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ABSTRACT

Large language models (LLMs) often memorize private information during train-
ing, raising serious privacy concerns. While machine unlearning has emerged as a
promising solution, its true effectiveness against privacy attacks remains unclear.
To address this, we propose PriLeak, a new evaluation framework that system-
atically assesses unlearning robustness through three-tier attack scenarios: direct
retrieval, in-context learning recovery, and fine-tuning restoration; combined with
quantitative analysis using forgetting scores, association metrics, and forgetting
depth assessment. Our study exposes significant weaknesses in current unlearning
methods, revealing two key findings: 1) unlearning exhibits ripple effects across
gradient-based associated data, and 2) most methods suffer from shallow forget-
ting, failing to remove private information distributed across multiple model lay-
ers. Building on these findings, we propose two key strategies: association-aware
core-set selection that leverages gradient similarity, and multi-layer deep interven-
tion by progressive learning rates and representational constraints. These strate-
gies represent a paradigm shift from shallow forgetting to deep forgetting.

1 INTRODUCTION

Large language models (LLMs) inevitably memorize personally identifiable information (PIIs) dur-
ing training on web-scale data, raising serious privacy concerns when models are publicly de-
ployed (Lukas et al., 2023). This has drawn regulatory attention like European General Data Protec-
tion Regulation (GDPR) (Politou et al., 2018), which grant individuals the “right to be forgotten.”

Machine unlearning has emerged as a promising solution to address these privacy concerns by selec-
tively removing specific information from trained models. While exact unlearning through retraining
is computationally infeasible for LLMs, researchers developed approximate unlearning methods, in-
cluding training pipeline manipulation (e.g., GA (Jang et al., 2023), NPO (Zhang et al., 2024)) and
data manipulation (e.g., Random labeling (Maini et al., 2024), WHP (Eldan & Russinovich, 2023)).
These approaches have demonstrated effectiveness under current evaluation frameworks such as
TOFU (Maini et al., 2024), MUSE (Shi et al., 2024b), and WMDP (Li et al., 2024).

However, existing unlearning benchmarks face a critical limitation: they primarily evaluate against
passive attackers who only observe model outputs, failing to assess resilience against active attack-
ers who can manipulate models through techniques like in-context learning (ICL) (Huang et al.,
2022; Shumailov et al., 2024) and fine-tuning (Hu et al., 2024; Chen et al., 2024). This evaluation
gap leaves fundamental questions unanswered about the true effectiveness of different unlearning
approaches. While prior work shows that active attacks can recover private information, we lack
systematic frameworks to: (1) compare the robustness of different unlearning methods against ac-
tive attacks, (2) understand the mechanisms behind incomplete unlearning, and (3) evaluate perfor-
mance under realistic constraints where defenders have limited knowledge of private data.

• New evaluation benchmark. To fill this gap, we propose PriLeak, the first comprehensive bench-
mark specifically designed to assess unlearning robustness against active attackers across three-tier
attack scenarios: direct retrieval through question-answering (P1), recovery via ICL (P2), and re-
covery via fine-tuning (P3). Crucially, PriLeak evaluates on both known and unknown private data,
addressing the realistic constraint where defenders access only a subset of private data.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Moreover, to explain why private information persists after unlearning, we develop three quanti-
tative metrics: (i) forgetting scores that measure the divergence in generation probabilities for PII
sequences, providing assessment of forgetting effectiveness; (ii) association metrics that capture re-
lationships between data samples through gradients (optimization relationships) and representation
features (hidden state relationships); (iii) forgetting depth assessment using layer-wise CKA analysis
to track representation changes across model layers and pinpoint where private information remains.

• New understanding in privacy forgetting. We conducted the first systematic comparison of un-
learning robustness against active attacks across 19 approaches. Our evaluation reveals that training
pipeline manipulation methods demonstrate superior resilience compared to data manipulation ap-
proaches, with untargeted methods significantly outperforming targeted ones. Representation-based
methods like RMU show better resistance than label-based alternatives, though at utility costs.

Our quantitative analysis uncovered two findings explaining incomplete unlearning: (1) Unlearning
exhibits ripple effects across associated data. Gradient-forgetting correlation analysis reveals strong
positive correlations (Pearson r = 0.73) between association scores and forgetting effectiveness. (2)
Most methods exhibit shallow forgetting, failing to remove private information distributed across
multiple layers. Forgetting depth assessment using layer-wise CKA analysis reveals that these meth-
ods primarily modify final layers while leaving intermediate representations largely unchanged.

• New strategy for improving unlearning. Building on these insights, we propose two key strategies
to enhance unlearning effectiveness: (1) Association-aware core-set selection based on gradient sim-
ilarity achieves 32.19% P3 recovery rate using only 10% as core forget set compared to random 50%
selection. (2) Multi-layer deep intervention through progressive learning rates and representational
constraints reduces P3 to 35.03% while achieving significantly better utility than RMU.

These contributions represent a paradigm shift from shallow forgetting to deep forgetting, providing
both a comprehensive evaluation framework for assessing unlearning robustness and key insights
for developing more effective privacy protection methods in LLMs.

2 PRELIMINARIES

2.1 PRIVACY UNLEARNING FOR LLMS

LLMs trained on web-scale data inevitably memorize personally identifiable information (PII) such
as home address and emails, because thoroughly filtering these massive datasets is a significant
challenge. This memorization poses substantial privacy risks when these models are publicly de-
ployed (Carlini et al., 2021; 2022; Huang et al., 2022; Lukas et al., 2023). To address this, machine
unlearning aims to selectively remove private information from a trained model while preserving its
overall performance on non-private data. This is typically achieved through fine-tuning methods that
modify model parameters, trading theoretical guarantees of forgetting for computational efficiency.

Formally, let ftarget be a model trained on dataset D = (xi, yi)i∈[n]. The objective of unlearning is to
remove the influence of a specific subset, the “forget set” DF ⊆ D, while maintaining performance
on the remaining “retain set” DR = D\DF . An unlearning algorithm U creates a modified model
funlearn = U(ftarget ,DF ,DR) that behaves as if trained from scratch only on DR. Crucially, this
process must be significantly more efficient than full retraining while preserving model utility.

Realistic Constraints. Traditional machine unlearning settings motivated by GDPR (Politou et al.,
2018) assume defenders have complete access to all data requiring removal. However, this proves
unrealistic for LLMs trained on vast web-scale data, where private information is scattered through-
out massive datasets and deeply intertwined with non-private content. Identifying and isolating every
sensitive data point becomes practically impossible. We therefore propose a more realistic formula-
tion where defenders: (1) have access to only a limited subset of private data requiring removal; (2)
have white-box access to the target model ftarget trained on mixed private and non-private data.

