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ABSTRACT

Time-series generation plays a critical role in data imputation, feature augmen-
tation, domain adaptation, and foundation modeling. However, the cross-domain
generation remains a persistent challenge, as existing methods model time-series
interactions either at the granularity of individual points or fragmented segments.
This limits their ability to capture and adapt to complex periodic patterns inher-
ent in diverse domains. Specifically, point-wise attention struggles with long-
range dependencies, while standard patch-based approaches may break important
cyclical structures. To address this, we introduce Winformer, a novel diffusion
model framework built on a window-wise Transformer. We shift the fundamen-
tal processing unit in the attention mechanism from pairwise points similarity to
continuous windows comparison of the entire horizon. By operating on semanti-
cally richer window representations, the proposed approach effectively learns and
transfers complex periodic patterns across domains. Extensive experiments on 12
real-world datasets demonstrate Winformer’s effectiveness, achieving an average
performance gain of 10.67% over SOTA baselines.

1 INTRODUCTION

The generation of high-quality time-series becomes a fundamental step in data imputation (Alcaraz
& Strodthoff], 2023} [Tashiro et al., 2021), feature augmentation (Senane et al., 2024; [Yuan & Qiaol
2024])), domain adaptation (Zhang et al., 2025} |Huang et al., [2025)) and foundation modeling (Ma
et al., [2024; |Cao et al.| 2025). The difficulty arises from the complex distribution of trends, period
and noise that evolve along with time, some researchers (Huang et al.l 2025) have pointed out it
becomes particularly complex during cross-domain generation.

Following the vanilla Transformer design (Vaswani et al.l [2017; [Zhou et al.| [2021)), the traditional
methods (Yuan & Qiao, 2024 [P1ao et al.l [2024; Zhou et al., |2022) model the exact interactions
between individual time-series through a point-wise perspective, as illustrated in Fig.[I[(a). The long-
range and high-order interactions are captured with frequency components (Zhou et al., 2022) and
stacking of attention layers (Wu et al., 2021). Recently, the time-series patching (Nie et al., 2023}
Peebles & Xiel [2023) is introduced to obtain middle-level interactions. However, the equidistant
patching directly breaks evolving trends and periodic patterns, as in Fig. [I(b), where the RevIN (Kim
et al.,|2022) technique is necessarily applied to restore the distribution shifting. The point-wise and
patch-wise time-series partitioning originates from the pairwise similarity design of the attention
mechanism, and we find that a more adaptive architecture works better for coupling trending and
periodic patterns. To better demonstrate the effectiveness, we focus on the more challenging cross-
domain generation tasks with domain specific time-series interactions.

To address this issue, we extend the fundamental principle of attention mechanism, i.e. pairwise
similarity, to windows comparison. As shown in Fig. |1} the slicing window of time-series is set as
1 in point-wise modeling and the attention is calculated on pairwise points, while the patch-wise
window is set as 3 and the attention is forced on pairwise lattices. Rather than window slicing
operation during data processing, we provide a possibility to address sliding window-based compar-
ison during attention calculating for stronger adaptive capability. We propose the Ample attention
to compare the Fourier-deduced similarity between time-series windows in Fig. [T[c), it enables a
learnable neural operator for domain adaptability. Our contributions are:
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Figure 1: The perspective of time-series modeling. (a) Point-to-point modeling on exact interactions
(Slicing window, window size=1). (b) Patch-to-patch modeling on middle-level interactions (Slicing
window, window size=3). (c) We propose window-to-window modeling on complex interactions
(Sliding window, window size=3).

* We propose the Ample attention, which transcends the calculation of statistic pairwise
similarity in vanilla Transformer. It is deduced from the comparison of time-frequency and
is calculated through learnable convolution operator on original attention.

* We design the Winformer, a new transformer-based denoising architecture, leveraging the
window-wise attention to enhance the learning and generation of domain specific time-
series interactions.

* Empirical experiments demonstrates 10.67% performance improvement on 12 real-world
datasets against SOTA baselines.

2 PRELIMINARY

With the rolling forecasting setting with a fixed horizon, we define the ¢-th sequence inputs of
domain j as XU = {xgj’t), . ,x(Lj;t) | xgj’t) € RP}, where L, stands for the horizon length.
We mix the M datasets from different domains together to get the unified dataset X = UM X;
considering the cross-domain time-series generation settings, and the overall target is to learn a

parameterized model 6 with py (X1, X2, ..., X7]7).

2.1 VANILLA SELF-ATTENTION

The self-attention mechanism (Vaswani et al.,|2017)) yields successful pairwise alignment ability in
sequence modeling. It is calculated on three transformed inputs from X € RZ=*P ie query, key
and value, which is defined as the scaled dot-product as:

QK'
A(Q,K,V) = Softmax(——)V , 1)
(Q ) ( 7 ) (
where we have Q = XW/,. K = XWI—';, VvV = XWJ with trivial projections Q € RLaoxd,
K € Rixxd v ¢ RLv*d and the efficient scaled norm of the input dimension d.

2.2 DENOISING DIFFUSION PROBABILISTIC MODELS

The diffusion probabilistic generation methods are based on the assumption of Markov chain.
Specifically, let the input matrix X ) € RE<XD ~ ¢(X) be the real data. At the n step of the
diffusion process, we obtain X ,,) from X, _1) by adding Gaussian noise with the transition kernel
defined as ¢(X ()| X(n—1)) = N(Xn); VI = BnX(n), BnlI), where Sy € (0,1). By recurring the
n steps of the Markov chain, we can derive:

Q(X(n) ‘X(O)) =N (X(n)a V an(n)a (1 - @n)I) ) 2
where o, = 1 — (8, and a,, = H?’:l a;. In reversing, a learning-based model reconstructs as

Do (X(n—l) |X(n)) =N (X(n—l); Mo (X(n), n), Zg(X(n), n)) and we estimate u:

1 n
po(Xny,n)= Jon (X(n) - \/%ee(x(n)’ n)) . 3)
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(a) The pairwise self-attention. (b) The pairwise similarity between Fourier Coefficients. (c) The expanded attention.
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Figure 2: The process of attention expansion. (a) The visualization of pairwise feature map (dot-
product) of vanilla self-attention. There are five tokens (1, to, t3, t4,t5) in both query and keys.
And the blue star (Q,,, K;,) and red star (Qy,, K;,) form a duality. (b) The new similarity is defined
between the windowed Fourier coefficients. We set the window size as 3 and the matrix is the
dot-product of corresponding coefficients, where the orange triangle stands for real parts and the
green triangle for imaginary parts. The blue arrow denotes the grouped similarity from (¢, t2, t3) to
(ts, t4, t5) like the blue star in figure a. (c) We design the expanded attention to crop the scores from
original feature map.

