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Abstract

Multi-agent reinforcement learning (MARL) is a powerful framework for studying emergent
behavior in complex agent-based simulations. However, RL agents are often assumed to be
rational and behave optimally, which does not fully reflect human behavior. In this work,
we propose a new, more human-like RL agent, which incorporates an established model of
human-irrationality, the Rational Inattention (RI) model. RI models the cost of cognitive
information processing using mutual information. Our RIRL framework generalizes and is
more flexible than prior work by allowing for multi-timestep dynamics and information chan-
nels with heterogeneous processing costs. We demonstrate the flexibility of RIRL in versions
of a classic economic setting (Principal-Agent setting) with varying complexity. In simple
settings, we show using RIRL can lead to optimal agent behavior policy with approximately
the same functional form of what is expected from the analysis of prior work, which utilizes
theoretical methods. We additionally demonstrate that using RIRL to analyze complex,
theoretically intractable settings, yields a rich spectrum of new equilibrium behaviors that
differ from those found under rationality assumptions. For example, increasing the cognitive
cost experienced by a manager agent results in the other agents increasing the magnitude of
their action to compensate. These results suggest RIRL is a powerful tool towards building
AI agents that can mimic real human behavior.

1 Introduction

Multi-agent reinforcement learning (MARL) has shown great utility in complex agent-based model (ABM)
simulations (e.g., in economics, games, and other fields (Zheng et al., 2020; Baker et al., 2020; Leibo et al.,
2017; Yang et al., 2018). ABM is an influential field of research which examines various real-world systems
through simulation to quantify the potential impacts of various policies (eg. market (Bozanta & Nasır, 2014)
or environmental impact (Raihanian Mashhadi & Behdad, 2018) simulations). It has the promising potential
to allow for better, more informed policies in critical applications areas, such as federal government economic
policy (Farmer & Foley, 2009). Classically, in ABM, designers programmatically specify the behavioral rules
of agents. This may be difficult in complex simulations, so in the MARL approach, designers instead specify
the agents’ objective functions and the reinforcement learning (RL) agents autonomously learn behaviors to
optimize their objectives.

However, using rational RL agents is problematic when simulating systems with human agents. Rational
agents execute the objective-maximizing behavior, which can differ greatly from established models of hu-
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man decision-making. But humans often act non-rationally: they might not optimize perfectly for their
objectives, and it is unclear to what degree human behavior can be described using a single (composite)
scalar optimization objective. Such non-rational behavior is referred to as bounded rationality.

Prior economics literature has shown that modeling bounded rationality during decision-making gives results
and implications that are significantly different from those obtained using rationality assumptions (Sims,
2003; Maćkowiak & Wiederholt, 2011; Jiang et al., 2019). Therefore, it is important to account for bounded
rationality when simulating human(-like) agents. To address this issue, there has been a body of research
in the economic literature that analyzes systems when human decision making follows established models
of human-irrationality (Barazza & Strachan, 2020; Wu & Chen, 2014; Mullainathan, 2002; Huang et al.,
2013; Ren & Huang, 2018), such as under the Rational Inattention model (Sims, 2003; Hoiles et al., 2020;
Mackowiak et al., 2021; Jiang et al., 2019).

In the direction of this prior work, we study incorporating an explicit model of bounded rationality into
MARL simulations. A key issue in prior work is that explicitly finding agent behaviors, given an oper-
ational definition of bounded rationality, can be a challenging learning and optimization problem. Here,
reinforcement learning provides a powerful conceptual and algorithmic framework to model bounded ratio-
nal behaviors. To this end, we introduce Rational Inattention Reinforcement Learning (RIRL), a MARL
framework with agents that follow the well-established Rational Inattention (RI) model of bounded ratio-
nality (Sims, 2003; Mackowiak et al., 2021). The RI model attributes human irrationality to the costliness
of mental effort, e.g., attention, required to identify the optimal action. Mathematically, the RI framework
measures these costs as the mutual information (MI) between the variables considered by the decision pro-
cess and the decisions ultimately made. This captures the intuition that a policy has a higher cognitive cost
if its execution requires more information about the state of the world and thus more attention.

MI-based rewards have been used in RL, (e.g. Leibfried & Braun (2016); Leibfried et al. (2018); Grau-
Moya et al. (2018); Leibfried & Grau-Moya (2020) use RI-style MI costs to regularize learning) but not to
model sub-optimal behavior. When used to model sub-optimal behavior, RIRL can rationalize seemingly
sub-optimal behavior by including this cognitive cost in the reward function, i.e., by adding the MI cost(s).
That is, the “rational” behaviors of an RIRL-actor can mimic human-like bounded rationality.

1.1 Contributions

In this paper, we introduce a novel and flexible policy class for analyzing multi-agent systems with agents
that are boundedly rational. The main contributions of this work are:

1. We propose RIRL, a framework for modeling bounded-rationality which can analyze complex sce-
narios, not previously possible. Our method allows for the analysis of settings where different
information has different observation or processing costs and multi-timestep settings.

2. We validate RIRL’s modeling capabilities in classical economic settings, where the majority of prior
work focused on theoretically solving for the agent’s behavior. We demonstrate in a simpler, previ-
ously studied setting that our results match the expected functional form. Additionally in a more
complex, theoretically intractable setting, our method is able to find equilibria of agent behavior
that are different from rational equilibria and can be used to provide detailed analysis of these
phenomena.

Modeling bounded rationality in complex environments. RIRL extends the single-timestep frame-
work proposed by Peng et al. (2017), which decomposes decision-making into stochastic perception followed
by stochastic action, each subject to its own MI cost. RIRL provides a novel boundedly-rational policy class
that greatly expands this framework to multiple information channels with heterogeneous costs, hidden-state
policy models, and sequential environments. To achieve this increased modeling power, our architecture uses
methods significantly different from prior work, such as using deep mutual information estimation modules
to allow for multiple channels and using an LSTM to account for multiple timesteps. This allows RIRL
to analyze settings with rich cognitive cost structures, e.g., when information about state variables have
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different observation difficulty. For example, in hiring, a candidate’s past job performance may be more
relevant but harder to evaluate than her employment history.

Evaluation in the Principal-Agent setting. To illustrate our framework’s modeling abilities, we evalu-
ate RIRL in classical economic settings, specifically two Principal-Agent (PA) problems (Grossman & Hart,
1992; Sannikov, 2008; Haubrich, 1994) and we consider when the Principal is boundedly rational. Typical
economics research rely on theoretical analysis to analyze these settings. We use RIRL to model information
asymmetry between the Principal and the Agents they are incentivizing, i.e., it is hard for the Principal to
obtain information about the Agents. Real-world PA experiments have shown that bounded rationality is
key to explaining marked deviations between equilibria reached by human participants and theoretical pre-
dictions (Erlei & Schenk-Mathes, 2017). Prior work considered bounded rationality assumptions but found
it to be difficult to analyze theoretically (Mirrlees, 1976); research in this direction is sparse.