Problem Definition. Given ftarget trained on dataset D containing private data (forget set) DF and
non-private data (retain set) DR, and a known subset of private data DFk

⊂ D (the “known forget
set”), the defender’s objective is to: (1) remove the influence of entire private dataset DF , including
both known (DFk

) and unknown (DFuk
= DF \DFk

) components; (2) preserve model utility on
non-private data DR. The resulting model funlearn should behave as if trained from scratch on DR.
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2.2 LIMITATION OF UNLEARNING BENCHMARKS

The effectiveness of LLM unlearning is critically undermined by relearning attacks, where an adver-
sary restores forgotten knowledge using just a few original samples (Hu et al., 2024). An attacker
can achieve this through fine-tuning or even without model modification via in-context learning
(ICL) (Shumailov et al., 2024).

This threat is severe in privacy scenarios, as sensitive information can be recovered with minimal
data and publicly available tools (Chen et al., 2024). While defenses using techniques like sharpness-
aware minimization (Fan et al., 2025) and adversarial training (Sheshadri et al., 2024) are emerging,
they often fail to address these specific privacy risks (see Appendix B).

Existing unlearning benchmarks such as TOFU (Maini et al., 2024), MUSE (Shi et al., 2024b), and
WMDP (Li et al., 2024) evaluate performance on diverse tasks, from synthetic Q&A to hazardous
knowledge removal. However, these benchmarks share a critical limitation: they only test against
passive attackers who observe model outputs. They fail to measure resilience against active attackers
who strategically manipulate the model such as relearning attacks. This gap highlights the urgent
need for a new benchmark testing unlearning robustness against such malicious interventions.

3 THE PriLeak EVALUATION BENCHMARK

3.1 THE DESIGN OF PriLeak

To address the limitation, we introduce PriLeak, a new benchmark that audits the robustness of un-
learning methods against three active attacks and quantifies how completely private data is forgotten.
Evaluation Metrics. PriLeak measure how successfully private data has been erased against three
increasingly sophisticated active attack scenarios:

• P1. Direct Retrieval tests for direct memorization. We query the model with questions about the
private data and measure the precision of its responses as 1

|DF |Σq∈DF
1PII∈f(q), where q is a question

targeting PII from a sample in the forget set DF , and 1condition is 1 if the condition is true.

• P2. Recovery via In-context Learning assesses if private data can be recovered using few-shot
prompts. The recovery rate is: RecICL = 1

|DF |Σq∈DF
1PII∈f(q,k-shot), where k is the number of

examples needed for recovery, serving as a proxy for the attack cost.

• P3. Recovery via Fine-tuning evaluates the model’s ultimate resistance to data recovery through
fine-tuning. The recovery rate is: RecFT = 1

|DF |Σq∈DF
1PII∈fft(q), where fft represents the model

after fine-tuning. The attack cost is measured by the data and computation required.

We deliberately exclude the Min-K metric (Shi et al., 2024a) designed for dataset inference (i.e., was
a dataset used for training), whereas our focus is on PII extraction (i.e., specific PII can be retrieved
even via novel prompts). Our empirical results in Section C.2 confirms the limitation of Min-K.

To measure model utility, we define the U1 metric, which is based on the C4 evaluation from MUSE
(Shi et al., 2024b). Specifically, We assess the model’s question-answering performance on the retain
set DR by computing the average ROUGE score between its generated answers and the ground-truth
answers. A high U1 score indicates that the model’s general capabilities have been well preserved.

Evaluation Corpus. For the forget set, we evaluate the privacy leakage on Enron (Klimt & Yang,
2004). This dataset contains approximately 500k emails from Enron Corporation employees, which
were made public by the Federal Energy Regulatory Commission. For this corpus, we extract [PER-
SON, PII] pairs from the original texts to create a structured evaluation set, then generate question-
answer pairs following a consistent template: “Q: Tell me the [PII type] of [PERSON], A: [PII]”.
This standardized format allows us to evaluate how well unlearning methods remove specific pieces
of private information. Following Section 2.1, we divide each corpus into known and unknown for-
get sets. The known forget set comprises 5%-100% of the entire forget set. For clarity, we present
results using 20% and 50% splits, though experiments with other proportions show similar trends.

For the retain set, we utilize the retain set from MUSE News (Shi et al., 2024b), which includes
3.56k news articles and can be processed into 100 question-answer pairs to evaluate whether the
model retains its general capabilities after unlearning.
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Evaluated Unlearning Methods. We survey a wide range of approximate unlearning methods,
which can be broadly classified into two approaches. Training pipeline manipulation modifies the
model’s objective function to encourage forgetting, while data manipulation modifies the labels
of the forget set to overwrite or confuse the model’s knowledge. We augment these base methods
with two common regularization techniques designed to preserve performance on the retain set:
gradient-based descent (GDR) and KL divergence minimization (KLR).

This results in a comprehensive suite of 19 methods for evaluation. Training pipeline manipu-
lation methods include: (1) Gradient Ascent (Jang et al., 2023) variants: GA, GAGDR, GAKLR; (2)
NPO (Zhang et al., 2024) variants: NPO, NPOGDR, NPOKLR; (3) DPO (Zhang et al., 2024) variants:
DPO, DPOGDR, DPOKLR; (4) Task Vector (Ilharco et al., 2023) and (5) RMU (Li et al., 2024). Data
manipulation methods include: (1) Random Labeling/Mapping (Maini et al., 2024) variants1: RL,
RLGDR, RM, RMGDR; (2) “I Don’t Know” variants: IDK, IDKGDR; (3) WHP (Eldan & Russinovich,
2023) variants: WHP, WHPGDR.

Beyond the primary categorization, these methods can be further classified along two dimensions:
(1) Target vs Untargeted methods (Yuan et al., 2025) differ in whether they specify alternative
outputs (e.g., DPO, IDK) or simply aim to prevent original responses (e.g., NPO). (2) Label-based
vs Representation-based methods differ in their intervention level: label-based methods modify
output distributions, while representation-based methods like RMU directly alter hidden layer rep-
resentations. The classification is shown in Table 1, and complete method details are provided
in Section C.1.

As a gold-standard baseline, we include Retrain Model fretrain, trained from scratch exclusively on
the retain set. While computationally infeasible, this represents the ideal of any unlearning process.

3.2 QUANTIFYING FORGETABILITY

To understand why private information persists after unlearning, PriLeak evaluates the completeness
of forgetting across three distinct metrics.

