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Abstract

Large Language Models (LLMs) have demon-001
strated strong capabilities as knowledge bases002
and significant in-context reasoning capabili-003
ties. However, previous work challenges their004
out-of-context reasoning ability, i.e., the ability005
to infer information from their training data,006
instead of from the context or prompt. This007
paper focuses on a significant facet of out-of-008
context reasoning: Out-of-Context Knowledge009
Reasoning (OCKR), which is to combine mul-010
tiple knowledge to infer new knowledge. We011
designed a synthetic dataset with seven repre-012
sentative OCKR tasks to systematically assess013
the OCKR capabilities of LLMs. Using this014
dataset, we evaluated the LLaMA2-13B-chat015
model and discovered that its proficiency in016
this aspect is limited, regardless of whether the017
knowledge is trained in a separate or adjacent018
training settings. Moreover, training the model019
to reason with complete reasoning data did not020
result in significant improvement. Training the021
model to perform explicit knowledge retrieval022
helps in only one of the tasks, indicating that023
the model’s limited OCKR capabilities are due024
to difficulties in retrieving relevant knowledge.025
Furthermore, we treat cross-lingual knowledge026
transfer as a distinct form of OCKR, and evalu-027
ate this ability. Our results show that the evalu-028
ated model also exhibits limited ability in trans-029
ferring knowledge across languages.030

1 Introduction031

In the realm of in-context learning, LLMs not032

only demonstrate significant reasoning capabili-033

ties (Kojima et al., 2022; Yao et al., 2023; Besta034

et al., 2023) but also concurrently exhibit exper-035

tise as knowledge bases in various academic and036

professional domains, including science, history,037

law, and finance (Petroni et al., 2019; Wei et al.,038

2023; AlKhamissi et al., 2022). However, it is039

unclear whether their reasoning ability is limited040

to in-context scenarios, or they can also perform041

out-of-context reasoning, which, as defined by pre- 042

vious studies (Berglund et al., 2023a), is “to re- 043

call facts learned in training and use them at test 044

time, despite these facts not being directly related 045

to the test-time prompt.” Berglund et al. (2023a) 046

showed that LLMs adapt their responding behav- 047

iors based on the given identity and the information 048

about the identity in the training corpus. However, 049

their investigation did not consider the capability 050

of utilizing knowledge acquired during training to 051

reason about new knowledge that does not exist in 052

the training data. 053

For instance, if an LLM knows from the training 054

data that Joe Biden was born in 1942 and Stephen 055

William Hawking shares the same birth year with 056

Joe Biden, can it infer Hawking’s birth year as 1942 057

without having been directly trained on this specific 058

fact? This kind of reasoning can be more intuitively 059

understood by being compared with In-Context 060

Learning (ICL) (Figure 1). This capability falls 061

under the definition of out-of-context reasoning and 062

is important for the performance and robustness of 063

LLMs in real applications.

Prompt

Joe Biden was born in 1942. Stephen 
William Hawking shares the same 

birth year with Joe Biden. What's the 
birth year of William Hawking ?

Non-answer-related data

Output

Train Data

William Hawking was born in 1942. 

Prompt

What's the birth year of William 
Hawking ?

Joe Biden was born in 1942. Stephen 
William Hawking shares the same 

birth year with Joe Biden. 

Output

Train Data

William Hawking was born in 1942. 

IN-CONTEXT OUT-OF-CONTEXT

Figure 1: In-Context vs Out-of-Context. In the In-Context
scenario, the relevant data is provided in the prompt to allow
the model to infer the answer. In the Out-of-Context scenario,
the relevant data is included directly in the training data, and
the model is then asked to infer the answer based on this
training.

064

This paper proposes the investigation of Out- 065

of-Context Knowledge Reasoning (OCKR), a vi- 066

tal component of out-of-context reasoning. We 067
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Combination Examples of T1 and T2 Feasibility and possible T̄

A ∧A → A
(x, birth_year, 2000)
(y, birth_year, 2000)

No, cannot infer new meaningful attributes

A ∧A → R
(x, birth_year, 2000)
(y, birth_year, 2000)

Yes, e.g.: (x, birth_year_equals, y)

A ∧R → A (R ∧A → A)
(x, birth_year, 2000)
(x, birth_year_equals, y)

Yes, e.g.: (y, birth_year, 2000)

A ∧R → R (R ∧A → R)
(x, birth_year, 2000)
(x, birth_year_equals, y)

No, cannot infer new meaningful relationships

R ∧R → A
(x, birth_year_equals, y)
(x, birth_year_equals, z)

No, pure relationships cannot infer attributes

R ∧R → R
(x, birth_year_equals, y)
(x, birth_year_equals, z)

Yes, e.g.: (y, birth_year_equals, z)

Table 1: Feasibility analysis of all possible combinations for the reasoning patterns. x, y, and z denote specific entities involved
in the training process. Considering the interchangeability of T1 and T2, redundant combinations are eliminated. For A∧A → A
and A∧R → R, it is difficult to derive meaningful new knowledge without borrowing other external knowledge. For R∧R → A,
attributes cannot be inferred from pure relationships. Consequently, we identify A ∧A → R, A ∧R → A, and R ∧R → R as
viable knowledge reasoning patterns.