We show that RIRL allows us to analyze generalized PA problems that are analytically intractable, such as a
sequential PA problem with multiple Agents and heterogeneous information channels. Across all settings, we
observe that equilibrium implications depends strongly on the cost(s) of attention and differs from that under
rational assumptions sometimes in ways that are hard to intuitively predict. We observe that increasing
Principal inattention can either increase Agent welfare due to increased compensation or decrease Agent
welfare due to encouraging additional work. Compared with rational agents, we additionally observe the
emergence of different strategies, such as Agents choosing to misrepresent their ability, classically referred to
as signaling (Spence, 1973). Our results show that RIRL can be a powerful tool to model boundedly rational
behavior and analyze its emergent consequences in multi-agent systems.

2 Related Works

Multi-Agent Reinforcement Learning for Agent-Based Simulation. Agent-Based Models (ABM)
are a popular tool used to study real-world systems (e.g., organizations or market systems) and discover
emergent behavior through simulation with fixed or manually-specified agent behaviors (Bonabeau, 2002).
Instead, Multi-Agent Reinforcement Learning (MARL)-based simulations use RL agents which autonomously
learn utility-maximizing behavior, so designers do not need to specify behavioral rules. MARL has been
used to study tax policy (Zheng et al., 2020; 2021; Trott et al., 2021), games (Baker et al., 2020), and social
dilemmas (Leibo et al., 2017) among others (Yang et al., 2018). However, RL agents are mostly assumed
rational which contradicts how humans make decisions. Some recent work considers bounded rationality in
MARL by accounting for cognitive limitations when reasoning about the behaviors of other agents (Evans
& Prokopenko, 2021; Wen et al., 2019; Łatek et al., 2009). We model a complementary source of bounded
rationality: the cognitive costs of attending to all available information when forming a decision.

Models of Irrationality. Behavioral economics has shown extensively that human decision-making is not
fully rational but instead features many cognitive biases (Caverni et al., 1990). Bounded rationality (Simon,
1957) attributes these human irrationalities to resource limitations, e.g., bounded cognitive capabilities or
costliness of using (more) time to make decisions. Simon (2000) gives a high-level overview of different
ways to implement bounded rationality, but did not yet construct explicit solutions for (optimal) agent
policies (under bounded rationality). Our work relates to this by learning explicit solutions in a setting with
multiple strategic agents. As another example, Hernandez & Ortega (2019) studied bounded rationality in
organizations and its impact on growth.

Rational Inattention (RI) is a well-established model of bounded rationality which models the cognitive cost
of decisions as the mutual information between variables relevant to the decision and the decision itself (Sims,
2003; Mackowiak et al., 2021). RI has been tested in real world experiments (Dean & Neligh, 2017) and
used to model human behavior in a wide variety of domains (Hoiles et al., 2020; Mackowiak et al., 2021).
Closest to our work, Jiang et al. (2019) study a multi-agent system for traffic route choice under RI but
where the agents do not react to each other’s actions. Another line of work uses human behavioral data with
deep learning to model human cognition (Kubilius et al., 2019; Battleday et al., 2017; Ma & Peters, 2020)
or predict human behavior (Bourgin et al., 2019; Kolumbus & Noti, 2019; Hartford, 2016). In contrast, our
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ABM approach examines the implications of RI in complex settings where experimental data are presently
unavailable.

Mutual information and rational inattention. MI has been extensively studied in the intrinsically
motivated RL literature for curiosity-driven exploration and unsupervised skill and option discovery (Still
& Precup, 2012; Campos et al., 2020; Mohamed & Rezende, 2015; Gregor et al., 2016; Eysenbach et al.,
2019), often with differing techniques used to measure MI. Recently MI-based rewards have been used to
regularize exploration (Grau-Moya et al., 2018; Leibfried & Grau-Moya, 2020). They have also been used
to regularize policy learning (Malloy et al., 2021) to learn better policies. However this work differs as it
does not consider modeling bounded rationality for more realistic MARL simulations. Comparatively, very
little work has considered MI-based rewards for modeling boundedly rational behavior (Ortega et al., 2015;
Peng et al., 2017). Genewein et al. (2015) introduced a mutual information between action and world state.
However, it focuses on the single-agent setting. In our paper, we consider multiple (strategic agents), which
significantly complicates finding the optimal policy for the bounded rational agent, and the corresponding
best-response of the other agent(s). To our knowledge, there is with no prior work considering the domain
of multi-agent simulations.

For example, our policy class considers allowing a rich set of behavior to be modeled, such as different
attention costs on different parts of the observation space. Additionally, due to the difference in settings, we
also draw different conclusions, focusing on the implications of modeling human irrationality such as which
agents benefit and how metrics, like equity, evolve.

Principal-Agent problems. In addition to our guiding example, Principal-Agent problems have been
used to describe various settings, including politics and insurance (Miller, 2005; Grossman & Hart, 1992).
Prior economics literature mainly use analytical methods and narrow modeling assumptions, e.g., that
all stochasticity follows Brownian motion (Sannikov, 2008) or certain separability conditions are satisfied
(Grossman & Hart, 1992). Generally, Principal-Agent settings fall under the category of Stackelberg games
where it has been shown computing optimal strategies can be NP-hard (Korzhyk et al., 2010). Instead,
MARL can study complex setups that are analytically intractable. Shu & Tian (2019); Shi et al. (2019);
Ahilan & Dayan (2019) studied coordinating cooperation in a Principal-Agent model, with an RL Principal
learning to incentivize Agents to achieve an overall goal. However, they do not consider bounded rationality.

Bounded rationality and reinforcement learning. Kokolakis et al. (2021) models bounded rationality
using level-k policies instead of perfect rationality, which converge to the Nash equilibrium as k increases.
Erevl & Roth (2002) use RL to model bounded rationality agents in iterated prisoners dilemmas, extending
prior analytical models in game theory. Duéñez-Guzmán et al. (2021) studies how statistical discrimination
may arise in agents due to (limitations on) information processing using a theoretical model and RL agents.

