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Abstract

From birth, human infants engage in intrinsically motivated, open-ended learning,
mainly by deciding what to attend to and for how long. Yet, existing formal models
of the drivers of looking are very limited in scope. To address this, we present a new
version of the Rational Action, Noisy Choice for Habituation (RANCH) model.
This version of RANCH is a stimulus-computable, rational learning model that
decides how long to look at sequences of stimuli based on expected information
gain (EIG). The model captures key patterns of looking time documented in the
literature, habituation and dishabituation. We evaluate RANCH quantitatively
using large datasets from adult and infant looking time experiments. We argue that
looking time in our experiments is well described by RANCH, and that RANCH
is a general, interpretable and modifiable framework for the rational analyses of
intrinsically motivated learning by looking.

1 Introduction
Human infants have limited motor capacity, so they engage in intrinsically motivated open-ended
learning mainly by deciding what to attend to and for how long. Developmental psychologists have
long capitalized on this fact, probing infants’ mental representations through their looking behavior
[1, 2, 5]. In looking time experiments, infants are repeatedly shown one stimulus until their looking
time decreases significantly (i.e. habituation), and then shown a novel test stimulus. Infants look
longer at the novel stimulus (i.e. dishabituation). Why do infants look longer at the novel stimulus?
One intuition is that infants look longer when they recognize learning opportunities. In this paper,
we offer a formal model of this connection between looking and learning: Rational Action, Noisy
Choice for Habituation Model (RANCH). We validate the model using behavioral datasets from both
adults and infants.

Existing models of looking behaviors in infants leverage event probabilities to connect information
theoretic measures with looking behaviors [8, 9]. For example, Poli et al. [13] utilized a paradigm in
which infants were shown sequences of events until they looked away. A rational learning model of
event probabilities (a Dirichlet-Multinomial model) computed various information theoretic metrics
such as surprisal and KL-divergence associated with each event. The results suggested that infants
were looking longest at optimally informative stimuli. However these models only retrospectively
fit infants’ behaviors, without modelling the online learning and decision making underlying infant
looking. Also, these models only apply to learning the probabilities of events, assuming that the
conceptual content and boundaries of events are already given.
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The Rational Action, Noisy Choice for Habituation (RANCH) model was proposed to address these
limitations [3]. The initial version of RANCH was a Bayesian concept learner that made moment-by-
moment sampling decisions based on its expected information gain, a metric used for the rational
analysis of information sampling [11, 12] and artificial agent behavior [15]. This model successfully
predicted habituation and dishabituation patterns of adult participants. Nevertheless, as in prior
work, the first version lacked a principled way of representing learning from the actual stimuli in the
experiment. In the previous version of RANCH, stimuli were represented by ad hoc binary feature
vectors. Without principled stimulus representations, any linkage to specific experimental results is
necessarily mediated by ad-hoc, experiment-specific stipulations about how stimuli are encoded.

In this paper, we present a new version of RANCH that explicitly models learning of visual concepts,
represented as convex regions in a continuous perceptual feature space [4, 6]. Importantly, RANCH
is now fully stimulus-computable, so that it can generate predictions from raw pixels. It therefore
instantiates a formal hypothesis about how humans go from perceiving stimuli to an abstract rep-
resentation over which the ideal learner forms its representations. The learner’s goal is to form a
simple perceptual concept, but our framework lends itself to representing more open-ended types of
learning. We evaluated the predictions of RANCH using behavioral datasets collected from adults
and infants performing a simple perceptual learning task. Our results show that RANCH captures
the attentional patterns of humans across development, and a developmental comparison between
best-fitting parameters provides deep insights about the different priors that adults and infants bring
to bear on perceptual learning.

2 Model
RANCH is a Bayesian perception/action model in which a learner makes optimal perceptual sampling
decisions [3]. The learner learns the location and variance of a Gaussian category in a perceptual
space by observing a series of noisy perceptual samples from a sequence of stimuli; the model makes
decisions about how many samples to receive of each stimulus before disengaging. We describe
RANCH’s perceptual representation, learning model, and decision model in turn.

