral signals with diverse molecular representations. Although recent efforts such as
SpectraFM (Koblischke & Bovy, 2024) and LSM1-MS2 (Asher et al., 2024) have introduced pre-
trained foundation models on Stellar and MS spectra for chemical property prediction, these models
remain fundamentally single-modal, focusing solely on spectral information. Despite these chal-
lenges, the integration of spectroscopy into the foundation model paradigm holds significant promise
for advancing automated analysis and multi-modal scientific discovery in the future.

Table 1: Comparison of Benchmark Studies. Notes: “Other” in the Spectral Modality column
includes modalities not explicitly listed, such as HSQC (Heteronuclear single quantum coherence
spectroscopy) and UV-Vis (Ultraviolet-visible spectroscopy). The NMR column refers to both 1H-
NMR and 13C-NMR. We unify tasks’ terminology for clarity.

Benchmark Reference Spectral Modality Task
Raman IR NMR MS Other Molecular

Elucidation
Spectrum

Simulation
De novo

Generation
Understanding

GR PA FM MR
NovoBench (Zhou et al., 2024a) ✓ ✓
MolPuzzle (Guo et al., 2024b) ✓ ✓ ✓ ✓ ✓
Multimodal Spec (Alberts et al., 2024b) ✓ ✓ ✓ ✓ ✓ ✓ ✓
MassSpecGym (Bushuiev et al., 2024b) ✓ ✓ ✓
NMRNet (Xu et al., 2025) ✓ ✓
ViBench (Lu et al., 2025) ✓ ✓ ✓
SpectrumBench Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: GR = Functional Group Recognition, PA = Peak Assignment, FM = Fusing Spectroscopic
Modalities, MR = Multimodal Molecular Reasoning.

Benchmark and Toolkits for Spectroscopy. Several benchmarks and toolkits have been developed
to support spectroscopic machine learning research (Heid et al., 2023; Zhou et al., 2024b; Bushuiev
et al., 2024a; Guo et al., 2024b; Devata et al., 2024; Ruan et al., 2024; Guo et al., 2025). How-
ever, many of these efforts remain limited in scope (either spectrum modalities or tasks), lacking
extensibility and comprehensive evaluation across diverse spectroscopic tasks and modalities. For
example, MassSpecGym (Bushuiev et al., 2024a) focuses solely on MS data and does not incor-
porate language descriptions, hindering support for multi-modal inputs. Although MolPuzzle (Guo
et al., 2024b) enables multi-modal inputs, it omits Raman spectra and lacks support for pure spectral
understanding tasks. Furthermore, several toolkits (Bushuiev et al., 2024a; Zhou et al., 2024b) do
not provide interfaces for multi-modal large language models (MLLMs), and even MolPuzzle lacks
benchmarking for more recent MLLMs. In contrast, our SpectrumLab is a unified, extensible, and
reproducible platform that addresses these limitations by supporting a wide range of spectroscopic
tasks, modalities, and integration with MLLMs. Table 1 systematically compares representative
studies in terms of their spectral modality and task coverage. SpectrumLab not only fills critical
gaps in data, evaluation, and tooling, but also establishes a new standard for spectroscopic AI and
enables future advances in multi-modal, large-model-driven scientific discovery.
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3 SPECTRUMBENCH

Overview. SpectrumBench is a unified benchmark suite for deep learning in spectroscopy, covering
four hierarchical levels and 14 sub-tasks that span from spectroscopy understanding to generation.
All questions and tasks are initially defined by domain experts, and subsequently refined and vali-
dated through expert review and rigorous quality assurance processes. Compared to existing bench-
marks, SpectrumBench offers broad modality and task coverage within a standardized, extensible
framework for fair and reproducible model evaluation.

Table 2: Tasks’ categories and statistics.
Category Task # questions

Signal

Spectrum Type Classification (TC) 55
Spectrum Quality Assessment (QE) 60
Basic Feature Extraction (FE) 51
Impurity Peak Detection (ID) 28

Perception

Functional Group Recognition (FG) 45
Elemental Compositional Prediction (EP) 36
Peak Assignment (PA) 38
Basic Property Prediction (PP) 34

Semantic
Molecular Structure Elucidation (SE) 80
Fusing Spectroscopic Modalities (FM) 39
Multimodal Molecular Reasoning (MR) 37

Generation
Forward Problems (FP) 30
Inverse Problems (IP) 20
De Novo Generation (DnG) 19

Spectroscopic Type. Unlike previous bench-
marks that are limited to a single spectro-
scopic modality or narrowly defined data types
(Bushuiev et al., 2024b), SpectrumBench in-
tegrates a diverse array of spectroscopic data
sources. Our SpectrumBench benchmark cur-
rently includes more than 10 distinct types of
spectroscopic data, such as infrared (IR), nu-
clear magnetic resonance (NMR), and mass
spectrometry (MS). As illustrated in Figure 1,
this comprehensive data foundation accurately
reflects the diverse and complex multi-modal
spectroscopic scenarios encountered in real-
world applications.

Task. In contrast to previous benchmarks
that primarily focus on molecule elucidation or
spectrum simulation, SpectrumBench encompasses a much broader spectrum of task types. Spec-
trumBench is organized according to a multi-level hierarchical taxonomy that systematically covers
tasks ranging from low-level signal analysis to high-level semantic reasoning and generative chal-
lenges. This taxonomy, developed through expert consultation and iterative refinement, comprises
four principal layers: signal, perception, semantic, and generation. Each layer is further divided
into several subcategories, capturing a diverse set of scientific and application-driven tasks. Detailed
definitions and representative examples for each task layer are provided in the Appendix C.

3.1 DATA CURATION PIPELINE

Seed Dataset

A. Data Preparation

NovoBench MassSpecGym

 Over 1.2 M Substances /
8+ Data Sources
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Annotation and Alignment (RXN)

Seed Datasets 
in JSON 
Format

Example:
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Figure 3: Overview of the data curation pipeline used in SpectrumBench.

Task Construction. Spectroscopic machine learning encompasses a wide spectrum of tasks, driven
by the intrinsic complexity of molecular structures and the multifaceted nature of spectroscopic
data. These tasks often involve diverse input modalities (e.g., molecular graphs, SMILES, textual
prompts) and equally varied outputs (e.g., spectra, chemical attributes, structured predictions), which
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reflect the real-world demands of chemical analysis, property reasoning, and molecular generation.
To illustrate this diversity, we organize existing spectroscopic tasks into four broad input-output
categories: (1) Molecule-to-Spectrum (Spectrum Simulation) aims at generating a spectrum based
on molecular structure. (2) Spectrum-to-Molecule (Molecule Elucidation) refers to the tasks that
infer molecular structures from spectra. (3) Text-to-Any1 (De novo Generation) refers to the task
of generating novel, diverse, and reasonable molecular structures (SMILES string, 2D molecular
graph) and/or predicting multimodal information (spectra, properties) according to specific goals
(e.g., molecules of a specific nature, ligands of a specific target). Moreover, in previous studies, many
tasks involving inferring molecular structures from spectra were also categorized under “de novo
generation” (Bushuiev et al., 2024a; Lu et al., 2025). While this has some rationality, for the sake of
consistency in our task framework, we clarify that our defined de novo generation task has distinct
characteristics: its input consists solely of textual descriptions, which may include specifications
of molecular properties (e.g., desired chemical natures, target-binding affinities), without involving
spectral data as input. Meanwhile, the output scope is broader, encompassing not only molecular
structures but also spectral and textual descriptions of molecules. (4) Any-to-Text (Understanding).
Tasks in signal, perception, semantic layers fall under the “Understanding” category. Its task type
is presented in the form of multiple-choice questions, which may include tasks such as inferring the
molecular structure from spectrum (e.g., functional group recognition, peak attribution tasks). This
partially overlaps with the molecular elucidation tasks described above. For a compromise design,
we use the output form to distinguish between them. The question format of “Understanding” tasks
will only be multiple-choice questions, which means the output is text.

Taxonomy Definition. These input-output patterns offer a high-level overview of the task landscape.
However, previous works often cover only a subset of them, limiting both their generalizability and
their ability to benchmark diverse ML capabilities. We show these patterns in Table 1, which high-
lights substantial heterogeneity between existing methods. To address this limitation and support
more structured and extensible benchmarking, we propose a four-level hierarchical taxonomy tai-
lored to spectroscopic machine learning: Signal, Perception, Semantic, and Generation—is designed
to reflect the logic of real-world scientific workflows in spectroscopy. As depicted in Figure 3, this
layered structure systematically provides a robust framework for our 14 meticulously designed tasks
detailed in Table 2.

(1) Signal level: This foundational layer focuses on the direct analysis and processing of raw spectral
data, such as spectrum type classification and peak detection. Tasks at this level are designed to
extract and refine primary features from experimental measurements, mirroring the initial steps taken
by chemists to prepare and interpret spectra in the laboratory. This level primarily encompasses
Any-to-Text(Understanding) tasks that operate directly on raw signal data.

(2) Perception level: Building upon the processed signals, the perception layer addresses pattern
recognition and intermediate interpretation tasks, such as functional group identification, peak as-
signment, and basic molecule properties prediction. This stage reflects the chemist’s effort to trans-
late spectral features into meaningful chemical information, bridging the gap between raw data and
higher-level understanding. Many Any-to-Text(Understanding) tasks that involve interpreting spe-
cific patterns within spectra fall into this category.

(3) Semantic level: At this layer, the focus shifts to comprehensive molecular reasoning and prop-
erty inference, including molecule elucidation and cross-modal correlation (e.g., linking spectra
to molecular graphs or textual descriptions). The semantic layer encapsulates the core scientific
reasoning that underpins hypothesis generation and validation in spectroscopic research, primarily
addressing advanced Any-to-Text(Understanding) tasks that require intricate chemical knowledge
and contextualization.

(4) Generation level: The final layer encompasses creative and generative tasks, where new enti-
ties are produced. The level explicitly consolidates all tasks involving the synthesis of new data
or structures, including Molecule-to-Spectrum (e.g., spectrum generation from molecular inputs),
Spectrum-to-Molecule (e.g., generates a molecular structure from spectra input). These tasks emu-
late advanced scientific workflows where new hypotheses, molecules, or spectral data are generated
to drive discovery and innovation.