propose a formal definition of the problem to fa-068

cilitate discussion. We discuss and design 7 re-069

lated tasks covering reasoning over different kind070

of knowledge, such as attributes (A) and relations071

(R), and construct corresponding datasets to sys-072

tematically evaluate the OCKR abilities. The evalu-073

ation on several open-source LLMs, e.g. LLaMA2-074

13B-CHAT (Touvron et al., 2023), Baichuan2-13B-075

CHAT (Yang et al., 2023), Pythia-12B (Biderman076

et al., 2023), shows that these LLMs have very077

limited OCKR ability.078

Intuitively, new knowledge can emerge during079

the training or inference phase. We also conduct080

experiments to assist the LLMs to perform OCKR081

in different phases, which serve as in-depth anal-082

yses for the potential difficulties of reasoning. In083

the training phase, we merge related knowledge084

into adjacent text, which may be easier for reason-085

ing. In the inference phase, we train the LLMs to086

learn the reasoning pattern, or provide them with087

chain-of-thought (COT) prompt, explicitly retriev-088

ing and applying the knowledge. We also study the089

cross-lingual OCKR as a special case.090

Taking LLaMA2-13B-CHAT (Touvron et al.,091

2023) as a representative model for the above anal-092

ysis, our main findings are:093

• The model shows limited OCKR ability even094

with knowledge occurs adjacently during095

training.096

• Training the model with reasoning examples097

does not lead to significant improvement, sug-098

gesting that enhancing reasoning ability in 099

general is insufficient for effective OCKR. 100

• With the help of CoT, the model achieves over 101

90% accuracy in one task (A ∧ A → R) but 102

does not surpass the random level in other two 103

tasks (A∧R → A and R ∧R → R). This in- 104

dicates that the model can effectively retrieve 105

attribute knowledge but struggles with cor- 106

rectly retrieving relational knowledge, which 107

might be a limiting factor in OCKR. 108

• In both the Separate and Adjacent settings, 109

the performance in cross-lingual scenarios sur- 110

passes that of the monolingual A ∧ R → A. 111

However, the overall performance are still 112

weak. 113

2 Problem Definition 114

2.1 OCKR Problems 115

An example of OCKR can be formally represented 116

as: 117

T1 ∧ T2 ∧ . . . ∧ Tn → T̄ (n ≥ 1) (1) 118

where T1, T2, . . . , Tn denotes knowledge in train- 119

ing data; T̄ denotes knowledge not in the training 120

data; with the constraint that T1, T2, . . . , Tn are 121

sufficient to imply T̄ . If a given model trained on 122

T1, T2, . . . , Tn can correctly answer question about 123

T̄ , , we say that the model has n-ary OCKR ability, 124

i.e. the model can infer T̄ from T1, T2, . . . , Tn. 125
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In this paper, we focus on the binary OCKR126

