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Abstract
Word Segmentation is a fundamental step for001
understanding many languages. Previous neu-002
ral approaches for unsupervised Chinese Word003
Segmentation (CWS) only exploit shallow se-004
mantic information, which can miss important005
context. Large scale Pre-trained language mod-006
els (PLM) have achieved great success in many007
areas.In this paper, we propose to take advan-008
tage of the deep semantic information embed-009
ded in PLM (e.g., BERT) with a self-training010
manner, which iteratively probes and trans-011
forms the semantic information in PLM into012
explicit word segmentation ability. Extensive013
experiment results show that our proposed ap-014
proach achieves a state-of-the-art F1 score on015
two CWS benchmark datasets. The proposed016
method can also help understand low resource017
languages and protect language diversity.018

1 Introduction019

There exist many low resource fields and languages020

where labeled word segmentation is inaccessible,021

which makes unsupervised word segmentation de-022

sirable. Previous unsupervised word segmenta-023

tion methods mainly apply statistical models to024

either evaluate the quality of possible segmented025

sequence with discriminative models (e.g., Mu-026

tual Information (Chang and Lin, 2003)) or esti-027

mate the generative probabilities with generative028

models (e.g., Hidden Markov Model (Chen et al.,029

2014)). However, these statistical methods can030

only make use of the limited contextual informa-031

tion, thus yielding less competitive performance.032

With the thrive of neural networks, researchers033

have applied neural models for unsupervised word034

segmentation. Sun and Deng (2018) propose a035

segmental language model (SLM) to estimate the036

generative probability with recurrent networks. Al-037

though SLM can exploit more contextual informa-038

tion compared with statistical models, it is still039

weak in modeling deep semantic information, lim-040

ited by its model capacity and training data scale.041

Pre-trained language models trained on large 042

scale data have shown superior ability to model 043

contextual information, and achieve great success 044

in various tasks (Peters et al., 2018; Devlin et al., 045

2019; Radford et al., 2019). Inspired by the at- 046

tempt for interpreting BERT (Wu et al., 2020), we 047

propose to take advantage of the semantic repre- 048

sentation ability of BERT to evaluate the closeness 049

between characters in a probing manner. To be 050

more specific, we assume that the difference be- 051

tween masking one character and masking several 052

adjacent characters as a whole reveals the closeness 053

between that character and the adjacent ones. 054

Although this probing-based method can take 055

advantage of the large amount of knowledge em- 056

bedded in BERT, it only implicitly exploits the rep- 057

resentation ability of BERT. To transfer the implicit 058

knowledge into explicit segmentation boundary, we 059

propose to apply a self-training method that trans- 060

forms the segmentation decision from generative 061

methods with high confidence into traditional “BI” 062

sequence labeling system, which is then treated as 063

the supervision signals for a discriminative model. 064

To combine the advantage of both generative 065

and discriminative models, we propose to itera- 066

tively train the discriminative model and generative 067

model under the supervision signal from their coun- 068

terparts. To select the model with the best perfor- 069

mance in the unsupervised setting, we propose an 070

evaluation module that evaluates the quality of the 071

word boundaries with masked prediction accuracy 072

based on the assumption that the closer two char- 073

acters are, the bigger loss masking one adjacent 074

character would bring. 075

We conduct experiments on two Chinese Word 076

Segmentation benchmark datasets in an unsuper- 077

vised manner. Experiment results show that our 078

method can outperform the strong baseline models 079

and achieve state-of-the-art results in unsupervised 080

CWS. Extensive analysis shows the effectiveness 081

of the proposed modules. 082
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Algorithm 1 Unsupervised Word Segmentation
Procedure
Require: Generative Module G, Discriminative Module D,

Evaluation Module E, sequences to be segmented X .
i = 0
while True do

Segment the sequences X with G into Xg

Transform the segmented Xg into “BI” labels
Train D with high confident segmentations in Xg