Forgetting Score. While P3 recovery rate effectively reveals incomplete unlearning, it is unsta-
ble and sensitive to fine-tuning samples and hyperparameters. Thus, we introduce a more robust
forgetting score, which measures the divergence between the output distributions of the target and
unlearned models. Notably, unlike prior work focused on general sequence prediction (Jang et al.,
2023), our score specifically quantifies the change in generation probability for PII token sequences.

The sequential probability for a PII sequence y = [y1, y2, . . . , yT ] given a prefix context x, is defined
as the product of the conditional probabilities of generating each token in the sequence. Formally:
Pseq(y|x) =

∏T
t=1 P (yt|x, y1, . . . , yt−1). For example, the email address “board@isda.org”, might

be tokenized as [“board”, “@”, “is”, “da”, “.org”], and its sequential probability would be the prod-
uct of these five conditional probabilities. The forgetting score FS is then defined as the difference
in log-probabilities between the log-probabilities assigned to the PII sequence by the original target
model ftarget and the unlearned model funlearn : FS(x, y) = log(Pftarget(y|x)) − log(Pfunlearn(y|x)).
A higher score signifies a larger drop in the sequence’s generation probability after unlearning, in-
dicating more effective forgetting.

Association Score. To understand how data points are computationally linked during unlearning,
we introduce an Association Score (AS) that quantifies the relationships between samples through
two perspectives: gradient-based and representation-based associations.

Gradient-based Association captures optimization relationships by measuring how similarly differ-
ent samples influence the model’s update directions. For any xi ∈ Duk and xj ∈ Dk, the score is
the dot product between their gradients with respect to the model parameters θ: ASgrad(xi, xj) =
∇θL(f(xi;θ)) · ∇θL(f(xj ;θ)), where gradients are computed specifically on the loss of PII token
sequences. This metric is closely related to Neural Tangent Kernel (NTK) similarity (Jacot et al.,
2018), which characterizes data relationships in the optimization landscape. We use dot product
rather than cosine similarity to preserve the magnitude of gradients, not just their directions. Higher
scores indicate that samples push model parameters in similar directions with similar force, suggest-
ing strong computational coupling during unlearning.

1Since KLR operates on the loss function, it is only paired with training-pipeline manipulation methods.
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Representation-based Association measures semantic relationships through hidden state similarity.
For xi ∈ Duk and xj ∈ Dk, we compute the cosine similarity between their representation features
as: ASrepr(xi, xj) = cos(hl(xi), hl(xj)), where hl(·) represents the average hidden states at layer
l for PII tokens. For each sample in Duk, its association score with Dk is computed as the average
of pairwise similarities across all samples in Dk. This captures whether samples are forgotten due
to semantic similarity in their internal representation space.

Forgetting Depth Assessment. To assess how deeply private data is removed from a model’s layers,
we propose a two-pronged approach that combines behavioral and representational analysis.

Recovery Rate Gap (Behavioral Analysis): First, we quantify the depth of forgetting by the compar-
ing recovery rates under two attack scenarios: direct retrieval (P1) and recovery via fine-tuning (P3).
We conceptualize P1 as a failure of shallow forgetting while P3 indicates a failure of deep forget-
ting. A large gap between P1 and P3 suggests that while surface-level PII is removed, the underlying
knowledge remains and can be restored with fine-tuning, indicating insufficient deep unlearning.

CKA Layer-wise Analysis (Representational Analysis): Next, to pinpoint which specific layers are
affected by unlearning, we use Centered Kernel Alignment (CKA) (Kornblith et al., 2019) to mea-
sure the similarity of learned representations between the target model ftarget and the unlearned
model funlearn on a layer-by-layer basis. A lower CKA score at a specific layer signifies a greater
change in its representations, which suggests more effective forgetting at that depth. By plotting
CKA scores across three specific layers (§4.3), we can visualize where the unlearning process had
the most impact and where residual information might persist.

This dual-analysis framework allows us to both explicitly measure unlearning outcomes (the “what”)
and implicitly analyze the underlying layer-wise mechanisms (the “where”). It provides the system-
atic basis for the two key findings we present regarding the limitations of current methods.

4 UNDERSTANDING CHALLENGES OF FORGETTING

4.1 MEASUREMENT STUDY

Experimental Setup. Our experiments start with a pre-trained LLaMA-3.2-3B model (Dubey et al.,
2024) as the base architecture. From this, we fine-tune two initial models for our analysis: the
target model (ftarget ) trained for 5 epochs on the full dataset DF ∪ DR, which combines sam-
ples from the Enron and MUSE News datasets, and the retrained model (fretrain ) trained using
only the retain set DR, which serves as our gold standard. For each unlearning method U be-
ing evaluated, we then generate an unlearned model funlearn by applying U to the target model:
funlearn = U(ftarget ,DFk

,DR). All unlearning methods use a learning rate of 10−5 and batch size
of 32, with hyperparameters chosen to maximize utility on a validation set. To ensure reliability, we
average all results over 3 runs with different random seeds, conducted on 4 NVIDIA A100 GPUs.
We also verified that our findings are consistent on a GPT-2-Large model (Radford et al., 2019), with
those results available in Section D.2. The implementation details are described in Section D.1.

Effectiveness against Passive Observation (P1). Training Pipeline vs Data Manipulation Methods
demonstrate different effectiveness patterns when evaluated on direct retrieval P1. Training pipeline
manipulation methods (GA, NPO) are highly effective, achieving near-perfect protection with with
information leakage rates below 0.5%. In contrast, data manipulation methods exhibit highly incon-
sistent behavior. Random labeling variants (RL, RM, IDK) lead to more PII leakage than the target
model, with the worst performer (RM) reaching a 40.73% recovery rate. This suggests that simply
providing alternative labels may fail to erase the underlying memorized patterns and can sometimes
even reinforce them. This performance gap stems from a fundamental difference in mechanisms.
Training-pipeline manipulation methods directly alter the model’s optimization objective to make
generating private information less likely. Data manipulation methods, however, merely attempt to
overwrite existing knowledge with new targets. Our results show the former is a far more reliable
strategy for basic privacy protection, though its robustness against more advanced active attacks
remains to be examined.

The choice of regularization strategy also significantly impacts unlearning effectiveness. Methods
using KL regularization (GAKLR, NPOKLR, DPOKLR) show substantially higher leakage rates com-
pared to their counterparts using GDR. This performance gap suggests a critical trade-off. While

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Privacy and utility measurements on Enron and News using LLaMA-3.2. For ftarget and
fretrain , recovery rates are evaluated on the full DF as they do not have forget set splits. P3’s
recovery cost uses |D| for fine-tuning data size and e for epochs. U1 uses 10-shot in-context learning.
For the classification, training pipeline or data manipulation; targeted (✓) or untargeted (✗); label-
based (✓) or representations-based (✗).