case where n = 2, i.e., T1 ∧ T2 → T̄ , which is the127

simplest case that allows knowledge to be reasoned128

between different entities.129

The knowledge considered in this study falls into130

two categories according to the knowledge graph131

taxonomy: Attributes (A) and Relations (R). They132

are involved with entities in triplets, i.e., (Entity,133

Attribute, Value) for attributes, (Entity, Relation,134

Entity) for relations (Kejriwal et al., 2021).135

By using A and R as the known knowledge and136

infer new knowledge, six potential combinations137

can be enumerated. Among them, only three com-138

binations can be aligned with feasible knowledge139

reasoning patterns. They are: Attribute ∧ Attribute140

→ Relationship (A∧A → R), Attribute ∧ Relation-141

ship → Attribute (A ∧R → A), and Relationship142

∧ Relationship → Relationship (R∧R → R). See143

Table 1 for details. Thus, we choose these three144

types of reason tasks for further study.145

2.2 Dataset Design146

This paper introduces the Inference Dataset for147

OCKR (ID-OCKR). The dataset encompasses148

seven subsets, including the three knowledge rea-149

soning patterns, each presented at both simple and150

hard levels, along with a subset specifically de-151

signed for evaluating cross-lingual capabilities. See152

Table 2 for details.153

Knowledge Assessing the model’s OCKR capa-154

bilities is non-trivial, because it is not easy to dis-155

criminate whether the knowledge is derived from156

the training data or actually exists in the training157

data. Furthermore, the LLMs language ability has a158

huge impact on its performance in different bench-159

marks. Therefore, it is essential to create a fictional160

set of knowledge that doesn’t rely on knowledge of161

existing facts, and minimize the language barrier162

in understanding the knowledge.163

Therefore, we choose a very simple attribute, i.e.164

the year of birth, and some simple relations based165

on this single attribute, i.e. birth in the same year,166

birth year greater (i.e. older), one year older, etc,167

to avoid complex knowledge understanding. For168

adding a little challenge in the reasoning process,169

there are two levels of tasks. For the simple level170

of the task, the relation is only about the equiv-171

alence of the attributes; while for the hard level,172

the relation may need a numerical comparison or173

calculation of attributes.174

Cross-lingual Task The motivation for construct- 175

ing a cross-lingual dataset stems from our recog- 176

nition of translation as a unique relation type that 177

links an entity to its translated counterpart. This 178

allows us to conceptualize cross-lingual knowledge 179

transfer as involving three components: attribute 180

knowledge in English (A), translation knowledge 181

(relation between English entity and the corre- 182

sponding entity in another language, i.e. R), and 183

attribute knowledge the other language (denoted 184

as A). Thus, the cross-lingual scenario can be for- 185

mally represented as a special form of A∧R → A. 186

To capture a wide range of linguistic diver- 187

sity, we selected nine languages based on their 188

widespread use and diverse linguistic families: Ger- 189

man (de), French (fr), Italian (it), Russian (ru), Pol- 190

ish (pl), Arabic (ar), Hebrew (he), Chinese (zh), 191

and Japanese (ja). See Table 3 for more details. 192

2.3 Datasets Construction 193

We utilize GPT-4(Achiam et al., 2023) to create fic- 194

titious entities for our dataset. The name of the en- 195

tities are constructed using fantastical words, such 196

as “ReverentDawn", to ensure they are rarely found 197

in the original corpus. 198

For each knowledge template listed in Table 2, 199

420 entities are created with fictitious name and ran- 200

domly assigned attributes (i.e. random birth years 201

between 1991 and 2010). The relation between 202

entities are decided based on the attributes of the 203

entities. The datasets scale is in the thousands. 204

We also utilize GPT-4 to generate 10 text tem- 205

plates for each attribute and relations. For con- 206

structing the training set, and all 10 templates are 207

used for describing the knowledge; while for the 208

test set, only one of the text templates are used to 209

determine the result. Examples of the generated in- 210

stances are presented in Table 9 in Appendix C. For 211

additional details on the organization of datasets, 212

please refer to Appendix D. 213

3 Methodology 214

3.1 Evaluation of OCKR 215

We perform training and test using the ID-OCKR 216

dataset. For training, we fine-tune the LLMs so 217

that the accuracy of responses to knowledge triples 218

in the training set exceeds 90% to ensure the LLM 219

learns the knowledge. 220

To test the OCKR of LLMs, we ask the model 221

to respond to the attribute or relations. For the 222

assessment of attributes, we use an exact matching 223
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Reasoning Patterns Knowledge Templates of Training
Data

Knowledge Template of Test Data

A∧A → R (simple)
(y, birth_year, year)
(z, birth_year, year)

(y, birth_year_equals, z)
(y, not_birth_year_equals, z′)

A∧R → A (simple)
(x, birth_year, year)
(x, birth_year_equals, y)
(x′, not_birth_year_equals, y)

(y, birth_year, year)

R∧R → R (simple)

(x, birth_year_equals, y)
(x, not_birth_year_equals, y′)
(x, birth_year_equals, z)
(x, not_birth_year_equals, z′)

(y, birth_year_equals, z)
(y, not_birth_year_equals, z′)

A ∧A → R (hard)
(y, birth_year, year)
(z, birth_year, year)

(y, birth_year_greater_than, z)
or (y, not_birth_year_greater_than, z)

A ∧R → A (hard)
(z, birth_year, year)
(y, one_year_older_than, z)
(y, not_one_year_older_than, z′)

(y, birth_year, year +1)

R ∧R → R (hard)

(x, birth_year_greater_than, y)
(x, not_birth_year_greater_than, y′)
(y, birth_year_greater_than, z)
(y′, not_birth_year_greater_than, z′)

(x, birth_year_greater_than, z)
(x, not_birth_year_greater_than, z′)

Cross-lingual
(xen, birth_year, year)
(xen, translation, xL)

(xL, birth_year, year)

Table 2: Overview of CompleteData datasets. This table summarizes the reasoning patterns together with the data templates
included in the dataset. The prime symbol (′) in y′ distinguishes it from y. The subscript L in xL stands for other languages. zolder
represents z that is older than or equal to y’s birth year, and zyounger represents z that is younger than y’s birth year.

ISO Countries Language Family
en US, UK Germanic
de Germany, Austria Germanic
fr France, Canada Romance
it Italy Romance
pl Poland Slavic
ru Russia, Belarus Slavic
ar Egypt, Algeria Afro-Asiatic
he Israel Afro-Asiatic
ja Japan Japonic
zh China (Mainland) Sino-Tibetan

