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a b s t r a c t 

We explore the interplay between the topological relevance of a neuron and its dynamical traces in ex- 

perimental cultured neuronal networks. We monitor the growth and development of these networks to 

characterise the evolution of their connectivity. Then, we explore the structure-dynamics relationship by 

simulating a biophysically plausible dynamical model on top of each networks’ nodes. In the weakly cou- 

pling regime, the statistical complexity of each single node dynamics is found to be anti-correlated with 

their degree centrality, with nodes of higher degree displaying lower complexity levels. Our results im- 

ply that it is possible to infer the degree distribution of the network connectivity only from individual 

dynamical measurements. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

One of the main research lines in the study of the dynamics

of complex networks has been the deep relationship between

the connectivity and the dynamics of the nodes, and how this

interaction shapes the emergence of a collective state such as

synchronisation [1–4] . An enormous effort has been devoted to

the understanding of this phenomenon, and the knowledge gath-

ered so far has driven the advance in crucial applications in brain

dynamics [5] , power grids [6] , and in many other fields where syn-

chronisation is essential [7,8] for the system’s proper functioning. 

Commonly, studies have focused in states of full synchronisa-

tion [4] . Nevertheless, there are very relevant cases in which only a

partial or weak synchronisation level is achieved [9–11] , and often

this state becomes optimal to balance functional integration and

segregation in the system [12–14] while a complete coordination

is evidencing the existence of a pathological condition. 

Several investigations [15–17] have shown that nodes play dif-

ferent roles in the ensemble dynamics depending on their topolog-

ical position and intrinsic dynamics [18] . One of the most explored

situation is that of the hubs acting as coordinators of the dynamics

of the whole system [19–22] , being the first nodes to synchronise

among them [23] and to the mean field [24] , while the rest of the

nodes progressively locks the hubs dynamics. 
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This effect of the topology on the dynamics in the weakly syn-

hronised regime opens the question of whether it is possible to

nfer the network architecture from statistical correlations among

he coupled units [15,25] . Currently, a great amount of the research

s being conducted in this sense. In particular, the computational

euroscience field roots in the hypothesis that dynamical corre-

ations (which can be recorded in non-invasive ways) are greatly

onstrained and induced by the anatomical structure of the brain

5] . From these site-to-site correlation maps, the functional brain

etworks , it is often possible to obtain information about the un-

erlying topological networks [26] . 

However, it has been less explored the fact that this structural-

ynamical interaction also plays in the other way around: just as

he dynamics of each node influences the ensemble, the ensemble

mprints its structural marks into the dynamics of each individual

ode [23,24] . We make the assumption that, long before the cou-

ling strength is high enough to induce synchronisation, the dy-

amical changes at the node level are encoding the imprint of its

tructural role. This relevant feature could be used to extract infor-

ation about the network without making any reference to pair-

ise correlations, particularly in those cases where the structure is

nknown or unreliable, as we showed in a previous work [27] . 

Here, we extend our study of the influence that the ensemble

as over the node dynamics to an experimental case. We culture

etworks of neurons coming from Schistocerca gregaria and study

he potential relationship between a simulated dynamical model

the Morris-Lecar neuron) and the anatomical network structure

f a neuronal culture. The main motivation for this study is
hat in cultured neuronal networks the simultaneous obtention of 
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Fig. 1. Image segmentation processing steps and extraction of the network graph. (a) Red layer of a RGB cut of a culture 6 DIV old. (b) Output of the segmentation algorithm 

of the region of interest. Single neurons and aggregates of neurons are highlighted in red while the neurites are marked in green. (c) Mapping of the segmentation objects 

in (b) into a full graph where circles (neurons and neuronal clusters) and diamonds (branching and end points of neurites, with no neurons) are the nodes, these being 

connected with green lines, representing the neurites. (d) Graph representing the projection of the full graph into the cluster graph with only neuronal clusters (red) and 

neurites (green), where the links represent the existence of a path between cluster nodes through junction nodes in the full graph in (c). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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tructural and dynamical information is not possible, either be-

ause one recording technique influences the other measurement

r mainly because the culture is not able to survive to both mea-

urements. 