3 Preliminaries

We consider multi-agent simulations in the form of partially-observable Markov Games (MGs), formally
defined by (S, A, r, T , γ, O, I) (Sutton & Barto, 2018). Here S is the state space of the game, A is the
combined action spaces of the actors, and I are actor indices. Generally, the full state is not observable
to each actor (for example, actors may not be able to observe the full policy of other actors, and only the
history of actions the other actors took). We use oi = O(s, i) to denote the portion of the game state s that
actor i can observe and use for their policy. In addition, oi may include a (possibly learnable) encoding of
the observation history. Each game episode has a horizon of T ≥ 1 timestep(s). Each timestep t, actor i
selects action ai,t, sampling from its policy πi (ai,t|oi,t). Given the sampled actions, the transition function
T determines how the state evolves. Each actor’s objective is encoded in its reward function ri(s, a), where
boldface denotes concatenation across actors.1

1Reward vs utility: In the economics literature an agent’s reward is often modeled by its utility (its measure of happiness)
and denoted by u. Similarly, rewards and utilities model incentives that motivate an agent’s behavior. In this work, we will
use “reward”, denoted by r, throughout to refer to these concepts.
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Traditionally, prior work considers the case where the actor optimizes its policy πi to maximize its γ-
discounted sum of future rewards:

π∗
i = arg max

πi

Eπ,T

[∑
t

γtri(s, a)
]

. (1)

Using the subscript notation where subscript i (eg. at;i denotes the vector element relating to actor i and
−i (e.g. at;−i) indicates a vector with elements that are not pertinent to actor i.

π∗
i = arg max

πi

Eπi,π∗
−i

,T

[∑
t

γtri(st, at;i, a∗
t;−i)

]
, (2)

s.t. a∗
t;j ∼ π∗

j (.|ot), π∗
j (.|ot) = arg max

πj

Erj ,π−i,T

∑
v≥t

γvrj (sv, av;i, av;−i)

∣∣∣∣∣∣ at;i

 , ∀j ̸= i. (3)

Equation 2 states that the actor optimizes its return assuming the other actors play a best response, i.e.,
use a policy π∗

j that maximizes their return.

3.1 Modeling Bounded Rationality using Rational Inattention

While RL can be used to discover (approximately) reward-maximizing policies, such rational behavior fails
to account for characteristic irrational human behavior. Rational Inattention models bounded rationality
using a modified objective that includes a cost to the mutual information I(ai; oi) between the (observable)
state of the world oi and the actions ai ∼ πi(·|oi). This definition captures the intuition that if the agent
puts in more effort to pay attention to oi, its action ai likely becomes more correlated with the observation
oi, and thus Mutual Information is high.

We optimize for the policy of the rationally-inattentive objective:

π†
i = arg max

πi

(
Eπ

[∑
t

γt (ri(st, at) − λI(ai,t; oi,t))
])

. (4)

Note that this is equivalent to learning the optimal policy for an adjusted reward function: r†
i (st, at) =

ri(st, at) − λĨ(ai,t; oi,t), where

Ĩ(ai,t; oi,t) = log p(ai,t, oi,t)
p(ai,t)p(oi,t)

(5)

is a Monte Carlo estimate of I(ai; oi), and λ is the cost per bit of information. Here p(ai, oi), p(ai), and
p(oi) are the joint and marginal distributions over ai and oi induced by the environment and policies π.

To build intuition for the use of I, imagine the extreme case where the actor pays no attention to oi (e.g.
the actor selects actions uniformly at random). The probability of a given action being selected wouldn’t
depend on the observation and the MI cost I(ai; oi) would be 0. On the other hand, if the action correlates
with the observation, the actor is assumed to have paid attention to oi in order to select ai and I > 0. From
a learning perspective, the MI cost acts as a regularizer which encourages simpler policies, i.e., where actions
are less dependent on the precise state of the world and/or history of observations. Rationally inattentive
actors therefore are incentivized to select which information they use, making inattention an endogenous
source of information asymmetry. From an economic perspective, the attention cost may model limits on
information processing and hence encourage different types of actor strategies. Alternatively, attention costs
could reflect actual expenditures, i.e., monitoring costs.

3.2 Multiple Information Channels

To model more general forms of rational inattention, we extend our framework to support:
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1. multiple channels of information with heterogeneous cognitive costs, and

2. modeling which observation channel an actor pays attention to.

For example, when buying a used car it is easier to see car prices (which might still take time) than ascer-
taining the actual condition of the car.

As such, we first extend the action-perception decoupling strategy of Peng et al. (2017) to model π(a|o) as
a stochastic perception module q(y|o) (encoder) followed by an action module ω(a|y) (decoder). The RI
reward then becomes:

r† = r(s, a) − λqIq(y; o) − λωIω(a; y), (6)

where we omitted subscripts for clarity. In the above, recall s denotes the true state of the world and o
denotes the portion observable to the agents. Parameters λq and λω control the amount of inattention
simulated. This decomposes the attention cost into: (1) the cost of paying attention to the observation o,
and (2) the cost of using that information to select an action.

Second, we extend the encoder to capture attention costs that depend on M parallel observations
{o1, . . . , oM }, giving an RI reward function:

r† = r(s, a) −
M∑

i=1
λiI(yi; oi) − λωIω(a;

[
y1, . . . , yM

]
), (7)

where brackets denote concatenation, and each channel has its own attention cost λm of observing om.

4 Modeling and Training Boundedly Rational Actors with RIRL

We now describe a practical approach to estimating the attention cost in Equation 4 and solving the opti-
mization problem in Equations 2 and 3.

These optimization problems present several technical challenges: (i) Finding the optimal policy is challenging
in a sequential setting and with multiple actors. (ii) Computing the true mutual information cost I is
computationally expensive.

Our framework RIRL solves the policy optimization problem using reinforcement learning (RL), while we
propose a sampling-based estimator for I that works well in practice.

4.1 Mutual Information Estimation

The key challenge in computing I is that computing p(o) requires full knowledge of the dynamics of the
Markov Game, while computing p(a) requires marginalizing over all observations (which can be intractable
when, e.g., the observation space is high-dimensional). Hence, we use a Monte Carlo estimate Ĩπ(at; ot)
of I(a; o), using data {(a, o) : a ∼ π} collected while executing policy π. Note an unbiased estimator has
I = Eπ

[
Ĩ
]
. The reward for a rationally inattentive actor is then computed as r†

t;i = rt;i − λĨπi(at;i; ot;i).

