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ABSTRACT

Networked or interconnected systems, such as urban transportation networks, rely
on robust control strategies to ensure string stability-the concept that prevents the
amplification of disturbances through the network. This capability is critical for
system performance. A directly motivated example is the mitigation of phantom
traffic jams, where string stability can suppress stop-and-go wave propagation. In
this paper, we first establish a sufficient condition for scalable input-to-state stabil-
ity (sISS), providing a theoretical guarantee for string stability. The derived condi-
tions reveal a coupled shrinking relationship among the energy of different agents
in the system, which depend on local Lyapunov functions but guarantee the global
condition of sISS. Based on this theoretical foundation, we propose a practical
and effective algorithm, named multi-agent Lyapunov actor-critic (MALAC), to
achieve stable control in networked systems. Numerical simulations demonstrate
that MALAC can ensure the string stability in the cooperative adaptive cruise con-
trol task.

1 INTRODUCTION

Interconnected/networked systems have wide applications in different fields, including transporta-
tion systems |Chu et al.| (2020), vehicle controls L1 et al.| (2020), electronic power grid |[Mahela et al.
(2022), and robotic swarms |Antonelli| (2013). The string stability of interconnected systems, as de-
fined by Swaroop & Hedrick| (1996), ensures uniform boundedness of the state of the systems. This
property prevents the amplification of disturbances and a consequent deterioration of performance
across the network, which is particularly crucial for large-scale systems.

A prime and highly representative example for the string stability of interconnected systems is the
car-following problem. In such a setting, each vehicle adjusts its velocity based on the behavior of
the preceding vehicle, forming a dynamical chain of interconnected agents. While individual sta-
bility ensures safe tracking of an immediate leader, it does not prevent disturbances (e.g., sudden
braking and acceleration) from amplifying along the vehicle platoon. This string-unstable phe-
nomenon may cause oscillations to grow downstream, potentially leading to traffic jams, increased
energy consumption, or even accidents. Consequently, ensuring string stability is crucial in design-
ing control strategies for car-following systems, particularly for connected and automated vehicles.

Due to its rapid development and superior performance, reinforcement learning (RL)|Sutton & Barto
(2018) has been widely used to solve the control problem of connected systems, including traffic
signal control |Chen et al.| (2020) and cruise control |Desjardins & Chaib-draal (2011)); [Chu et al.
(2020). The majority of existing work predominantly focuses on local stability [Berkenkamp et al.
(2017);/Chow et al.|(2018)), with only a limited subset addressing string stability, and even those lack
theoretical guarantees. On the one hand, the stability of the individual subsystem is not sufficient for
the safe operation of the network |Silva et al.[|(2025)). On the other hand, works on reward shaping
Peake et al.|(2020), action filtering|Liu et al.|(2024), and state enhancementJiang et al.| (2025) cannot
provide theoretical insight to achieve the string stability.

In this paper, we try to investigate the notion of scalable input-to-state stability (sISS) in control
theory Besselink & Knorn| (2018) and design an RL algorithm to achieve the string stability of the
interconnected systems. One recent work [Zhou et al.| (2025)) designs an RL-based controller that
can provide string stability guarantees. However, the designed verification and synthesis framework
relies on external verification tools, which are widely adopted methodologies. In comparison, we try
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to design an algorithm originating from the stability theory, which eliminates the need for external
tools.

The contributions of this paper are threefold. First, we establish a sufficient condition for scalable
input-to-state stability, providing a theoretical guarantee for string stability. The derived conditions
reveal a coupled shrinking relationship among the energy of different agents in the system, which
depend on local Lyapunov functions but guarantee the global condition of sISS. Second, based
on this theoretical foundation, we propose a practical and effective algorithm, named multi-agent
Lyapunov actor-critic (MALAC), to achieve stable control in networked systems. It utilizes the
Lyapunov critic and string stability theory to facilitate the policy optimization. Third, we design the
RL-based car-following environments based on the well-known transportation simulator, SUMO
Lopez et al.| (2018), to evaluate the performance of our proposed algorithm.