. Experimental setup: culturing the network 

To analyse the spatial structure of a real network, we focus on

he study of cultured neuronal networks (CNNs), considered as a

implified version of a more complex network of the central ner-

ous system [28–30] . For this purpose, we analyse the network

tructure in this CNN model by means of optical microscopy tech-

iques, extracting the detailed connectivity and its statistical topo-

ogical properties. 

Our CNNs were obtained from Schistocerca gregaria specimens,

lso known as desert locusts. As they share basic neuronal features

ith vertebrates, this invertebrate model has been recently used in

euroscience as an easier approach for the understanding of more

omplex neural systems [31] . The large size of its neurons makes it

deal for observing the structure of the network, as an alternative

o the mammals. 

In our experiments we follow the protocol described in [32] .

ach locust is dissected to extract its frontal ganglion, formed by

pproximately 100 neurons [33] . To obtain an intermediate neuron

ensity that allows us to study a complex network morphology we

xtracted 12 ganglia per culture. After the dissection, the frontal

anglia endure a chemical and mechanical procedure to remove all

he connections and dissociate the neurons. The neuronal somata

re cultured in a Petri dish, in an enriched environment to allow

he neurites to regrowth and form a new connectivity network.

he cultures are monitored in vitro from day 0 (DIV0, DIV = days

n vitro) to day 14 (DIV14). The data used in this work correspond

o 6 cultures grown in the same conditions. We inspected the mor-

hological features of the cultured networks using a phase contrast

nverted microscope (Eclipse Ti-S, Nikon) with a 10x air objective

Achromat, ADL, NA 0.25) and an automated motorised XYZ stage

ontroller. High resolution images were obtained in a daily basis. 

In order to analyse the spatial network, we need to extract the

orresponding mathematical graph. To do so, we process the cul-

ure images by means of an image segmentation algorithm [34,35] .

n Fig. 1 we portray the whole process, starting from a typical mi-

roscope image of the culture ( Fig. 1 (a) shows just a small area)

nd ending up with the output of the segmentation detecting
eurons (and aggregates of neurons) and the neuronal processess

onnecting them Fig. 1 (a). The algorithm is summarised in the fol-

owing steps: 

1. The red layer of a RGB high-resolution image of the recorded

cultured network is processed ( Fig. 1 (a)). 

2. The image is segmented and thresholded to separate back-

ground from foreground areas. Then neurons and aggregates of

neurons (red areas in Fig. 1 (b)) and neurites (green paths in

Fig. 1 (b)) are identified separately. 

3. Both neurons and neurites are connected and coded in the

adjacency matrix where single and clustered neurons are the

nodes and neurites are the links between them. Branching and

end points of the neurites are also registered as junction nodes

in the graph, even when there is no neuron on them. This pro-

vides a complete version of the graph that we call the full graph

( Fig. 1 (c)) with two types of nodes, those corresponding to neu-

rons and the ones denoting a branching point in the neuronal

process path connecting two neurons. 

4. The previous data is used to build a reduced version of the

graph, where only neurons (or neuronal clusters) are the nodes,

and the links represent the existence of a path between neu-

ronal clusters, eventually through branching points. In this

graph, junction nodes have been removed and we observe a

more direct path between neuronal clusters, obtaining a sim-

ple version of the matrix, the cluster graph ( Fig. 1 (d)). 

We analyse the morphological and topological properties of the

ultured network using both full and cluster graphs, where the

inks are unweighted. With the purpose of characterising the seg-

egation and integration of the cultured neuronal network along

he experiment, in Fig. 2 we measure the longitudinal progres-

ion of the averaged clustering coefficient ( C ) and shortest path

ength L , normalised by the size of the largest connected compo-

ent S 1 [3] , resulting L / S 1 . The relationship between C and L is

ften used as an indicator of the balance between the local and

ong-distance connectivity in the network. These aforementioned

arameters were measured in both the full graph (with neuronal

lusters and junction nodes) and in the cluster graph (with only

euronal clusters nodes). 