Estimating Mutual Information using Discriminators. Given a pair (a, o) for a single agent (omitting
subscripts for clarity), we estimate Ĩπ(a; o) from the ratio between log p(a, o) (the log-odds under the joint
distribution) and log p(a)p(o) (the log-odds under the factorized distributions). This ratio can be estimated
using a discriminator model Dπ(a, o) that learns to classify whether the sample (a, o) came from the joint
or factorized distribution. We generate samples from p(a, o) by sampling trajectories using π, while samples
from p(a)p(o) can be generated by creating random pairs (a, o) from a batch of sampled trajectories. This
approach is inspired by the structure of Generative Adversarial Networks Goodfellow et al. (2014), which
use discriminators to learn to synthesize images that are almost indistinguishable from real images. This
technique for MI estimation can be applied for any pair of variables within some generative process. We
leverage this generality throughout RIRL.

Our framework is compatible with any MI estimator. Our approach is simple and effective, although other
MI estimation techniques have been proposed, e.g., Belghazi et al. (2018).
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Limited variance of our mutual information estimator. In principle, this sample-based estimator
could have high variance, but in practice, even using a single sample to compute Ĩ is effective. In particular,
estimating I using data sampled from the RL policy works well.

There are multiple reasons for this. First, we train a discriminator to estimate the ratio p(a,o)
p(a)p(o) , not the

individual probabilities itself. Second, the RL policy typically changes slowly during training. Hence, there
is only a small amount of distribution shift in the rollout samples across training steps. So using a single
example could be high variance, but training still works when training the discriminator slowly enough.
Third, the pair (a, o) of a randomly sampled a and a randomly sampled o can be taken from a batch of
trajectories that were collected under different states s, because such randomly sampled pairs are more likely
to be independent across trajectories as the policy changes.

As such, if we sampled many trajectories from the same policy π, and given a discriminator with enough
model capacity, it should have the capacity to learn the true odds-ratios. With a smaller number of samples,
training the discriminator needs to be done slowly enough, but in practice, our approach is sufficient to learn
meaningful MI estimates, i.e., that sufficiently distinguish independent vs dependent samples.

4.2 Recurrent Policies for Sequential Settings and Heterogeneous Attention Costs

In addition, we aim to apply our framework in the sequential setting and with heterogeneous attention costs.
To do so, we use a recurrent model that can summarize historical observations. In particular, such models
can learn to strategically allocate attention over time.

Before describing details, we provide the following rough sketch of our policy architecture: (i) The observation
is first separated into distinct “channels”. (ii) For each channel, there is an encoding module which converts
its portion of the observation into a noisy encoding. (iii) The encodings from each channel are combined and
then fed into a recurrent neural network model to update its recurrent state. (iv) The combined encodings
and the updated recurrent state are fed into a stochastic action module to produce a probability distribution
over actions and sample accordingly.

4.2.1 Encoder Modules

For each channel, we use the reparameterization trick Kingma & Welling (2013) to compute the mean and
standard-deviation of a Gaussian distribution over ym

t , which is the noisy encoding of om
t :

µm
t , σm

t = qm(om
t , ht), (8)

ym
t = om

t + µm
t + σm

t · ϵm
t , ϵm

t ∼ N (0, 1). (9)

Here ht is the recurrent state of the recurrent model (see below), and ϵm
t is a random sample from a spherical

Gaussian with dimensionality equal to that of ym and om.

This decomposition allows us to separate out attention costs for distinct channels of information. In other
words, for each channel m we want to add an attention cost proportional to the amount of information about
om encoded in ym. To that end, analogous to Section 4.1, for each channel m we also train a discriminator
Dm

q (ym
t , [om

t , ht]) used to estimate Ĩm(ym
t ; [om

t , ht]), where brackets denote concatenation.

4.2.2 Recurrent Stochastic Action Module

The full encoding yt =
[
y1

t , . . . , yM
t

]
of ot concatenates all M encoder samples. We introduce recurrence by

layering a recurrent neural network model that takes yt and ht as inputs and outputs an updated recurrent
state ht+1. In our experiments, we use LSTMs (Hochreiter & Schmidhuber, 1997), although many other
variations exist in the machine learning literature. The encoding yt and recurrent state ht+1 are used as inputs
to the decoder ω(at|yt, ht+1) which outputs a distribution over actions, from which at is sampled. As with
the encoders, we can train a discriminator Dω(at, [yt, ht+1]) used to estimate Ĩω(at, [yt, ht+1]), introducing
an additional attention cost capturing how much of the encoded information is used to select an action.
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4.3 Optimizing with Reinforcement Learning

Given the model structure discussed previously, we now solve the optimization problem (Equation 2) using
reinforcement learning (RL) Sutton & Barto (2018). Denoting the weights of a policy by θ, we update
π (a|o; θ) using policy gradients (Williams, 1992):

∆θ ∝ Eπ,T

[∑
t

∇θ log π(at, yt|ot, ht, ht+1; θ)R†
t

]
, R†

t =
T −t∑
k=0

γkr†
t+k, (10)

log π(at, yt|ot, ht, ht+1) = log ω(at|yt, ht+1) +
M∑

m=1
log qm(ym

t |om
t , ht), (11)

r†
t = r(st, at) − λω Ĩω(at; [yt, ht+1]) −

M∑
m=1

λmĨm(ym
t ; [om

t , ht]). (12)

For further details on training and model implementation, see the Appendix.

5 Validating RIRL in Principal-Agent Problems

We demonstrate RIRL’s modeling capabilities in two Principal-Agent (PA) problems of varying complexity.
We specifically consider manager-workers relations, and in both settings, a boundedly rational manager (the
Principal) decides a compensation structure for the workers (the Agents). In general, labor is costly to the
Agents but beneficial to the Principal, while the Agents benefit from income that is costly for the Principal
to provide. Therefore, the Principal aims to find a wage schedule W that maximizes its profits. PA problems
often consider how information asymmetry between the Principal and Agent(s) influences equilibrium sched-
ules. RIRL can analyze a meaningful extension in which we model how the cost of information influences
equilibrium schedules, i.e., where the Principal can spend effort to reduce information asymmetry. We focus
on studying bounded rationality in the principal as is common in prior work (Mirrlees, 1976).

We first study a single-timestep PA setting with a Principal that optimizes a wage schedule for each level
of Agent output, subject to a cognitive cost for observing output. Because some aspects of the solution
are tractable with prior analytical methods, this simple setting allows us to draw comparisons and provides
a useful validation of RIRL in a multi-Agent game. However note, even in this simple setting, aspects of
the solution (such as the constants) are not tractable analytically. Secondly, we apply RIRL to analyze a
complex sequential PA problem outside the scope of analytical methods of prior work that involves multiple
Agents and heterogeneous information channels.