2 RELATED WORK

Stability and reinforcement learning. There are many different definitions of stability in con-
trol theory, from classical Lyapunov stability Khalil & Grizzle| (2002) to string stability [Swaroop
& Hedrick| (1996); [Feng et al.| (2019). In this paper, we aim to ensure the string stability of the
interconnected systems, which highlights the importance of suppressing disturbance amplification.

While reinforcement learning (RL) has shown great potential in many control tasks |Chen et al.
(2020); |[Zhang et al.| (2025)), some try to introduce the stability notion into RL algorithm design for
safety and robustness purposes. Many efforts have introduced Lyapunov-based methods to embed
stability guarantees into RL [Berkenkamp et al.| (2017); Chow et al.| (2018); |[Han et al.| (2020), yet
these approaches are primarily limited to single-agent systems. In other words, these works seek to
be locally stable instead of string stable. Local stability guarantees that small perturbations around an
equilibrium for an individual agent decay [Zhou et al.[(2025)), intuitively being more like a concept
of “convergence”. Instead, string stability prevents the amplification of perturbations through the
network. It is more like a concept of “network performance or robustness” [Besselink & Knorn
(2018)). Thus, local stability alone is insufficient for string stability.

String-stable system control. One of the most representative string-stable control tasks is cruise
control (or vehicle control). Well-known vehicle control models include Intelligent Driving Model
(IDM) [Treiber et al.| (2000), Adaptive Cruise Control (ACC) [Ploeg et al.| (2011)), and Cooperative
Adaptive Cruise Control (CACC) Milanés & Shladover| (2014). While ACC is already available
in commercial markets, it suffers from the obvious string instability. CACC utilizes the Vehicle-
to-Vehicle (V2V) communications to reduce the instability to some extent [Milanés & Shladover
(2014); Lei et al.| (2012). As a result, many works try to further facilitate the CACC with RL
techniques Desjardins & Chaib-draal (2011)); |Chu et al.|(2020). However, most prior RL-based ap-
proaches improve empirical performance through reward shaping or heuristic state/action designs
Desjardins & Chaib-draal (2011); [Peake et al.| (2020); Liu et al.| (2024); Jiang et al.| (2025), which
do not ensure string stability. Our approach contributes to this line by proposing a multi-agent Lya-
punov actor—critic algorithm (MALAC), which unifies control-theoretic guarantees with multi-agent
RL and achieves stable coordination in transportation networks. More recent work on verification
frameworks with string stability guarantee leverages neural certificates but requires external tools
detached from policy learning Zhou et al.[(2025). In contrast, our work directly integrates stability
conditions into the learning process via Lyapunov critics, providing theoretical guarantees without
additional verification.

3 PROBLEM STATEMENT AND PRELIMINARY

3.1 PROBLEM STATEMENT

We formalize our problem into a multi-agent system. Consider an interconnected system of N
agents, denoted as the set A' = {1,--- , N}. The connection topology of agents is represented by
an adjacency matrix G € {0, 1}"*¥, where each element G; ; = 1 if agent j is coupled to agent
iand G;; = 0 otherwise. Let N; = {j|G;; = 1} C N denote the set of neighbors of agent
i. ©; € AX; represent the state of agent ¢, and d; is the external disturbance affecting agent i. As
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formalized in the field of control, the dynamics model of agent 7 € N is a differential equation
jji :ft(xlv{x]}je./\/uandz) (1)
where @; is the time derivative and a; is the control input (or action) of agent :.

As such networks grow, they might suffer from a form of instability that can cause the amplifica-
tion of disturbances through the network and deterioration of performance, regardless of whether
the agents themselves are stable Silva et al.| (2025). As a result, in this paper, we try to develop
an effective multi-agent reinforcement learning algorithm to mitigate the string instability of the
interconnected systems.