Table 3: Correspondence between Languages, Countries, and
Language Families

of values. Since attributes cover a range of 20224

values, from 1991 to 2010, the random guess will225

have a matching rate of 5%. For the assessment of226

relations, the expected outcome is “Yes” or “No”,227

for the cases where the relation is valid or not,228

respectively. So the random level of matching rate229

is 50%.230

By comparing the performance of the trained231

model against random levels, the model’s OCKR232

capability is assessed.233

Intuitively, it is possible that the LLMs are infer-234

ring new knowledge during training or inference235

phase. To better understand the process of OCKR, 236

we also carried out evaluation and analyses in the 237

following scenarios where the LLMs are assisted 238

in different ways. 239

3.2 Assisting OCKR with Adjacent 240

Knowledge 241

In real-world training, different knowledge are 242

separated in different parts of the training data, 243

which may make it hard to perform direct infer- 244

ence with them. To help model reason in the train- 245

ing phase, we design a special setting where the 246

necessary knowledge for reasoning is placed ad- 247

jacently within the same context window, which 248

could simply be done by concatenating the text of 249

them. For convenience, we denote this special set- 250

ting as “Adjacent”, and denote the normal setting 251

as “Separate”. 252

3.3 Assisting OCKR with Reasoning Training 253

Although we design the evaluation to involve just 254

very simple reasoning, it is still possible that the 255

evaluated model does not know how to deal with 256

the knowledge. Thus we train the model with 257
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“complete reasoning data", aiming to enhance the258

model’s reasoning capabilities.259

More specifically, in case the model does not260

recognize that the type of knowledge of T1 and T2261

infer T̄ , we incorporate a number of (T1, T2, T̄ )262

as examples into the training set. If the model can263

understand the reasoning pattern in these examples,264

it may be able to reason for other cases where T̄265

not explicitly present in the training data. To elabo-266

rate, we introduced additional data into the simple267

versions of the three knowledge reasoning patterns,268

as illustrated in Figure 2.269

3.4 Assisting OCKR with Retrieval Hints270

Training with examples does not explicitly teach271

the model how to perform OCKR. Idealy, the model272

may need to retrieve existing knowledge and per-273

form reasoning with them. We employ the CoT274

approach (Kojima et al., 2022) to explicitly leading275

the model to perform the retrieval and reasoning276

step, which further assesses the model’s knowledge277

retrieval and reasoning capabilities.278

For example, for reasoning about whether two279

persons have the same birth year, the prompt asks280

the model to analyze the birth year of the two per-281

sons before give the answer. More examples are282

shown in Table 4.283

To make sure the model correctly apply the CoT284

reasoning, we trained the model for each reason-285

ing pattern with specific CoT templates (Table 4)286

and applied the same templates during testing. This287

strategy may significantly improve the model’s abil-288

ity in following the steps of thinking (Ho et al.,289

2022).290

3.5 Evaluation of Cross-Lingual OCKR291

As a special case of the A ∧R → A reasoning, we292

evaluate the cross-lingual OCKR task the same as293

the other tasks, but collect results for each consid-294

ered language separatly. We also test the Separate295

and Adjacent training settings. In the Adjacent296

setting, the translation of an entity is appended in297

parentheses directly after the original entity. This298

form is commonly employed in datasets such as299

Wikipedia, and we believe it facilitates a clearer300

understanding of global entities across diverse lin-301

guistic backgrounds. See Table 9 for examples.302

4 Experiments 303

4.1 Experiment Setup 304

The evaluation primarily utilized the LLaMA2- 305

13B-CHAT model, trained using the Low-Rank 306

Adaptation (LoRA) approach (Hu et al., 2021). We 307

employed LoRA to train Baichuan2-13B-CHAT, 308

Pythia-12B, and the fully-trained LLaMA2-7B- 309

CHAT and LLaMA3-8B-Instruct(Touvron et al., 310

2023) models as a supplement to the main experi- 311

ment. The training is executed on a setup of four 312

V100 GPUs, with each dataset requiring approxi- 313

mately two hours of training time. The experimen- 314

tal parameters and additional details can be found 315

in Appendix A. 316

4.2 Basic OCKR results 317

We conduct evaluation on six datasets, with both 318

the standard “Separate” and “Adjacent” training 319

scenario. For comparison, we also list the results 320

in an In-Context scenario. As shown in Table 5, 321

the experimental findings reveal that neither the 322

Separate nor the Adjacent training methods sig- 323

nificantly outperform the random baseline in any 324

dataset. However, the In-Context scenario demon- 325

strated notably strong performance, with most er- 326

rors being related to format or understanding is- 327

sues. 328

This surprising result suggests that with only 329

training on T1 and T2, the models struggle to 330

effectively grasp T̄ , indicating a relatively weak 331

OCKR capability. Even under the Adjacent train- 332

ing setting, where the knowledge requiring infer- 333

ence is placed within the same context window, the 334

model’s performance remained poor. This suggests 335

that it is challenging for the model to generate new 336

knowledge during the training process. 337

We applied the same training settings to 338

Baichuan2-13B-CHAT, Pythia-12B, and the fully- 339

trained LLaMA2-7B-CHAT and LLaMA3-8B- 340

Instruct. The results, presented in Appendix B 341

are consistent with those of LLaMA2-13B-CHAT, 342

showing that this is a common weakness among 343

models with this size of parameters. 344

4.3 Results with Reasoning Training 345

We employed training with complete reasoning 346

data to enhance the model’s reasoning capabilities. 347

As depicted in Table 6, across the three reasoning 348

datasets, the model’s performance is only slightly 349

higher than the random baseline. Ten thousand in- 350

stances are used for training these simple binary 351
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y

year

zequal?

equal equal

x

y zequal y zequal?