Demonstrating the importance of modeling bounded rationality, our experimental results were able to un-
cover several non-trivial insights when bounded rationality is assumed that are hard to intuitively predict.
Specifically, in our PA settings, insights include (1) Agent reward can increase with principal inattention
and a more rational Agent benefits more from Principal inattention due to the Principal setting higher pay
schedules. To our knowledge, no prior work has identified the consequences of bounded rationality in both
the Principal and Agent. (2) In the case of multiple Agents, a boundedly rational Principal can induce Pris-
oner’s Dilemma like incentives for the Agents, reducing the welfare of all agents. We discuss these insights
along with others in detail below.

5.1 Principal-Agent with a Single Agent, Single Timestep

We first evaluate in a PA setting with a two actors (the Principal and a single Agent), following classic work
(Mirrlees, 1976; Holmstrom & Milgrom, 1987; Spremann, 1987; Haubrich, 1994). When modeling economic
behavior, the reward is the (marginal) reward r, an abstract measure of happiness. We use such terminology
throughout the sections. The Agent’s labor output z ∼ h(e) is a stochastic function of its effort action e.
The Agent chooses how much to work based on its wage schedule W, which yields wage w as a stochastic
function of output z, i.e., w ∼ W(z) = N (µz, σz). Here, the stochasticity in the pay schedule aims to model
the Principal’s uncertainty over z, e.g., due to limited attention. By assumption, the Agent accurately
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Figure 1: Bandit Experiment Results. All results are averaged over 5 random seeds and plotted with 95%
confidence intervals. (a) Comparing MI and Entropy regularization on Principal reward. The constant
0-pay schedule provides a meaningful lower bound. (b, c) Pay schedule means under MI (b) and Entropy
(c) regularization (pay schedule standard deviations are plotted in the Appendix).

anticipates the shape of the wage schedule W when making its decisions, e.g., based on prior experience or
reputation. As such, the RIRL-Principal sets the wage schedule:

W∗ = arg max
W

[E [rp(w, z)] − λIW(w; z)]w∼W(z),z∼h(e),e∼πβ
a (e|w) . (13)

Here, λIW(w; z) is the attention cost for W.

For the Agent, we use a soft-Q policy πβ
a (e|w) = eβra(e|w)/Z with normalization Z, where ra (e|w) denotes

the expected reward of effort e given wage w, sampled from the schedule W. Note that πβ
a can be calculated

directly. Importantly, the soft-Q policy models a form of bounded rationality, i.e., the log-odds of effort e
is proportional to its expected reward, with higher β making “better” actions e more likely. Hence, low β
corresponds to less-than-rational behavior.

The reward of the Principal (rp) and Agent (ra) follow standard economic reward functions:

ra(w, e) = CRRA(w; ρ)︸ ︷︷ ︸
Income reward

− e︸︷︷︸
Work Disreward

and rp(w, z)︸ ︷︷ ︸
Profit

= z︸︷︷︸
Revenue

− w︸︷︷︸
Amount Paid

(14)

Here CRRA is the concave Constant Relative Risk Adverse function (Pratt, 1978); the risk aversion parameter ρ
sets its concavity (we use ρ = 2). This models diminishing returns with income increases. More environment
details are in the Appendix. We use N -sample policy gradients on estimates of Equation 13 to learn the
parameters µz and σz of W∗

r†
W = 1

N

N∑
i=1

[
rp(wi, zi) − λĨW(wi; zi)

]
, wi ∼ W(zi), zi ∼ h(ei), ei ∼ πβ

a (e|Wi). (15)

Results. Figure 1 shows the effects of the Principal’s inattention on simulated outcomes. We also compare
RIRL outcomes against those found including entropy-based rewards. MI-based and entropy-based regular-
ization are closely related (Grau-Moya et al., 2018; Leibfried & Grau-Moya, 2020), with subtle but important
differences2. Nevertheless, they yield markedly different outcomes.

To highlight an important difference, consider the constant 0-pay schedule. This provides no incentive for
the Agent to work and costs the Principal nothing, and it therefore provides a reasonable lower bound on rp.
This lower bound should hold under bounded rationality, since no attention is required when W treats all
outputs identically. Indeed, under RIRL, rp approaches this lower bound as increasing λ leads the Principal
to trade more profitable W’s for ones with smaller demands on attention (Figs. 1a, b, 2c). In contrast, under
entropy regularization, increasing λ quickly yields W’s that violate the rp lower bound (Fig. 1a, c).

2Under some conditions, they are identical. However, the key difference is that entropy regularization penalizes the policy
for deviating from a fixed, uniform prior, whereas RI-style MI regularization penalizes deviations from an optimal prior.
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Figure 2: Additional Bandit Experiment Results. All results are averaged over 5 random seeds and plotted
with 95% confidence intervals. Results are shown for each level of MI cost (λ, x-axis) across multiple levels of
Agent policy temperatures (β, color). (a, b) Agent and principal reward. (c) Mutual Information between
output z and wage w.

Figure 2 shows how Agent and Principal reward and I(w; z) change as a function of λ, across a range of
Agent β’s. Note that higher β increases the odds that the Agent selects the optimal action. This reveals
an interesting multi-Agent interaction. As before, we observe that the Principal’s reward rp (without the
attention cost) decreases with increasing λ. Furthermore, rp is generally lower when β is lower (Fig. 2b), as
the Principal must pay more to influence πβ

a towards different actions.

Interestingly, we observe that the Agent’s reward ra can actually increase when the Principal is inattentive,
and that higher β tends to increase the beneficial range of inattention (Fig. 2a). Lastly, β determines how
the Principal responds to increasing attention costs. Agents that behave optimally more often (higher β)
incentivize the Principal more to pay attention (Fig. 2c).

Comparison With Prior Literature. For this setting, Mirrlees (1976) found the theoretically optimal
pay schedule should be of the form W(z) = max(Az + B, C)

1
ρ . While they assume a slightly different model

of costly attention3, the emergent pay schedules match closely with this work: when fitting A, B, and ρ to
our data, we measure r2 = 0.99 for all β. The best fit ρ was close to the theoretical value for some values of
β (true ρ: 2, best fit ρ: 2.19 for β = 5). Interestingly, we do observe that the best fitting ρ tends to increase
with β in our model. Notably, the influence of Agent sub-optimality was outside the scope of this prior work.
We are able to observe this relationship between ρ and β through the modelling complexity enabled by our
RIRL framework.