Motivated Example. Imagine a platoon of vehicles. The state of each vehicle can be described by its
distance relative to the preceding vehicle and the ego speed. The control input is the acceleration,
which is used to adjust the vehicle’s speed. Thus, the vehicle dynamics are defined by the rate
of change of distance and speed. Now, suppose the lead vehicle suddenly encounters a bumpy
section of road and chooses to decelerate rapidly to reduce the bumps. The following vehicles, in
order to avoid a collision, also begin to decelerate sequentially. If the vehicles in the following
queue accelerate too abruptly, their speed may drop below that of the lead vehicle (so-called speed
undershoot |Le1 et al.| (2012))). To catch up with the lead vehicle, the slower vehicles may need
to accelerate again to match the lead vehicle’s speed. This can generate stop-and-go waves that
propagate in the opposite direction of the platoon. This phenomenon is known as “phantom traffic”
Knorr et al.|(2012), which is frequently observed in everyday life.

3.2 STRING STABILITY DEFINITION

Many string stability definitions have been studied, please refer to the survey [Feng et al.[(2019) for
differences among different definitions. In this paper, we investigate scalable input-to-state stability
Besselink & Knorn| (2018)), as stated in Def. [1}

Definition 1. (Scalable Input-to-state Stability) The system Eq. |l|is sISS if there exists a class-KL
Sunction B and a class-K o, function «y such that, for any N € N, any initial conditions x;(0), and
any disturbance d;, the inequality

max | (t)]2 < B(max[wi(0)|2,t) + 7 (max||di ;) 2)
holds for¥t > 0andi € N.

where |23 is vector 2-norm and ||z, is the shorthand notation of the signal norm ||:v(t)||zm =
sup,c7 |2(t)|ss. A continuous function 7 : [0,a) — [0,00) is a class-K function if it is strictly
increasing and v(0) = 0. It is said to belong to class-Ko if a = oo and y(r) — oo as r — oo.
A continuous function 7y : [0,a) — [0, 00) is a class-L function if it monotonically decreases to 0
as its argument tends to co. A function § : [0,a) x [0,00) — [0, 00) is a class-K L function if, for
fixedt > 0, 8(-, ) is a class-KC function and, for fixed » > 0, 8(r, -) is a class-£L function.

This stability definition has several benefits. First, compared to other string stability, which is typ-
ically restricted to unidirectional structures (e.g., vehicle platoons), sISS generalizes the concept to
arbitrary network topologies |Besselink & Knorn| (2018). It is actually an extension to the string
stability. Second, in Def. [I} the functions 5 and ~y are the same for any V. In other words, the upper
bound of the state norm max; |x;(t)|2 is independent of the number of systems NV, so it is scalable.
Last but not least, it puts focus on stopping disturbances from spreading, giving a measure of robust
performance instead of just stability.

Since we have a useful definition of the string stability, the next step is to design an effective multi-
agent reinforcement learning algorithm to achieve this stability.

4 DISCRETE SISS SUFFICIENT CONDITION

Since most of reinforcement learning algorithms are designed on a discrete time system and for
practical use consideration, we first discretize the dynamics model [T] over a sampling time interval
At. Note that, discretization is also widely used in the field of control for developing practical
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algorithms Zhang et al.| (2025). Then, by applying a difference approximation of the derivative, we
can rewrite the dynamics model as

zi(k+1) = z(k) + At - f(zi(k), {z;(k)}jen;, ai(k), di(k)) (3)

where k € NT. The terms z;(k), a;(k), and d; (k) represent the state, action, and the disturbance of
agent ¢ in the k-th time-step, respectively.

Based on the discrete-time system in Eq. we prove a sufficient condition (i.e., Theorem |1) to
achieve the sISS, which is also the theoretical foundation of our multi-agent algorithm design.

Theorem 1. Consider a network of systems of the form[3| Assume that for agents i € N, there exists
a local positive definite function V; : R™ — R, which verifies a1 (|x;|2) < Vi(z;) < az(|x;|2) for
some class-K o functions v and oo, and such that, for all (x;)jen;, € Hj en, R™, the inequality

Vilk +1) < ) ¢ jV;(k) + Ath|d (k)] (4)
JEN;

holds for any trajectory that is consistent with the dynamics withl > ¢;; >0, and h; € Risa
constant that weights the action of the external disturbance applied to the i-th agent. V;(k) is the
abbreviation of Vi(z;(k + 1)). N; only contains the connected neighbors of agent i, not including
itself. If the constants c; ; are such that the following condition is satisfied, for some ¢ > 0:

At+ > ;<1 VieN (5)
JEN;

then the equilibrium point of the system is sISS in the sense of Def. and V=[Vi, - ,Vn|" isan
sISS vector Lyapunov function.