Perceptual representation The current version of RANCH extends previous versions by using
stimulus-computable perceptual embeddings obtained from a model presented recently by Lee &
DiCarlo [10]. This deep neural network uses ResNet50 for encoding and then projects the final
layer onto a lower-dimensional embedding. This final projection is "perceptually-aligned", in that it
was trained to match perceptual dissimilarity matrices derived from human adult reaction times in a
2-AFC match-to-sample task. We use these projections into a perceptually-aligned embedding space
as a principled low-dimensional representation of stimuli, over which our learning model can form
perceptual concepts. A visualization of experimental stimuli in the embedding space can be seen in
Figure 1A.
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Figure 1: Panel A: Stimulus embeddings in PC-space. Panel
B: Plate diagram of the learning model, which learns dis-
tributions over a mean and standard deviation from noisy
perceptual samples.

Learning model RANCH’s goal
is to learn a concept in the per-
ceptual embedding space described
above, through noisy perceptual sam-
ples from a stimulus. The concept is
parameterized by µ, σ, which repre-
sents beliefs about the location and
variance of the presented concept in
the embedding space. This concept
µ, σ generates exemplars y: exem-
plars of the concept. RANCH ob-
serves repeated noisy samples z̄ from
each exemplar. For any sample z from
an exemplar y, the model expects the
observation to get corrupted by zero-
mean noise, represented by ϵ. A plate
diagram is shown in Figure 1B. We
used a normal-inverse-gamma prior

on the concept, the conjugate prior for a normal with unknown mean and variance, on the concept
parameterized as µp,νp αp, βp. Still, applying perceptual noise to y breaks the conjugate relation, so
we computed approximate posteriors using grid approximation over µ, σ and ϵ.
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Decision model To decide whether to request an additional sample from the same stimulus, RANCH
computes expected information gain (EIG) of the next sample. EIG is computed as the product of
the posterior predictive probability of the next sample and the information gained conditioned on
that next sample, via a grid approximation of possible subsequent samples. RANCH then makes a
softmax choice (with temperature = 1) between next-sample EIG and a constant “environmental EIG”
assumed to be the amount of information to be gained via looking away from the stimulus.

3 Behavioral data
We evaluated the predictions of RANCH using adapted versions of two previously-published behav-
ioral datasets: adults (N = 380) from [3] and infants (N = 92) from [14]. The adult behavioral dataset
was collected using an online self-paced looking time paradigm, where participants were instructed to
watch blocks of six animations, consisting mostly of one animation (the background), and a second
animation (the deviant) being shown on the 2nd, 4th or 6th trial, or not at all. Adults indicated when
they wanted to continue to the next stimulus with a keypress. The infant dataset was collected using
a novel online looking time paradigm. Infants watched blocks consisting of familiarization to one
animation for different exposure durations (between 5 and 45 seconds), followed by a test trial which
either showed the same stimulus again or a new stimulus. We measured looking time as the total time
infants looked at a test trial until the first 2-second lookaway. The experiments used distinct stimulus
sets.

4 Model fitting methods
We tailored the model predictions to each dataset by creating an "adult experiment" and an "infant
experiment" for the model. In the adult experiment, the model decided after each sample whether to
keep looking at the current stimulus, or move on to the next trial, for six successive trials. A deviant
stimulus was presented on the 2nd, 4th, or 6th trial, or was absent. In the infant experiment, we
created a "familiarization phase" where the model was presented with a fixed number of samples of
the background stimulus; and then a "test phase" of either the background of the deviant stimulus
where the model decided after each sample whether to keep looking or move on.

We also compared the RANCH model with lesioned models to test model assumptions’ relevance. In
the "No Learning" lesion, the model makes sampling decision randomly rather than based on learning.
In the "No Noise" lesion, the model assumes that each observation is noiseless. These two lesioned
models were used as comparisons in evaluating the earlier version of RANCH [3].