Methods Classification P1. Direct Retrieval P2. Recovery via ICL P3. Recovery via Fine-tuning U1. Utility Preserv.
Targeted Label-based Rec on DFk

Rec on DFuk
Rec on DFk

Rec on DFuk
Rec on DFk

Rec on DFuk
Cost QA QA+ICL

Target ftarget 14.53% 29.94% 60.60% |D| = 50, 3e 27.35 36.38
Retrain fretrain 0.02% 4.95% 13.14% |D| = 50, 3e 26.69 35.04

20% Enron + News
GA ✗ ✓ 0.49% 0.43% 0.49% 0.61% 54.27% 54.68% |D| = 50, 10e 26.71 36.19
GAGDR ✗ ✓ 0.24% 0.43% 0.37% 0.47% 53.10% 53.30% |D| = 50, 10e 27.57 34.27
GAKLR ✗ ✓ 12.20% 13.13% 31.34% 32.84% 66.10% 64.58% |D| = 50, 3e 27.35 48.25
NPO ✗ ✓ 0.49% 0.49% 0.24% 0.06% 56.83% 58.22% |D| = 50, 3e 23.78 36.48
NPOGDR ✗ ✓ 0.37% 0.52% 0.24% 0.06% 57.56% 57.42% |D| = 50, 3e 24.55 37.49
NPOKLR ✗ ✓ 12.20% 13.13% 31.34% 32.84% 64.58% 64.58% |D| = 50, 3e 27.35 36.38
Task Vector ✗ ✓ 2.92% 2.62% 12.68% 12.82% 66.10% 64.58% |D| = 50, 3e 26.49 37.05
DPO ✓ ✓ 0.00% 0.00% 30.61% 31.16% 65.98% 65.46% |D| = 50, 10e 9.97 24.76
DPOGDR ✓ ✓ 0.00% 0.00% 34.27% 35.09% 69.51% 67.86% |D| = 50, 10e 10.02 24.83
DPOKLR ✓ ✓ 0.00% 0.06% 51.10% 51.11% 65.24% 63.81% |D| = 50, 3e 11.69 22.84
RMU ✗ ✗ 0.00% 0.00% 0.00% 0.00% 18.32% 20.30% |D| = 50, 10e 8.35 9.51
RL ✗ ✓ 12.32% 13.00% 37.32% 37.95% 65.85% 64.64% |D| = 50, 3e 29.25 36.36
RLGDR ✗ ✓ 12.44% 12.03% 39.63% 37.56% 62.93% 60.83% |D| = 50, 3e 31.33 34.07
RM ✗ ✓ 30.73% 28.33% 38.05% 37.22% 25.85% 21.81% |D| = 50, 3e 29.09 34.67
RMGDR ✗ ✓ 40.73% 38.87% 36.10% 37.07% 65.12% 63.08% |D| = 50, 3e 32.31 35.55
WHP ✗ ✓ 1.59% 0.70% 22.68% 23.09% 66.71% 65.28% |D| = 50, 3e 28.76 36.09
WHPGDR ✗ ✓ 0.98% 0.82% 12.32% 12.98% 65.85% 66.49% |D| = 50, 10e 27.49 35.38
IDK ✓ ✓ 16.71% 15.35% 32.56% 34.05% 67.68% 66.43% |D| = 50, 3e 28.95 35.95
IDKGDR ✓ ✓ 21.83% 20.07% 29.63% 29.61% 66.71% 66.31% |D| = 50, 3e 33.49 34.99

50% Enron + News
GA ✗ ✓ 0.39% 0.49% 0.44% 0.39% 30.82% 32.47% |D| = 50, 10e 26.00 35.02
GAGDR ✗ ✓ 0.34% 0.39% 0.44% 0.34% 39.83% 41.20% |D| = 50, 10e 28.99 34.97
GAKLR ✗ ✓ 12.09% 13.80% 32.62% 32.47% 64.31% 65.48% |D| = 50, 3e 27.35 36.38
NPO ✗ ✓ 0.34% 0.44% 0.10% 0.05% 56.61% 56.61% |D| = 50, 3e 20.07 38.15
NPOGDR ✗ ✓ 0.44% 0.54% 0.10% 0.05% 56.12% 58.75% |D| = 50, 3e 25.33 36.91
NPOKLR ✗ ✓ 12.09% 13.80% 32.62% 32.47% 38.27% 38.86% |D| = 50, 3e 27.35 36.38
Task Vector ✗ ✓ 3.94% 4.29% 18.04% 17.60% 64.75% 65.77% |D| = 50, 3e 27.48 37.41
DPO ✓ ✓ 0.00% 0.00% 0.00% 0.00% 67.92% 69.43% |D| = 50, 10e 0.00 6.44
DPOGDR ✓ ✓ 0.00% 0.00% 1.37% 1.66% 63.04% 64.16% |D| = 50, 10e 0.00 15.19
DPOKLR ✓ ✓ 0.00% 0.06% 58.65% 60.99% 65.53% 67.09% |D| = 50, 3e 11.81 19.94
RMU ✗ ✗ 0.00% 0.00% 0.00% 0.00% 16.52% 18.14% |D| = 50, 10e 7.75 8.68
RL ✗ ✓ 9.56% 11.41% 43.49% 43.98% 62.90% 63.43% |D| = 50, 3e 30.12 35.44
RLGDR ✗ ✓ 10.04% 9.90% 31.25% 29.50% 52.80% 53.24% |D| = 50, 3e 30.23 34.88
RM ✗ ✓ 27.89% 29.84% 39.05% 40.03% 62.46% 62.51% |D| = 50, 3e 28.78 35.99
RMGDR ✗ ✓ 33.40% 34.42% 20.09% 19.80% 62.46% 62.46% |D| = 50, 3e 30.77 35.91
WHP ✗ ✓ 0.59% 0.68% 18.97% 19.99% 61.87% 64.65% |D| = 50, 3e 27.50 35.68
WHPGDR ✗ ✓ 0.15% 0.24% 4.29% 5.27% 61.87% 62.85% |D| = 50, 10e 24.57 33.73
IDK ✓ ✓ 13.65% 15.02% 32.91% 32.96% 65.68% 67.28% |D| = 50, 3e 28.95 35.95
IDKGDR ✓ ✓ 19.25% 21.11% 30.91% 31.69% 65.82% 50.76% |D| = 50, 3e 29.97 34.81

KLR is designed to preserve the model’s overall output distribution, this conservative approach may
inadvertently protect the very knowledge pathways that allow for PII retrieval. In contrast, GDR’s
superior performance appears to stem from its more targeted constraint on the optimization process,
which drives the model to more aggressively unlearn the specific PII.