1“Any” encompasses various data modalities, such as molecular representations, spectral data, or peptide
sequences.
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Figure 4: SpectrumLab is the main component of SpectrumWorld, which could be extended conve-
niently. More multi-modal spectrum data could be included, as well as MLLMs.

Seed Data Preparation. The seed datasets for this work were curated from three primary sources:
proprietary data, public repositories, and literature mining. As illustrated in Figure 3, the construc-
tion of seed datasets begins with the aggregation of raw data from multiple sources. All collected
datasets undergo a unified processing pipeline that systematically maps each entry into three core
chemical spaces: SMILES string, molecular formula, and spectra. Rigorous cleaning, normaliza-
tion, and deduplication ensure data consistency and reliability. Following this, human annotation
and alignment are performed to guarantee scientific accuracy and completeness. The resulting seed
datasets are organized at the level of individual chemical substances, with each record containing
the compound’s SMILES, molecular formula, and a structured set of associated spectra, all stored in
a standardized JSON format to facilitate downstream annotation. Detailed descriptions of the seed
datasets and the standardization process are provided in Appendix I. We ensure that the curated seed
data are not contaminated.

Data Annotation. We use two annotation methods: automated and manual annotation. (1) Auto-
mated annotation (SpectrumAnnotator). For tasks characterized by well-defined rules like spectrum
recognition , we design SpectrumAnnotator, a core contribution of this work. SpectrumAnnotator
is a novel, self-developed annotation framework that harnesses the zero-shot and multi-modal rea-
soning capabilities of state-of-the-art MLLMs. Given curated seed datasets and a set of pre-defined
benchmark prompts, SpectrumAnnotator automatically designs and generates high-quality, multi-
modal benchmark data. Further technical details and implementation specifics of SpectrumAnnota-
tor are provided in Appendix D. (2) Manual Annotation. For more complex or open-ended tasks,
particularly those involving multi-step reasoning or sophisticated scientific interpretation, manual
annotation by domain experts is indispensable. Human annotators ensure the scientific validity and
depth of the benchmark, especially in cases where automated methods cannot handle.

Data Quality Assurance. To ensure the integrity and reliability of SpectrumBench, we implement
a comprehensive quality assurance pipeline, as illustrated in Figure 3. The process begins with Can-
didate Data undergoing automated screening by the SpectrumVerifier (SV). This stage efficiently
detects and filters out clear errors such as missing options or image-text discrepancies, categorizing
them as Low Quality Data for removal. Remaining High Quality Data proceeds to expert man-
ual evaluation. If issues are identified, a feedback loop through internal annotator update initiates
targeted reannotation via SpectrumAnnotator (SA). This multi-stage quality control ensures only
high-quality, scientifically robust data are included in our final benchmark.

4 SPECTRUMLAB

4.1 SYSTEM OVERVIEW

AI-ready Datasets and AI-solvable Tasks. SpectrumLab is tightly integrated with SpectrumAn-
notator, which is responsible for generating high-quality benchmarks from seed datasets collected
from diverse sources. In this workflow, SpectrumAnnotator curates a wide range of scientifically
rigorous benchmarks from these seeds. SpectrumLab then offers a flexible abstraction for users to
define and encapsulate specific AI-solvable tasks based on these curated benchmarks. A core ab-
straction unique to SpectrumLab is the Benchmark Group. Users can combine multiple benchmark
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instances or select specific subsets to form a Benchmark Group, creating tailored task definitions
within a unified framework. By encapsulating benchmarks as tasks, SpectrumLab streamlines the
process of task definition and evaluation.

Toolkits and Ecosystem. SpectrumLab offers a flexible ecosystem of Python libraries and tools
designed to streamline the entire workflow for spectroscopy, from data preprocessing to model eval-
uation. Its modular design allows seamless integration of custom models and tasks. Distributed
via the Python Package Index(PyPI) for easy installation, SpectrumLab provides a comprehensive
environment for state-of-the-art machine learning research in spectroscopy.

Leaderboards. To ensure transparency and reproducibility, SpectrumLab incorporates a compre-
hensive public leaderboard system that systematically tracks and compares the performance of a
wide range of models across all tasks. The leaderboard provides fine-grained reporting, recording
each model’s results on both high-level and detailed tasks. The platform currently supports bench-
marking for over 20 MLLMs, including prominent open-source models such as InternVL3 (Zhu
et al., 2025) and proprietary models like GPT-4o (OpenAI, 2024), across 14 specific tasks.

4.2 MODULAR DESIGN

Model Signal Perception Semantic Generation Avg.
TC QE FE ID GR EP PA PP SE FM MR FP IP DnG Perf

Closed-source MLLMs

Claude-3.5-Sonnet 96.36 28.33 76.47 71.43 60.00 77.78 76.32 85.29 82.50 69.23 94.59 20.00 0 0 59.88
Claude-3.7-Sonnet 96.36 38.33 86.27 82.14 71.43 88.89 71.05 88.24 82.28 74.36 89.19 20.00 0 5.26 63.84
Claude-4-Sonnet 96.36 35.00 88.24 92.86 62.22 63.89 60.53 76.47 16.25 43.59 64.86 3.33 0 21.05 51.76
Claude-3.5-Haiku 94.55 31.67 50.98 92.86 66.67 75.00 76.32 76.47 67.50 64.10 81.08 10.00 0 0 56.23
Claude-4-Opus 96.36 33.33 86.27 92.86 73.33 83.33 71.05 85.29 32.50 76.92 86.49 16.67 0 5.26 59.98
GPT-4o 96.36 33.33 68.63 92.86 59.88 77.78 63.16 79.41 78.75 58.97 89.19 10.00 0 0 57.74
GPT-4.1 94.55 28.33 86.27 85.71 53.33 77.78 63.16 79.41 82.50 66.67 91.89 33.33 10.53 0 60.96
GPT-4-Vision 94.55 33.33 72.55 92.86 73.33 72.22 71.05 82.35 73.75 53.85 97.30 23.33 5.00 0 60.39
Gemini-2.5-pro 96.36 35.00 90.20 67.86 75.56 86.11 65.79 79.41 68.75 84.62 97.30 50.00 5.00 47.37 67.81
Grok-2-Vision 94.55 31.67 74.51 89.29 64.44 80.56 73.68 82.35 37.50 66.67 81.08 23.33 0 0 57.12
Qwen-VL-Max 94.55 36.67 90.20 92.86 60.00 80.56 78.95 88.24 32.50 71.79 91.89 43.33 0 5.26 61.91
Doubao-1.5-Vision-Pro 98.18 33.33 78.43 92.86 66.67 83.33 68.42 88.24 67.50 56.41 89.19 6.67 0 0 59.23
Doubao-1.5-Vision-Pro-Thinking 96.36 35.00 78.43 67.86 53.33 80.56 73.68 91.18 68.75 66.67 91.89 66.67 5.00 5.26 62.90

Open-source MLLMs

Qwen2.5-VL-32B-Instruct 92.73 26.67 37.25 71.43 57.78 44.44 31.58 61.76 0.00 5.13 45.95 20.00 0 0 35.34
Qwen2.5-VL-72B-Instruct 94.55 38.33 86.27 92.86 42.22 80.56 78.95 88.24 66.25 76.92 91.89 30.00 0 10.53 62.68
InternVL3-78B 96.36 38.33 70.59 71.43 48.49 75.00 81.58 88.24 62.50 69.23 83.78 23.33 0 5.26 58.15
InternVL3.5-241B 98.18 33.33 90.20 92.86 66.67 77.78 71.05 85.29 86.25 61.54 100.00 33.33 10.00 10.53 65.50
Llama-3.2-11B-Vision-Instruct 34.55 11.67 13.73 25.00 20.00 41.67 15.79 29.41 7.50 5.13 21.62 0 0 0 16.15
Llama-3.2-90B-Vision-Instruct 38.18 10.00 35.29 25.00 17.78 27.78 28.95 20.59 21.25 5.13 43.24 0 0 0 19.51
DeepSeek-VL2 52.73 23.33 29.41 28.57 8.89 27.78 28.95 50.00 15.00 15.38 32.43 10.00 5.00 5.26 23.77
GLM-4.5V 100.00 28.33 70.59 92.86 73.33 83.33 71.05 91.18 63.75 69.23 83.78 0 0 10.53 59.85
InternS1-nothink 98.18 36.67 72.55 89.29 51.11 72.22 73.68 79.41 86.25 66.67 94.59 13.33 0 0 59.57
InternS1-think 98.18 25.00 80.39 89.29 64.44 88.89 73.68 91.18 90.00 56.41 91.89 10.00 40.00 15.79 65.37

Overall Avg. 89.09 30.65 70.16 77.95 56.13 71.62 63.84 76.85 56.08 55.85 79.79 20.29 3.50 6.41 54.15

Table 3: Accuracies (%, ↑) of all models on different levels. Task abbreviations (e.g., TC, QE, FE,
etc.) are defined in Table 2. best: bold, second best: underlined. The second last column calculates
the arithmetic mean and the last column calculates the true weighted mean of each row.

SpectrumLab adopts a modular architecture to maximize flexibility and extensibility. The core com-
ponents include:

(1) Benchmark Group: SpectrumLab organizes SpectrumBench into hierarchical groups corre-
sponding to different levels of spectroscopic reasoning. This structure enables systematic evaluation
across various tasks and spectroscopic modalities, while also supporting rapid assessment of spe-
cialized models on domain-specific spectroscopic tasks.

(2) Model Integration: SpectrumLab offers a unified, extensible framework for integrating external
models. Using standardized APIs and modular adapters, it connects seamlessly to a wide range of
model types, from cloud-based services to locally deployed solutions, enabling consistent bench-
marking within a single evaluation environment.