Segment the sequences X with updated D into Xd

Train G with high confident segmentations in Xd

Evaluate the segmented sequence Xd with E
e = E(Xd)
if ei < ei−1 then

Return Di−1

end if
i += 1

end while

We conclude our contributions as follows:083

• We propose an unsupervised word segmenta-084

tion method that segments tokens by probing085

and transforming PLM with generative and086

discriminative modules, which are trained in087

a mutual promotion manner and selected for088

inference with an evaluation module.089

• Experiment results show that our proposed090

method achieves the state-of-the-art result in091

unsupervised CWS. Extensive analysis testi-092

fies the effectiveness of the proposed modules.093

2 Related Work094

Previous unsupervised word segmentation methods095

can be roughly classified as generative and discrim-096

inative two ways. Generative models focus on find-097

ing the segmented sequence with the highest pos-098

terior probability. Hierarchical Dirichlet process099

(HDP) model (Goldwater et al., 2009), Nested Pit-100

manYor process (NPY) (Mochihashi et al., 2009),101

Hidden Markov Model (HMM) (Chen et al., 2014)102

and SLM (Sun and Deng, 2018) are all different103

ways to estimate the generative probabilities for104

segmented sequences. On the other hand, discrim-105

inative models focus on designing a measure to106

evaluate the segmented sequences. Mutual Infor-107

mation (MI) (Chang and Lin, 2003), normalized108

Variation of Branching Entropy (nVBE) (Magistry109

and Sagot, 2012) and ESA (Wang et al., 2011) ap-110

ply co-occurrence based measurement to evaluate111

the segmented sequences.112

3 Approach113

In this section, we describe our BERT oriented114

probing and transformation based unsupervised115

word segmentation approach. Our model mainly 116

consists of three parts, a generative module that 117

suggests the plausible word boundaries by prob- 118

ing BERT, a discriminative module that trans- 119

forms the implicit boundary information into ex- 120

plicit sequence labels, and an evaluation module 121

that estimates the performance of the model in an 122

unsupervised manner. 123

3.1 Overview 124

Our model starts by probing BERT, which yields 125

the distance between masking a span and mask- 126

ing a token using the generative module. Then the 127

discriminative module transforms the word bound- 128

aries suggested by the generative module into ex- 129

plicit segmentation labels. To combine the advan- 130

tages of both generative and discriminative mod- 131

ules, two modules are iteratively trained with the 132

word boundaries suggested by the updated coun- 133

terpart with high confidence. To decide when to 134

stop this iterative self-training procedure, an evalu- 135

ation module is applied to evaluate the segmented 136

sequence, which stops the iterative process and 137

yields the model with the best performance. 138

3.2 Generative Module 139

The proposed generative module works by probing
a pre-trained language model (e.g., BERT) with
masks on tokens. Assume the input sequence to be
[x1, x2, · · · , xn]. We first mask one token at a time
in order. The representation at i-th position given
by BERT after masking xi is Hi. Then we mask
two successive tokens at a time in order. Hi,j is
the representation given by BERT at i-th position
after masking both xi and xj . We assume that if
two tokens xi, xj are inherently close and should
be combined as a word, the probing distance

d = (|Hi,j −Hi|+ |Hj,i −Hj |)/2

should be large. On the contrary, if two tokens 140

are loosely connected, d should be small. This as- 141

sumption follows the intuition that if xi is largely 142

dependent on xj , masking xj should bring a rela- 143

tively big influence on the representation. 144

This indicator is applied to segment token se- 145

quence with a threshold, that is to say, if d ≥ 146

threshold, we combine the two tokens xi and xj , 147

if d ≤ threshold, we segment xi and xj . 148

3.3 Discriminative Module 149

Because the generative module can only exploit 150

the implicit segmentation revealed by BERT, we 151
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F1 score PKU MSR
HDP (Goldwater et al., 2009) 68.7 69.9