In the full graph ( Fig. 2 (a)), the normalised shortest path L / S 1 
hows a high mean value at the early days of the culturing, where

he connectivity is still not fully developed. Between DIV3 and

IV6 there is a significant decrease and showed no significant
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Fig. 2. Results of the cultured network analysis. Mean value of the clustering coef- 

ficient C and mean path length L normalised by the size of the largest connected 

component S 1 (a) in a full graph, where clusters and junctions are the nodes, and 

(b) in a cluster graph, where the only nodes are clusters of neurons. Each point is 

the average over 6 experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparative plot of the cumulative degree distribution P c ( k ) of an exper- 

imental clustered neuronal network at DIV7 (black squares) and equivalent syn- 

thetic networks: random Erdös-Renyi (ER, blue diamonds), scale-free obtained with 

the Barabási-Albert algorithm (SF, red dots) and a spatial network where distance- 

dependence linkage pattern (spatial-ER green diamonds). We see that the cultured 

network’s distribution shows a similar behavior, for low degrees, as the SF one, and 

there is a region in which it is similar to the spatial network (namely, the decay for 

large values of k is almost identical). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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change thereafter, meaning a high integration degree in the ma-

ture culture network. The clustering coefficient was characterised

by a very low mean value, showing a slight increase between DIV3

and DIV6, when the network development occurs. The low mean

values of C are due to the fact that both neurons and branching

points are considered nodes meaning that the probability of form-

ing triangles is reduced (see Fig. 1 (b)). 

In the case of the cluster graphs ( Fig. 2 (d)) we observe a similar

trend in L / S 1 (see Fig. 2 (b)) as the one described for the full graph.

On the contrary, C exhibits higher mean values, with a more acute

increase between DIV 3 and DIV 6, that coincides with the most

intense developmental phase. As neuronal aggregates are the only

nodes in this cluster graph and junctions are not represented as

nodes, the mean values of C are more accurate with the connected

structure. After that point, in the mature neuronal network these

two parameters keep constant values [34,35] . 

The analysis of these parameters in both types of graphs con-

cludes with the emergence of a mature cultured neuronal net-

work from an initial random stage. This evolved structure is

characterised by high clustering coefficients and low mean path

values, indicating the presence of a mature network with high seg-

regation (favored by high clustering values) and integration (facili-

tated by the existence of small shortest paths) levels. These are the

characteristics of a small world structure, where the high tendency

to form clusters of nodes in highly interconnected subgroups and

short distance between them contribute to an optimal functional-

ity in the network [34] . 

We also analized the degree distribution P ( k ) of these networks,

being k the number of links that each node has. In Fig. 3 we

plot an example of the cumulative degree distribution P c ( k ) of an

in-vitro clustered network at DIV7 (black squares), compared to

equivalent simulated networks (same number of nodes and links)

obtained from usual generative models: random Erdös–Renyi (ER,

blue diamonds), scale-free obtained by Barabasi–Albert algorithm

(SF, red dots) and a spatial network with a distance-dependence

linkage pattern (spatial-ER green diamonds). As described in [34] ,

the cultured networks belong to the single-scale type as they show

a well defined k . The study of P cum 

( k ) reveals a fast decay with a

large number of nodes with similar number of connections, and

a few ones with a different and large node degrees. As it can be

seen, the experimental connectivity largely differs from the pure

random ER, showing instead shared features between SF and spa-

tial networks. 

3. Dynamical model 

Once we have extracted the connectivity of real neuronal cul-

tures, we can provide a dynamical behavior to their nodes, in

order to enable the exploration of the potential interplay be-

tween structure and dynamics. For this study we implemented
he bio-inspired Morris–Lecar (ML) model [27,36] , whose equations

escribing the membrane potential behavior for each unit read

17,37] : 

 

˙ V i = −
Ionic channels ︷ ︸︸ ︷ 

g X M ∞ 

(V i − V X ) + qξi + 

σ

K 

∑ 

j 

a i j 

Synaptic function ︷ ︸︸ ︷ 
e −2(t−t j ) (V 0 − V i ) 