5.2 Principal-Agent in the Sequential Multi-Agent Setting

We show that RIRL enables modeling sequential Principal-Agent problems with multiple Agents with T > 1
timesteps. We consider horizons [2, 10] and teams of na = 4 Agents. We assume there are K = 5 possible
Agent abilities k. The Principal cannot see the Agents’ abilities. Each Agent’s ability is sampled randomly
at the start of each episode. At each timestep, Agent i’s output is:

zi,t = hi,t · (νi + ei,t), (16)

where it works hi,t hours and exerts effort ei,t. The Principal moves first and sets a wage wi,t. Each Agent
moves second: it knows wi,t before choosing hi,t and ei,t, and earning income wi,t · hi,t. As before, Principal
reward rp measures profit. We define ra following standard reward functions, where the optimal h increases
with w. As a consequence of this configuration (demonstrated below), the profit-maximizing wage wi for

3Their Principal pays a cost to reduce the noise added to its observed output, as opposed to our MI cost; see the Appendix
for full details.
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Figure 3: A depiction of a single timestep in an episode of our Sequential Multi-Agent Setting. Green
variables (such as cumulative output) are not costly while blue variables (such as individual output) are
costly for the principal to observe. The red variable (Ability) cannot be observed.

Agent i increases with its ability νi. The Agent reward is:

Ua(w, h, e) = CRRA(w · h; ρ)︸ ︷︷ ︸
Income reward

− clh
α(1 + e)︸ ︷︷ ︸

Work Disreward

, Up(w, h, z)︸ ︷︷ ︸
Profit

=
∑

i∈[na]

zi︸ ︷︷ ︸
Revenue

−
∑

i∈[na]

wihi︸ ︷︷ ︸
Wages Paid

, (17)

where ρ, cl and α are constants governing the shape of ra.

Attention Costs. Because a strategic Principal must infer private Agent features, e.g., ability, its equi-
librium behavior depends on any inference costs it experiences, e.g., attention costs. Note that, unlike in the
above bandit setting, here we train both the Principal and the Agent policies, each of which is modeled using
the RIRL-actor architecture (Section 4). However, to isolate and explore the effects of distinct Principal
attention costs, we do not impose any attention costs on the Agents. Therefore, the Agents’ reward is only
their reward ri,t = Ua(wi,t, hi,t, ei,t).

For the Principal, we model M = 3 information channels: one is “easy” and low-cost to observe and two
are “hard” and high-cost. The low-cost channel of

p includes information that we regard as freely available
(λf = 0), e.g., the time t, the hours worked h (workers often fill out timesheets which makes hi easy to
see), and the total output, Z =

∑
i∈[na] zi (managers can see the final result). However, it is high-cost

to see individual contributions: we use a high-cost channel oe
p for efforts e, and a high-cost channel oz

p for
outputs z. This models a Principal who can spend time and attention to observe individual Agents to reduce
uncertainty about their true ability, e.g., their working styles and productivity (Figure 3). Modeling the
attention cost of output and effort separately lets us study the effects and interactions of unequal observation
costs. The Principal’s reward is

r†
p,t = rp(wt, ht, zt) − λz Ĩ(yz

t ; zt)︸ ︷︷ ︸
Individual Output and

− λeĨ(ye
t ; et)︸ ︷︷ ︸

Effort Perception Cost

(18)

Thus, the Principal’s bounded rationality is modeled through the cost to get information about effort and
individual outputs. The Principal’s RIRL-actor architecture would also let us use attention costs Ĩ(yf

t ; of
t )

and Ĩ(wt; yt), but we omit those here4. Additional training details are in the Appendix.

Results. We highlight several noteworthy observations revealed by our RIRL framework: (1) Principal
inattention to individual outputs z and inattention to efforts e have distinct, nearly opposite, consequences
on actor utilities; (2) Agents respond to the incentive structures created by Principal inattention to effort,
with parallels to a prisoner’s dilemma; (3) The temporal patterns of Principal attention reflect the value of
information over time.

Implications of Inattention Differ by Agent Ability We analyze welfare related to actors’ utilities.
At equilibrium, the Principal and Agent utilities are negatively correlated (Figure 4a,b), comparing across

4We do add entropy regularization over ω(a|y) for both the Principal and Agent to encourage exploration.
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Figure 4: Sequential, multi-agent experiment results. All results are averaged over 20 runs and generated
with T = 5. (a, b) Principal and Agent reward heatmaps (a) and scatter plot (b), for each λz and λe. (c)
Average wage for each Agent type, under a rational (λz = 0, yellow) and a boundedly rational (λz = 6, blue)
Principal. Error bars denote to 95% confidence intervals. (d) reward for the lowest (k = 0) and highest
(k = 4) ability Agent types, for each λz and λe.

Figure 5: Additional sequential, multi-agent experiment results. All results are averaged over 20 runs.
Shaded regions denote to 95% confidence. All results except (c) were generated with T = 5. (a) Average
effort at t = 1 for each Agent type. (b) Equality across Agent types vs. Agent reward, for each λz and λe.
(c) Output information Ĩfz (yz

t ; zt) encoded over time (when λz = 3).

varying levels of λz and λe. Note that the “rational” model has λz = λe = 0. This indicates that the
Principal’s bounded rationality has opposing implications for the Principal and Agents. From Figure 4a,
we see that Agents’ average reward increases and the Principal’s reward decreases when the Principal’s
attention cost for individual outputs λz increases. Conversely, Agent reward decreases with increasing
Principal attention cost on effort λe. The cause for this is as follows. The Principal has a different optimal
wage for each ability ν as shown in Figure 4c. When the Principal is fully rational it can use output and effort
to accurately infer ability. Similar to what was seen in the bandit setting (above), increasing attention costs
(in this case, on output λz) lead the Principal to set wages in a manner that is less profitable but also less
attentionally demanding. At the resulting equilibria, the Principal has more uncertainty over each Agent’s
type and adopts a “better safe than sorry approach” and increases the average wage to ensure output.

However, while the average Agent reward increases with λz, it does not increase for all Agent types. Specif-
ically, the reward of the (highest) lowest-ability Agent’s (decreases) increases. Hence, the Principal’s un-
certainty over individual outputs decreases the wage (and reward) differences between Agents of different
ability (Fig. 4c,d). This is particularly relevant when considering the equality of reward. A common inequal-
ity metric is the Gini coefficient (Gini, 1971), computed as a normalized sum of income differences; equality
can be defined as eq = 1− N

N−1 gini. Figure 5b shows that Agents’ average reward and equality across types
both increase for higher output attention cost λz.

Bounded Rationality induces Social Dilemma Dynamics. This setup gives rise to interesting tem-
poral strategic behaviors akin to signaling (Spence, 1973). Note that, while effort e increases an Agent’s
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work disreward without increasing its income, Agents may still choose to exert non-zero effort e > 0. To
provide an intuition for this, first, note that spending effort increases output rate (z per hour h), resembling
higher ability ν. Second, the profit-maximizing wage wi increases with Agent ability5 νi. The Principal can’t
see each νi but can see the output zi and hours hi. Hence, output rate is a “signal” of ability and Agents
can misrepresent their ability by spending effort.