NPY-3 (Mochihashi et al., 2009) - 80.7
NPY-2 (Mochihashi et al., 2009) - 80.2

ESA (Wang et al., 2011) 77.8 80.1
nVBE (Magistry and Sagot, 2012) 80.0 81.3
HDP + HMM (Chen et al., 2014) 75.3 76.3

Joint (Chen et al., 2014) 81.1 81.7
SLM-2 (Sun and Deng, 2018) 80.2 78.5
SLM-3 (Sun and Deng, 2018) 79.8 79.4
MSLM (Downey et al., 2021) 62.9 -

Proposal 84.1 83.0

Table 1: F1 score on two word segmentation benchmark
datasets. Our proposed method achieves the state-of-the-
art performance on all the datasets. We take the results
reported in the original paper.

propose to transform the segmentation informa-152

tion provided by the generative module with high153

confidence into traditional supervision sequence154

labels “BI”, which indicates the role of the token155

to be “beginning” or “inside” of a word. We train156

the discriminative module by fine-tuning BERT on157

the transformed labels with an additional output158

layer projecting the representation into “BI” labels.159

High confidence is realized by strict thresholds. If160

d ≥ thresholdl, we combine the two tokens xi161

and xj , if d ≤ thresholdh, we segment xi and xj .162

thresholdl indicates lower bound, thresholdh in-163

dicates higher bound.164

3.4 Iterative Training and Evaluation Module165

We assume that generative module and discrimi-
native module can capture different segmentation
knowledge. Therefore, we propose a self-training
procedure, which makes the generative module and
discriminative module learn from the high confi-
dent predictions of each other. To make the genera-
tive module learn from the discriminative module,
we design a Euclidean distance based loss function

lossgenerative = ∥d− threshold∥2

to push the distance between two tokens predicted166

to be in the same word to be larger than a threshold167

and vice versa. The loss is effective only when168

the generative module makes different predictions169

from the discriminative module.170

To prevent the self-training procedure from be-171

ing over-fitting, we propose to keep the MLM ob-172

jective while training and stop the training with173

an evaluation module. The intuition behind the174

evaluation module is that predicting a masked to-175

ken with the token inside the same word is much176

easier than predicting this masked token with the177
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Figure 1: The relation between evaluation score and
F1 score on the development set. The evaluation score
shows good coherence with F1 score. We select the
model with best evaluation score, which also achieves
the best F1 score on the development set.

token outside that word. Formally, let the cross- 178

entropy of predicting the i-th token xi with the 179

masked language modeling ability of BERT when 180

masking two adjacent tokens xi,j be CEi,j , we as- 181

sume that CEi−1,i < CEi,i+1 if xi,i+1 rather than 182

xi−1,i belongs to the same word, because xi+1 pro- 183

vides more information for prediction when mask- 184

ing xi−1,i. 185

We apply this principle to inspect the segmenta- 186

tion result from either the discriminative module 187

or the generative module. When the evaluation 188

module detects performance decline, the training 189

procedure stops, and the discriminative module 190

with the best performance is used as the final word 191

segmentation model. 192

4 Experiment 193

In this section, we show the results and analysis on 194

two CWS benchmark datasets, PKU and MSR for a 195

fair comparison, which are provided by the Second 196

Segmentation Bake-off (SIGHAN 2005) (Emerson, 197

2005). There are 104K and 107K words in the test 198

set of PKU and MSR datasets respectively. 199

4.1 Settings 200

In this paper, we use the pre-trained BERT (base) 201

model for Chinese released by Huggingface. 1 202

We randomly initialize the discriminative module, 203

which is trained for 2 epochs using sequence labels 204

transformed from the generative module with high 205

confidence. thresholdl is 8 and thresholdh is 12. 206

We use AdamW (Loshchilov and Hutter, 2019) 207

optimizer with the learning rate of 1e-4. 208

1https://huggingface.co/transformers/
pretrained_models.html
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Model Segmentation
Gold 她 保证 ， 学生 们 的 意见 将 送交 市政府 领导 机关 。
SLM 她 保证 ， 学生 们 的 意见 将 送 交市 政府 领导 机关 。

Proposal 她 保证 ， 学生 们 的 意见 将 送交 市 政府 领导 机关 。

Table 2: Segmentation results of SLM and our proposed method.