3 METHODS

In this section, we first introduce the derivation of the proposed Ample attention and its calculation.
Then, we describe the overall Winformer architecture. Some theorems mentioned in this section are
not further elaborated on due to space limitation, and we provide theory backgrounds in Appendix[E]

3.1 THE WINDOW-WISE MODELING

The vanilla self-attention mechanism is built upon the point-to-point dot-product similarity. It
achieves significant alignment ability over the tokenized inputs of language (Devlin et al., 2019),
where the text embedding Word2Vec (Mikolov et al., 2013) and Jina (Gtinther et al., [2023)) ensure
the unified linguistic space. For time-series generation, the Fourier transform decomposes the se-
quences into constituent frequencies and defines similarity between the frequency coefficients to
make it possible to align the series. Thus, we propose to transform the time-series data into the
Fourier basis and calculate the similarity over the complex planes.

3.1.1 WINDOW TO WINDOW ALIGNMENT

The time-series data exits heavily warping problem (Berndt & Clifford, |1994; Salvador & Chan)
2007). This problem arises when comparing or analyzing different time-series sequences, where
similar or identical events do not occur at precisely the same time steps across these series. In other
words, the event timestamps lead to misalignment, which can be caused by various factors, including
differences in sampling rates, system delays, manual operation delays, or inconsistencies in natural
changing rates. To alleviate the time warping, we replace the point-to-point calculation with the
window-to-window one.

Recalling that we have an input matrix X, the i-th time step is represented by a vector x; € R'*P.
Assume that we perform a window-wise Fourier transformation, over these finite-length signals,
and the window size is set as p. Since the time-series become discrete-time inputs, we use the
discrete Fourier transform (DFT) Fp, instead. We apply the DFT operator to each feature dimension
independently, which follows the same setting (Alaa et al, [2021). We select the g-th dimension of
projected inputs Q as Q7 = {x{,...,x]_}. Through the temporal zero padding on the beginning
and ending, we have the window-wise attention inputs Q9 and K7 respectively:

QLY ={Qllixs<j<(i+1)xs} @)
and
K]\ = {Kllixs<j<(i+1)xs} 5)

where the [Q]!” € R**1, [K]\” € R**! and s stands for the stride. For the ¢-th time step, the DFT
transforms the real-valued inputs into the complex-valued ones as F, D{[Q]ﬁ‘”} and F, D{[K]EQ)}.
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Likewise the self-attention mechanism, we can perform the dot-product between the selected time
step t1 and %5 in the frequency domain, whose scores calculate the similarity between different
spectral components (Zhou et al., 2022} |Piao et al., 2024; |Kong et al.,|2023)) as:

Rty = FollQ} oKDY ©)

(t1,t2)

This score is a complex matrix containing the real component Re(f‘) and imaginary component

Im(f‘), a two-channel matrix with shape 2 x s x 1. The former component measures the magnitude
difference between the spectral coefficients, while the latter one is about the phase difference.

Then, we can concatenate all the inputs’ DFT result as f‘gfl) t2) = [f‘gfllt)z), ce Fgfit,it)g)] with a shape

of 2 x s x d. Likewise the self-attention mechanism, we take the magnitude difference of the spectral
coefficients at ¢; and t2 as an example, which could be normalized by Softmax(+) to reorganize V.
Then we can define the real-valued similarity within the window-to-window comparison as:
Re _ I (p)
S(tl,tz) = Re(F(tl,t2))1 N (7)
where 1 € R4*! denotes the all-one vector and it sums the real coefficient of all channels (also
applies to imaginary).

As illustrated in Fig. P2} the original self-attention leverages the pairwise similarity to measure the
relationship between different inputs, e.g., the blue star represents the attention feature map for
Qq, and Ky, pairs and red star is the dual score. If we perform the windowed DFT and measure
the “group” similarity between (t1, t2, t3) and (t3, t4, t5) through the real-valued similarity defined
in Eq.(7) and its imaginary ones, we can acquire the blue arrows composed with real parts (the
orange triangle) and imaginary parts (the green triangle). Based on the following derivation, we will
demonstrate that the pairwise attention could be expanded to crop scores, where the score (blue star)
stands for window-to-window comparison.

3.1.2 THE CONVOLUTIONAL CALCULATION

The Fourier Transform, a mathematical operator (Duhamel & Vetterli, |1990), can be calculated in
Eq.(6), but it requires two transformations, namely product in frequency domain and composition
of real part and imaginary part. Actually, our ultimate goal is to calculate a new similarity score in
window-wise perspective that is numerically compatible with other network components. Inspired
by the convolution theorem (McGillem & Cooper, |1991) which bridges the connection between
Fourier operator and convolution operator, we decompose the calculation of the DFT operator as a
linear transformation:

Fp(x) =Mx , where

1 1 1 e 1
1 w w2 N wpfl
M = R wh ce 2D . ®)
VP
1 wPl 2= L 12

The coefficient w is e~2™/?_ Using the Euler’s rule and the i-th row of transformation M be formu-
lated as 9(i) = [1,cos(2mi/p),...,cos(2mi(p — 1)/p)] , we can rewrite M as [¢0(0),...,¢¥(p —
1)]"/,/p, and the window-wise similarity score is the sum of different groups:

¥(0) 0 ©o
+ : : ) &)
Y(p—1) $p—1

where the W is the coefficient for decomposed and reorganized p sub-matrix and the O is the all
Zero matrix.