R+R->R(simple) A+R->A(simple) A+A->R(simple)

year year year

Figure 2: The diagram represents knowledge triples in the dataset, where each pair of points connected by an edge signifies a
knowledge triple. Rectangles denote entities, ellipses indicate attributes, and edges represent relationships. Solid black lines
represent the original training data, while dashed black lines represent the test data. This setup involves training on a portion of
the dashed black lines to learn the corresponding inference patterns and then testing on the remaining dashed black lines.

DataSets CoT Example

A ∧A → R
(simple)

Q: Did BlissfulHarbor and FrostMirage share the same birth year? Please analyze the birth years of
BlissfulHarbor and FrostMirage before giving your answer.
A: We know that BlissfulHarbor was born in the year 2010, and FrostMirage was born in the year 2010.
Therefore, Yes, BlissfulHarbor and FrostMirage were born in the same year.

A ∧R → A
(simple)

Q: In what year was XenoGlimmer born? Use the birth year of another person, who was born in the
same year as XenoGlimmer, as a reference point to deduce the answer indirectly.
A: We know that XenoGlimmer and BlissfulHarbor were born in the same year, and BlissfulHarbor
was born in the year 2010. Therefore, XenoGlimmer was born in the year 2010.

R ∧R → R
(simple)

Q: Did XenoGlimmer and MeadowGlitter share the same birth year? Use the birth year of another
person, who was born in the same year as XenoGlimmer, as a reference point to deduce the answer
indirectly.
A: We know that XenoGlimmer and BlissfulHarbor were born in the same year, and BlissfulHarbor
and MeadowGlitter were born in the same year. Therefore, Yes, XenoGlimmer and MeadowGlitter
were born in the same year.

Table 4: COT Examples for Three Simple Datasets: Utilizing connection templates generated by GPT-4, we link prior question-
and-answer templates to create the depicted COT data.

Dataset Random Separate Adjacent In-Context

A ∧A → R (simple) 50.0 50.8 51.8 100.0

A ∧R → A (simple) 5.0 5.0 6.0 100.0

R ∧R → R (simple) 50.0 50.5 52.5 89.3

A ∧A → R (hard) 50.0 50.8 52.6 84.7

A ∧R → A (hard) 5.0 4.0 6.0 100.0

R ∧R → R (hard) 50.0 52.3 51.5 86.5

Table 5: This table presents a performance comparison across various datasets and different scenarios. As observed, neither
Separate nor Adjacent configurations significantly surpassed the randomized baseline. However, the In-Context scenario
demonstrated notably better performance.

OCKR tasks. However, there was only slight im-352

provement compared to the baseline without train-353

ing. Thus, using complete reasoning data to im-354

prove the model’s reasoning capabilities does not355

effectively enhance the model’s OCKR abilities356

during the inference phase. This suggests that en-357

hancing reasoning ability is insufficient for effec-358

tive OCKR.359

4.4 Results with Retrieval Hints 360

We train the model to perform CoT to enhance 361

the model’s capability to retrieve the knowledge 362

necessary for reasoning. Note that The model is 363

thoroughly trained, so that all test samples could 364

correctly formulate retrieval queries based on the 365

training templates. The results, as illustrated in 366

Table 7, show that the A∧A → R scenario exhibits 367

strong performance, while the A ∧ R → A and 368

R ∧ R → R scenarios only surpass the random 369
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Dataset Random CompleteData

A ∧A → R (simple) 50.0 56
A ∧R → A (simple) 5.0 7.5
R ∧R → R (simple) 50.0 59.5

Table 6: Impact of Complete Reasoning data on Inference Outcomes. This table highlights the differential impact of employing
complete reasoning data in three reasoning patterns. None of the three reasoning patterns demonstrated significant improvement
over the random baseline.