For each dataset, we conducted an iterative grid search across free parameters for each dataset to
select the best-fitting parameters. The free parameters we searched over were the priors over µ, σ and
ϵ, as well as the actual noise ϵ. For the adult dataset, we used 10% of the data as the training set to
select parameters. For each set of parameters, we calculated a Pearson’s r between the model outputs
and the training dataset. We selected the parameter set with the highest Pearson’s r between condition
means and participant means as the best-fitting model. We compared results under these parameters
to the remaining 90% behavioral dataset for adults. Given the sparsity of infant data, we used a
leave-one-out cross-validation procedure, where we iteratively fit parameters to all but one infant,
and then generated trial-wise predictions for the left-out infant. For each fold of the cross-validation,
we fit a linear model using model predictions and block number as predictors (an experimental
variable not accounted for by RANCH, but associated with fatigue and decreasing looking times in
infants). We then used the resulting coefficients to predict looking times of the held-out infant. We
also computed a noise-ceiling using a linear model that had access to the experimental conditions
themselves (test type and prior exposure duration), following the same cross-validation procedure.

5 Results
Adult fit to data RANCH provided reasonable qualitative fits with the behavioral data from
adults (Figure 2A). The best fitting parameters were (µp = 0, νp = 1,αp = 1, βp = 1, ϵ = 0.0001).
Quantitatively, the model achieved a good fit with the behavioral data (r = 0.95 [0.90, 0.98], RMSE
= 3573.076 [2789.96, 4970.69]). The model fit was significantly better than both the No Learning
model (r = -0.16 [-0.53, 0.26], RMSE = 3583.762 [2798.3, 4985.56]) and the No Noise model (r =
0.69 [0.39, 0.85], RMSE = 3584.49 [2798.87, 4986.57]). Interestingly, RANCH did not capture
the complexity effect reported in the original publication [3]. Adults looked longer at the more
complex visual stimuli (β = -0.05, SE = 0.02, t = -2.3, p = 0.02) but the effect of complexity was
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Figure 2: Behavior and model fits of RANCH and baseline models for adults and infants. The first
row and the second row represents the behavioral dataset and the model fits for the adult dataset and
the infant dataset respectively. For the four columns on the left, X-axis shows the accumulated prior
exposure to the familiar stimuli in seconds. Y-axis represents the looking time to the test stimuli. Blue
dots represent the test stimuli being familiar and the red dots represent the test stimuli being novel.
The rightmost show the fit between the RANCH predicted results on the X-axis and the looking time
results on the y-axis.

not significant in the model outputs (β = -0.001, SE = 0.002, t = -0.42, p = 0.67). This discrepancy
suggests that stimulus complexity is not currently represented in our low dimensional embedding.

Infant data fit For the infant data, the best parameters were different from adults (µp = 0, νp =
2,αp = 5, βp = 15, ϵ = 0.00001). Using these parameters, RANCH provided a good fit to infants’
looking times (Figure 2B; r = 0.72 [0.36, 0.90], RMSE = 2357.992 [1756.16, 3588.70]), better
than the No Learning (r = 0.48 [-0.02, 0.79], RMSE = 3422.515 [2548.99, 5208.83]) and No Noise
model (r = 0.11 [-0.40, 0.58], RMSE = 3015.594 [2245.92, 4589.52]). The main behavioral patterns
reported in [14], habituation and dishabituation, were reproduced by RANCH. In our leave-one-out
cross-validation analysis, we found that our trialwise predictions showed weaker differentiation
between RANCH (r = 0.34 [0.25, 0.42], RMSE = 13.74 [12.01, 16.06]) and the two baseline models
(No Learning: r = 0.32 [0.22, 0.39], RMSE = 13.90 [12.14, 16.24]; No Noise: r = 0.32 [0.23, 0.40],
RMSE = 13.86 [12.11, 16.20]). However, the noise ceiling was also quite low (r = 0.35 [0.27,
0.43], RMSE = 13.67 [11.94, 15.97]), suggesting that trial-wise data is generally noisier in infants
compared to adults. In other words, RANCH’s performance is close to maximal, and mostly limited
by the data.