When λe increases, it becomes costly for the Principal to distinguish between the Agent’s ability and effort-
action. Interestingly, this leads to signaling equilibria in which Agents choose to use more effort (Fig. 4a),
resulting in lower average Agent reward and higher Principal reward (Fig. 5a). In effect, this Agent behavior
has parallels to the “defect-defect” equilibrium in the prisoner’s dilemma (Shoham & Leyton-Brown, 2008).
When higher-ability Agents are not using effort, lower-ability Agents are incentivized to use effort to mis-
represent themselves as having higher ability. This incentivizes the higher-ability Agents to also use effort
to distinguish themselves from the lower-ability Agents. Figure 5a shows this effect: effort increases with λe

at all ability levels. In effect, increasing λe creates equilibria where the Principal enjoys higher Agent effort
essentially for free. Interestingly, the effects of effort being costly to observe are nullified if the individual
outputs are also hard to observe (Fig. 5b), showing these two cost parameters interact.

RIRL-actors Learn the Time-Value of Information. We also show that RIRL can discover the time-
value of information-acquisition and how it depends on the time horizon. Figure 5c shows output information
that the Principal encodes Ĩfz (yz

t ; zt) over time. There is an initial spike in the amount of information at
the beginning of the episode and this decreases over time. Intuitively, it is most efficient for the Principal
to pay attention to outputs at the beginning of the episode, as this information can be used throughout the
episode. Additionally, the initial spike is larger for longer horizons, as initial information has more value.

Limitations. While RI is a general model of boundedly rationality, it does not cover all models of human
irrationality. For simulations that wish to use more specialized models of bounded rationality, RIRL may not
be sufficient. Examples include hyperbolic discounting (Kirby & Herrnstein, 1995) to model time-inconsistent
delay discounting (humans tend to prefer rewards in the near future much more than rewards farther in the
future) or prospect theory (Tversky & Kahneman, 1992) to model loss-aversion. Future research may extend
RIRL to include such notions of bounded rationality.

6 Conclusion

We propose a novel framework, RIRL, for modeling bounded-rationality in MARL simulations with com-
plexity beyond the scope of prior techniques. Our method incorporates Rational Inattention, an established
model of human bounded rationality which uses mutual information to model the cognitive cost of processing
information. Mutual information has been used extensively in RL for exploration and skill discovery, but, to
our knowledge, we are the first to incorporate it for modeling human-like behavior in multi-agent simulations.
We evaluate our method in two Principal-Agent problem settings, including a complex multi-agent setting,
with multiple information channels with heterogeneous costs. Incorporating bounded rationality leads to
different actor strategies and welfare outcomes as compared to under rational assumptions. These results
establish RIRL as a promising framework for using MARL to analyze systems of human agents.

7 Ethics and Societal Impact Statements

Our work proposes a framework to model bounded rationality in Multi-Agent Reinforcement Learning based
simulations. Thus our framework may be used to draw implications in simulations modeled after real-
world systems. While addressing the rationality gap between human actors and RL actors is an important
step towards this goal, there is still much more development needed for achieving the realism required for
real-world decision making based on AI simulations. We do not intend our framework to be used to explore
methods to increase discrimination or unfairness in real-world systems, instead for it to be used to investigate
how to decrease such biases. For our work, and in general for agent based simulations works, clearly stating
the current limitations of the models used helps mitigate this issue.

5This is a simple consequence of how reward functions are defined. See Fig 4c for confirmation.
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A Additional Bandit Experiment Details and Results

A.1 Additional Details

Noise Structure. Recall in the bandit experiments, the output z is a noisy function of the hours action
h chosen by agent. Specifically we use the following output distribution:

p(z|h) =
{

0.7 if z = h
0.7|z−h|

0.3·c otherwise
(19)

Where c is a numerically calculated factor such that p(z|h) is a proper probability distribution satisfying∑
z∈Z p(z|h) = 1. This noise distribution assures high correlation between h and z with the probability of

z levels decreasing exponentially as the difference between h and z grows. We plot the probability heatmap
in Figure 6a.
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Constant Relative Risk Aversion (CRRA) Function The constant relative risk aversion (crra func-
tion (Pratt, 1978)) commonly used in economics has constant risk aversion which means decisions are in-
variant to scale. It is a concave function where the risk aversion parameter, ρ ≥ 0, determines the concavity.
This models diminishing returns with higher values. The function is given by:

CRRA(u, ρ) =
{

u(1−ρ)−1
1−ρ if ρ ̸= 1, ρ ≥ 0

ln(u) ρ = 1
(20)

Inattention Model From Theory. The model studied in classical theoretical Principal-Agent literature
we compare with (Mirrlees, 1976) utilizes the same reward functions for the principal and the agent. It has
a slightly different model of principal inattention where it models costly principal inattention with a factor θ
that controls the magnitude of the observation noise in the output signal. Specifically, for a true output level
z∗, the principal observes output z = z∗ + 1

θ ϵ where ϵ is noise. The principal incurs an attention cost that is
a function of θ2 and is subtracted from their reward function. While this attention model is different from
our mutual information based model, it shares many similar properties. In both our models the inattention
introduces noise which makes acting optimally difficult. Additionally in both models, an attention parameter
can reduce this noise at a cost to the principal and the principal can choose the optimal, reward-maximizing
value of this attention parameter. Such similarities explain why, even under different models, our results are
similar to those from theoretical analysis.

Training Hyperparameters. We used learning rates of 1e-3 for the training the principal policy param-
eters and 5e-3 for the mutual information classifier. We used a batch size of 128 and trained the principal
for a total of 100000 batches. During training we gradually annealed λap

from 0 to the desired value at a
rate of 4/10000 per batch. We average all results across 5 random seeds and we set the random seed for
pytorch, numpy, and python’s internal random module for each run. We used seeds of [0, 4]. All experiments
were run on 16CPU cloud compute machines with 54GB of memory. Given a pay schedule which consists
of mean and standard deviation parameters (µz, σz) for each output level z ∈ Z, to calculate the principal
policy we first sample 100 pay schedules and calculate the agent reward per output for each output level for
each pay schedule. We then average to calculate the average agent reward for each output level. We use
the noise structure to calculate the average reward for each action and use the soft-q formulation over the
utilities given in the main text to obtain the agent’s stochastic policy.