baseline by a small margin.370

We further evaluate the retrieve accuracy of the371

test examples, and show them in Table 7. When372

retrieving only attribute-type knowledge, as in the373

A ∧A → R reasonings, the model performed well374

with 89.8% accuracy. Thus it obtained more accu-375

rate answers (93.5%). However, when retrieving376

relation-type knowledge, the model struggled to377

acquire accurate information (with 0% accuracy),378

leading to incorrect final answers (close to random379

level). This indicates that even if the model can de-380

termine the existence of a relationship between two381

entities, it is still challenging to retrieve the second382

entity based on the first entity and the relationship.383

This difficulty is analogous to the reversal curse384

(Berglund et al., 2023b).385

Our analysis indicates that, during the inference386

phase, for tasks involving relational knowledge, the387

model has difficulty completing OCKR tasks due388

to the inability to retrieve the correct knowledge.389

For tasks involving only attributes, the model also390

struggles without the use of CoT prompting, even391

with complete reasoning data. However, in the in-392

context scenario, the model performed well when393

the necessary knowledge was provided.394

We believe the difficulty in completing OCKR395

tasks lies in the retrieval of correct knowledge. CoT396

can explicitly retrieve attribute knowledge, thereby397

assisting the model in completing some reasoning398

tasks. This may explain why CoT can significantly399

improve performance on certain tasks.400

4.5 Results of Cross-Lingual Reasoning401

We also analyze the cross-lingual OCKR capabili-402

ties as a special form of A ∧ R → A. The results403

are presented Table 8. Our findings indicate that in404

cross-lingual scenarios, both the Separate and Ad-405

jacent training strategies outperform the standard406

A ∧R → A reasoning pattern. This suggests that407

the OCKR capabilities in cross-lingual scenarios408

are stronger than those in the standard A∧R → A409

scenarios.410

However, the Separate setting yields only moder- 411

ate performance, implying that training translation 412

data alone might offer limited benefits in enhanc- 413

ing the model’s cross-lingual OCKR capabilities. 414

The Adjacent setting marginally outperforms the 415

Separate setting in most languages, indicating that 416

in cross-lingual scenarios, generating knowledge 417

during the training phase remains challenging. 418

5 Related Work 419

Out-of-Context. Krasheninnikov et al. (2023) 420

discuss how LLMs tend to internalize text that ap- 421

pears authentic or authoritative and apply it appro- 422

priately in context. Berglund et al. (2023a) in- 423

vestigate LLM’s situational awareness, particularly 424

their ability to recognize their status as models and 425

whether they are in a testing or deployment phase, 426

proposing Out-of-Context Reasoning as an essen- 427

tial skill. They mainly investigated the ability to 428

train descriptive knowledge to alter model behavior. 429

In a different vein, Allen2023 et al. (2023) focus 430

on LLM’s ability to manipulate stored knowledge, 431

especially in tasks like retrieval, classification, and 432

comparison. They present a somewhat negative 433

conclusion regarding the capabilities of LLMs in 434

classification and comparison, which share similar- 435

ities with OCKR tasks. However, our approach dif- 436

fers significantly. Unlike their experiments, which 437

utilize models with smaller parameters and are 438

trained from scratch—prone to developing short- 439

cuts—we leverage the existing capabilities of larger 440

models and directly train on knowledge. Addition- 441

ally, berglund et al.(2023b) highlight the “Reversal 442

Curse" in LLMs, a limitation where models fail 443

to generalize learned sentence structures to their 444

reverse forms. 445

In-context. Brown et al. (2020) introduce the 446

concept of situational learning in LLMs, enabling 447

them to leverage a few examples and pre-trained 448

knowledge for improved task performance. Kojima 449

et al. (2022) explore LLM’s zero-shot reasoning 450

enhancement through task description integration, 451
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Dataset Random CoT Retrieve Acc.

A ∧A → R (simple) 50.0 93.5 89.8
A ∧R → A (simple) 5.0 7.5 0.0
R ∧R → R (simple) 50.0 52.0 0.0

Table 7: Performance in CoT Scenarios and Proportion of Correct Retrievals for Both Knowledge Elements. The results indicate
that the model performs well in scenarios requiring only attribute retrieval, but its performance significantly declines in tasks
involving relation retrieval. This is due to the model’s high accuracy in retrieving attribute knowledge, contrasted with its
significantly lower accuracy in retrieving relational knowledge.

Language Separate Adjacent

Random 5.0 5.0
de 18.0 18.0
zh 8.5 11.0
ar 4.0 6.0
he 6.5 9.0
ja 7.0 9.0
fr 8.5 10.0
it 8.5 9.0
pl 16.5 18.0
ru 9.0 12.5

Table 8: Evaluation of Cross-Lingual OCKR Capability. Con-
trasting with preceding findings, this table illustrates that cross-
lingual OCKR has better performance than ordinary mono-
lingual A ∧ R → A reasoning pattern. This underlines the
distinct advantages of cross-lingual contexts. The performance
in the Adjacent setting slightly surpasses that in the Separate
setting. However, both settings still have considerable room
for improvement.