6 Discussion
We present a modular, computational framework for the rational analysis of intrinsically motivated
learning through looking. In the current implementation, we made specific decisions about perceptual
representation, learning model, and decision model. This modular setup of RANCH easily lends
itself to modification of any of these components and investigating the effects on sampling behavior.

One unique advantage of the RANCH model is the parameter interpretability. The priors on µ and σ
were parameterized by a normal inverse-gamma prior with µ, ν, α and β, the conjugate prior to a
normal distribution with unknown mean and variance. While the mean was fixed to be 0 (µ), variation
in the the other parameters express distinct hypotheses about the precision of the location of the
concept (ν), as well as the variance of the concept (α and β). The best-fitting priors for adult and
infants therefore lend themselves to comparison. The most striking difference was in the prior on
the concept variance: While the adult version of RANCH achieved the highest fit with parameters
α = 1 and β = 1, infants’ achieved the highest fit with α = 5 and β = 15, indicating far wider
prior variance. This result is consistent with previous proposals that infants bring less refined prior
knowledge to bear on learning, and that the role of development is to refine those priors [7, 16].

Despite the generally good fit between model predictions and data, there is one qualitative mismatch
to both the adult and infant datasets. RANCH predicts that looking to deviant stimuli will gradually
decrease (i.e. a negative slope) as a function of prior exposure to the background stimulus. In both
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infants and adults, looking to the deviant stimuli stayed the same (i.e. flat slope). Such qualitative
deviations from the data point to differences in the computation underlying attentional decision-
making between humans and the current version of RANCH. In this case, one possibility is that
humans use different decision models to link learning and looking. In previous work we explored
the effect of using different decision models including both the optimal, forward-looking EIG used
here and several simpler-to-compute proxies, surprisal and KL-divergence [3]. Surprisal, unlike EIG
and KL-divergence, typically results in an increasing looking toward deviant stimuli as a function of
previous exposure to the background stimulus, and thus might better approximate human behavior in
our paradigm. Alternatively, it may be that the description of humans as learning single concepts
may be oversimplified. Formulating the learning problem as hierarchical, where a learner attempts to
understand how many concepts are present, and which concept to attribute the current observation,
may result in a closer fit to the data.

Furthermore, the imperfect differentiation between model fits in the infant cross-validation analysis
points to two issues: First, noise in infant data makes it hard to achieve good fit with trial-wise
predictions. This is corroborated by the low noise ceiling, which suggests that even with perfect
information about the experimental condition, predictive power is generally low in infant looking
time data. Second, it is likely that an overall model fit to the entire dataset is not the most sensitive
measure of RANCH’s performance. RANCH’s predictions are only importantly different from the
baseline models in a subset of the data: after longer exposures, when looking to novel items is higher
than to familiar items. Other aspects of the prediction, like the effect of block number (a strong
predictor of a decrease in looking time due to fatigue), and looking time for shorter prior exposures,
are shared between RANCH and baseline models. Future analyses should therefore consider more
sensitive human-model comparison methods which focus their assessment on the crucial parts of
RANCH’s behavior.

Overall, RANCH instantiates a hypothesis about how looking achieves rational intrinsically motivated
learning in a simple perceptual learning task. Moving forward, its modular nature would lend itself to
capturing how humans "look" at more open-ended learning problems. By changing the perceptual
representation and learning model to reflect more open-ended learning problems, RANCH provides a
general framework in which one could instantiate hypotheses about how humans use looking to learn,
in general. We believe that using this framework can move the study of looking towards a predictive
science, formally linking it to its underlying learned representations.
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