WT

S(ty,t2) = :
VP 0

We noticed that the pairwise attention scores S/( tot) has been already calculated in Eq. H The
target window-wise score S ;, 1,y can be acquired by performing convolution whose shape is larger
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(b) Transformer-based denoising model with Ample attention. (c) Window-wise alignment for Ample attention.

Figure 3: The overall architecture. (a) In the forward process, we add Gaussian noise to original
time-series data to obtain noisy data. Then, the learning-based denoising model predicts the noise
for time-series recovering during the reverse process. (b) The denoising model is based on recent
diffusion transformer, which processes the noisy data with several encoder blocks. To enhance
the periodic patterns, we reformed the first encoder block with hybrid multi-heads attention, which
integrates the Ample attention heads with the vanilla self-attention heads. (c) Different from the
vanilla self-attention mechanism, the Ample attention heads conduct window-to-window alignment
in similarity score’s calculation to capture multiple periodic patterns.

than or equal to the periodic one in Eq.@). Let ¢ = [@o,¥1,- - ., ¢p—1], We have:

WT
St1,t2) = % [(0)p + -+ ¥(p— 1)y
(10)

)
/

wT’ , ,
= W Z[avg(s ) 4 convy,1)(S) + - - -+ convy,—1)(S )]

where conv, ;) () represents the convolution operator with the kernel (i), with the same basis of
DFT in Eq.(8). Thus, we can acquire the window-wise score by performing the convolution operator
on the original attention score. Specially, for ¢)(0), we can use an all-one matrix as the kernel, which
equals that we only select the avg(-) operator.

3.1.3 THE AMPLE ATTENTION

Recalling the vanilla Transformer’s attention mechanism, we still follows the Softmax(-) design
while replace the pairwise similarity with the window-wise comparison. We applied generalized
Parseval’s theorem (Hardy & Titchmarsh, [1931) between the pairwise S/(th t2) and window-wise
S(t, t,) it reveals a linear connection on the sum of scores. It motivates us to leverage the Conv2d(-)
layer with learnable kernel, we initialized the kernel with a decomposing basis for fast convergence,
then the distribution of linear coefficients W is learned through convolution kernel. In this way, we
can defined the Ample Attention as:

Attn = Softmax (Conv2d,(QK")V) , (11)

where the kernel v could be initialized by an exact type of transformation. If we only consider the
term of 1 (0) in Eq. [L0} we can perform Avgpool2d(-) to replace the Conv2dy(-). In practice, we
simplify the window-wise similarity to measure the amplitude correlation and omit phase consis-
tency in imagery part. Also, since the Fourier basis involves imaginary calculations, other frequency
decompose bases, such as Discrete Cosine Transform (DCT), are also acceptable for kernel initial-
izing. This is because of the learnable ability of Conv2d,,(-) which looses the constraints of kernel
initialization. To this end, we have derived the Ample attention.
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3.2 TRANSFORMER-BASED DENOISING ARCHITECTURE

The predominant Transformer-based model shows its potential integration capability with the dif-
fusion framework in time-series generation (Ge et al., 2025} |Cao et al., 2025). To enhance the
learning ability of domain specific time-series interactions through the proposed Ample attention,
we introduce a transformer-based denoising architecture, namely Winformer.

3.2.1 THE DIFFUSION PROCESS

As shown in Fig. 3] we utilize a conditional diffusion process with a forward process adding
Gaussian noise gradually to a data sample X (). We parameterize Eq. to sample X ) =
Vi Xy ++/1 — aye;, where @ are the constant hyper-parameters and ¢; ~ N(0,1). To invert the
forward process, a transformer-based denoising model is trained to estimate the py and calculate out
the €y as Eq.@ to reconstruct X, 1) from X .

3.2.2 THE HYBRID ENCODER

We apply the transformer-based denoising model to simulate py. For the k-th diffusion step, the
noisy data X ;) is embedded with position information. Then the embedded data is processed by
L+ 1 encoder blocks, including one hybrid encoder and L DiT encoders. The encoder blocks utilize
the adaptive layer normalization mechanism (Peebles & Xie, [2023)) to fuse conditional features ¢
with noisy data X ;. Specially, for the hybrid encoder block, we divide the attention heads into two
groups, including the vanilla attention group and the Ample attention group. The vanilla attention
heads preserves pairwise similarity in Eq.(TI), and the Ample attention is calculated on corresponding
vanilla ones with window-wise alignment. These two kinds of heads are concatenated in head-level.

As the previous derivation along with Eq.(11), we can initialize the kernel of Conv2dy(-) with
an exact frequency decompose basis for window-wise alignment. We choose the discrete cosine
transform (DCT) basis, a widely used transformation with real values only, which is depicted as:

1 ] .
\/>cos[(]+057r)i} i=0
p p

\/gcos[(jJrOﬁW)i] i#0
p p

Inspired by TimeDP (Huang et al.| 2025)), we select series samples to construct domain conditions
cq to acknowledge the model with domain-specific features, and learned prototypes ¢, to store basic
pattens. Then we combine these conditions with the diffusion step ¢ to obtain the condition c as :

¢ = Emby(t) + Emb,, (c,) + Embe, (cq) , (13)

where Emby (-), Emb,, () and Emb,, (-) represent the embedding methods. The condition instructs
the model learning through the adaptive layer normalization process.

¥(i,j) = (12)

3.2.3 DOMAIN CONDITIONING

4 EXPERIMENTS

In this section, we empirically demonstrate Winformer’s effectiveness on the twelve real-world
datasets and further discuss its generating process through visualization. We also provide detailed
hyper-parameter tests and more visualization figures in Appendix [A]and Appendix [C|

4.1 SETUP: CROSS-DOMAIN TIME-SERIES GENERATION

(a) Datasets. We conduct experiments on 12 real-world time-series datasets across four domains
following TimeDP (Huang et al.| [2025)), including traffic flows, weather phenomena, industrial logs
and financial records. All these datasets are reformatted into non-overlapping uni-variance sequence
slices with the length of 168. For cross-domain generation, all datasets are mixed during training.

(b) Baselines. We compare our model with 6 representative SOTA methods for cross-domain time-
series generation. These methods include GAN-base methods, such as TimeGAN (Yoon et al.,
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Table 1: Results of generation results for sequence length 168. Best results are bold and second best
results are underlined. Our method outperforms SOTA baselines in most of the datasets and achieve
an increase of averagely 10.67% in MMD.