allowing models to utilize inherent knowledge for452

generalization. Wei et al. (2022) demonstrate how453

LLMs can enhance complex reasoning with CoT454

prompting, crucial for intricate problem-solving.455

fang et al.(2021) first defines the problem of in-456

ferring Concepts Out of the Dialogue Context in457

dialogue summarization. hamilton et al. (2018) dis-458

cusses how to effectively predict complex logical459

queries on incomplete knowledge graphs.460

Cross-lingual. Ye et al. (2023) present a compre-461

hensive study comparing multilingual pre-trained462

models and English-centric models across vari-463

ous reasoning tasks. They discover that different464

reasoning tasks exhibit varying degrees of cross-465

lingual transferability, with logical reasoning show-466

ing the highest transferability across languages.467

Wang et al. (2023) introduced SeaEval, a com-468

prehensive benchmark designed to evaluate these469

models across a variety of aspects. Evaluation re-470

sults from SeaEval showed that discrepancies in471

performance across different languages are evident.472

Qi et al. (2023) propose a novel metric, Ranking- 473

based Consistency, to evaluate the consistency of 474

knowledge across languages independently from 475

accuracy. They find that in most languages increas- 476

ing model size improves factual probing accuracy 477

but does not significantly enhance cross-lingual 478

consistency. Gao et al. (2024) constructed three 479

types of testing datasets to evaluate cross-lingual 480

knowledge alignment. Their research found that 481

multilingual pretrained models still exhibit imbal- 482

ances in performance across different languages, 483

facing significant challenges in aligning more com- 484

plex factual knowledge. 485

6 Conclusion 486

This study comprehensively assesses the Out-of- 487

Context Knowledge Reasoning capabilities of a 488

LLM across various reasoning tasks and different 489

scenarios. OCKR may occur during either the train- 490

ing phase or the inference phase, with the inference 491

phase further divided into knowledge retrieval and 492

reasoning based on retrieved knowledge. 493

Experiments demonstrated that fundamental 494

OCKR capabilities are quite weak. Even when 495

merging related knowledge into adjacent text, 496

LLMs struggle to generate new knowledge directly 497

during the training phase. 498

During the inference phase, enhancing reason- 499

ing ability alone proves insufficient for effective 500

OCKR. When utilizing Retrieval Hints, the model 501

excels at retrieving attribute knowledge but strug- 502

gles with retrieving correct relational knowledge. 503

Consequently, the model faces difficulties in com- 504

pleting all types of OCKR tasks. This suggests 505

that the primary bottleneck for OCKR lies in the 506

challenge of accurately retrieving knowledge. 507

Cross-lingual OCKR capabilities are stronger 508

compared to standard A ∧ R → A scenarios. 509

However, the overall performance of cross-lingual 510

OCKR remains relatively weak. 511
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Limitations512

One major limitation of this study is that the eval-513

uation is restricted to a few selected models, with514

the largest model being only 13B parameters. This515

limitation potentially prevents us from assessing516

the capabilities of the most advanced models, such517

as GPT-4. This constraint is primarily due to the518

limited computational resources available. With519

sufficient resources and access to more advanced520

models, we could employ the same methodology521

to evaluate these models’ OCKR capabilities.522

Another limitation is that this study only evalu-523

ates the models’ OCKR abilities using supervised524

fine-tuning. It does not consider the impact of525

other training stages, such as reinforcement learn-526

ing from human feedback (Zheng et al., 2023), on527

the models’ OCKR abilities.528

Ethics Statement529

The authors declare no competing interests. All530

datasets utilized in this evaluation are sourced from531

publicly available repositories and contain no sen-532

sitive information, such as personal data. Data533

generated by ChatGPT and other models have been534

verified to be non-toxic and are used exclusively535

for research purposes.536
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Knowledge Triple Data Example

(x,birth_year_equals,y) Q: Did XenoGlimmer and MeadowGlitter share the same birth year?
A: Yes, MeadowGlitter and XenoGlimmer were born in the same year.

(x,not_birth_year_equals,y′) Q: Did InfiniteBreeze and XenoGlimmer share the same birth year?
A: No, InfiniteBreeze and XenoGlimmer were not born in the same year.

(y,birth_year,year) Q: In what year was XenoGlimmer born?
A: XenoGlimmer was born in the year 2010.

(y,birth_year_greater_than,zsmall) Q: Does GlacialHarmony have more years of life than MeadowGlitter?
A: Yes, GlacialHarmony does have more years of life than MeadowGlitter.

(y,not_birth_year_greater_than,zlarge) Q: Does GlacialHarmony have more years of life than InfiniteMeadow?
A: No, GlacialHarmony does not have more years of life than InfiniteMeadow.

(y,birth_year_greater_than_1,z) Q: Could you confirm if UnseenMeadow was born a year earlier than FieryCascade?
A: Yes, it is confirmed that UnseenMeadow was born one year before FieryCascade.

(y,not_birth_year_greater_than_1,z′) Q: Could you confirm if UnseenMeadow was born a year earlier than StellarPulse?
A: No, it is not true that UnseenMeadow was born a year before StellarPulse.

(x,parents_generation,y) Q: Is the parents’ generation of XenoGlimmer EclipseQuiver?
A: Yes, the parents’ generation of XenoGlimmer is EclipseQuiver.

(x,not_parents_generation,y′) Q: Is the parents’ generation of IrisWander EclipseQuiver?
A: No, the parents’ generation of IrisWander is not EclipseQuiver.

(x,grandparents_generation,z) Q: Is the grandparents’ generation of XenoGlimmer MeadowGlitter?
A: Yes, the grandparents’ generation of XenoGlimmer is MeadowGlitter.

(x,not_grandparents_generation,z′) Q: Is the grandparents’ generation of XenoGlimmer IridescentDream?
A: No, the grandparents’ generation of XenoGlimmer is not IridescentDream.

(xde,birth_year,year) Q: In welchem Jahr wurde XenoSchimmer geboren?
A: XenoSchimmer wurde im Jahr 2010 geboren.

(xen,translation,xde) Q: Could you convert the upcoming English text to German?
Input: XenoGlimmer
A: XenoSchimmer

Adjacent
(x,birth_year_equals,y)
(x,birth_year_equals,y)

Q: Did EclipseQuiver and XenoGlimmer share the same birth year? Did Mead-
owGlitter and XenoGlimmer share the same birth year?
A: Yes, EclipseQuiver and XenoGlimmer were born in the same year. Yes, Mead-
owGlitter and XenoGlimmer were born in the same year.

Adjacent
(xen,birth_year,year)
(xen,translation,xde)

Q: Can you tell me the birth year of MysticDawn (German: MystischerMorgen)?
A: The birth year of MysticDawn (German: MystischerMorgen) is 1992.