Resilience to Active Attacks (P2&P3). Most unlearning methods are vulnerable to active attacks,
particularly pronounced under P3. A clear divide in robustness emerges between targeted and un-
targeted unlearning methods. Untargeted methods show far superior resilience to active attacks. For
instance, NPO keeps P2 recovery rate near zero (0.2%), while the targeted method DPO is easily
compromised, with a P2 rate of over 30%. This suggests that forcing a model toward a specific
alternative answer (e.g., “sorry I don’t know”) creates brittle changes that are easily reversed.

A similar distinction appears between representation-based and label-based methods. RMU con-
sistently outperforms label-based alternatives, achieving P3 of 18-20% compared to 60%+ for most
others. This advantage stems from its mechanism: RMU directly modifies the model’s hidden-layer
representations to erase information, creating a deeper forgetting that is more durable than simply
changing the output distribution, a phenomenon we explore further in Section 4.3.

Parallel Forgetting Patterns. A notable similarity in unlearning effectiveness emerges between
the known forget set DFk

and the unknown forget set DFuk
. Under GAGDR method, for instance,

the P3 recovery rate was nearly identical for both sets known data (53.10% for the known set and
53.30% for the unknown set) data, even though only the known set is subjected for removal. This
effect becomes even more counter-intuitive with random labeling methods on GPT-2 (detailed in
Appendix Table 2), where unknown forget data shows better forgetting effectiveness than the known
set, creating performance gaps up to 7%. This parallel behavior suggests that unlearning specific
data causes a systematic propagation of forgetting that extends beyond the explicit targets. We term
this phenomenon the “ripple effect” and analyze it in detail in Section 4.2.
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(c) Association-aware GA

Figure 1: Recovery rate comparison between known and unknown forget sets across different forget
set sizes and attack scenarios (P1, P3); (c) shows the effectiveness using association-aware core-set.

Utility Preservation (U1). LLaMA-3.2 is highly robust to utility degradation, with most unlearning
methods maintaining QA performance close to the baseline QA performance (27.35). The notable
exception is DPO and RMU, causing a more significant drop in performance. In contrast, GPT-2-
Large suffers severe utility loss (Section D.2). This suggests that newer model architectures may be
inherently better at preserving core capabilities during the unlearning process.

These results raised two critical questions: (1) Why does unlearning a known set of data also cause
forgetting in an unknown (but related) set? (2) Why do unlearning methods that appear effective un-
der simple observation fail against active attacks? In the following sections, we provide mechanistic
explanations for these phenomena through two key findings: ripple effect and shallow forgetting.

4.2 RIPPLE EFFECT IN UNLEARNING

Our first key finding reveals that unlearning exhibits ripple effects across related data through shared
neural representations. This phenomenon makes it fundamentally impossible to selectively forget
specific data while preserving related information.

Forget Set Size. We first conduct experiments using varying proportions of the forget set: 5%,
10%, 20%, 50%, and 100%. This allows us to observe how forgetting effectiveness changes as
more related data is included in the forget set. Figure 1 demonstrates the parallel forgetting patterns
between Dk and Duk across GA and NPO. As we increase the known forget set size, both sets exhibit
remarkably similar recovery rate trajectories, providing direct evidence for the ripple effect.

Moreover, the ripple effect performs differently at various attack scenarios. For P1, even with min-
imal forget sets (5% Enron), methods achieve near-perfect recovery rates (below 1%) for both sets,
indicating effective shallow ripple effects. However, for P3, both sets exhibit high recovery rates
(50-70%) because these methods fail to remove residual information from deeper representations.
This disparity shows that while shallow forgetting benefits from ripple effect, deep forgetting faces
limitations that affect both forget set and associated data equally, as further explored in Section 4.3.

Gradient-based Association. To understand the ripple effect, we analyze the relationship between
gradient similarity and forgetting effectiveness. For each sample in DFuk

, we compute its gradient’s
similarity to the average gradient of DFk

and correlate this with its forgetting score.

Figure 2a presents a scatter plot showing the relationship between gradient association scores (x-
axis) and forgetting effectiveness (y-axis) for Duk. For GA, the plot (bottom row) reveals a strong
positive correlation (Pearson coefficient: 0.7314, Spearman: 0.7196), demonstrating that samples
with higher gradient similarity consistently achieve higher forgetting scores. This pattern provides
concrete evidence that forgetting propagation is driven by gradient-based associations rather than
random effects. Samples sharing similar optimization directions with the Dk are more likely to
be forgotten. NPO exhibits a similar correlation pattern (Pearson: 0.5540, Spearman: 0.5069),
confirming that this gradient-driven ripple effect is consistent across different unlearning methods.

Representation-based Association. To further validate the findings, we examine layer-wise repre-
sentation similarity between samples in DFk

and DFuk
. For each sample in DFuk

, we analyze the
correlation between its representation similarity and forgetting score to understand how semantic
embeddings relate to forgetting propagation.

Figure 2(b)-(d) reveals three key findings about the relationship between representational similarity
and the ripple effect: (1) No Link at Surface Layers: At the initial embedding layer, we find
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(a) Gradient (b) Embedding Layer (c) Layer 16 (d) Last Hidden Layer

Figure 2: Correlation between gradient-based association (a), multi-layer representation-based asso-
ciation (b)-(d) and forgetting scores for NPO (top row) and GA (bottom row) methods (r = Pearson
coefficient; ρ = Spearman coefficient).

no meaningful correlation, indicating that the ripple effect is not driven by surface-level semantic
similarity. (2) Association Emerges in Deeper Layers: The correlation begins to emerge around
layer 16, suggesting that the data associations responsible for co-forgetting are formed during deeper
semantic processing. (3) Optimization Dynamics Dominate: The maximum correlation based on
representations is weak (Pearson’s r = 0.3608 at the last hidden layer), significantly lower than the
correlation based on gradients (r = 0.7314), indicating that gradient-based optimization dynamics,
not simply representational similarity, are the primary driver of the ripple effect.

Strategy: Association-aware Core-set Selection. Building on this finding, we propose a strategic
shift from random sampling to association-aware core-set selection. Rather than treating all samples
in the forget set equally, we leverage the ripple effect by prioritizing samples with the highest asso-
ciative influence, involving three steps: (1) Compute the mean gradient vector across all samples in
the forget set DF to establish the representative gradient pattern: ḡ = 1

|DF |
∑

x∈DF
∇θL(f(x;θ)).