︸ ︷︷ ︸ 
I i 

+ I ext 
i , 

˙ W i = φ τW 

(W ∞ 

− W i ) (1)

here V i and W i are, respectively, the membrane potential and the

raction of open K 

+ channels of the i th neuron and M ∞ 

, W ∞ 

, and

W 

are hyperbolic functions dependent on V i and φ is a reference

requency. The parameters g X and V X account for the electric con-

uctance and equilibrium potentials of the X = { K , Ca , leaky } chan-

els. The external current I ext 
i 

= 50 . 0 mA is the same for all the

eurons and is chosen such that neurons are sub-threshold to neu-

onal firing which is induced by the white Gaussian noise q ξ i of

ero mean and intensity q . The coupling of the neuron i th with

he neuron ensemble is described by the injected synaptic cur-

ent I i , given by the superposition of all the post-synaptic poten-

ials emitted by the neighbours of node i in the past, being t j the

ime of the last spike of node j , and the corresponding element of

he adyacency matrix is a i j = 1 if there is a link between nodes i, j

nd a i j = 0 otherwise. The synaptic conductance σ , normalised by

he largest node degree present in the network K , plays the role of

oupling intensity. 

Additionally, the channel voltage-dependent saturation values

re given by the following functions: 

 ∞ 

(V i ) = 

1 

2 

[ 
1 + tanh 

(
V i − V 1 

V 2 

)] 
, 

 ∞ 

(V i ) = 

1 

2 

[ 
1 + tanh 

(
V i − V 3 

V 4 

)] 
, (2)

τW 

(V i ) = cosh 

(
V i − V 3 

2 V 4 

)
. 

We chose the parameters such that the neurons in the simula-

ions corresponded to type II class excitability for the neuron dy-

amics, which means that a discontinuous transition is found in
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Fig. 4. Illustration of the Ordinal Patterns formalism. (a) Detection of the maxima of the simulated (Morris–Lecar neuron) signal. (b) Extraction of the timestamps at which 

these maxima have been attained. Consecutive timestamps are subtracted (c) and their differences (ISIs) are stored in an array (d). The time series of ISIs is divided in 

sequences of length D ( D = 3 in this example), and consecutive points in each sequence are compared and classified based on their relative values (e). Each sequence of 

length D is given a natural number and the probability of the realization of each possible D -symbols sequence is computed (f). The probabilities are then used to construct 

the complexity measure. 
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he dependence of the spiking frequency on the external current.

he values for all the parameters can be found in Refs. [27,38] . 

We have to remark, however, that this model was originally

onceived for a single neuron and in this work we are dealing

ith aggregates of 20 of them as our individual nodes. Although

his quantity is not enough for employing a neural mass model , it

hould be noted that, strictly, it is not a single neuron either. 

. Statistical characterisation of the dynamics 

With the purpose of providing a solid description of the sys-

em, we use two different quantities: a global and a local one. The

lobal measure is the synchronisation level of the network, i.e. how

imilar are the dynamical outputs of our units, while the local one

s an individual measure of the complexity of a node’s time series. 

.1. Synchronization measure 

In order to quantify the level of synchronization we estimate

ow many neurons fire within the same time window. The total

imulation time T is divided in n = 1 , . . . , N b bins of a convenient

ize τ , such that T = N b τ, and the binary quantity B i ( n ) is defined

uch that B (n ) = 1 if the i th neuron spiked within n th interval and
i 
 otherwise. The synchronisation between the spiking sequences of

eurons i and j is therefore characterised with the pairwise corre-

ation matrix s ij ∈ [0, 1] 

 i j = 

∑ N b 
n =1 

B i (n ) B j (n ) ∑ N b 
n =1 

B i (n ) 
∑ N b 

n =1 
B j (n ) 

, (3) 

here the term in the denominator is a normalisation factor and

 i j = 1 means full coincidence between the two spiking series. The

nsemble average of s ij , S = 〈 s i j 〉 = 

2 
N (N −1) 

∑ N 
i, j=1 ,i � = j s i j is a mea-

ure of the global synchronisation in the network. In Fig. 5 (a) we

lot an example of the averaged value of S as a function of σ for

n experimental CNN clustered network with N = 246 nodes, ob-

ained at DIV7 as explained in Section 2 . A transition from an asyn-

hronous to an almost synchronous firing is observed as the synap-

ic conductance σ is increased, which confirms that the structure

s suitable for inducing synchronisation in the system. 