Winformer TimeDP Diffusion-TS TimeGAN GT-GAN TimeVAE TimeVQVAE

Electricity 0.00110,002 0-00110.001 0.00310,002 0436710,255 0~254iO.166 0-577:EO.006 0.15210,024
Solar  0.03510.004 0.04140.011 0.05010.012 0.62810.053 0.57810.039 0.353+0.014 0.437+0.020
Wind  0.03410.014 0.02510.017 0.035+0.006 0.213+0.017 0.17010.040 0.1701+0.004 0.13110.014
Traffic ~ 0.07110.005 0.083+0.034 0.11110.031 0.567+0.057 0.538+0.078 0.218+0.007 0.21310.016
Taxi 0.08510.010 0.09510.023 0.131+0.014 0.27510.054 0.319+0.032 0.1391+0.007 0.12810.004

Pedestrian 0-04010.008 0.04410,020 0.07110,019 0.09010,030 0.11210,019 0.065:&0.002 0.06710,007
Air 0.01110.002 0.01110.003 0.02240.011 0.120+0.045 0.21110.041 0.089+0.016 0.02810.002

Temperature 0.230:&04021 0.21910.022 0.24110,049 0.92610,042 0.80910,081 1.002:&0.014 0~32310.008
Rain 0.036_0.016 0.05710.039 0.079+0.058 0.329+0.285 0.11110.100 0.29210.019 0.07410.007
NN5 0.147 10.008 0.16410.010 0.186+0.043 0.874+0.088 0.63210.074 0.82110.061 0.327+0.012

Fred-MD  0.002.0.001 0.002.0.001 0.00610.002 0.043+0.021 0.133+0.102 0.059+0.008 0.008+0.002

Exchange 0.13710.012 0.15140.024 0.20610.035 0.530+0.154 0.47540.116 0.543+0.140 0.342+0.050

Electricity 0.00810,010 0.01210,016 0.31510,247 0448810,175 0.40710,079 0.734:&0.023 0.28010,051
Solar  0.01310.005 0.01610.005 0.066+0.055 0.612+0.447 0.12010.041 0.260+0.016 0.865+0.108
Wind  0.20240.044 0.-15240.034 0.54810.372 1.92441.233 0.10710.016 0.48410.015 0.483+0.066
Traffic ~ 0.01149.002 0.009+0.003 0.120£0.074 1.305+0.320 1.409+0.251 0.21140.014 0.17810.026
Taxi 0.00510.003 0.01110.004 0.075+0.034 0.650+0.180 0.950+0.197 0.110+0.020 0.110+0.026

Pedestrian 0'009i0.004 0,014:‘:0‘010 0133:‘:0069 0.417:‘:0‘181 0~411i04096 0.065:&0.005 0.405:‘:0‘051
Air 0.0260.011 0.02710.016 0.106+0.079 0.34810.003 0.57810.049 0.16410.012 0.05410.012

Temperature 0.176i0‘027 0.171:{:0'073 0~342i0.131 8.892:‘:2‘681 3~174i24685 2.183:&0.110 O~735i0066
Rain  0.01110.003 0.01310.012 0.06110.072 0.506+0.174 0.4321+0.009 0.16019.022 0.04710.018
NN5  0.045.0.007 0.05410.014 0.165+0.076 4.928+14.112 1.38610.520 1.33710.220 1.06310.274

Fred-MD  0.20150 014 0.20320035 0.83550.551 0.51240 200 0.38040.070 0.34650 041  0.83110.077

Exchange 10621i0.126 1.866i0‘132 2.337:‘:0'714 8.861:‘:3397 720]&:44380 ].0.404:(:1.434 5~O52i1.385

Count 19 7 0 0 1 0 0

Maximum Mean Discrepancy

K-L Divergence

2019) and GT-GAN (Jeon et al., 2022)), VAE-based methods, such as TimeVAE (Desai et al.
2021) and TimeVQVAE (Lee et al.,|2023), and diffusion-based method, such as the newly released
TimeDP (Huang et al.,[2025) and Diffussion-TS (Yuan & Qiaol |[2024). To ensure a fair comparison,
we adopt the related results reported by TimeDP (Huang et al.| 2025)).

(c) Metrics. We select two metrics to evaluate the performance of generation by measuring the sim-
ilarity between the distributions of the real and generated time-series. Maximum Mean Discrep-
ancy (MMD) compares the discrepancy between two series after mapping into a high-dimension
feature space with a kernel function. Kullback-Leibler Divergence (K-L) measures the divergence
between two probability distributions. The metric computation is stated in Appendix

(d) Implementation. As analyzed in Section 3] the stride length of window-alignment is a hyper-
parameter, and we choose 25 in our main experiments, which is suitable due to it is larger than
common periodic cycles in real-world datasets, such as 4, 6, 12 and 24. We further explored the
effectiveness with different stride length and kernel type of window-alignment in Appendix [A] The
number of DiT encoder layers is set to 6, and the hidden size is 512. The learning rate is set to
5 x 107° with 1, 000 warm-up steps. For the diffusion process, we use 200 steps adding noise to the
series or reconstructing them. More details about implementation can be found in the Appendix [D}

4.2 MAIN RESULTS

In this experiment, we evaluate our methods with 6 baselines in Table E} Our method achieves the
best performance in 10 out of the 12 datasets measuring with maximum mean discrepancy, which
indicates that the time-series generated by our model conform to the original sequence better than
other competitive methods. Considering all of the 12 datasets, our method averagely decreases the
MMD with 10.67% compared to TimeDP, which is the SOTA method of cross-domain generation.
Besides, we can find that the Winformer demonstrates especially stronger ability on datasets with
strong periodicity, such as solar and traffic. On the contrary, Winformer’s ability lags slightly behind
on datasets exhibiting a stronger tendency toward trendiness rather than periodicity, such as wind and
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Table 2: Results for ablation study. The best results of each line are bold. Window-wise alignment
outperforms other methods with 15 best scores.