(3) Evaluator: Serving as the abstract core of the benchmark evaluation engine, the Evaluator mod-
ule in SpectrumLab is designed for flexible and extensible assessment of model performance across
diverse spectroscopic tasks. It enables the customization of evaluation metrics and protocols accord-
ing to the specific requirements of each task, and can be seamlessly integrated with both the Bench-
mark Group and external model modules. This modular abstraction allows researchers to define
and implement tailored evaluation strategies, ensuring rigorous and task-appropriate benchmarking.
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Currently, SpectrumLab supports the following two types of evaluators: (i) Choice Evaluator: Spe-
cially designed for multiple-choice tasks. (ii) Open Evaluator: Targeted at generative tasks, this
evaluator supports flexible assessment protocols, enabling comprehensive evaluation of free-form
and creative model outputs.

5 EXPERIMENT

5.1 BENCHMARK SETUP

For signal-, perception-, and semantic-level tasks, SpectrumBench standardizes them into a
multiple-choice question format, with each question having four options. A correct answer is scored
as 1, and an incorrect answer is scored as 0. Generation-level tasks usually do not have fixed-form
answers. For Molecule-to-Spectrum tasks, the input is a molecule, and the output is a spectrum.
For Spectrum-to-Molecule tasks, the input consists of multiple spectral images, and the output is
a molecule. We aim to encourage models to generate meaningful reasoning trajectories rather than
simply providing a final answer. This approach can help circumvent the issue of data leakage. There-
fore, we use an additional MLLM to score the responses following these steps: (1) Model predictions
that do not conform to the specified output format for a given question are assigned a score of zero.
(2) For predictions meeting the required format, a dedicated scoring model evaluates the model’s
output against the answer, assigning a score normalized between 0 and 1. GPT-4o is employed as
the scoring model in our experiment. This design standardizes the primary evaluation metric across
all tasks in SpectrumBench to accuracy (%). Leveraging SpectrumLab’s flexible model interface,
we integrated 23 leading open- and closed-source MLLMs for our experiments. Further details on
benchmarking candidates and cost analysis are provided in Appendix F and J, respectively.

5.2 MAIN FINDINGS

We draw several key insights from the results in Table 3.

(1) Task complexity reveals model capabilities and limitations. Models exhibit strong foun-
dational capabilities in basic tasks, with Signal and Perception tasks showing robust performance
across all models. Spectrum Type Classification(TC) achieves an average accuracy of 89.09%, while
Impurity Peak Detection (ID) shows an average of 77.95%. However, performance significantly de-
clines in more complex tasks, particularly within the Generation category, which shows an average
accuracy of only 6.41%. Within the Generation level, there are notable performance differences: FP
achieves an average of 20.29%, significantly outperforming Inverse Problems (IP) at 3.50% and De
Novo Generation (DnG) at 6.41%. This suggests that models are more adept at forward prediction
tasks (molecule-to-spectrum) than inverse problems. QE tasks prove particularly challenging, with
an average of 30.65% across all models, and many models scoring 0% in IP and DnG tasks. This
performance pattern reveals a clear hierarchy: models excel at basic pattern recognition and sig-
nal processing but struggle with advanced reasoning, creative generation, and complex cross-modal
synthesis tasks that require deeper scientific understanding.

(2) Closed-source models lead overall performance with gemini-2.5-pro achieving best results.
Gemini-2.5-pro emerges as the top-performing model with an overall average accuracy of 67.81%,
securing top-2 scores in 6 out of 14 tasks. The model demonstrates exceptional capabilities across
multiple dimensions: it leads in Functional Group Recognition (GR) with 75.56%, and ranks sec-
ond in several other tasks, including Elemental Compositional Prediction(EP) and Forward Prob-
lems(FP). Closed-source models generally maintain a performance advantage. However, this gap is
narrowing, models like InternVL3.5-241B(65.50%) and InternS1-think (65.37%) are approaching
or even surpassing some closed-source counterparts.

(3) Reasoning capabilities drive generation task performance. Doubao-1.5-Vision-Pro-Thinking
demonstrates exceptional performance in generation tasks, achieving 66.67% accuracy in Forward
Problems (FP), significantly outperforming the second-best closed-source model (Gemini-2.5-pro
at 50.00%). This remarkable 16.67% point advantage highlights the critical role of advanced rea-
soning capabilities in complex molecule generation tasks. InternS1-think also outperforms InternS1
(65.37% vs. 59.57%). This superior performance suggests that the “thinking” mode is essential for
tackling sophisticated cross-modal scientific reasoning challenges.
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5.3 ERROR ANALYSIS

Basic Recognition Errors

Peak Analysis Errors

Property Prediction Errors

Complex Reasoning Errors Generation Task Error

 GLM4.5V: (-NH2)

-OH

Proton on 
carbonyl 

group

 GLM4.5V: aliphatic carbon

molecular ion 
peak m/z =  65

 GLM4.5V: m/z = 67

 GLM4.5V: Isotopic pattern 
due to chlorine

Isotopic 
pattern due to 

bromine

 Design a Molecule with 
Zero point energy gap of  

0.09322 a.u.

Reference Ans. GLM4.5V

Figure 5: Error types and distributions in SpectrumBench.

Error Analysis. For our error analysis, we group the 14 tasks in SpectrumBench into five families:
Basic recognition (elemental composition, functional-group recognition, spectrum-type classifica-
tion, spectrum-quality assessment), Peak analysis (peak assignment, impurity-peak detection, basic
feature extraction), Property prediction (basic property prediction, molecular structure elucidation),
Complex reasoning (multimodal molecular reasoning, fusing spectroscopic modalities, forward/in-
verse problems), and Generation (de novo spectrum generation).

Family-wise minima. On Basic recognition, Gemini-2.5-Pro attains the lowest error (29.1%), in-
dicating comparatively stronger grounding in spectrum type/quality and functional-group cues. For
Peak analysis, Qwen2.5-VL-72B achieves the lowest error (14.5%), suggesting effective handling
of isotopic/fragment patterns and impurity peaks. Within Property prediction, Intern-S1 yields the
best result (10.5%), followed by InternVL-3.5 (13.2%); both exhibit more reliable mapping from
spectral evidence to molecular properties/structures. The Complex reasoning slice is the sub-most
challenging: although Gemini-2.5-Pro leads with 30.7% error, the majority of models exceed 50%
in this family, underscoring difficulties with long-horizon, cross-modal deduction. For Generation,
Gemini-2.5-Pro again performs best (52.6% error), while several models approach failure on nearly
all instances (errors near 100%).

Observations and implications. The error profiles reveal two principal bottlenecks: (i) low-level
spectral grounding (spectrum type/quality and functional-group perception) and (ii) multi-step sym-
bolic integration across modalities and tasks. The former dominates early-stage perception failures
that cascade to peak interpretation, whereas the latter manifests as brittle chains when executing
forward/inverse reasoning or modality fusion. We hypothesize that tighter coupling to spectroscopic
priors (fragmentation and isotopic rules, impurity models) and reasoning-aware supervision (tool-
augmented peak→property mappings, intermediate targets) are necessary to reduce both recognition
errors and brittle deduction.

6 CONCLUSION

In this work, we have presented two key contributions to advance machine learning in spectroscopy:
SpectrumBench and SpectrumLab. SpectrumBench is a comprehensive, extensible benchmark suite
covering over 10 spectrum modalities and 14 tasks, grounded in real-world chemical practices, en-
abling rigorous and reproducible evaluation across hierarchical taxonomy (signal, perception, se-
mantic, generation). SpectrumLab is a unified, modular platform for dataset management, anno-
tation, evaluation, and public leaderboards, offering a robust Python ecosystem with standardized
interfaces that significantly lower the barrier for developing and deploying advanced models. To-
gether, SpectrumBench and SpectrumLab set a new standard for spectroscopic machine learning,
fostering systematic comparison, reproducibility, and innovation, and catalyzing future research for
more powerful and interpretable models.
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Meyer, and Christof Wöll. Adsorbate-induced lifting of substrate relaxation is a general mecha-
nism governing titania surface chemistry. Nature Communications, 7(1), September 2016. ISSN
2041-1723. doi: 10.1038/ncomms12888. URL https://www.nature.com/articles/
ncomms12888. Publisher: Springer Science and Business Media LLC.

Kilian D Stenning, Jack C Gartside, Luca Manneschi, Christopher TS Cheung, Tony Chen, Alex
Vanstone, Jake Love, Holly Holder, Francesco Caravelli, Hidekazu Kurebayashi, et al. Neu-
romorphic overparameterisation and few-shot learning in multilayer physical neural networks.
Nature Communications, 15(1):7377, 2024.

Cailum MK Stienstra, Liam Hebert, Patrick Thomas, Alexander Haack, Jason Guo, and W Scott
Hopkins. Graphormer-ir: Graph transformers predict experimental ir spectra using highly spe-
cialized attention. Journal of chemical information and modeling, 64(12):4613–4629, 2024.

Yingying Sun, Jun A, Zhiwei Liu, Rui Sun, Liujia Qian, Samuel H. Payne, Wout Bittremieux,
Markus Ralser, Chen Li, Yi Chen, Zhen Dong, Yasset Pérez-Riverol, Asif Khan, Chris Sander,
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A ABLATION STUDY

A.1 SCORING MODEL

The automatic evaluation at the Generation level uses a standardized prompt to guide the scoring
models. This prompt, shown in the box below, instructs the evaluator to rate model answers on a
scale from 0 to 1 based on specific rules.

Prompt Templates for OpenEvaluator

”You are an expert evaluator. Given the following question, reference answer, and model
answer. Rate the model answer on a scale of 0-1 and provide a BRIEF explanation.”,

Scoring Rules:
1. Modality:

• Reference answers are images. Model outputs may be images or text descriptions.
• If the model outputs an image (matching modality): max score 0.8.
• If the model outputs text (different modality): text descriptions are valid and should

be evaluated, max score 0.8.
• Many models cannot output images; text descriptions are acceptable alternatives.

2. Scale (0.1 increments):
• 0.0: Incorrect, irrelevant, or fails to address the question.
• 0.1–0.2: Mostly incorrect, minimal relevance.
• 0.3–0.4: Partially correct, significant errors or omissions.
• 0.5–0.6: Moderately correct, missing key information.
• 0.7–0.8: Mostly correct, minor errors.
• 0.9–1.0: Excellent to perfect (1.0 reserved for flawless answers with matching

modality).