F1 score PKU MSR
Full Model 84.1 83.0

Generative Only 74.8 72.5
Generative+Discriminative 82.0 82.1

Table 3: Ablation study results.

4.2 Results209

In Table 1 we show the F1 score on PKU and MSR.210

From the results, we can see that our model yields211

much better results than the previous models and212

achieves state-of-the-art results. We assume the213

reason behind is that our model can take advantage214

of the large pre-trained language model, which en-215

codes abundant language matching knowledge and216

can better model the context with big model capac-217

ity. Moreover, we can observe that the neural-based218

model SLM does not outperform the traditional sta-219

tistical Joint method, but gives better results than220

other traditional generative models. This indicates221

that combining generative and discriminative meth-222

ods can benefit the results. Moreover, our model223

does not need to constrain the longest word length224

compared with SLM-2, SLM-3, etc., which pro-225

vides more flexibility.226

4.3 Ablation Study227

In Table 3 we show the results for removing the228

designed modules. “Generative only” means we229

only use the generative module described in section230

3.2, where a hard threshold of 10 is used to decide231

the word boundary. “Generative+Discriminative”232

means we use the discriminative module after learn-233

ing from the generative module described in section234

3.3 without iterative training. From the results, we235

can see that revealing the implicit word boundary236

information by probing BERT can only provide237

performance comparable to traditional statistical238

models. Transforming the implicit knowledge into239

explicit segmentation labels (+Discriminative) can240

give big promotion, which makes better use of the241

big amount of knowledge encoded in PLM. More-242

over, the proposed iterative training process further243

helps improve the overall performance by combin-244

ing the advantages of both generative and discrimi-245

native modules. 246

Effect of Evaluation Module In Figure 1, we 247

show the relation between the evaluation score de- 248

scribed in section 3.4 and the development F1 score. 249

We can see that the model with the best evaluation 250

score achieves the best F1 score in the development 251

set, and it generally coordinates with the variation 252

trend of the F1 score, which makes the evaluation 253

score a reasonable indicator to select the best model 254

in the unsupervised setting. 255

4.4 Case Study 256

In Table 2 we show one concrete example of the 257

segmentation results of SLM and our proposed 258

method. Both two methods basically give correct 259

word segments. The disagreement mainly lies in 260

“送交市政府” (give to the city government). Com- 261

pared with other words, “送交” can be relatively 262

rare and bears very similar meaning with the single 263

character “送”, which makes SLM wrongly seg- 264

ment “送交” apart. On the contrary, our method 265

is built based on BERT trained on a large corpus, 266

which makes our model able to recognize these rel- 267

atively rare words. For the part “市政府”, where 268

our model chooses to split, we assume that this 269

is because similar contexts are often seen such as 270

“ 北京市” (Beijing City), where “市” should be 271

separated from “政府” (government). Furthermore, 272

separating “市政府” into two words does not affect 273

the understanding of the original text, and is more 274

dependent on the segmentation fineness. 275

5 Conclusion 276

In this paper, we propose a BERT oriented Probing 277

and Transformation method for unsupervised Word 278

Segmentation. Our proposed model reveals the 279

semantic information encoded in PLM into word 280

boundary information by probing and transforming 281

the token representations into explicit sequence 282

labels. Experiment results on two benchmark CWS 283

datasets show that our method achieves state-of- 284

the-art F1 score. The proposed method works in an 285

unsupervised manner, which can help understand 286

low resource and endangered languages and thus 287

protecting language diversity. 288
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