Alignment Type | Window-wise Alignment | Patch-wise Alignment | Point-wise Alignment
Metic | MMD KL | MMD K-L | MMD K-L
Electricity 0.00119002 0.0081p010 | 0.00240.005 0.01119.005 | 0.002409.004 0.030+0.028
Solar 0.035:0.004 0.013:0.005 | 0.03510.003 0.01640.007 | 0.035+0.003 0.017+0.011
Wind 0.03410.014 0.20210.044 | 003310010 0.176+0.005 | 0.03410.010 0.186-+0.026
Trafﬁc 0.071:}:0'005 0.011;};()‘002 0-109i0.012 0.012;};0,010 0073:}:04008 0-010i0.003
Taxi 0.085+:0.010 0.005+0.003 | 0.19510.000 0.01410.000 | 0.088+0.011  0.004+0. 002
Pedestrain 0~040:t0.008 0.009:{:()_004 0.034:&0,014 0.011:‘:0,135 0.041:‘:0‘()10 0.012:&0'009
Air 0.011:0.002 0.02640.011 | 0.03410.001 0.04510.016 | 0.01210.001 0.028+0.010
Temperature 0.230:“).()21 0.176i()_027 0-214i0.004 0.177i0'009 0~217i04026 0.176:&0.042
Rain 0.036.0.016 0.0114:0.003 | 0.05210.027 0.03940.033 | 0.039+0.024 0.01140. 004
NN5 0.147+0.008  0.045:0.007 | 0.14610.015 0.080+0.006 | 0.152+0.008 0.048+0.013
Fred-MD 0.002:‘:0,001 0.201:‘:0‘014 0.002:‘:0‘005 0.199:{:0_003 0.002:{:0,001 0.218:|:0,U4g
Exchange 0'137i0.012 1~621i0,126 0-139i0.011 1-595i0.023 0-139i04014 1.625i0,115

Count | 15 | 8 | 6
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(a) Time-series sample. (b) Generated by Winformer. (c) Generated by TimeDP.

Figure 4: Visualization of generated series, comparing on original signal and frequency spectrum.

temperature. This experimental phenomenon is also consistent with our understanding and analysis
of window-to-window alignment. Since periodicity is widely present and plays a crucial role in
real-world time-series datasets, our Winformer achieves superior performance across most datasets
when evaluated against both KL and MMD metrics. For further analysis on periodicity capturing,
we visualized an example of the generated series with both original signal and frequency spectrum
as shown in Fig. ] It’s obvious that time-series signals generated by our method are more similar
to the original data. By observing the frequency spectrum, we can infer that our window-to-window
alignment method can extract more detailed periodic patterns than TimeDP, which probably explains
why our method outperforms SOTA baselines.

4.3 ABLATION STUDY

We conduct ablation study with the results in Table[2] We evaluated the performance with window-
wise alignment, which is proposed by us, patch-wise alignment and point-wise alignment. The
window-wise alignment achieves the best performance on most of the datasets. And patch-wise
alignment shows slightly advantages in dataset wind considering both KL and MMD, which is be-
cause the periodic features in this dataset is relatively weak. However, our model still has obvious
superiority in most scenarios, because periodicity is widely present in real-world time-series data.

5 DISCUSSION

Q1: How the Ample attention helps the diffusion model recovering the time-series patterns?
We conduct experiments on a synthetic time-series data as Figure [5a), and it contains sinusoidal
signals with different cycle periods. The largest period is 50, and the smallest is 5. We evaluate
the proposed model on the synthetic data and draw the product score’s visualization between input
@ and K in Eq.(I). Due to space limit, we place the score matrix of the first two layers and the
last one (more visualization figures can be found in Appendix [C), where the darker area in heatmap
indicates closer time-series interactions. The swapped color stripes reveals distinct two kinds of
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(c) The visualization of Winformer’s denoising process on the synthetic data.

Figure 5: The detailed discussion and performance exploration on the synthetic data.

cycle patterns: the smaller orange grid is 5-cycled and the bigger red one is 50-cycled. Thus, we
could leverage the Ample attention to capture the periodic interactions for better recovering.

Q2: How does the Winformer architecture utilize the periodic information during the denois-
ing process? We visualized the denoising process in Figure[5{c), and the longer cycle firstly emerges
then the rests. Taking a concrete example at step 140, it presents a rough cycle with period 50, then
the cycle period shrinks to 5 at step 180. The Winformer appears to first identify major periodic
patterns that have wider impact, then incorporate more detailed periodic patterns. This adaptive
nature enables Winformer to have generalized window alignment capability in denoising process,
particularly when applied to the cross-domain cases.

6 RELATED WORK

6.1 TIME-SERIES GENERATION

Existing time-series generation models mainly consist of GAN-based models, VAE-based models
and diffusion-based models. GAN-based models (Yoon et all 2019} Jeon et al.} 2022)) apply adver-
sarial networks consisting of generators and discriminators without explicit probability distribution
assumption. However, the adversarial process shows poor training stability. VAE-based models
sai et al., 2021} [Lee et al [2023)) can achieve training stability with clear optimization target. But
VAE models show limited generation quality and diversity. Recent diffusion models
[2025}, [Ge et al. [2025) can flexibly capture complex patterns within time-series data with superior
efficiency and effectiveness, holding significant advantages in time-series generation.

6.2 TRANSFORMER-BASED DIFFUSION MODELS

Transformer-based diffusion models show a more powerful effect in various time-series tasks, in-
cluding forecasting 2024), anomaly detection and generation
2023). In addition to these domain-specific models, there are also foundational time-
series models for general purpose such as TimeDiT [2025). Moreover, transformer-based
models are beneficial for adapting to different modalities, leading to a unified diffusion model. For
example, T2S combines the text modality and time-series modality with the dif-
fusion transformer model. In light of these advantages, we further investigate the performance of
transformer-based models in cross-domain tasks.
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A HYPER-PARAMETER STUDY

In this experiment, we evaluated the performance with different kernel types and sizes. The results
are shown in Table[3] and the best model, which adapts a 25-size Conv2d layer as the aligning kernel,
whose results are also selected to be shown in Table [I|competing with SOTA baselines.