.2. Statistical complexity 

Once we know the effect that the relationship between network

opology and dynamics has on the global state, we explore the

ffect that the presence of the ensemble has on the single node
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Fig. 5. Dependence of the statistical complexity at the node level and its topolog- 

ical role in an experimental neuronal network 7 days in vitro old with N = 246 

Morris–Lecar neurons. (a) Synchronisation curve for the explored values of the 

synaptic conductance. (b) Complexity values 〈 C 〉 k vs. d for low ( k = 3 ) and high 

( k = 20 ) degree node values. (b) 〈 C 〉 k vs. k for the conductance value ( σ = 950 ) 

marked in (b) with a vertical dashed line. Each point is the average of 6 network 

realisations. 
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C = H · Q (9) 
dynamics by measuring the statistical complexity of the single

nodes along the synchronisation process. As the typical neuronal

dynamics exhibited by Eq. (1) consists of a sequence of L spikes

whose amplitude variability is negligible, we focused on the com-

plexity C i of the sequence of inter-spike intervals (t l − t l−1 ) (ISI) of

each neuron. 

The ordinal patterns formalism [39] associates a symbolic se-

quence to a series [40] , transforming the actual values of the data

series into a set of natural numbers. To do that, the ISI series of

each neuron is divided in sequences of length D . In each sequence,

the data values are ordered in terms of their relative magnitudes

[13] , which provides the corresponding symbolic sequence. The in-

formation content of these sequences is then evaluated as a func-

tion of the complexity measure. The complete process is illustrated

in Fig. 4 . 

This is a broad-field, well-established and known method, sta-

tistically reliable and robust to noise, extremely fast in compu-

tation and with a clear definition and interpretation in physical

terms. It is derived from two also well-established measures (di-

vergence and entropy), also easily interpretable when analysing

non linear dynamical systems. In addition, it only requires soft cri-

teria, namely that the time series must be weakly-stationary, i.e.,

for k ≤ D , the probability for ISI t < ISI t+k should not depend on

time [39] , and that M > > D ! (where M is the number of points
f the entire time series of ISIs), which are easily checkable. We

roceed in the following way, as shown in Fig. 4 : 

• From each single node time series in the simulated (Morris–

Lecar neuron) signal, we detect the spikes (a) and extract the

duration between two consecutive spikes (b). 

• We compute series of the inter-spike time intervals ISI (c) and

save them in an array (d), which will be our object of study. 

• The ISI series is divided in sequences of length D ( D = 3 in

this illustration, (e)). We compare consecutive points in each

sequence and associate a natural number to each of them (f),

ranking them based on their relative size. 

• We count how many times a certain symbolic sequence (or pat-

tern ) π of length D appears ( N π ). 

• Then, we define a probability of occurrence for each pattern:

P π = 

N π
N T 

, where N T is the total number of sequences of length

D in which the time series is divided, i.e. N T = (L − 1) /D, being

L the total number of spikes. 

• We construct a probability distribution , which we call P from

now on, from all possible symbolic sequences of length D with

probability P π . 

Once the probability distribution P is obtained, the statistical

omplexity is defined. It is a measure that should be minimal

oth for pure noise and absolute regularity, and provide a bounded

alue for other regimes. Being this so, we need to characterise the

isorder and a correcting term (i.e., a way of comparing known

robability distributions with the actual one). The statistical com-

lexity ( C ), as defined in Ref. [41] , is the product of the Permuta-

ion Entropy ( H ) and the Disequilibrium ( Q ). 

To define the permutation entropy H , the first step is the evalu-

tion of the Shannon entropy, that gives an idea of the predictabil-

ty of the series: 

[ P ] = −
D ! ∑ 

j=1 

p j · log (p j ) (4)

he permutation entropy corresponds to the normalisation of S

ith respect to the entropy of the uniform probability distribution,

 max : 

H = 

S 

S max 
, S max = S[ P e ] , 

 e ≡ { p i = 1 /D ! } i =1 , ... ,D ! ⇒ 0 ≤ H ≤ 1 (5)