A.2 Additional Results

We provide a few additional figures for the bandit experiment. Recall the principal’s policy was the pay
schedule parameterized by mean and standard deviation values for each output level (µz, σz). Figure 6b
shows the standard deviation parameters σz learned under MI and Entropy regularization for different
cost factors λ. Increasing entropy regularization results in very large increases to the standard deviation
parameters while MI regularization leads to much smaller standard deviation increases. The pay schedule
means for Entropy regularization become sharper to overcome this increase in standard deviation.

Figure 6c compares pay schedule means (µz) across different Agent policy temperature (β) values. For low
inattention costs, the pay schedules are similar. However the pay schedules for higher β (more deterministic
agents) decrease slower with increasing principal attention cost. Given the pay schedule parameters, the
agent has an optimal h action. More deterministic agents take this optimal action with higher probability
so it is more valuable for the principal to incentivize them to higher optimal actions, which in turn lead to
higher outputs. This explains why Agent and Principal reward are higher for higher β values.

B Additional Multi-Agent Multi-Timestep Experiment Details and Results

B.1 Additional Details

Training Hyperparameters. We used learning rates of 1e-4 for the Principal and Agent’s policy param-
eters and 1e-3 for all the mutual information classifiers. We used a batch size of 512 episodes and train the
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(a) (b)

(c)

Figure 6: Additional bandit experiment results. All results were averaged across 5 random seeds and have
95% confidence regions shaded. (a) The noise distribution between hours and output (P (z|h)). (b) The pay
schedule standard deviation plots for MI and Entropy Regularization. (c) A comparison of pay schedule
means across different Agent policy β values.

principal and agent through 60000 batches. We train a single RIRL-actor for the Agents and concatenate
the experiences of all na Agents when updating the policy. The Agent policy therefore effectively has a batch
size of 512na. To avoid vastly different total episode returns, we scaled the rewards by the horizon during
training. We run all experiments on 8CPU cloud computing machines with 26GB of memory. We average
all results across 20 random seeds and we set the random seed for pytorch, numpy, and python’s internal
random module for each run. We used seeds of [0, 19].

B.2 Additional Results

We present some additional results for the sequential multi-agent experiments. Figures 7a,7b show Principal
reward with output MI cost (λz) and effort MI cost (λe) for different horizons. We see the trend of Principal
reward decreasing with λz and increasing with λe occurs across all horizons.

Figure 7c shows unscaled MI cost for output and effort with λz and λe. We see that I(ye|e) decreases with
both λz and λe. I(yz|z) decreases with λz but is not affected greatly by λe.

Figure 7d plots the agent reward for all agent types. It expands the plot of Figure 4d. The plots show the
difference between the reward for each agent type and the average reward.

Figure 7e demonstrates how different values for different agent types change with output MI cost (λz). We
plot each result as the change from the λz = 0 values. As mentioned previously, reward increases with λz

for lower ability agents while it decreases for the highest ability agent. We observe similar trends for hours
h. We additionally notice effort e generally decreases which leads to z staying constant or decreasing for
all agent types, even though some agent types have increased hours. This lower output along with higher
average wages explains the decrease in Principal reward.
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(a) (b) (c)

(d)

(e)

Figure 7: Additional sequential, Multi-Agent experiment results. All results are averaged over 20 random
seeds and all confidence regions depict 95% confidence intervals. (a, b) Principal reward with Output (λz)
and Effort (λe) MI Costs. (c) The unscaled Output and Effort MI with λz and λe. (d) The different between
each agent type’s reward and the mean reward across all types with λz and λe. (e) How agent reward, effort,
hours, and output changes with respect to Output MI Cost λz for each agent type. All values are plotted
as the change amount from the λz = 0 value.

C RIRL Implementation Details

We use this section of the appendix to cover important implementation details and tips. This is intended
for practical guidance.

Stochastic Encoder Module Configuration and Initialization. Section 4 describes the architecture
of our RIRL-actor policy class. As described, we learn an encoder fm(ym

t |om
t , ht) for each observation channel

m. Encoder fm takes observation om
t and recurrent state ht as inputs and outputs the parameters (means

and standard deviations) of a stochastic encoding ym
t .

We find that, in practice, learning does not progress if each ym contains very little information about om at
the start of training. To address this, we recommend two implementation choices. First, implement fm as
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a residual-style module:

µm
t , σm

t = fm(om
t , ht), ym

t = om
t + µm

t + σm
t · ϵm

t , (21)

This simply requires setting the output ym to have the same size as observation om and adding om
t to the

mean µm
t . Second, initialize the output layer of fm such that σm is consistently very small. We perform

this by adding a constant negative offset to the bias units associated with the log σm outputs, which we
exponentiate to get σm. As a result of this strategy, ym

t closely follows om
t at the start of training.

Hidden State as an Encoder Input. We emphasize that the inputs to encoder fm is the concatenation
of the observation om

t and the hidden state ht. Similarly, when using the discriminator dm(ym
t , [om

t , ht]) to
estimate Ĩfm and when training the discriminator, we also apply this concatenation. In other words, dm

regards [om
t , ht] as the observation, such that the Ĩfm captures the MI between ym

t and [om
t , ht].

This is an important detail for ensuring that MI regularization works as expected in the multi-step setting.
For instance, we observed that, if the discriminator does not see the hidden state h, fm learns to encode om

such that I(ym; om) is minimal but where om
t can still be easily recovered given ym

t and ht.

Optimization During training, we found that learning was most stable if separate learning rates were
used for the policy modules {f1, . . . , fM , LSTM, ω} and for the discriminator modules {d1, . . . , dM , dω}. Im-
portantly, the discriminator modules use a 10x higher learning rate. Concretely, we use learning rates of
0.0001 and 0.001 for the policy and discriminator modules, respectively. Configuring learning rates this way
helps to ensure that discriminator dm can adjust to changes in encoder fm faster than the encoder can adapt
to changes in the discriminator. Intuitively, this improves the quality of the MI estimates during training.

Another important optimization detail concerns gradient flow. Gradients from ∇ log ω(at|·) need to back-
propagate through the encodings

[
y1

t , . . . yM
t

]
in order for the encoder modules to receive meaningful gra-

dients. In Pytorch, which we use for this implementation, ensuring that this gradient flow occurs requires
some attention. Given the (learned) mean and standard deviation parameters (which are functions of the en-
coder input), Pytorch constructs the sampling distribution as m = Normal(µ, σ). The output of the encoder
module ym

t must be sampled via the reparameterization trick: y = m.rsample(), which allows gradients to
flow through ym

t . Finally, this output should be detached from the backpropagation graph when calculating
its log probability: encoder_log_prob = m.log_prob( y.detach() ), which is needed for computing the
policy gradients. Similarly, care must be taken to ensure that inputs to the discriminators are detached in
the same way.
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