For kernel types, we apply two types of kernels. The Conv2d kernel is implemented with a 2D
convolution neural network, whose kernel is initialized with the DCT basis. The Avgpool2d kernel
is implemented with a 2D average pooling operator. The results show that Conv2d performs better
than Avgpool2d, and both operators show effectiveness compared to the model without any kernel.
For kernel sizes, we select three sizes, including 7, 13 and 25, which are odd numbers to facilitate
the convolution operator. The results show that, for Conv2d kernel, model with the size of 25
performs best because it contains the cycle up to 24, which is a common cycle for time-series data.

Table 3: Results for hyper-parameters study . Best results of each line are bold. The best model
uses 2D Convolution layer with the kernel size of 25, and it outperforms others by achieving best
performance on 9 lines in total, which is also selected as our final model shown in Table E}

# Kernel Type Window-wise align by Conv2d kernel Window-wise align by Avgpool2d kernel

# Kernel Size 7 13 25 7 13 25
> Electricity 0.00149 001 0.00240.003 0.00110002 0.00240.003 0.00210.003 0.002-0.003
g Solar 0.035+0.001  0.035+0.002  0.035+0.004 0.033:0.005 0.033.40.004 0.033:0.004
& Wind 0.03540.015 0.03310.011  0.03440.014 0.03310010 0.03310010 0.03740.013
B3] Traffic 0.07410.007  0.07440.003 0.07110.005 0.07240.003 0.07110.003 0.074+0.005
A Taxi 0.08010.015 0.086+0.012 0.085+0.010 0.08440.013 0.083+0.012 0.08210.011
g Pedestrain 0-040i0.011 0~041j:0.010 0-040i0.008 0.042:&0‘009 0.041:{:0‘010 0.040:{:0‘011
é’ Air 0.01440.004 0.013+0.001 0.01119002 0.01310.001 0.01310.001 0.01210.002
=i Tempe.rature 0.226i0‘022 0'219i04027 0~230i04021 0~220i0A026 0.219i()‘024 0.229i()‘023
é" Rain 0.033 10012  0.050+0.046 0.0361+0.006 0.038+0.024 0.037+0.019 0.036+0.016
g NN5 0.14940.005 0.15110.007 0.14710.00s 0.15310.006 0.-154+0.006 0.154+0.007
§ Fred-MD 0.002:&0‘001 0.002:‘:0,001 0.002:‘:0,001 0.002:&0‘001 0.002:{:0,001 0.00210‘001

Exchange 0.13641 0012 0.1394+0.015 0.13740.012 0.14049.015 0.139+0.014 0.138+0.014
Electricity 0.01940.030 0.02040.018 0.008- 0010 0.033409.044 0.023409.021 0.014-¢.010

Solar 0.02140.013 0.01210004 0.01310.005 0.0154+0.008 0.01510.000 0.016+0.012
Wind 0.20140.040 0.18640.030 0.20240.044 018010026 0.18210.026 0.203+0.040
§ Traffic 0.013+0.007  0.00910.003 0.01110.002 0.01040.003 0.00910.002 0.011+0.005
2 Taxi 0.006+0.004 0.00410003 0.00510.003 0.005+0.002 0.00410.001 0.004.0 001
§ Pedestrain 0-009i0.004 0'0]-]&:0.005 0-009i0.004 0-012:|:0.004 0.012:‘:0‘004 0-010i0A004
A Air 0.03110.012  0.02540.000 0.02610.011 0.028+0.010 0.02710.009 0.02310.008
,JI Temperature 0-173j:0.027 0'174i0.039 0.176:{:0‘027 0.178:&0‘036 0.181:{:0‘031 0.186:&0‘030
N Rain 0.01440.008 0.00910.00s 0.01110.003 0.01110.004 0.01540.008 0.012+0.004
NN5 0.04810.000 0.04940.018 0.04510.007 0.04740012 0.05410.018 0.053+0.026

Fred—MD 0.24810‘109 0-197104028 0.20110‘014 0.20110'020 0'197i0.020 0'204i0.024
Exchange 1.62910.166  1.59410.151 1.62140.126 1.61010.150 1.59040.155 1.63510.125

Count 6 6 9 3 6 4

B COMPUTATION COSTS

In this section, we try to analyze the computational costs of the window-to-window aligned attention.
We assume the length of time-series if L,, and the dimension is D. The computation complexity
of the calculation for similarity scores, which is the dot-product of Q and K, is (’)(LiD). If the
windows size is set to s, which means to compute with convolutional network with kernel size s,
the computational complexity is O(s?). We travel through all the time points of Q and K, the
total computation of S becomes O(s? - L2 D). We also tested the actual costs of the window-wise
alignment as shown in Table[d] The training speed is to test how fast a denoising model can denoising
a batch of data with gradient backpropagation during the training process. The sampling speed
evaluates how fast a denoising model can make a prediction during the testing process. Although our
window-wise alignment increases the complexity, in practical experiments, the actual computation
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consumption is acceptable with slight increase comparing with point-wise alignment because the
calculation of convolutional neural operators has been optimized by machine learning frameworks.

Table 4: Computational costs for different kinds of alignment method. We evaluate the average
speed of training and sampling of each batch (batch size=128).

Model | Kernel Size | Train Speed (batch/s) | Sample Speed (batch/s)
Point-wise Alignment | - \ 2.92 \ 10.57
. 7 2.58 9.69
Winformer 13 2.33 9.13

(Window-wise Alignment) 25 230 8.95

C VISUALIZATIONS AND DISCUSSIONS

We provide extended visualized figures on real-world datasets, including the visualization of the
attention similarity matrix, the visualization of the denoising process and the visualization of the
generated time-series. We further discuss about these visualized figures in the following subsections.

C.1 VISUALIZATION OF THE ATTENTION

In this subsection, we want to explore how can the Ample attention help the diffusion model in
recovering the time-series patterns. We conduct experiments on the synthetic datasets to discover
whether the model utilize the periodic pattern in denoising, which inspire us to enhance the periodic
features with the Ample attention. We also verify the effectiveness on periodic enhancement by
visualizing the similarity score before and after window-wise alignment.