Proof. The detailed proof can be found in Appendix. O

If we consider the function V; as a representation of agent ¢’s energy (as classical Lyapunov function
has always been seen as the energy function of a system), this theorem indicates a coupled shrinking
relationship among the energy of different agents. It also guides a possible way to design the MARL
algorithm. Eq. []indicates that, the next-step energy of any agent ¢ is no larger than the weighted
sum of the energy of its neighbors and the disturbance. Once the situation in Eq. [j]is satisfied, it
tells that > jen, Ci,j 1s strictly smaller than 1, which pushes the energy of agent ¢ into a lower level.
As a result, since inequality holds for any agent in the system, the energy of the whole multi-agent
system can converge and thus be stable.

Specifically, if we rewrite the above inequality into a matrix form, we can obtain

V(k) <CV(k—1)+AtHD(k —1) < C*V(k —2) + AtCHD(k — 2) + AtHD(k — 1)

k—1
< CHIV(0)+ At Y CMHD(k—1—m) (6)

m=0

Here, the diagonal elements of matrix C' € RNXN are all zeros, while the off-diagonal elements
satisfy 1 > ¢; ; > 0, and are zero otherwise. Matrix H € RV*¥ is a diagonal matrix with h; as its
diagonal entries, and D (k) denotes the disturbance vector at step k. It can be observed in Eq. @that,
since every element of C'is less than 1, as k increases, Cck inevitably converges to the zero matrix.
This implies that the vector Lyapunov function V(k) will also converge to the zero vector. Moreover,
the influence of external disturbances occurring in the past will diminish over time. Therefore, the
entire system tends toward stability.

In addition, Eq. [3 also reveals the relationship between the time interval At¢ and the coefficient
c;,j- The smaller the discrete time step, the easier it is for Eq. [5|to be satisfied, and consequently,
Theorem |1|is more readily established. Conversely, a larger time interval may make it difficult to
find a control policy that ensures system stability.

It is worth noting that, this sufficient condition is directly inspired by Theorem 1 in [Silva et al.
(2025)). Their theory is designed for the continuous-time system, and a recent work directly adopts
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it to realize string-stability control|Zhou et al|(2025). In comparison, our Theorem [I]is in a simpler
and intuitive form, and also provides the connection to the sampling time interval At in a discrete-
time system. These insights and characteristics can facilitate the practical and effective MARL
algorithm design.

5 PRACTICAL ALGORITHM DESIGN

In this section, we propose a multi-agent actor-critic algorithm to learn stability-guaranteed policies.
First, we introduce the Lyapunov critic function. Then, based on the maximum entropy actor-critic
framework, we use the Lyapunov critic function and the sISS sufficient condition in presenting our
MARL algorithm.

5.1 LYAPUNOV CRITIC FUNCTION

In control tasks, there is always a cost function ¢(x, a) to measure how good or bad a state-action
pair is. In the RL framework, this cost function plays a central role in guiding the agent’s behavior.
Specifically, the agent interacts with the environment by selecting actions based on its current state,
and the cost provides immediate feedback on the quality of those decisions. To evaluate not only
the instantaneous performance but also the long-term consequences of actions, RL introduces the
concept of a value function. Among them, the critic function is often represented as the state-value
function V' (z) or the action-value function V' (z, a). Here, V(z) = Eqr(.|)[V (2, a)] where 7 is
the control policy. The critic function serves as an approximation of the expected cumulative cost.