3. Evaluation Criteria (weights: Correctness 60%, Completeness 25%, Relevance
15%):

• CRITICAL: Focus on final answer accuracy, not the reasoning process.
• CONCISENESS: Long explanations do not earn higher scores.
• STRICTNESS: High scores (0.7+) are only for genuinely accurate and complete

answers.

4. Guidelines:
• Be strict: high scores (0.7) only for genuinely accurate answers.
• Wrong final answer → low score regardless of reasoning.
• Use discrete scores: 0.0, 0.1, 0.2, ..., 1.0.

“Output format: \score{X} where X [0.0, 1.0].”

Question: f“Question: {question}”

To assess the robustness and evaluator-independence of our scoring protocol, we evaluate the same
set of model-generated outputs using multiple scoring models. Our evaluation includes GPT-4o
(with two independent runs for test–retest validation), Intern-S1, and Claude-Opus-4. Applying
these evaluators to the identical generation set allows direct, controlled comparison of scoring con-
sistency across models.

Figure 6 presents the Pearson correlation matrix across all evaluator pairs. All off-diagonal cor-
relation coefficients exceed r > 0.91 (mean r = 0.939, SD = 0.014), indicating extremely high
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consistency among evaluators. Notably, the two independent runs of GPT-4o achieve the highest
correlation (r = 0.962), demonstrating strong test–retest reliability.

Figure 6: Evaluator Correlation Matrix. Pearson correlation coefficients between all scoring
models. Higher values (darker colors) indicate stronger agreement.

Figure 7 further visualizes pairwise evaluator agreement using scatter plot matrices. The scatter
plots exhibit highly linear alignment along the y = x diagonal for all evaluator pairs, confirming
that different scoring models produce nearly identical score distributions. Minor deviations appear
consistently across models.

Together, these results show that our evaluation protocol is stable, evaluator-agnostic, and does
not rely on any specific LLM.

A.2 TEMPERATURE

Temp Qwen2.5 VL-32B Qwen2.5 VL-72B InternVL3-78B

Signal Perception Semantic Generation Signal Perception Semantic Generation Signal Perception Semantic Generation

1.0 57.02 48.89 17.03 6.67 78.00 72.49 78.35 13.51 69.18 73.33 71.84 9.53
0.5 63.40 68.63 29.49 36.23 66.49 65.36 58.97 17.39 66.49 65.36 58.97 17.39
0.0 63.92 70.59 28.85 37.68 63.92 60.78 66.03 17.39 63.92 60.78 66.03 17.39

Table 4: Performance of three models under varying temperature settings.(Top-p fixed to 1)

Table 4 presents the impact of varying temperature settings on three models: Qwen2.5-VL-32B,
Qwen2.5-VL-72B, and InternVL3-78B.

For Qwen2.5-VL-32B, lower temperatures (T = 0.5 and T = 0) yield substantial improvements
over T = 1.0, particularly on the Perception, Semantic, and Generation levels. A similar trend
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Figure 7: Pairwise Evaluator Agreement. Scatter plot matrix comparing the scores produced by
different evaluators. Each off-diagonal cell shows a pairwise comparison, with the diagonal showing
score distributions.

is observed for InternVL3-78B, where deterministic decoding (T = 0 or T = 0.5) leads to a
more balanced performance profile compared to the stochastic setting. In contrast, Qwen2.5-VL-
72B behaves differently: while it achieves the highest Signal and Semantic scores at T = 1.0, its
Generation accuracy remains relatively low across all settings.

These observations indicate that smaller models tend to benefit from reduced sampling variability, as
lower temperatures enhance stability and reliability. Conversely, larger models may require higher
temperatures to fully exploit their expressive capacity, though this comes at the cost of weaker
generative consistency.

Top-p Qwen2.5 VL-32B Qwen2.5 VL-72B InternVL3-78B

Signal Perception Semantic Generation Signal Perception Semantic Generation Signal Perception Semantic Generation

1.0 57.02 48.89 17.03 6.67 78.00 72.49 78.35 13.51 69.18 73.33 71.84 9.53
0.5 63.92 69.93 29.49 39.13 62.89 62.09 65.38 13.04 70.62 68.63 72.44 5.80
0.1 63.40 66.67 30.77 44.93 66.49 54.25 64.74 23.19 69.07 69.93 72.44 11.59

Table 5: Performance of three models under varying Top-p settings.(temperature fixed to 1).
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A.3 TOP-p

We further investigate the role of nucleus sampling while fixing the temperature to 1.0. The results
in Table 5 show heterogeneous effects across models.

For Qwen2.5-VL-32B, reducing Top-p from 1.0 to 0.1 consistently improves Semantic and Gen-
eration scores, suggesting that constraining the sampling space mitigates low-quality outputs and
enhances reliability. By contrast, Qwen2.5-VL-72B attains its best Signal and Semantic results at
p = 1.0, but its Generation score is substantially reduced. Interestingly, setting p = 0.1 recovers
part of this loss, implying a trade-off between precision and diversity.

For InternVL3-78B, performance remains comparatively stable across Top-p values, with minor
fluctuations in Generation accuracy. This stability suggests that larger-scale models are less sensitive
to sampling truncation, reflecting stronger intrinsic consistency.

B TASK HIERARCHY

Figure 8: Task Hierarchy of Our Benchmark. The hierarchical structure of tasks spanning
different difficulty levels, modalities, and evaluation criteria.

Figure 8 summarizes the construction of the SpectrumBench taxonomy. Starting from a broad view
of spectrum-related problems (left side), we organize all tasks according to their input–output struc-
ture, forming four high-level families: (1) forward problems (molecule → spectrum), (2) inverse
problems (spectrum → molecule), (3) de novo generation (text → molecular, spectral, or peptide
sequences), and (4) understanding tasks (any → text).

Each of these families is then instantiated as the 14 concrete sub-tasks included in SpectrumBench
(shown in the middle of the figure). These sub-tasks are further abstracted into four semantic lev-
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els—Signal, Perception, Semantic, and Generation—which are consistently used throughout the
paper.

In spectroscopy, predicting a spectrum from a known molecular structure is typically categorized
as a forward problem: the molecular configuration (geometry, bonding, electronic structure) deter-
mines the physico-chemical state, while the observed spectrum is a compressed manifestation of
that state. This view is consistent with standard formulations of forward modelling in computational
chemistry and spectroscopy. Conversely, recovering a molecular structure from spectral measure-
ments constitutes an inverse problem: the task seeks to reconstruct a richer latent representation
from partial, noisy, and sometimes ambiguous observations. Lu et al. (2025)

We make this distinction explicit to ensure clarity for ML readers, as the forward–inverse terminol-
ogy is widely used in the spectroscopy and inverse-problem literature but may be unfamiliar outside
these communities.

C SPECTRUMBENCH DETAILED INFORMATION

C.1 EXPLORATORY DATA ANALYSIS

To ensure the transparency, reliability, and scientific relevance of SpectrumBench, we conducted a
comprehensive exploratory data analysis (EDA) of all datasets included in SpectrumBench. This
analysis summarizes the provenance, spectral modalities, molecular coverage, and data-generating
processes (experimental or computed) for each dataset. Our goal is to provide a clear characteriza-
tion of the benchmark’s multimodal landscape and to help practitioners understand the heterogeneity
of real-world spectroscopic data.

Table 6 presents the EDA summary across ten datasets. For each dataset, we report: (1) Source Type
(public or in-house), (2) Modalities Included (e.g., NMR, MS, IR, Raman, SMILES), (3) Number of
Molecules, (4) Spectrum Origin (experimental or computed), and (5) A brief description capturing
data provenance and major properties.

These datasets span diverse use cases, from quantum-chemistry–based simulated spectra (QM9S,
Private Lab) to large-scale experimental NMR collections (NMRBank, NMRShiftDB, SupportInfo-
Crawl), peptide MS/MS corpora (NovoBench), and curated textbook-level structure elucidation
tasks (MolPuzzle). Importantly, many datasets include multiple modalities per molecule, reflect-
ing natural co-occurrence patterns observed in real analytical workflows. This multimodal overlap
further supports the design choice of unifying spectroscopy tasks within a single benchmark frame-
work.

C.2 JUSTIFICATION FOR A MULTIMODAL BENCHMARK

Spectroscopic analysis in practice is intrinsically multimodal: a single molecule is frequently char-
acterized by MS/MS, NMR, IR, Raman, and a symbolic structure representation (e.g., SMILES).
SpectrumBench therefore aims to evaluate not only single–modality reasoning, but also a model’s
ability to integrate these complementary signals.

Table 7 reports the multimodal coverage across the core datasets used in SpectrumBench. QM9S,
the Multimodal-Spectroscopic-Datasets, and MolPuzzle provide fully paired modalities for every
molecule, supporting clean multimodal training. In contrast, SDBS exhibits partial pairing across
modalities; Table 8 quantifies this variation (e.g., IR covers 91% of molecules, ESR only 2%).

These observations motivate a multimodal benchmark for two reasons: (i) many real datasets nat-
urally contain paired modalities, making multimodal learning realistic rather than synthetic; and
(ii) incomplete pairing, as seen in SDBS, reflects common real-world scenarios where cross-modal
reasoning is crucial. For these reasons, multimodality is treated as a first-class design principle in
SpectrumWorld.

C.3 SIGNAL LEVEL

This layer focuses on the direct processing and understanding of raw, fundamental data formats,
much like extracting information from physical signals, as exemplified in Figure 9.
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Dataset Source Modalities #Molecules Origin Description

QM9S2023a Public SMILES, UV, IR, Ra-
man

130,000 Computed Derived from the QM9 small-molecule set, QM9S con-
tains 130,831 synthetically feasible organic molecules
with up to nine heavy atoms (C, N, O, F). UV, IR and
Raman spectra are computed via high-level quantum-
chemical simulations for each molecule.