(2) Compute the association score of each sample x ∈ DF : AS(x) = ∇θL(f(x;θ)) · ḡ. (3) Select
the top k% samples with highest gradient association scores as the core forget set.

We evaluated core-sets of 5%, 10%, 20%, and 50% using GA unlearning. Figure 1c shows that
its ripple effect is more effective under P3 compared to random set: a 10% core-set achieves a P3
recovery rate of 32.19%, matching the performance of random 50% and full forget sets. There-
fore, instead of attempting selective removal while preserving associated data, the core-set method
strategically exploits the ripple effect to achieve comprehensive privacy removal with minimal data.

4.3 SHALLOW FORGETTING

Another observation reveals that existing unlearning methods suffer from “shallow forgetting”: they
fail to resist active attackers because private information persists across hidden layers. We ana-
lyze this phenomenon by comparing different unlearning methods along two dimensions: attack-
resistance gaps (P1 vs P3) and layer-wise representation changes.

Attack Resistance Gap Comparison. Figure 3 presents the P1 and P3 recovery rates across dif-
ferent unlearning methods, revealing three distinct patterns in unlearning effectiveness: (1) methods
achieving both shallow and deep forgetting with modest gaps (RMU), (2) methods failing across
all scenarios (RL and IDK variants), and (3) methods demonstrating severe shallow forgetting with
dramatic P1-P3 disparities up to 69.5% (DPO, NPO, GA variants, Task Vector), highlighting the
persistence of private information in deeper model representations despite shallow protection. The
analysis reveals that 15 out of 19 methods exhibit gaps exceeding 50%, indicating that shallow
forgetting is a fundamental limitation of current unlearning rather than a method-specific issue.
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Figure 3: Shallow forgetting analysis across un-
learning methods using 20% Enron dataset.

Figure 4: Cross-model CKA analysis among
representative unlearning methods.

Layer-wise Representation Comparison. To understand where privacy information persists after
unlearning, we employ CKA analysis to compare how different unlearning methods modify rep-
resentations across model layers. Figure 4 presents the CKA similarity across all 28 layers (lay 0
represents embedding layer) for both training pipeline manipulation methods (left) and data manip-
ulation methods (right). While data manipulation methods show minimal deviation from the target
model across most layers, training pipeline methods exhibit more significant representation changes.
This gap between the two categories aligns with our benchmarking results presented in Section 4.1.
Moreover, label-based methods only show representation changes near the output layers (the best-
performing method, NPO, maintains similarity over 0.98 until a sharp decline at layer 24). In con-
trast, the representation-based method RMU shows the most aggressive changes (dropping to 0.83
at layer 20), which, however, results in utility collapse (8.35 in Table 1).

This layer-wise analysis reveals that overly aggressive changes harm utility while output-layer mod-
ifications cause shallow forgetting. Therefore, unlearning methods should focus on inducing moder-
ate changes in mid-layer representation that balance deep forgetting and model utility preservation.

Strategy: Multi-layer Intervention. Based on our findings, effective unlearning requires targeting
hidden layer representations with increased learning efforts for deeper layers and loss functions
that address privacy removal at multiple network depths. RMU outperforms other methods because
it directly targets hidden representations rather than just output distributions. However, Figure 4
and Table 1 show that excessive changes toward random control vectors destroy model utility. To
address this limitation, we propose Representation Anchoring Unlearning (RAU), which builds
on RMU with two key improvements:

(1) Implement depth-dependent learning rates: ηl = η ·γlout−l where ηl is the learning rate for layer
l, lout is the output layer, and γ > 1 is a scaling factor, ensuring stronger updates in deeper layers.

(2) Instead of random control vectors, we anchor representations to noise-perturbed base model
states: Lanchor =

∑lout

l=l0
αl||htarget

l − (hbase
l + ϵ)||22 where hl represents hidden states at layer

l, ϵ ∼ N (0, σ2) is Gaussian noise, and αl are layer-specific weights. The final loss combines
unlearning and utility preservation, i.e., λunlearnLanchor + λretainLretain.

Using layers 20-27, RAU achieves P3 recovery rates of 35.03% on Dk and 38.55% on Duk with 20%
forget sets. While higher than RMU’s recovery rates, RAU maintains significantly better model util-
ity (27.70 and 35.41), achieving an optimal trade-off between privacy protection and utility preser-
vation. This approach represents a paradigm shift from shallow forgetting to deep forgetting, ad-
dressing privacy information distributed across multiple layers.

5 CONCLUSION

This work fills a critical gap in evaluating LLM unlearning under active privacy attacks. PriLeak
shows that while current methods seem effective against passive observation, they remain vulnerable
to active attackers who can recover forgotten private information. Our evaluation of 19 methods
reveals two findings: ripple effect, where unlearning propagates across related data, and shallow
forgetting, where private information persists in deeper layers. PriLeak’s quantitative analysis offers
the first mechanistic understanding of privacy persistence, highlighting the need for association-
aware, multi-layer strategies beyond output-focused unlearning to achieve robust privacy protection.
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ETHICS STATEMENT

In our research, we conducted all experiments using public datasets and models. However, it is
still possible to extract real-world private information, such as phone numbers and home addresses,
from the training data. To mitigate ethical risks, any extracted PII was promptly deleted after being
compared with ground truth data. Additionally, we sought approval from our institution’s IRB,
which confirmed that ”no human subjects are involved” and approved our study.

REPRODUCIBILITY STATEMENT

All data and programs used in the evaluation section are publicly available. Furthermore, the
authors will fully disclose the source code, manipulated datasets, and other benchmark tools as
a standalone artifacts to the public to support future research. Artifacts can be reviewed at:
https://anonymous.4open.science/r/PII_Unlearning-0D08/.
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A USE OF LLMS

This paper utilized Claude (Anthropic) and GPT-4 (OpenAI) as writing assistance tools to enhance
clarity and readability of the manuscript. The LLMs were employed specifically for refining sen-
tence structure and polishing writing throughout the paper. All research ideas, experimental design,
data analysis, and scientific conclusions remain entirely the work of the authors. The LLMs did not
contribute to methodology development or interpretation of results. Authors take full responsibility
for the accuracy and integrity of all content, including any text refined with LLM assistance.