There is an interesting fact that value functions in RL are Lyapunov functions if the costs are strictly
positive away from the origin Berkenkamp et al.| (2017). Following the existing work Han et al.
(2020), we construct the Lyapunov critic for each agent 2 € A/ with the following parameterization:

Vi(x,a) :f@(m,a)—'—f@(z,a) (N
where f3, of agent ¢ is the output vector of a fully connected neural network with parameter ¢;. This
parameterization ensures the positive definiteness of V;(s), which satisfies the basic property of V;
in Theorem[T]

Moreover, L; is updated to minimize the following objective function:

1 argel
Ji(Vi) = Bp |5 (Vi(s, a) = Vi"*(s,a))? ®)
Here, V;**" is the Lyapunov candidate and acts as an approximation target. We define V,"*' as the
value function:
Vitargel(s, a) = c(s,a) + VEg wp()s,a)[Vi ()] 9)

where p(-|s,a) is the state transition probability and V; is the target network parameterized by
¢'. This update method is widely adopted in RL algorithms Haarnoja et al.[(2018). V; has the same
structure as V;, but the parameter ¢’ is updated through exponentially moving average of the weights
of V; controlled by a hyperparameter 7, ¢} | = 7¢p + (1 —7)¢y.

5.2 MULTI-AGENT LYAPUNOV ACTOR-CRITIC

Based on the Lyapunov critic function and Theorem [I] we present a novel MARL algorithm, called
Multi-Agent Lyapunov Actor-Critic (MALAC), to achieve the string-stable control. For each agent
i € N in the interconnected system, the policy learning problem is summarized as a constrained
optimization problem:

find 7y, (10)
st.Ep [Vi(s') = Y ei;Vi(s)+e| <0 (11)
JEN;
Z Cij < 1, Ci,j >0 (12)
JEN;
— Ep [log(mg, (als))] = H, (13)
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where the control policy 7, is parameterized by a deep neural network fp,. The constraint[IT]is the
core condition in Theorem [I] l The difference with Eq. []is that we use a hyperparameter ¢ > 0 to
replace —Ath;|d;|?. It is because the disturbance d; is always unpredictable. Eq. [13|is the minimum
entropy constraint borrowed from the maximum entropy RL framework to improve the exploration
Haarnoja et al.| (2018)), and H; is the target entropy.

One remaining question is how to decide the value of ¢; ;. Here, we introduce a simple method
called equal potential assignment, i.e., let ¢; ; = ﬁ which satisfies 0 < 3 jen; CGig < 1. Then,
by introducing the Lagrangian method, the optimization object is

J(el) = E(s,a,s’)ND alOg(Trgi (Q‘S)) + )‘(‘/7( |N‘ + 1 Z V (14)

where « and )\ are Lagrange multipliers. Under this assignment, agent ¢ takes equal consideration of
its connected neighbors, which is especially intuitive and reasonable in a homogeneous networked
system. And also, this method is easy to implement and can still achieve the desired string stability,
as shown in the experiments. Besides, the parameters of the policy network are update through
stochastic gradient descent of Eq. [T4]

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

We conduct experiments on a representative task, cooperative adaptive cruise control (CACC), to
verify the effectiveness of the proposed method. We build a new simulation environment based on
the well-known transportation simulator Simulation of Urban Mobility (SUMO)|Lopez et al.|(2018).
SUMO provides diverse control functions and facilitates flexible modifications, including creating
different road networks, setting different vehicle types, etc. SUMO also provides multiple classical
car-following models, including Intelligent Driving Model, the Adaptive Cruise Control model, the
Cooperative Adaptive Cruise Control model, etc. It is worth noting that, ACC is already adopted by
commercial cars but may cause the string instability Milanés & Shladover|(2014).

In our experiments, we simulate a string of 4 vehicles for 100s on a single lane road, with a 0.1s
control interval. The speed of the leading car (so-called leader) is controlled manually to simulate
the scenarios of “Catch-up” and “Slow-down”, which is a common setting to test the cruise control
task |Chu et al.| (2020); Zhou et al.| (2025). Specifically, we design a new scenario called “Wave”.
The leader keeps the speed of 20m/s in the first 10 seconds, then it accelerates to 25m/s with the
acceleration of 2m/s*. This is the “Catch-up” phase. It keeps driving with 25m/s for 43s and
deaccelerate back to 20m/s with the acceleration of -2m/s?. This is the “Slow-down” phase. For
the followers, they start with the initial speed of 20m/s powered by the basic ACC model. Once all
followers appear on the road, we turn off the control of ACC and let our MALAC agents control the
acceleration of the followers. The action, observation, and cost (i.e., reward) are set as follows:

* Action: The action of each agent i is the acceleration a; ; € [—2.5, 2.5]. Existing RL-based
cruise control studies only provide 3 or 4 discrete action candidates instead of a continuous
action space|Chu et al.|(2020);|Desjardins & Chaib-draa) (201 1)), which may not be practical
in real life. In comparison, our continuous control task could be more challenging.

* Observation: The observation z;,; € S; includes the headway (spacing) h;;, the ego
speed vy ;, and the speed difference, i.e., z;; = (h¢,i, vt,i,Vt,i—1 — Vt,;). The information
on headway and speed difference is always available by using V2V communication and
radar sensors Milanés & Shladover| (2014). Besides, to implement our algorithm, we also
assume that the agent can access the critic value of its predecessor for policy optimization.

o Cost: The cost functionis ¢; ; = (hy; —h*)2+ (ve; —vei-1) + at ;- h*=20m is the target
headway. This form of reward is simple and intuitive. The first term regarding headway is
to keep a safe distance. The second term regarding velocity is for efficiency consideration.
The last term takes both safety and comfort into consideration to avoid large acceleration.
Besides, when a collision happens, a large cost of 500 is assigned. Similar reward design
can be found in existing works (Chu et al.| (2020)); Chen et al.|(2024); |Liu et al.[(2024).
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Figure 2: Vehicle’s speed over time under different car-following models.

The initial data is collected by using the default ACC model in SUMO. The model is trained in a
central training and decentralized execution (CTDE) style. Agents share the same actor and critic
networks. The number of episodes of 1 training round is 300, and there are 1000 steps in one
episode. The training results are averaged over 5 runs. Experiments were conducted on a MacBook
Pro equipped with an Apple M1 Pro chip (8-core CPU, 14-core GPU, 16GB RAM).

6.2 TRAINING RESULTS

Fig. [T)illustrates the trend in the cumulative cost of three followers, representing the learning curve.
As shown in the figure, the learning curve exhibits a noticeable convergence after 200 episodes.
Table [T] illustrates the average speed and average headway on the 300th episode. Recall that, the
cost includes a speed-aware term (v;; — v;;—1)> and a headway-aware term (h;; — h*)2. As
shown in the table, the speeds of the three followers are very close, indicating the driving efficiency.
The average headway is also close to the target headway h* = 20m. These results show that the
algorithm can converge and the controlled vehicles can drive as expected.

6.3 PERFORMANCE COMPARISON

Fig. P]illustrates the vehicle speeds during the driving process for MALAC, ACC, and CACC. As
mentioned before, string instability refers to the phenomenon in which external disturbances con-
tinuously propagate and amplify within a vehicle platoon. In the context of car-following scenarios,
this implies that a sudden acceleration or deceleration of the lead vehicle results in increasingly pro-
nounced speed fluctuations among the following vehicles. As illustrated in Fig. 2} both the ACC and
CACC car-following models implemented in SUMO exhibit evident manifestations of such instabil-
ity. Specifically, the ACC model demonstrates substantial velocity oscillations under the slow-down
condition, whereas the CACC model shows pronounced fluctuations in the catch-up scenario. In
contrast, our proposed method substantially mitigates these instability effects.
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Figure 3: The generalization results on Highway: the leader’s speed changes from 20m/s to 23m/s.
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Figure 4: Results of ACC and CACC model on Highway

6.4 GENERALIZATION EXPERIMENT

To further assess the generalization capability of the algorithm, we transferred the trained model to a
previously unseen scenario for testing. The scenario, referred to as “Highway”, is designed to simu-
late driving conditions on a high-speed road with a relatively higher speed limit. In this case, the lead
vehicle accelerates from 20m/s to 23m/s, maintains 23m/s for 33 seconds, and then decelerates back
to 20m/s. All other simulation parameters remain consistent with the previous settings. Moreover, to
investigate the relationship between instability and platoon length, we conducted experiments with
the number of following vehicles ranging from 3 to 13.