C.1.1 VISUALIZATION ON SYNTHETIC DATA

We conduct the experiments on the synthetic datasets, which contains various periodic patterns
as defined in [I8] By observing the phenomena on the synthetic dataset, we can explore how the
denoising model works with periodic capturing. We visualized the similarity score of the attention
mechanism in Figure [6] In the heatmap of the score, the darker the color represents the deeper
similarity of the time-series points. These visualized images show periodic cycles with repetitive
square-like patterns. From layer 1 to Layer L (L = 6), we can find that the patterns may shift with
constant steps. The phenomena enlighten us that the periodic features are essential for transformer-
based time-series denoising models.

C.1.2 VISUALIZATION ON REAL-WORLD DATA

We also visualized the similarity score matrices of the self-attention mechanism during the model’s
denoising process on a portion of real-world data, as shown in Figure[/] This figure is corresponds
to the taxi dataset, which contains strong periodic patterns. The three subgraphs represent the kernel
for window-wise alignment, the similarity score matrix before alignment, and the similarity matrix
after window-wise alignment. The time-series data in the selected real-world datasets exhibit good
periodicity, so their similarity matrices show a grid pattern. After window-wise alignment, we notice
that the long-range grids become more distinct, indicating the window-wise alignment fuse features
inside the observation window. Thus, our method can enhance the periodic features.

C.2 VISUALIZATION OF THE DENOISING PROCESS

To further explore the denoising process in time-series generation tasks, we visualized the sequences
during the denoising process on some real-world datasets, as shown in Figure[§]to Figure[I2] These
real-world datasets contain strong periodic structures, which is beneficial for us to analyze the pe-
riodic capturing during the analysis of diffusion process. By observing these images, we can find
that in the denoising process of time-series data, long-range periodic information is captured first and
displayed initially. Other detailed information will be revealed in later steps of denoising. Therefore,

15
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(I NN Baw|
L L L SE s

(a) Similarity scores of layer 1. (b) Similarity scores of layer 2. (c) Similarity scores of layer 3.

Attention Layer 4 Attention Layer 5 Attention Layer L

(d) Similarity scores of layer 4. (e) The similarity scores of layer 5. (f) The similarity scores of layer 6.

Figure 6: Visualization of the similarity matrices for synthetic data.

Attention Layer 1

(a) Kernel of convolution network.  (b) Original similarity scores. (c) Window-wise aligned scores.

Figure 7: Visualization of the kernel for window-wise alignment, the similarity matrix before align-
ment, and the similarity matrix after window-wise alignment for dataset Taxi.

we propose a hypothesis that in the view of denoising model, the basic components for time-series
data are frequency features instead of temporal points. That’s explain and verify why the Winformer
can achieve better performance against SOTA baselines.

C.3 VISUALIZATION OF THE GENERATED TIME-SERIES

We visualized a partial of time-series data generated by the Winformer, as shown in Figure [T3]to
Figure These generated series, containing obvious periodicity, indicates that the Winformer can
effectively capture the periodic features. This confirms that our window-wise alignment can enhance
the capturing of periodicity.
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Figure 8: Denoising Process for the dataset of Electricity.
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Figure 9: Denoising Process for the dataset of Pedestrian.
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Figure 10: Denoising Process for the dataset of Solar.
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Figure 11: Denoising Process for the dataset of Taxi.
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Figure 12: Denoising Process for the dataset of Traffic.
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Figure 13: The generated time-series data for dataset Electricity.
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Figure 14: The generated time-series data for dataset Pedestrian.
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Figure 15: The generated time-series data for dataset Solar.
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Figure 16: The generated time-series data for dataset Taxi.
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Figure 17: The generated time-series data for dataset Traffic.
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D EXPERIMENT DETAILS

We further report the detailed settings of the experiments, including information of the measurement,
datasets and implementation.

D.1 METRICS AND MEASUREMENT

In this section, we describe the metrics and other settings which related to the measurement of the
model’s performance. First, we formulate the key metrics evaluating the performance of the time-
series generation. Then we describe the detail settings for repeated experiments and how we get the
reported results with error bounds.

D.1.1 FORMULATED METRICS

In this paper, we adopt two metrics in measuring the quality of the generated time-series data.
Firstly, we define a real time-series data with L length and D channels as X = [X;, Xo, ..., X ] €
REXD | and the synthetic data is X = [Xl, Xg, s XL} € REXP Then we formulate the metrics of
Maximum Mean Discrepancy and Kullback-Leibler Divergence as follow.

(1) Maximum Mean Discrepancy (MMD). The MMD is a distribution similarity evaluation
method. Specifically, we transform the time-series data into a high-dimension space by ®(, -). Then
we calculates the average of the results obtained by the kernel to get the MMD, which is formulated
as follow:
LN (X X)
MMD = N +

3 22?21 (X, X;)
N

where ®(-, -) is implemented by the radial basis function kernel.

SN e(X,, X))

; (14)

(2) Kullback-Leibler Divergence(K-L). The K-L is a common metric measuring the similarity
between real and synthetic data.

= P(X)
Li 1= ; P(X) log 5 (X)) , (15)

where P(-) and Q(-) are mapping functions to obtain the distribution of the data by reforming the
data into histogram, which includes K indexes in total.

D.1.2 REPEATED EXPERIMENTS

All experiments are repeated five times with random seeds ranging from 2021 to 2025. To demon-
strate the comprehensive effect of the model, we report the average results with their standard devi-
ation of the repeated experiments.

D.2 DATASETS

We conducted the time-series generation experiment on 12 real-world datasets and a synthetic
dataset. The description of the datasets are as follow.

D.2.1 REAL-WORLD DATASETS

In this paper, we conduct the experiments following the setting of the TimeDP |[Huang et al.| (2025).
The experiments contain 12 real-world datasets from four domains, including energy, economic,
weather and transportation. The pre-processed datasets are open-sourced by TimeDF’| We list the
details of the datasets in Table 3

*https://huggingface.co/datasets/YukhoW/TimeDP-Data/blob/main/TimeDP-Data.zip
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Table 5: Details for the real-world datasets.