B RELATED WORK

Robust Unlearning. A line of works identified that current LLM unlearning methods face sig-
nificant robustness challenges, with unlearned knowledge being recoverable through various at-
tacks Łucki et al. (2025). Che et al. Che et al. (2025) evaluated LLM with model tampering attacks,
which allows modifications to latent activations or weights, Zhang et al. Zhang et al. (2025) revealed
catastrophic failures of unlearning via quantization, and Lynch et al. Lynch et al. (2024) emphasized
that current approaches lack robustness against adversarial threats. Hu et al. Hu et al. (2024) in-
troduced the relearning attack, which provides an efficient means of recovering forgotten data. In
response, some works hae sought to strengthen the robustness of unlearning methods, For instance,
Fan et al. Fan et al. (2025) leveraged Sharpness-Aware Minimization (SAM) to improve unlearning
performance, while Zhang et al.Zhang et al. (2025) proposed a tailored framework to counteract the
effects of model quantization in the unlearning task.

While these studies share our observation that forgotten knowledge often persists in intermediate
layers, our work differs in focus and methodology. Prior efforts primarily highlight the limited
generalization of unlearning techniques, demonstrating that forgotten knowledge can be recovered
through some adversarial attacks. In contrast, we assess the effectiveness of unlearning under three
progressively challenging attack settings, each probing different degrees of information retention.
Based on these insights, we introduce a framework that builds upon existing approaches to achieve
more comprehensive privacy removal. This offers a new paradigm for enhancing the robustness of
unlearning in large models.
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C PriLeak COMPONENTS

C.1 EVALUATED UNLEARNING METHODS

While exact unlearning through retraining is theoretically optimal, it is computationally infeasi-
ble for LLMs. Therefore, our research focuses on approximate unlearning methods, which can be
broadly classified into two main categories: training pipeline manipulation and data manipulation.

Training Pipeline Manipulation. Training pipeline manipulation methods modify the training loss
or model parameters to remove unwanted information. Gradient ascent (GA) (Jang et al., 2023)
minimizes the likelihood of correct predictions on forget set by performing gradient ascent on cross-
entropy loss (ℓGA):

LGA(θ) = −E(x,y)∈DF
[−log(fθ(y|x))] (1)

where θ represents the model parameters to be updated during unlearning. The rationale of GA
is that a maximization of prediction loss on the forget set DF would approximately “revert” the
optimization on DF .

Negative Preference Optimization (NPO) (Zhang et al., 2024) treats the forget set as negative pref-
erence data, and adapts the objective for offline Direct Preference Optimization (DPO). Unlike GA’s
unbounded loss, NPO transforms the objective into a bounded loss:

LNPO(θ) = − 2

β
E(x,y)∈DF

[logσ(−βlog
fθ(x)

ftarget(x)
)] (2)

where σ is the sigmoid function, and β controls divergence from its original model ftarget . This for-
mulation provides more controlled and stable unlearning compared to the straightforward gradient
ascent method.

Representation Misdirection for Unlearning (RMU) (Li et al., 2024) is a fine-tuning based unlearn-
ing method inspired by representation engineering that operates by steering the model’s internal
representations. The RMU objective optimizes the following MSE loss:

L = ExF ∈ DF ||h(l)

θunlearn(xF )− cu||22 (3)

+ αExR ∈ DR||hθunlearn
(l)
(xR)− h

(l)

θfrozen(xR)||22 (4)

where θunlearn and θfrozen are parameters of the updated model and frozen model respectively, u
is a fixed random unit vector, c is a scaling factor, l denotes the target layer, and α balances the two
objectives.

Besides modifying loss function, certain model editing techniques directly adjust the model param-
eters. One such example is the Task Vector method (Ilharco et al., 2023), which alters the training
trajectory by editing model weights with task arithmetic:

funlearn = ftarget − λ(freinforce − ftarget) (5)
where freinforce is obtained by overfitting on forget set, and λ is a scaling term.

Data Manipulation. Data manipulation modifies the training data or their labels to achieve un-
learning. The simplest approach is Random Labeling (RL) (Maini et al., 2024), which relabels the
samples in forget set with random (but seemingly sensible) outputs to force unlearning of original
associations. Similarly, Random Mapping (RM) randomly pairs the existing inputs and labels, and
“I don’t know” (IDK) strategy replaces target outputs with uncertainty indicators. The new label is
denoted as y′:

LRL(θ) = E(x,y)∈DF
[logfθ(y

′|x)] (6)

Who’s Harry Potter (WHP) (Eldan & Russinovich, 2023) provides a more sophisticated data manip-
ulation strategy. It generates the output distribution of the unlearned model funlearn by interpolating
between a reinforced model’s predictions and the target model’s predictions:

pfunlearn (·|x) = pftarget (·|x)− α(pfreinforce(·|x)− pftarget (·|x)) (7)
where pf (·|x) denotes the token distribution when given a prompt x as input, and α controls the
interpolation strength. Then it samples the alternative labels y′ from this interpolated distribution.

LWHP (θ) = E(x,y)∈DF
[logfθ(y

′|x)], y′ ∼ pfunlearn (·|x) (8)
This approach creates alternative training targets that help remove specific information while pre-
serving general language capabilities.
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C.2 EVALUATION METRICS: WHY NOT MIN-K

We didn’t adopt Min-K (Shi et al., 2024a) here as a metric because it cannot serve as a gold standard
for privacy unlearning evaluation. Min-K is used to test whether a specific training sample was used
for model training, while we only focus on whether specific PII can be extracted from the model
(e.g., through various queries of token sequences not present in the training set). Our empirical
evaluation confirms this limitation of Min-K. For the forget set, the target model achieves an AUC of
0.436 and the unlearned model shows 0.424, both below the random baseline of 0.5. This indicates
that Min-K performs worse than random chance in distinguishing between member and non-member
samples in both models. More critically, the negligible difference between target and unlearned
models (0.436 vs 0.424) demonstrates that Min-K cannot detect whether unlearning has occurred. If
Min-K were a valid metric for measuring forgetting, we would expect to see a significant decrease
in AUC scores after unlearning, indicating reduced ability to identify membership. Instead, both
scores remain similarly poor, suggesting that Min-K fails to capture whether private information has
been successfully removed from the model.

D EVALUATION

D.1 EXPERIMENTAL SETUP

Model Setup. We start with a general pre-trained base model and finetune two models: ftarget
on DF ∪ DR, and fretrain on DR only. For each unlearning algorithm U , we further generate the
unlearned model funlearn = U(ftarget ,DFk

,DR).

We conduct experiments using LLaMA-3.2-3B (Dubey et al., 2024) and GPT-2-Large (Radford
et al., 2019). For LLaMA-3.2-3B, we start from its publicly released checkpoint2 then finetune on
the combination of our privacy datasets Enron and MUSE News for 5 epochs. We use a cosine
learning rate scheduler with an initial learning rate of 10−5 and distribute training across 2 GPUs,
each processing a batch size of 2, and accumulating gradients for 32 steps before performing a
backward pass. This setup effectively simulates training with a batch size of 128.