Multimodal-
Spectroscopic-
Datasets 2024b

Public SMILES, 1H NMR,
13C NMR, HSQC-
NMR, MS+, MS−, IR

790,000 Computed This dataset includes simulated multi-modal spectra for
approximately 790,000 molecules extracted from a large
patent-reaction corpus, providing paired NMR, MS (pos-
itive/negative) and IR spectra for each structure.

MolPuzzle2024b Public SMILES, IR, MS, 1H
NMR, 13C NMR

217 Experimental Derived from 217 unique molecule-elucidation problems
curated from a chemistry textbook, where each molecule
is paired with IR, MS, 1H and 13C NMR spectra to sup-
port structure reasoning.

NMRBank 2025c Public SMILES, 1H NMR,
13C NMR

225,809 Experimental A large-scale experimental NMR database built via auto-
mated extraction from roughly 5.73 million open-access
scientific publications. Each entry includes IUPAC name,
SMILES (for a large subset), experimental conditions
(solvent, field strength), 1H/13C chemical shifts, and con-
fidence scores.

NovoBench2024a Public SMILES, MS/MS spec-
tra

N/A Experimental NovoBench aggregates three widely used MS/MS re-
sources for de novo peptide sequencing: a Seven-Species
collection of low-resolution spectra from seven organ-
isms, a Nine-Species collection of high-resolution spectra
from nine species including common PTMs, and the HC-
PT set of high-confidence human peptide spectra. To-
gether they provide paired MS/MS spectra and peptide
labels for standardized benchmarking.

MassSpecGym2024a Public SMILES, MS/MS spec-
tra

∼29,000 Experimental MassSpecGym aggregates 231,104 high-quality tandem
MS (MS/MS) spectra corresponding to 28,995 unique
molecular structures. Spectra are sourced from public
spectral libraries such as GNPS, MoNA and MassBank,
as well as additional in-house measurements, and each
spectrum is linked to a canonical SMILES string with
standardized acquisition metadata.

NMRShiftDB2024 Public SMILES, 1H NMR,
13C NMR

∼40,000 Experimental NMRShiftDB contains experimental 1H and 13C NMR
spectra collected from the literature and community sub-
missions. All entries undergo structural validation and
manual curation, making it one of the largest open
databases of real NMR chemical shifts.

SDBS Public SMILES, IR, MS, 1H
NMR, 13C NMR, Ra-
man, ESR

43,628 Experimental The SDBS dataset aggregates 43,628 experimental spec-
tral records from the Spectral Database for Organic Com-
pounds maintained by AIST (Japan). For each com-
pound, it provides IR, MS, 1H/13C NMR, Raman or
ESR spectra, together with detailed measurement con-
ditions (solvent, field strength, sample preparation, laser
parameters, reaction conditions) and standardized meta-
data such as molecular formula, molecular weight, com-
pound name and CAS registry number.

Private Lab Dataset In-house SMILES, IR, Raman 417,012 Computed An in-house quantum-chemistry dataset containing IR
and Raman simulations for 417,012 molecules with 3D
atomic coordinates and electronic properties. Each record
includes a canonical SMILES string, 3D coordinates,
Hartree–Fock energy, dipole moment and derivatives, po-
larizability and polarizability derivatives for molecules
ranging from 2 to 70 atoms.

SupportInfo-Crawl To be re-
leased

SMILES, 1H NMR,
13C NMR, MS,
19F/11B/31P NMR

∼320,000 Experimental Our crawled NMR dataset contains experimentally mea-
sured spectra (primarily 1H and 13C NMR) extracted
from chemical literature via a custom end-to-end pipeline
that retrieves Supporting Information using DOI links
and performs automated spectrum extraction and scaling.
From 388,831 papers, we obtained about 320,000 valid
molecular entries (around six per article); most molecules
have paired 1H/13C NMR spectra, and additional modali-
ties such as MS, 19F, 11B and 31P NMR are also covered.

Table 6: Exploratory Data Analysis (EDA) summary of all datasets included in Spectrum-
Bench. For each dataset we report its source type, included modalities, molecular scale, spectrum
origin, and a brief description.

C.4 PERCEPTION LEVEL

This layer associates the features identified at the signal layer with chemical entities (functional
groups, fragments, elements, and basic properties), as illustrated in Figure 10.

C.5 SEMANTIC LEVEL

This layer involves higher-level reasoning and comprehensive interpretation, connecting fragmented
information to form complete insights or generate novel chemical structures, as depicted in Figure
11.
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Dataset Modalities Included Fully Paired? % Molecules with Complete Set
QM9S UV, IR, Raman Yes 100%
Multimodal-Spectroscopic-Datasets C-NMR, H-NMR, HSQC-NMR, MS+, MS−, IR Yes 100%
MolPuzzle IR, MS, HNMR, CNMR Yes 100%
SDBS IR, MS, HNMR, CNMR, Raman, ESR No Variable (2–91%)

Table 7: Multimodal completeness and modality pairing across datasets in SpectrumWorld. “Fully
paired” indicates that each molecule contains all listed modalities.

Modality #Spectra % Molecules Containing This Modality
IR 39,980 91.64%
MS 32,838 75.27%
HNMR 18,317 41.98%
CNMR 17,688 40.54%
Raman 4,569 10.47%
ESR 924 2.12%

Table 8: Distribution of spectral modalities within the SDBS dataset. Each row reports the number
of spectra and the percentage of molecules containing that modality.

C.6 GENERATION LEVEL

This layer focuses on creating novel data, such as generating a 2D image of a molecule from its
SMILES string, predicting the Mass Spectrum for a given chemical structure, or designing a new
molecule with specific properties, as illustrated in Figure 13.

C.7 DATA DISTRIBUTION

To provide an overview of the data landscape, Figure 12 presents two pie charts: the left illustrates
the distribution of different spectrum types (e.g., NMR, IR), while the right shows the categorization
of spectroscopic task types. These distributions reflect the diversity of data and tasks within our
study. It should be noted that the spectrum type statistics were generated by having GPT-4o scan
and summarize all spectra in the benchmark. However, there are potential limitations: GPT may
have recognition errors, and some spectrum-involving benchmarks lack actual image data (e.g.,
predicting NMR spectrum properties from molecular characteristics in de novo generation tasks).
Additionally, in tasks like multimodal fusion reasoning and forward generation problems, a single
benchmark instance might include multiple spectra. Thus, the number of spectra does not align with
the number of benchmarks, and this pie chart is provided only as a general reference.

D SPECTRUMANNOTATOR TECHNICAL DETAILS

In the main text, we briefly introduced the function of SpectrumAnnotator. In this section, we will
introduce its specific technical details.

MolPuzzle (Guo et al., 2024b) represents the first benchmark specifically designed for LLMs in
spectroscopic analysis, employing a three-stage approach to generate question-answer pairs. While
this template-based generation method offers efficiency, it suffers from limited coverage of spectro-
scopic domains and overly simplistic question formats. In the field of spectroscopy, high-quality data
and benchmarks are crucial to advance AI research. The design of SpectrumAnnotator originates
from two key insights: First, the process of creating benchmarks shares similarities with the super-
vised data generation methods used in LLM pre-training and post-processing. Just as high-quality
training data is essential for model performance, well-designed benchmarks are equally critical for
evaluating and advancing the field. Second, we aim to utilize LLMs’ few-shot and zero-shot ca-
pabilities to generate diverse benchmarks, enabling batch processing of seed datasets to construct
large-scale pre-training and post-processing data. Additionally, we leverage LLMs’ discriminative
abilities for preliminary data screening and establish closed-loop mechanisms for continuous im-
provement.
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Sub-Category Metadata

Spectrum Type Classification

Question:
What type of spectrum is this?
Choices & Answer:
A.  Infrared Spectrum (IR).
B.  Proton Nuclear Magnetic Resonance (H-NMR).
C.  Heteronuclear Single Quantum Coherence (HSQC).
D.  Raman Spectrum.
Explanation:
The spectrum uses ppm as units, which is a chemical shift unit 
specific to NMR. The chemical shift range typically falls 
between -2 ppm and 15 ppm, confirming this is a 1H NMR 
spectrum.

Spectrum Quality Assessment

Question:
Does this spectrum show obvious signal quality issues?
Choices & Answer:
A.  Yes.
B.  No, the signal is very clear.
C.  Localized noise.
D.  Very low noise, egligible.
Explanation:…

Basic Feature Extraction

Question:
Please select the chemical shift range corresponding to the most 
concentrated signal area in the HSQC spectrum.
Choices & Answer:
A. δH 2-4 ppm, δC 30-60 ppm.
B. δH 6-8 ppm, δC 120-140 ppm.
C. δH 9-10 ppm, δC 180-200 ppm.
D. δH 0-1 ppm, δC 10-20 ppm.
Explanation:
HSQC spectrum plots ¹H chemical shift on the horizontal axis 
and ¹³C on the vertical. Most signals cluster in the 2-4 ppm (¹H) 
and 30-60 ppm (¹³C) region.

Impurity Peak Detection

Question:
Please observe this spectrum carefully. Besides the signals from 
the target compound, there is also a distinct additional peak 
around 1 ppm in the image. What is this peak most likely?
Choices & Answer:
A. Solvent impurity.
B. Target compound.
C. Instrument noise.
D. Reference standard.
Explanation:
In NMR spectrum, the peak near 1 ppm is often from impurities 
introduced during sample processing. Given it's an "extra" 
signal not part of the target compound, it's likely an impurity.

Identifying the type of a spectrum, assessing its data quality, extracting basic features (e.g.,peak 
position, peak intensity), and identifying impurity peaks..

Examples

Figure 9: Example tasks and question formats at the Signal Level.

As illustrated in Figure 14, SpectrumAnnotator consists of several key components that work to-
gether to generate high-quality spectroscopic benchmarks. Configuration & Seed Datasets form
the foundation of the system. Seed datasets are extracted from multiple data sources containing
essential spectroscopic information, while the configuration is a YAML configuration file that pri-
marily configures prompt templates, instructing the generator on what prompts to use, along with
model configurations and other parameters. As shown in Figure 15, taking property prediction as
an example, the configuration specifies the seed datasets from MolPuzzle and provides question
templates to guide the generator’s output.