The results of this set of experiments are quite interesting. First, as shown in Fig. [3a] Bb] and 3¢] for
the Highway scenario, it can be observed that instability does not occur regardless of the number
of following vehicles. Fig. illustrates the relationship between the average vehicle speed and
the platoon size, measured from the moment the lead vehicle begins to change its speed (i.e., at
50s) until 100s. The smaller the variations in this curve with respect to platoon size, the smaller
the fluctuations in vehicle speeds across the platoon, which to some extent reflects system stability.
Interestingly, although the variations in Fig. [3c|are extremely small, the curve even exhibits a very
slight downward trend. In contrast, in Fig. he ACC model shows obvious instability while the
CACC has a better performance than ACC.
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7 CONCLUSION AND DISCUSSION

In this work, we investigated the problem of ensuring string stability in networked systems such as
urban transportation networks. We established a sufficient condition for scalable input-to-state sta-
bility (sISS), which provides a theoretical guarantee for preventing the amplification of disturbances
across agents. Building on this foundation, we developed the multi-agent Lyapunov actor-critic
(MALAC) algorithm, which offers a practical and effective approach to stabilizing control in inter-
connected systems. Numerical simulations on the cooperative adaptive cruise control task demon-
strated that MALAC successfully achieves string stability. These results suggest that the proposed
framework holds promise for broader applications in large-scale networked control systems.

It is worth noting that since the concept of sISS represents a general form of stability—with desirable
properties such as independence from network topology and scalability—the MALAC algorithm
designed on this basis also inherits such generality, rather than being limited to the CACC task
tested in this paper. In the future, MALAC could be applied to a wider range of scenarios, such
as traffic signal control and drone swarm control. Moreover, it would be valuable to explore its
deployment in larger-scale environments.
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A APPENDIX

A.1 USE OF LLMSs

In preparing this submission, I made limited use of a large language model (GPT-5) as an assistive
tool. Specifically, the model was employed for (i) generating alternative visualizations to better
present experimental results, and (ii) improving the clarity and readability of the manuscript through
language polishing. All research activities, including literature review, theoretical development,
algorithm design, and experimental implementation and analysis, were carried out entirely by the
authors. The responsibility for the accuracy and integrity of the work rests fully with the authors.

A.2 PROOF OF THEOREM 1

Since Theorem [I] provides a sufficient condition, our objective is to prove that the theorem implies
Def. E} We first distract At from the coefficient ¢; ;. Let ¢; ; = Ata; ;. Since the inequality
cAt + 3 jen; Gij < 1 holds for some ¢ > 0, we can easily find some ¢;; satisfying Ate +

deNi ¢i; < ¢i; < 1. Thus, we let ¢; ; = Ata,; ; and obtain

Vilk +1) = > i jVj(k) — Ath;|d; (k)| (15)
JEN;
=Vi(k+1)—Vi(k) + — ALY a; jVi(k) — Athy|d;(k)|? (16)
JEN;

> Vi(k + 1) = Vi(k) + Ata; iVi(k) — At Y a;;V;(k) — Athg|d; (k)| (17)
JEN;

> Vi(k +1) = Vi(k) — At | —a;Vilk) + > aijV;(k) + hild; (k)| (18)
JEN;
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Based on the Theorem [T} we can obtain

Vilk +1) — Vi(k) — At —aiﬂ-Vi(k) + Z ai,jVj(lc) + hi|di(k)|2 <0 (19)
JEN;

Now, our target is to prove that the above inequality implies Def. [I]

By rewriting Eq. [T9)in matrix form, we obtain
V(k+1) < I+ AtA)V(k) + AtHD(k) (20)

where the diagonal element of matrix A € RV*N is —a; ; and others are a; ; (i # j). H is the
diagonal matrix with the diagonal element h; and the vector D(k) = [|d1(k)|?,- - , |dn(K)|?] T.