Table 9: Illustrative Examples of Knowledge Triples and Corresponding Data

• LLaMA-Factory (Zheng et al., 2024, Apache-721

2.0 license), a library that provides a unifying722

way to easily fine-tune large language models723

with parameter efficient fine-tuning technique724

like LoRA.725

A.2 Hyperparameters726

For model inference, the temperature parameter is727

set to 0. During fine-tuning in the knowledge base,728

we configured the training batch size to 128 and set729

gradient accumulation steps at 4. The maximum730

number of steps is limited to 300. We applied the731

LoRA modifications with a rank of 128, an alpha732

value of 16, and a dropout rate of 0.05. The learning733

rate is varied among 2e-4, 4e-4, and 8e-4, selecting734

the optimal result for our experiments.735

In the context of cross-lingual fine-tuning, the736

training batch size is maintained at 16, with gra-737

dient accumulation steps set to 4 and the number738

of training epochs to 5. The LoRA configuration739

remained the same as in the knowledge base fine-740

tuning, with a rank of 128, alpha of 16, and dropout741

of 0.05. The learning rate for these experiments is 742

set to 2e-4. 743

A.3 Computation resources 744

Our computational resources were limited to V100 745

GPUs, allowing us to fine-tune 13B models with 746

LoRA or fully fine-tune 7B models. 747

B Validation of Results with Additional 748

Models 749

To further validate the accuracy of our findings and 750

to ensure that the limited OCKR capabilities are 751

not due to constraints specific to the LLaMA model 752

or the LoRA training method, we applied the same 753

training settings from the Basic OCKR experiments 754

to Baichuan2-13B-CHAT, Pythia-12B, and the 755

fully-trained LLaMA2-7B-CHAT and LLaMA3- 756

8B-Instruct. 757

The experimental results are presented in Tables 758

10, 11, 12 and 13 respectively. The outcomes indi- 759

cate that, similar to LLaMA2-13B-CHAT, none of 760
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the three models significantly surpassed the random761

baseline in both Separate and Adjacent training set-762

tings. These consistent findings suggest the inher-763

ent limitations of the current models in achieving764

robust OCKR capabilities.765

C Data Sample766

The actual training data examples corresponding to767

the knowledge triples in the article can be seen in768

Table 9.769

D Additional detailed description of the770

dataset771

In this section, we introduce additional details on772

how the dataset is processed.773

For interchangeable relations, such as birth in the774

same year, the order of describing the two entities775

in the text is randomly decided. For other relations,776

training and testing text have the same order of777

mentioning the two entities, to avoid the reversal778

curse (Berglund et al., 2023b).779

In the A ∧ A → R (hard) dataset, due to the780

presence of the largest birth year, the individual781

with the latest birth year is excluded from com-782

parisons. In the A ∧ A → R and Cross-Lingual783

Reasoning datasets, the lack of training templates784

corresponding to the test templates makes accu-785

rate testing challenging. To address this, we added786

a small amount of data to train the model on the787

format of answering questions. These additional788

entities do not have direct relationships with other789

entities in the dataset, and the extra data cannot790

form inference relations with the original data.791
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Dataset Random Separate Adjacent

A ∧A → R (simple) 50.0 50.5 50.0

A ∧R → A (simple) 5.0 4.5 7.5

R ∧R → R (simple) 50.0 51.5 50.25

A ∧A → R (hard) 50.0 54.7 52.6

A ∧R → A (hard) 5.0 6.5 6.0

R ∧R → R (hard) 50.0 50.25 50.75

Table 10: Basic OCKR experiment results for the Baichuan2-13B-CHAT model.

Dataset Random Separate Adjacent

A ∧A → R (simple) 50.0 50.75 53.25

A ∧R → A (simple) 5.0 5.5 7.5

R ∧R → R (simple) 50.0 50.5 52.25

A ∧A → R (hard) 50.0 56.8 59.7

A ∧R → A (hard) 5.0 6.0 7.5

R ∧R → R (hard) 50.0 50.75 50.5

Table 11: Basic OCKR experiment results for the Pythia-12B model.

Dataset Random Separate Adjacent

A ∧A → R (simple) 50.0 51.0 49.0

A ∧R → A (simple) 5.0 5.5 5.5

R ∧R → R (simple) 50.0 52.5 50.25

A ∧A → R (hard) 50.0 50.0 54.47

A ∧R → A (hard) 5.0 6.0 5.5

R ∧R → R (hard) 50.0 49.5 52.75

Table 12: Basic OCKR experiment results for the LLaMA2-7B-CHAT model.

Dataset Random Separate Adjacent

A ∧A → R (simple) 50.0 52.25 49.3

A ∧R → A (simple) 5.0 8.0 3.5

R ∧R → R (simple) 50.0 50.8 50.8

A ∧A → R (hard) 50.0 53.5 53.0

A ∧R → A (hard) 5.0 7.5 6.0

R ∧R → R (hard) 50.0 49.3 49.8

Table 13: Basic OCKR experiment results for the LLaMA3-8B-Instruct model.
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