DataLoader addresses the challenge of integrating diverse data sources. Ideally, we would like to
standardize all seed datasets into a uniform format. However, in practice, this proves challenging
as original data may possess complex nested file structures and diverse storage formats. To reduce
adaptation complexity, we allow customized DataLoader designs. This design is inspired by Py-
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Sub-Category Metadata

Basic Property Prediction

Question:
 Given  the  mass  spectrum  image,  what  is  the  most  likely  

molecular ion peak (m/z) observed for  this  compound?
Choices & Answer:
A. 85.
B. 107.
C. 120.
D. 150.
Explanation:
The strongest peak at m/z 107.0 is the molecular ion (M+), with 
an adjacent m/z 109.0 peak (~1/3 intensity) indicating one 
chlorine atom (35Cl/37Cl ≈ 3:1). Smaller peaks (m/z 93.0, 
108.0) are fragments.

Elemental Composition 
Prediction

Question:
Observe the provided mass spectrum image. The significant M+2 
peak suggests the presence of which element?
Choices & Answer:
A. Fluorine (F).
B. Chlorine (Cl).
C. Bromine (Br).
D. Iodine (I).
Explanation:
The intensity ratio of the m/z 51 and 53 peaks (~3:1) reflects 
chlorine’s natural isotopes, 35Cl (75.77%) and 37Cl (24.23%), 
giving an M+2 peak about one-third the main peak.

Functional Group Recognition

Question:
Based on this infrared spectrum, what functional group is most 
likely present in the molecule?
Choices & Answer:
A. Carbonyl group (C=O).
B. Hydroxyl group (-OH).
C. Amino group (-NH2).
D. Nitro group (-NO2).
Explanation:
In the infrared spectrum, a pair of sharp absorption peaks around 
3300 cm⁻¹ are typical of the symmetric and asymmetric N–H 
stretching vibrations in a primary amino group (-NH₂).

Peak Assignment

Question:
Given the chemical formula C6H5F. Observe this H-NMR 
spectrum. The singlet peak around ~7.3 ppm in the image is most 
likely assigned to which part of the molecule?
Choices & Answer:
A. Methyl group.
B. Fluoro-substituted carbon.
C. Aromatic ring protons.
D. Alkene protons
Explanation:
The 7.3 ppm shift is typical for aromatic protons in 
fluorobenzene (C₆H₅F). Though misdescribed as a singlet, it’s 
a complex multiplet from H-H and H-F coupling, with the shift 
confirming its aromatic nature.

Identifying functional groups like -OH from a mass spectrum; determining the presence of 
isotopes like ¹³C; assigning a ¹H NMR triplet to a methyl group; predicting molecular weight 
from a mass spectrum.

Examples

Figure 10: Example tasks and question formats at the perception level.

Torch’s DataLoader, which can properly load, batch, and post-process raw data. Our DataLoader
aims to integrate various “seed datasets” into formats that can be processed by generators. The foun-
dation consists of two base classes: DataSample, which represents the minimal granular information
unit in SpectrumAnnotator and serves as reference information for the Generator to generate indi-
vidual samples; and Dataset, a collection of DataSample objects that provides standardized access
methods. As demonstrated in Figure 16, the DataLoader adopts a plugin-based architecture with an
abstract registry. For different seed datasets, researchers only need to register their custom loaders
using simple registration code, enabling seamless integration of diverse data sources.
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Sub-Category Metadata

Fusing Spectroscopic 
Modalities

Question:
The molecular formula of the compound is C6H11NO. Use this 
information together with the provided IR spectrum to infer 
possible structural features.
Choices & Answer:
A. Amide.
B. Alcohol.
C. Ester.
D. Alkene.
Explanation:
Infrared spectroscopy shows a strong 1650 cm⁻¹ peak (C=O) 
and a 3300–3500 cm⁻¹ peak (N–H). Their coexistence, along 
with N and O in the formula, clearly indicates an amide group.

Molecular Structure 
Elucidation

Question:
Given the mass spectrum of an unknown compound with a 
molecular formula C11H16, predict the most likely molecular 
structure (SMILES) consistent with the observed fragments.
Choices & Answer:
A. CC(C)=C1C=CC=CC1.
B. CC(C)CC1=CC=CC2=CC=CC=C12.
C. CC(C)(C)CC1=CC=CC=C1.
D. CCC(C)C1=CC=CC2=CC=CC=C12.
Explanation:
The base peak at m/z 91 indicates a benzyl (C₆H₅CH₂–) 
structure, while m/z 133 represents loss of a methyl group. Only 
CC(C)(C)CC1=CC=CC=C1 fits both fragmentations.

Multimodal Molecular 
Reasoning

Question:
The Raman spectrum of the molecule OC1CCC1=O (2-
hydroxycyclopentanone) shows a series of strong peaks in the 
2800-3000 cm⁻¹ region. These peaks are most likely attributed to 
which type of molecular vibration?
Choices & Answer:
A. C-H stretching.
B. O-H stretching.
C. C=O stretching.
D. N-H stretching.
Explanation:
In Raman spectroscopy, 2800–3000 cm⁻¹ is characteristic of C–H 
stretching. The strong peak here arises from cycloalkane C–H 
vibrations, while O–H (3200–3600 cm⁻¹) and C=O (~1700 cm⁻¹) 
peaks are absent.

Elucidating a complete molecular structure from one or more spectra; verifying a proposed 
structure against spectral data; and reasoning across different modalities (e.g., text and spectrum) 
to answer complex questions.

.

Examples

Figure 11: Example tasks and question formats at the semantic level.

Figure 12: Distribution of spectrum types and spectroscopic task cat-
egories.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 13: Example tasks and question formats at the Generation Level.

Generator operates through a three-stage workflow: First, it receives question templates from Con-
figuration (including few-shot examples). Second, for each sample in the seed dataset, the generator
uses question templates combined with sample metadata (such as molecular formulas, spectrum
paths, SMILES strings, etc.) to render a prompt, which is then passed to the large language model.
Third, the model’s output is parsed into standard formats (e.g., question/choices/answer).
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Figure 14: Technical architecture of SpectrumAnnotator, illustrating the data flow from seed datasets
through generation to quality verification.

Figure 15: Example configuration for property prediction tasks, demonstrating how prompt tem-
plates and model parameters are specified.
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Figure 16: Plugin-based DataLoader architecture showing the registration mechanism for custom
data loaders.
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Quality Assurance Pipeline ensures the reliability of generated benchmarks. After data genera-
tion, the system employs a multi-stage quality assurance process: Initial screening using rule-based
methods to check data format and remove non-compliant samples, followed by SpectrumVerifier,
a large model-based verification system that identifies suspicious samples requiring manual anno-
tation. This closed-loop mechanism ensures that only high-quality, scientifically valid benchmarks
are included in the final dataset. SpectrumAnnotator will be open-sourced to collaborate with the
research community in building a robust ecosystem and collectively addressing challenges in spec-
troscopic data generation and curation.

E QUANTITATIVE EVALUATION OF ANNOTATION QUALITY

SpectrumBench adopts a mixed automatic–human curation workflow. In early iterations, the Spec-
trumAnnotator prompts and filtering rules produced a non-trivial amount of noisy or underspecified
samples. We therefore carried out several rounds of prompt redesign, rule refinement, and human-
in-the-loop verification, and here report the corresponding quantitative evidence.

Figure 17 compares automatic annotations from SpectrumAnnotator with independent manual anno-
tations on a stratified sample of tasks across the four semantic levels (Signal, Perception, Semantic,
Generation). For each task, we plot the number of samples judged correct by human annotators and
by the automatic pipeline. Overall, the distributions are well aligned, indicating that the automatic
pipeline can approximate human labeling quality at scale.

Figure 17: Comparison between automatic (SpectrumAnnotator) and manual annotations across all
SpectrumBench tasks. Bars report, for each task type and semantic level, the number of samples
judged correct by human annotators (blue) and by the automatic pipeline (orange).

To further quantify annotation quality, Table 9 reports the aggregate error rates of the automatically
generated annotations (before human verification) across the three semantic levels. Signal and Per-
ception tasks show reductions from 57.4% to 21.2% and from 52.8% to 19.8%, respectively, while
Semantic tasks improve from 74.6% to 26.2%. Generation tasks are excluded because they are fully
manual annotation and therefore do not rely on automatic annotation.

These results demonstrate that iterative refinement, substantially improves the reliability of auto-
matic annotations. Importantly, the reported error rates refer only to raw auto-generated outputs; all
benchmark data released in SpectrumBench undergo a subsequent human-verification stage, and the
final benchmark does not contain these errors.

A further benefit of this workflow is efficiency: instead of manually designing and writing thou-
sands of benchmark items, curators only need to validate and correct model-proposed annotations.
This dramatically reduces the human labor required for benchmark construction while preserving
scientific rigor.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We also note that the remaining errors after refinement primarily stem from model limitations (our
pipeline currently uses Intern-S1). Stronger models would further reduce these residual issues, and
for several simpler tasks—such as spectrum-type classification—the refined prompts already achieve
near-zero automatic error. This indicates that the annotation pipeline scales with model capability
and can continue to improve as foundation models advance.

Error rate Signal Perception Semantic Generation
Before refinement 57.4% 52.8% 74.6% N/A
After refinement 21.2% 19.8% 26.2% N/A

Table 9: Annotation error rates for SpectrumAnnotator before and after iterative prompt and rule re-
finements, aggregated at each semantic level. Generation tasks are open-ended and are not included
in this calculation.
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Figure 18: Performance ranking of various LLMs.

F.1 OPEN-SOURCE MODELS

Qwen2.5-VL-32B-Instruct(Bai et al., 2025). Alibaba’s open-source Vision-Language multimodal
large model that handles reasoning and generation for images, text and video. It employs a hierar-
chical tagging architecture, supports multi-turn conversations and complex reasoning, and both the
model weights and code are publicly available.

Qwen2.5-VL-72B-Instruct(Bai et al., 2025). Qwen2.5’s larger-scale model enhances cross-modal
reasoning and instruction-following capabilities, delivering superior performance on benchmarks
such as MMMU and M3Exam while supporting multitasking and multilingual inputs - and is com-
pletely open-source.