We then construct a comparison system W(k + 1) = (I + AtA)W(k) + AtHD(k) and W(0) =
V(0). We show that V(k) < W(k) and then we can complete the proof by showing the boundedness
of the trajectories of the comparison system.

Lemma 1. Given At < —2L— et the comparison system W(k+1) = (I+AtAYW(k)+AtHD

maXx; aq 4

and W(0) = V(0), then V(k) < W(k) holds for any k € NT.

Proof. We prove this lemma by induction. First, V(k) < W(k) holds for the origin k = 0, i.e.,
W(0) = V(0). Second, we assume V(k) < W(k) then

V(k+1) < (I +AtA)V(k) + AtHD < (I + AtA)W(k) + AtHD = W(k + 1) (21)
In other words, V(k+ 1) < W(k+ 1) also holds. As a result, the assumption V(k) < W(k) for any
ke NT. O

So the following part is to prove the boundedness of the trajectories of the comparison system
W(k+1) = (I+AtA)W(k)+AtH D(k). For simplicity, we let D(k) = HD(k) and B = I+AtA.
By introducing the recursion, we can derive

W(k) = BW(k — 1) + AtD(k — 1)

=B (BW(k —9) + AtD(k — 2)) + AtD(k — 1)

k—1
= B*W(0) + > B'AtD(k —1 - j) (22)
=0
Since ¢; ; = Asa;,; < 1holds for any i € N, there is At < max1' —. Then, assign the norm to both
sides of the recursive equation and we can get

k—1
W)l = ||B*W(0) + At Y BID (23)
j=0
k—1 ] ~
< IBIl% W) + At 1BIZ || D 24)
=0 -
k—1 L
< (1— Ate)* W), + At > (1 — Ate)? HDH 25)
=0 >
k—1 ~
< TR W), + ALY e e || D 26)
=0 -
A At -
< e P IW(0)||, + [P HOO (27)
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where [|B|, = max; > |b; ;| and [[W]|| = max; [W;|. The second inequality is based on the
fact that

IBl,, = max(|1 — Ata;;| + At > a;;) = max(l — Ata;; + At Y a;;) < 1—cAt
J ' J

The third inequality comes from the fact that 1 — 2 < e™” and the last inequality is derived based
on the series convergence property.

Then, we can obatin, for each ¢ € N, the inequality that upper bounds the component W; of the
vector function W as follows:

—kAte At -
sup |W; (k)|, < e *2sup [W;(0)], + [ sup‘ d; (28)
i i —-e i Loo
Then, we use Lemma. |1} with V;(0) = W;(0), to obtain
At ~
—kAtc
sup |Vi(k)ly < e sup [Vi(O)l, + o=z sup ||| 29)
which can be written as
sup [Vil, < 8 (Supl‘/%(O)|27k> +v (’ d; . ) (30)
where B(r, k) = e *Atr and y(r) = —Skeer
Based on the increasingness of «v;, we can write
vy (sup |ze]2) = sup o (|2e,5]2) < sup [Vi(zei)l, 31
<pB (sqp VZ—(0)|2,/€> + (Sup’ d; . ) (32)
<p (QQ(Sup |Ii(0)|2)7k> + (sup’ d; . ) (33)

where the last inequality is using Lemma 4.3 in |[Khalil & Grizzle|(2002).

Further, by applying the inverse of «; to both sides and using the triangle inequality of the form
ala+b) < a(2a) + «(2b) (for any class-X function «(+), see Eq. (12) in|Sontag et al.|(1989)), we

can obtain:
sup [2,il2 < apt (5 (ag(sup |x2(0)|2)7k> + v (sqp‘ . )) (34)
d; )) (35)
Loo

<ap! (26 <az(stl}p Iwi(0)|2)7k)> ta (27 (Sljp ’

Let 3(r,t) = o7 1(2B(aa(r), k)) and 4 = a7 1(2y(r)). We can verify that 3 and 4 are also class-
KL function and class-K, function, respectively. Hence, we can then write

) (36)
Loo

d;

d;

sup [z¢,i]2 < B (sup Ixi(O)Ig,k> +% (sup‘

which shows that the equilibrium point of the system is sISS.
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