Domain Dataset Variables S'amp ling Description Source
interval
Ener Electricity 321 1 hour the electricity consumption UCI
gy Solar 137 1 hour the solar power production State of Alabama
Wind 1 4 second the wind power production AEMO
Air 270 1 hour the air quality levels KDDCup2018
Weather Temperature 422 1 day the temperature observations Australia
Rain 422 1 day the rain forecast Australia
Traffic 963 1 hour the occupancy rate of car lanes San Francisco bay
Transportation Taxi 1214 30 minutes the taxi rides New York
Pedestrian 1 1 hour the pedestrian counts Melbourne city
NNS5 111 1 day the cash withdrawals from ATMs UK
Economic Fred-MD 107 1 month the macro-economic indicators ~ Federal Reserve Bank
Exchange 8 1 day the exchange rate Reports of 8 countries

D.2.2 SYNTHETIC DATASET

The synthetic datasets contains time-series data which are the combination of the sinusoidal signal
with different periods. Specifically, let X, (¢) be the sinusoidal signal with a cycle of 50, which is
defined as follow:

2m
Xy (t) = sin(—t 16
1(0) = sin(Z5t) (16)
and X (¢) be the sinusoidal signal with a cycle of 5 defined as:
2
X (t) = sin(gt) . 17)

Then, we can obtain the synthetic data by superposing these two series as
X(t) = Xa(t) + Xa(t) - (18)

Thus, we get the synthetic data X(¢) which contains two types of cycles. We sample 20000 time
steps and split the sequences into 168-length time series data. By conducting denoising method on
the synthetic data, we can explore how the Ample attention and the Winformer helps in frequency
capturing and cross-domain time-series generation. From visualization of the denoising process,
we can find that the model firstly recovers the large-range periodic patterns. This motivates us to
enhance the periodic pattern capturing by window-wise alignment, which is exactly our method
does.

D.3 IMPLEMENTATION SETTINGS

In this section, we report the detailed implementation, including hyper-parameters and environ-
ments.

D.3.1 HYPER PARAMETERS

Our method, namely Winformer is a transformer-based denoising model, consisting of several en-
coder blocks and a conditioning block. We have listed the detailed hyper-parameters of each com-
ponent, which are shown in Table|[6]

D.3.2 HARD-WARES AND ENVIRONMENTS

The experiments are conducted with a NIVDIA V100 GPU, with 32GB memory. Our model relies
on public environment libraries, including CUDA, Python, PyTorch, etc. The framework is based on
the source code of TimeDPEl Our codes are reported in the supplementary material. More detailed
environment and installation tips are reported in the ReadMe file in codes folder.

*https://github.com/microsoft/TimeCraft/tree/main/TimeDP
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Table 6: Hyper-parameters for the Winformer.

Catergory Module Name Value
Dimension 32
Conditioning block Channel 1
Latent 1
Channel
Hidden size 512
Vanilla attention heads
Architecture . Ample attention heads 8
of Winformer Hybrid encoder block MLP ratio 4.0
Kernel type Conv2d
Kernel initialization discrete cosine transform (DCT)
Kernel size 25
Hybrid encoder block 6
DiT encoder block Channel !
Vanilla attention heads 16
MLP ratio 4.0
Forward/Reverse Process Noising/Denoising steps 200
Loss type L1 loss
Batch size 128
Trainer Learning rate 5e-5
Train steps 50, 000

E THEORETICAL BACKGROUNDS

In this section, we supplement theoretical backgrounds to facilitate presentation of the motivation
and the design concepts. With these further explanation, we can better understand the underlying
reasons and deduction process.

E.1 THE FOURIER TRANSFORM

The Fourier Transform Duhamel & Vetterli (1990) is a mathematical operator that converts signal x
to its frequency domain representation x. It is defined as a function F as:

—+oo
Flu}(§) = / u(z)e >y (19)
The u(x) is the input function to signal x’s formulation. Then, we set the integral results as individ-
ual spectral components for different frequency &.

E.2 CALCULATING SIMILARITY SCORE IN FREQUENCY DOMAIN

The attention mechanism, which calculates as follow:

KT

A = Softmax( Q
Vd

where Q and K are mapped features from input x. To calculate the similarity score S = QKT in
the frequency domain, we can directly transform the input data with Fourier transform and calculate
the score using the Fourier components. However, such a process is time-consuming and inflexible
and with Fourier operators. For a learning-based model, we prefer a learning surrogator for this
operation, which can be adaptively parameterized cooperating with the model. Thus, we need to
further explore the simplified calculation of the score S.

A (20)

E.3 CONVOLUTION THEOREM

To further explore the simplified calculation of the score, we have to consider how to transform the
dot-product operator in frequency domain. As the convolution theorem McGillem & Cooper|(1991))
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sates that:

Fluxv} = F{u} - F{v} , (1)
where * is the convolution and the operator - represents the point-wise multiplication. The above
derivations also apply for the discrete Fourier transform (DFT). Thus, there is the possibility of
transforming the dot-production in the frequency domain into the convolution in the temporal do-
main. As a result, we can directly calculate the score S with convolution network, in the place of a
series of the calculation for frequency transformation.

E.4 PARSEVAL’S THEOREM

For discrete time signals, we consider a time-series data « with length n. The Parseval’s Theorem

states:
N—-1 1 N—-1
2= X k]2, 22
DIl =7 3 1XH (22)

where X [k] is the discrete Fourier transform (DFT) of x[n]|. The Parseval’s Theorem enables us to
transfer correlation of frequency domain into that to time domain. Thus, we can adapts the deduction
of Eq.[10]in the attention mechanism, leading to the final format of the Ample attention shown in

Eq.
F FUTURE WORKS

For cross-domain time-series generation, an important issue is to reduce the reliance on time-series
samples with more powerful conditioning network. Besides, how to integrating time-series with
other modalities, such as text-to-series and image-to-series generation, is another underlying prob-
lem. Finally, the efficiency issue of the diffusion model also needs further exploration.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we utilized large language models (LLMs) as an assist tool to aid or polish writing,
and their roles did not rise to the level of a contributor. Specifically, the LLMs were used for limited
purposes, which is to help refine the clarity and coherence of draft paragraphs in the main text by
suggesting alternative phrasings, and validated by all human authors to ensure scientific accuracy
and alignment with the research findings.
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