InternVL3-78B (Chen et al., 2024b). Shanghai AI Lab releases the multimodal model, combin-
ing native multimodal pre-training, variable visual position encoding (V2PE), MPO, and test-time
scaling to approach GPT-4o performance.

Llama-3.2-11b-Vision-Instruct(Meta AI, 2024). Meta’s 11 B lightweight multimodal model locks
Llama-3.1 8 B text and pairs it with a ViT encoder. Two-stage training: image-text alignment then
SFT+DPO, using RoPE-2D. Open-source.

Lllama-3.2-90b-Vision-Instruct(Meta AI, 2024). The 90B features a more advanced vision
adapter with cross-attention layers to inject image features into the LLM core. It is tuned with
SFT and RLHF for enhanced performance on complex visual reasoning tasks.

DeepSeek-VL-2(Wu et al., 2024). An open-source model from DeepSeek-AI featuring a Mixture-
of-Experts (MoE) backbone and a dynamic tiling vision encoder for high-resolution images. It
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achieves or exceeds the state-of-the-art performance at the time on benchmarks like MMMU and
DocVQA, with its code and weights fully available on GitHub.

Doubao-1.5-Vision-Pro (Doubao Team, 2025). It features a dynamic resolution visual encoder and
MoE architecture, supporting visual QA, text-image matching, and image description. With billions
of parameters, it shows strong generalization across scenarios and is available for self-hosting and
fine-tuning.

Doubao-1.5-Vision-Pro-Thinking (Doubao Team, 2025). It integrates a “Deep Thinking Mode”
and is trained with multi-round Reward Learning and reasoning style training. It excels in scientific,
mathematical, and chain-of-thought reasoning. Supports open-source calling and API integration.

GLM-4.5V(VTeam, 2025). An open-source vision-language model from Zhipu AI and Tsinghua
University that introduces a versatile ”thinking paradigm” for enhanced reasoning. It leverages
scalable reinforcement learning and supports full-spectrum vision reasoning, including GUI agent
operations and code generation from screenshots.

InternS1(Intern-S1 Team, 2025).A vision-language model developed by Shanghai AI Laboratory
that features a specialized ”Thinking” mode for enhanced multi-step reasoning. This mode allows
the model to perform a series of self-guided logical steps to solve complex problems, particularly in
scientific, mathematical, and logical domains.

F.2 CLOSED-SOURCE MODELS

GPT-4o (OpenAI, 2024). OpenAI’s flagship “omni” model natively supports text, audio, and image
modalities. Delivers GPT-4-level intelligence with significantly faster response times and enhanced
multimodal capabilities.

GPT-4.1(OpenAI, 2025). A reinforced version of GPT-4 deployed through the OpenAI API, offer-
ing improved handling of complex instructions and logical reasoning; accepts multimodal inputs but
is primarily geared toward text-centric tasks.

GPT-4-Vision(OpenAI, 2023). A version of GPT-4 equipped with image input capabilities, opti-
mized for understanding images and text and for the generation of conversational content, widely
used for image-based Q&A.

Claude-3.5-Haiku. Anthropic’s fastest and most cost-effective model in the Claude3.5 fam-
ily—offers very low latency, strong coding and reasoning ability, and often exceeds Claude Opus on
intelligence benchmarks despite being lightweight.

Claude-3.5-Sonnet (Anthropic, 2024). Anthropic’s multimodal large language model has mixed
inference capabilities and powerful visual understanding functions. It supports a context of 200K
tokens and is skilled in natural writing and code generation.

Claude-3.7-Sonnet (Anthropic, 2025a). An evolution of Claude3.5 Sonnet that introduces hybrid
reasoning—users can choose between fast modes or step-by-step logical chains; offers strong task
flexibility, extended context windows, and deep instruction-following in multimodal settings.

Claude-4-Opus (Anthropic, 2025b). Anthropic’s flagship model, designed for complex tasks. It
boasts a powerful memory architecture and parallel tool invocation capabilities, and integrates with
Claude Code, performing exceptionally in coding and reasoning benchmark tests.

Claude-4-Sonnet (Anthropic, 2025b). Claude-3.7-Sonnet’s successor, balancing performance and
speed, with low latency and high resource efficiency, excels in code generation.

Grok-2-Vision(xAI, 2024). The multi-modal model of xAI combines language and visual process-
ing capabilities to handle various images and documents, and supports multilingual recognition and
style analysis.

Qwen-VL-Max. The closed-source flagship model of Alibaba’s Qwen series has been optimized
for deployment in enterprise-level multimodal tasks, supporting joint input of images, text, videos,
and others, with ultra-large parameter volume and high inference capability.

Gemini-2.5-Pro(Gemini Team, 2025).A multimodal model from Google DeepMind that achieves
state-of-the-art performance on frontier reasoning and coding benchmarks. It excels at multimodal
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understanding, including the ability to process up to 3 hours of video content and convert it into in-
teractive code. Its combination of long context, multimodality, and enhanced reasoning capabilities
unlocks new agentic workflows and complex problem-solving.

G ERROR CASES STUDY

G.1 SIGNAL LEVEL

We observe that the model struggles to distinguish localized noise from clean signals in the spec-
trum quality assessment task. For example, given the question “Does this spectrum show obvious
signal quality issues?”, the ground-truth label was “Localized noise” or “Very low noise, eligible”,
indicating minor but noticeable signal interference. However, the model incorrectly predicted “No,
the signal is very clear”, resulting in a failed case. This misclassification reveals a key limitation:
the model tends to overestimate the clarity of the spectrum when the noise is not global or strongly
pronounced. In visual inspection, localized artifacts—though subtle—can be clearly identified by
human annotators, whereas the model often dismisses them as negligible. It lacks sufficient sensi-
tivity to weak or local signal distortions, or has overfit to globally noisy or clean examples during
training, causing it to ignore partial imperfections. This insight aligns with our general observation:
the model often fails to distinguish noise from true signal, especially when the noise is spatially
sparse or located at the margins of the image. Such behavior may stem from the fact that the model
treats the entire spectrum as a holistic input, and lacks mechanisms to perform fine-grained regional
quality assessment. Additionally, for models not inherently multi-modal, spectra are often encoded
as image representations and then passed through vision encoders or captioning modules, potentially
discarding low-level noise patterns. As a result, noise may not be retained in the model’s internal
representation, leading to overly optimistic predictions.

G.2 PERCEPTION LEVEL

Figure 19: A Case of Functional Group Recognition

We found that for functional group recognition and peak assignment tasks, large language models
such as Doubao-1.5-pro-thinking often fail to produce chemically accurate predictions, even when
the visual features in the spectra are clear to human experts. For instance, in the functional group
recognition task (Figure 19), the infrared (IR) spectrum exhibits a strong absorption band charac-
teristic of a carbonyl group (C=O), typically near 1700 cm-1. However, the model incorrectly
predicted hydroxyl group (-OH). This suggests that the model likely over-relied on the presence
of a broad peak or baseline shift, possibly mistaking low-intensity or overlapping signals for OH-
stretching vibrations. In the peak assignment task (Figure 20), given the molecular formula C10H7Cl
and a clear singlet near 6.8 ppm in the 1H-NMR spectrum, the expected answer was aromatic CH
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Figure 20: A Case of Peak Assignment

next to a double bond, i.e., a non-substituted position in the naphthalene ring. Yet the model re-
sponded with aromatic CH adjacent to Cl, a chemically invalid assignment considering the split-
ting pattern and electronic environment. This indicates a lack of fine-grained chemical reasoning and
possibly an overemphasis on token-level keyword association rather than structural context. These
cases expose the model’s semantic-level misunderstanding, which goes beyond visual misinterpreta-
tion and highlights a deficiency in chemically grounded reasoning. We hypothesize two contributing
factors. Firstly, the model may rely heavily on language priors, rather than truly integrating spectral
visual features with molecular structure. Secondly, it lacks domain-specific supervision. Pretraining
on generic data may not sufficiently expose the model to physical rules of spectroscopy, such as
electron-withdrawing effects, chemical shift theory, or group frequency ranges.

G.3 SEMANTIC LEVEL

At the semantic level, tasks involving molecular structure elucidation and multi-modal reasoning
remain particularly challenging. Consider the example below:

In this case, the model is asked: “The molecular formula of the compound is C4H8O2. Use this
information together with the provided IR spectrum image to infer possible structural features.”
The correct answer should be Ether, based on the absence of a strong carbonyl absorption near
1700 cm-1 and the elemental composition. However, the model incorrectly predicts Carboxylic
acid, likely due to over-reliance on superficial signal patterns that resemble O–H stretching or C=O
bands.

Even when the molecular formula is omitted (pure spectrum-based reasoning), the model continues
to produce incorrect predictions, revealing a deficiency in cross-modal semantic alignment. This
suggests that while LLMs may perform well on shallow text-image associations, they struggle with
integrating spectral data and chemical constraints in a chemically meaningful way.
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Figure 21: A Case of Fusing Multi-Modalities

G.4 GENERATION LEVEL

Not surprisingly, the performance on generation tasks—especially structure generation—is signif-
icantly worse. This suggests that while models like Claude-3.7-Sonnet perform well on earlier
levels such as perception, syntactic understanding, and basic semantic reasoning, they still struggle
with more complex forward problems that require inferring new molecular structures from spectral
data. De novo generation and inverse problems (e.g., predicting spectra from structure) pose even
greater challenges, as they demand deeper chemical understanding and cross-modal generalization.
In these settings, most models exhibit clear signs of overfitting or default to high-frequency patterns
seen in training data.

Surprisingly, Doubao-1.5-Vision-Pro-Thinking demonstrates promising performance on forward
problems, aligning well with its strong results in earlier semantic-level tasks such as functional
group recognition, peak assignment, and molecular structure elucidation. This consistency suggests
that the model may have a better internal representation of cross-modal chemical semantics, though
its capability still falls short in full generation settings.