For GPT-2-Large, we start from the pre-trained model in Huggingface3. We then finetune on the
same datasets, stopping when validation perplexity stabilizes without increasing. We use an AdamW
optimizer with a batch size of 4.

Unlearning Configuration. Following prior work Shi et al. (2024b), for LLaMA-3.2-3B, we run
all unlearning methods with a constant learning rate of 10−5 and batch size of 32. Additionally, for
GPT-2-Large, we use a learning rate of 10−5 and batch size of 16. For WHP and Task Vector, we
obtain the reinforced model freinforce by fine-tuning ftarget on forget set for 10 epochs with the same
hyperparameters. Before evaluation, we select optimal hyperparameters for each method based on
utility preservation on a validation set split from retain data. For GA and NPO variants, we train for
maximum 10 epochs. For WHP and Task Vector, we tune the interpolation parameter α in range
[0, 1]. For NPO, we set β = 0.1. For RMU, we set the updated layers from layer 20 to layer
27, and use lay 20’s activation to compute the loss function. Methods with GDR/KLR regularizers
use a held-out portion of retain data (“retain1”) distinct from our evaluation set (“retain2”). All
experiments are conducted using 4 NVIDIA A100 GPUs with 40GB memory each. We report
averaged results over 3 runs with different random seeds.

D.2 EXPERIMENTAL RESULTS ON GPT-2

Our experiments on GPT-2-Large Table 2 confirm the generalizability of findings observed in
LLaMA-3.2, demonstrating that the vulnerability to active attacks is not architecture-specific. While
GPT-2 shows more severe utility degradation compared to LLaMA-3.2’s robustness, the fundamen-
tal patterns remain consistent: training pipeline methods outperform data manipulation approaches,
and substantial P1-P3 gaps persist across most unlearning methods, indicating shallow forgetting as
a universal limitation.

2https://huggingface.co/meta-llama/Llama-3.2-3B
3https://huggingface.co/openai-community/gpt2-large
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Table 2: Privacy and utility measurements on Enron and News using GPT-2-Large. U1 uses 10-shot
in-context learning.

Methods P1. Direct Retrieval P2. Recovery via ICL P3. Recovery via Fine-tuning U1. Utility Preserv.
Rec on DFk

Rec on DFuk
Rec on DFk

Rec on DFuk
Rec on DFk

Rec on DFuk
Cost QA QA+ICL

Target ftarget 11.33% 39.02% 46.72% |D| = 50, 10e 7.07 8.70
Retrain fretrain 0.00% 35.17% 42.07% |D| = 50, 10e 7.43 8.75

20% Enron + News
GA 0.00% 0.00% 0.00% 0.00% 22.68% 19.78% |D| = 50, 10e 0.00 0.00
GAGDR 0.00% 0.00% 0.12% 3.86% 35.85% 33.93% |D| = 50, 10e 8.95 6.56
GAKLR 0.00% 0.00% 0.12% 1.07% 39.51% 37.20% |D| = 50, 10e 8.87 8.38
NPO 0.00% 0.00% 0.00% 0.00% 19.15% 16.11% |D| = 50, 10e 1.09 4.13
NPOGDR 0.00% 0.00% 20.49% 19.23% 40.12% 38.85% |D| = 50, 10e 7.69 8.54
NPOKLR 0.00% 0.00% 29.51% 29.67% 38.78% 37.60% |D| = 50, 10e 8.53 9.33
Task Vector 0.00% 0.00% 12.68% 25.66% 23.95% 28.03% |D| = 50, 10e 7.31 8.66
RL 0.00% 0.03% 53.29% 36.74% 56.10% 49.33% |D| = 50, 10e 5.45 8.49
RLGDR 0.00% 0.09% 60.85% 49.88% 56.22% 49.36% |D| = 50, 10e 7.46 7.74
RM 4.15% 1.22% 49.27% 40.54% 45.85% 40.14% |D| = 50, 10e 6.21 6.45
RMGDR 6.46% 2.08% 51.10% 45.65% 45.98% 39.19% |D| = 50, 10e 7.53 8.09
WHP 0.00% 0.00% 13.11% 14.06% 40.06% 39.86% |D| = 50, 10e 6.48 7.55
WHPGDR 0.00% 0.00% 15.53% 14.99% 41.68% 41.13% |D| = 50, 10e 7.25 7.51
IDK 0.00% 0.09% 32.91% 32.96% 45.68% 47.28% |D| = 50, 10e 7.95 8.95
IDKGDR 0.00% 0.09% 30.91% 31.69% 47.82% 46.76% |D| = 50, 10e 7.97 8.48

50% Enron + News
GA 0.00% 0.00% 0.00% 0.00% 0.24% 0.18% |D| = 50, 10e 0.00 0.00
GAGDR 0.00% 0.00% 0.00% 0.00% 29.34% 29.60% |D| = 50, 10e 9.39 5.88
GAKLR 0.00% 0.00% 0.00% 0.00% 30.12% 31.21% |D| = 50, 10e 9.35 6.66
NPO 0.00% 0.00% 0.00% 0.00% 18.73% 18.66% |D| = 50, 10e 1.63 1.31
NPOGDR 0.00% 0.00% 25.49% 32.42% 32.52% 31.90% |D| = 50, 10e 7.67 10.07
NPOKLR 0.00% 0.00% 23.78% 26.91% 34.47% 35.27% |D| = 50, 10e 7.82 9.46
Task Vector 0.00% 0.00% 14.43% 15.53% 21.92% 25.44% |D| = 50, 10e 8.93 8.69
RL 0.00% 0.00% 64.02% 59.68% 58.34% 54.08% |D| = 50, 10e 7.15 8.19
RLGDR 0.00% 0.00% 63.54% 56.00% 58.83% 55.20% |D| = 50, 10e 7.58 8.84
RM 2.30% 0.49% 45.53% 40.99% 46.06% 39.86% |D| = 50, 10e 6.48 7.55
RMGDR 3.81% 0.93% 53.11% 44.06% 47.68% 41.13% |D| = 50, 10e 7.25 7.51
WHP 0.00% 0.00% 18.97% 19.99% 33.12% 35.82% |D| = 50, 10e 6.35 7.38
WHPGDR 0.00% 0.00% 4.29% 5.27% 38.29% 41.13% |D| = 50, 10e 7.92 8.00
IDK 0.00% 0.00% 32.91% 32.96% 44.58% 44.80% |D| = 50, 10e 7.95 8.85
IDKGDR 0.00% 0.00% 30.91% 31.69% 47.82% 46.21% |D| = 50, 10e 7.81 8.94
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