Regarding the disequilibrium Q , it is a way of measuring the

istance of the actual probability distribution P with the equilib-

ium probability distribution P e . This notion of distance can be ac-

uired by several means; in this work, we adopt the statistical dis-

ance given by the Kullback–Leibler [42] relative entropy ( K ): 

[ P | P e ] = −
D ! ∑ 

j=1 

p j · log (p e ) + 

D ! ∑ 

j=1 

p j · log (p j ) 

= S[ P | P e ] − S[ P ] (6)

here S [ P | P e ] is the Shannon cross entropy. If we now symmetrise

q. (6) , we get the Jensen–Shannon divergence ( J ): 

[ P | P e ] = (K[ P | P e ] + K[ P e | P ]) / 2 → 

(∗) 
J[ P | P e ] 

= S[(P + P e ) / 2] − S[ P ] / 2 − S[ P e ] / 2 (7)

where ( ∗) is simply the rewritten version in terms of S . Finally, we

an write the disequilibrium Q as the normalised version of J as: 

 = Q 0 J[ P | P e ] (8)

ith Q 0 = 

N+1 
N log (N + 1) − 2 log (2 N) + log (N) 

−1 
, implying again

 ≤ Q ≤ 1. We then just have to multiply H and Q to obtain the Com-

lexity measure : 
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. Results 

We summarise our results for the statistical complexity in a

ultured neuronal network in Fig. 5 . As commented above, in panel

a) we show as a reference the synchronisation level vs the synap-

ic conductance σ for the dynamics simulated on top of a DIV7 ex-

erimental network. In panel Fig. 5 (b) we plot the value of 〈 C 〉 k as

 function of the conductance σ for two nodes with high ( k = 30 )

nd poor ( k = 3 ) connectivity, being 〈 C〉 k = 

∑ 

[ i | k i = k ] C i /N k , with N k 

he number of nodes with degree k . The results evidences that,

n that same route to synchronisation, there exists differences be-

ween how hubs and peripheral nodes behave due to the presence

f the ensemble, even when the global synchronisation level is still

ery low. 

The main detail that catches our attention is that the peripheral

odes show a greater complexity than the hubs ( σ = 950 ). To fur-

her explore this finding, in the third panel we depict the statisti-

al complexity vs the degree, for this value of σ . We can extract an

nteresting result here: for σ = 950 , there exists an anti-correlation

etween 〈 C 〉 k and k. 

This anti-correlation observed in cultured neuronal cultures is

ot as evident as the one reported in Ref. [27] in SF networks, but

aking into account that the structure, which has grown in a lim-

ted spatial domain, does not belong to the class of power-law net-

orks (as it was already discussed) and that the model (Morris–

ecar) was not originally designed for this kind of neuronal ag-

regates, one can conclude that the anti-correlation between the

tatistical complexity C and the degree k is a quite robust feature. 

. Conclusions 

In Ref. [27] we investigated the relationship between the statis-

ical complexity and topology in synthetically generated networks.

ere, we focused on the study of real-world topologies, as the

nes exhibited by self-organised neuronal cultures. The longitudi-

al study of the morphology of these networks shows an evolution

n the topology from isolated neurons to a percolated heteroge-

eous topology with small-work properties. 

In order to study the structure-dynamics interaction in these

etworks, we simulated a dynamical model (the Morris–Lecar neu-

on) on top of experimental neuronal networks at the mature

evelopmental stage. We evidenced that, in the weakly coupled

egime, it is possible to anti-correlate the individual node statis-

ical complexity of the series of the neuronal inter-spike intervals

ith the degree of a node. Therefore, it would be possible to in-

er the degree distribution of the network from node dynamical

easurements, which confirms the result obtained for synthetic

etworks [27] . This approach based on the computation of com-

lexity values retrieved from single node dynamics, provides a dif-

erent perspective than the usual methods of network inference,

ince it does not imply node-to-node calculations. Additionally, our

ethod does not impose the need of measuring the dynamics of

very node: it can be an incomplete measure, an still it will pro-

ide their relative roles. We hope this approach will be useful in

pplications where the knowledge of the degree distribution, in-

tead of the detailed connectome, provides a sufficient insight over

n unknown topology and about the functioning of the underlying

ystem. 
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