H MODEL ACCURACY VS. TOKEN ASSUMPTIONS

We conduct a comparative analysis of several Multimodal Large Language Models (MLLMs) from
both semantic and generative levels, focusing on three representative tasks: Molecule Elucidation
(ME), Fusing Spectroscopic Modalities (FM), and Forward Problems (FP). As shown in Figure 22,
the performance gap among models is significant. Notably, models with lower average token as-
sumptions, such as DeepSeek-VL2, tend to exhibit lower accuracy. In contrast, models with higher
token assumptions, such as Doubao-1.5-Vision-Pro-Thinking, achieve superior performance, espe-
cially on complex de novo generation tasks like FP. This suggests that a longer reasoning chain, re-
flected in higher token usage, benefits complex problem-solving. However, the trade-off is increased
computational cost and significantly longer inference time. These results highlight the efficiency-
performance dilemma in MLLMs.

I DETAILED DATA STRUCTURE

This section details the comprehensive seed datasets curation pipeline and the three primary data
structures that underpin our framework: the foundational seed datasets, the structured benchmark
data, and the standardized evaluation results.
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Figure 22: Model accuracy aligns with the model size.

I.1 SEED DATA CURATION DETAILS

The seed datasets are curated from three primary sources to ensure both diversity and scientific rigor:

1. Proprietary collections and in-house experimental data: These include unpublished
spectroscopic measurements and curated datasets from our collaborating laboratories. This
source comprises approximately 238,869 molecular data points covering 8 types of spec-
tra, offering higher authenticity and usability compared to most computationally generated
spectra.

2. Public repositories and benchmark datasets: We integrate data from a range of widely
recognized and authoritative sources, including SDBS (of Advanced Industrial Science &
, AIST), QM9S (Zou et al., 2023b), NovoBench (Zhou et al., 2024a), and MolPuzzle (Guo
et al., 2024b), among others. In total, seven distinct repositories and public datasets are
used, collectively encompassing over 1.01 million unique chemical compounds.

3. Literature mining: Spectral data are systematically extracted from the Supporting In-
formation sections of peer-reviewed publications, with a focus on articles from leading
journals such as the Journal of the American Chemical Society (JACS) and ACS Catalysis.

All collected datasets undergo a unified processing pipeline that systematically maps each entry into
three core chemical spaces: SMILES, molecular formula, and spectra. The resulting seed datasets
are organized at the level of individual chemical substances, with each record containing the com-
pound’s SMILES, molecular formula, and a structured set of associated spectra, all stored in a
standardized JSON format. This robust foundation facilitates downstream annotation and interoper-
ability.

I.2 SEED DATASETS STRUCTURE

The seed dataset is constructed by extracting essential information from raw experimental data, serv-
ing as the foundation for benchmark generation. Each entry contains a molecular index, SMILES
string, molecular formula, and a list of associated spectra. An illustrative structure is provided in
Listing 1. The path field is a list that may contain multiple files for a given spectrum type, accom-
modating cases such as multiple mass spectra for a single molecule.

Listing 1: Example structure of a seed dataset entry.
{

"molecule_index": "MOL_0001",
"smiles": "CCCCC1=CC=CC=C1",
"formula": "C10H14",
"spectra": [
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{"spectrum_type": "IR", "path": ["IR/MOL_0001.png"]},
{"spectrum_type": "MASS", "path": ["MASS/MOL_0001.jpg",
"MASS/MOL_0001_2.jpg"]},
{"spectrum_type": "C-NMR", "path": ["C-NMR/MOL_0001.png"]},
{"spectrum_type": "H-NMR", "path": ["H-NMR/MOL_0001.png"]}

]
}

I.3 SPECTRUMBENCH DATA STRUCTURE

The benchmark data structure is designed to support a diverse range of tasks, including signal in-
terpretation, perception, and semantic understanding. Each entry includes a unique identifier, im-
age path(s), question, answer choices, ground truth answer, category, sub-category, data source,
and timestamp. A representative example is shown in Listing 2. After processing by Spectrum-
Lab, three additional fields are appended: model response (the model’s reasoning and output),
model prediction (the answer extracted from the model response), and pass (a boolean indi-
cating whether the model’s prediction matches the ground truth).

Listing 2: Example of a benchmark data entry.
{
"id": "Perception_a9cf_250723_235951_318294",
"image_path": [
"data/Perception/Basic Property Prediction/Perception_a9cf_q.png"

],
"question": "Given the mass spectrum image, what is the most likely
molecular ion peak (m/z) observed for this compound?",
"choices": ["85", "90", "120", "133"],
"answer": "133",
"category": "Perception",
"sub_category": "Basic Property Prediction",
"source": "",
"timestamp": "2025-07-23 23:59:51"

}

I.4 EVALUATION RESULTS STRUCTURE

The evaluation results structure records the model’s predictions and performance for each bench-
mark instance. Listing 3 illustrates the format. For all data structures, the image path field is
specified relative to the data directory to ensure clarity and reproducibility. This standardized
design facilitates systematic benchmarking and transparent evaluation across a wide range of spec-
troscopic machine learning tasks.

Listing 3: Example of an evaluation results entry.
{
"id": "Signal_9131_250723_110552_245529_2",
"image_path": [
"data/Signal/Spectrum Type Classification/Signal_9131_2_q.png"

],
"question": "What type of spectrum is shown in the image?",
"choices": [
"Infrared Spectrum (IR)",
"Proton Nuclear Magnetic Resonance (H-NMR)",
"Mass Spectrometry (MS)",
"Carbon Nuclear Magnetic Resonance (C-NMR)"

],
"answer": "Mass Spectrometry (MS)",
"category": "Signal",
"sub_category": "Spectrum Type Classification",
"source": "",
"timestamp": "2025-07-23 11:05:52",
"model_prediction": "Mass Spectrometry (MS)",
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"model_response": "\\answer{Mass Spectrometry (MS)}",
"pass": true

}

J COST ANALYSIS

To ensure consistency and fairness across all experiments, SpectrumLab employs a unified model
interface and conducts all inference via API services, regardless of whether the underlying models
are open-source or proprietary. This standardized evaluation pipeline enables direct and equitable
comparison of model performance. With the exception of the generation-level scoring model, each
benchmark run requires an average of 572 model invocations. The use of remote APIs introduces
network latency, resulting in variability in inference times. Depending on the model architecture
and complexity, the total time required to complete the full SpectrumBench benchmark ranges from
approximately 40 minutes to 2 hours. For each model, we systematically record the overall inference
time and the estimated monetary cost associated with completing the benchmark.

Given the current benchmark prompts and SpectrumLab’s prompt engineering design, a complete
run of the benchmark requires approximately 1,219,083 input tokens and 41,522 output tokens (as
measured on InternVL3-78B, this figure is provided for reference only). Models with more elaborate
reasoning or “thinking” capabilities may incur even higher token consumption.

Table 10 summarizes the key statistics for representative models evaluated in this study.

Table 10: Resource consumption and cost for representative models on the full SpectrumBench
benchmark.

Model Inference Time (min) Cost (USD)
Claude-3.5-Haiku 99 $0.94
Claude-3.5-Sonnet 70 $7.47
Claude-4-Opus 123 $24.00
Claude-4-Sonnet 90 $11.66
GPT-4o 103 $4.23
GPT-4-Vision-Preview 113 $8.08
GPT-4.1-2025-04-14 103 $1.54
Grok-2-Vision 62 $2.12
InternVL3-78B 120 N/A

K USAGE OF LARGE LANGUAGE MODELS IN THIS MANUSCRIPT

In preparing this manuscript, we used a large language model (LLM) solely for editorial purposes.
Its functions were limited to proofreading for typographical errors, correcting grammatical mistakes,
and enhancing the clarity and readability of the text.

L LIMITATIONS

While this work introduces the concept of SpectrumWorld , it is important to acknowledge that the
field of AI for Spectroscopy remains in its nascent stages, we recognize several limitations within
our primary contributions, SpectrumBench and SpectrumLab .

Limitations of SpectrumBench First, regarding Task Format, SpectrumBench currently supports
only multiple-choice and a limited number of open-ended questions. While this design is suitable for
Large Language Models (LLMs), it is insufficient for evaluating a broader range of machine learn-
ing models, such as Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs),
as discussed in our introduction. Second, concerning Spectrum Type, although we have incorpo-
rated a wide array of spectrum types compared to previous works (Lu et al., 2025; Xu et al., 2025;
Bushuiev et al., 2024b; Zhou et al., 2024a), several crucial spectroscopic modalities remain uncov-
ered. Notable examples include X-ray Diffraction (XRD) (Guo et al., 2024a; Salgado et al., 2023)

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

and fluorescence spectra (Parker & Rees, 1962), which are vital for comprehensive material charac-
terization. Finally, addressing Spectroscopic Task Type, spectroscopy techniques are fundamental
across diverse scientific disciplines, including physics, astronomy, chemistry, and biology, primarily
for characterizing substances like molecules, proteins, peptides, and SMILES sequences. From the
perspective of LLMs, a generic categorization of modalities into “text” and “images” is inadequate
for representing the complexity of data. The inherent diversity of spectroscopic modalities compli-
cates the immediate definition of all possible tasks. Consequently, SpectrumBench presently lacks
important benchmarks in several areas, such as spectrum-spectrum retrieval (Curry et al., 1969;
Wang et al., 2022; Lu et al., 2025) and peptide sequence analysis (Zhou et al., 2024a). We ac-
knowledge that it will be challenging for SpectrumBench to encompass all relevant tasks in the near
future, and we aim to foster collaborative efforts with the community and various laboratories to
collectively advance the development of AI in spectroscopy.

Limitations of SpectrumLab Our second main contribution, SpectrumLab, also presents certain
limitations. Firstly, regarding its data functionality, while SpectrumLab successfully unifies seed
datasets and provides data curation tools-SpectrumAnnotator, it currently lacks tools for the prepro-
cessing and segmentation of raw data across multiple spectroscopic modalities. Secondly, concern-
ing metrics, the current evaluation framework within SpectrumLab is relatively simplistic, relying
primarily on accuracy and a lenient, LLM-based scoring method for open-ended questions. In future
iterations, we plan to define and incorporate a broader array of task-specific metrics to enable more
nuanced and robust model evaluation.
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