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ABSTRACT

This paper introduces FedSecurity, an end-to-end benchmark designed to simulate
adversarial attacks and corresponding defense mechanisms in Federated Learning
(FL). FedSecurity comprises two major components: FedAttacker, which simu-
lates attacks injected during FL training, and FedDefender, which simulates de-
fensive mechanisms to mitigate the impacts of the attacks. FedSecurity is open-
source and can be customized to cover a wide range of machine learning models
(e.g., Logistic Regression, ResNet, and GAN) and federated optimizers (e.g., Fe-
dAVG, FedOPT, and FedNOVA). We also demonstrate the use of FedSecurity dur-
ing federated training of Large Language Models (LLMs), showcasing its adapt-
ability and applicability in more complex scenarios.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017a) facilitates training across distributed data and
empowers individual clients to utilize their local data to collaboratively train machine learning mod-
els. Instead of sending their local data to a centralized server, FL clients train models on their local
data and share the local models with the FL server, which aggregates the local models into a global
model. This global model is redistributed to the clients, enabling the clients to further fine-tune the
model using their local data.

FL maintains the privacy and security of client data by allowing clients to train locally without
spreading their data to other parties. As a result of its privacy-preserving nature, FL has attracted
considerable attention across various domains and has been utilized in numerous areas such as next-
word prediction (Hard et al., 2018; Chen et al., 2019; Ramaswamy et al., 2019), hot-word detec-
tion (Leroy et al., 2019), financial risk assessment (Byrd & Polychroniadou, 2020), and cancer risk
prediction (Chowdhury et al., 2022), demonstrating its wide-ranging versatility.

Recently, FL has found applications in large language models (LLMs) which expands its use cases.
Referred to as federated LLMs, these models utilize FL during pre-training and finetuning as well
as for prompt engineering (Chen et al., 2023). Currently, there are industry products that utilize FL
(or distributed training) to train LLMs, including Deepspeed ZeRO (Rajbhandari et al., 2020; Wang
et al., 2023), HuggingFace Accelerate (Gugger, 2021), Pytorch Lightning Fabric (Antiga, 2023).
FL can facilitate LLM training due to the following reasons: i) Distributed nature of LLM training
data: LLMs are pre-trained using large amounts of data, which often reside in different locations.
Collecting such data to a central server is expensive and may also leak sensitive user information,
while a viable way is to train LLMs in a federated manner. ii) Scalability and efficiency: LLMs,
such as GPT-3 (Brown et al., 2020), have an extremely large number of parameters. Training LLMs
on a single machine is infeasible and inflexible, while FL can be a good choice. iii) Continuous
improvement with user data: LLMs can be deployed in a federated manner and local instances of
the models can be further finetuned based on the local data, enabling the global model to improve
over time based on users’ data without ever having direct access to that data. This is particularly
relevant for privacy-sensitive fields such as healthcare or personal communications.

Even though FL does not require sharing raw data with others, its decentralized and collaborative
nature might inadvertently introduce privacy and security vulnerabilities. In recent years, a bur-
geoning body of research has spotlighted various attack mechanisms in FL (Bhagoji et al., 2019;
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Xie et al., 2019; Lam et al., 2021; Jin et al., 2021; Tomsett et al., 2019; Chen et al., 2017; Fang
et al., 2020; Tolpegin et al., 2020; Zhu et al., 2019; Bagdasaryan et al., 2020; Zhang et al., 2022a;
Kariyappa et al., 2022; Zhang et al., 2022b), where adversarial clients might submit spurious models
to disrupt the global model from converging, or sabotage the global model to misidentify particular
data samples by planting backdoors. Meanwhile, a wide range of defense mechanisms has emerged
to mitigate the impact of these attacks (Li et al., 2022; Kumari et al., 2023; Sun et al., 2019; Ozdayi
et al., 2021; Blanchard et al., 2017; Xie et al., 2020; Chen et al., 2017; Sun et al., 2019; Karimireddy
et al., 2020; Yin et al., 2018; Pillutla et al., 2022; Fung et al., 2020; Xie et al., 2021; Yin et al., 2018;
Ma et al., 2022; Kumar et al., 2022; Chen et al., 2022). Despite the efforts for addressing the vulner-
ability of FL systems, there still lacks a comprehensive benchmark for comparing approaches under
unified sittings. Moreover, existing research has not yet investigated applying the attack and defense
mechanisms to federated LLMs. In contrast to traditional small models, LLMs are distinguished by
the large number of parameters and complex training datasets obtained from unregulated sources,
which could introduce challenges when applying attacks and defenses on top of them. These moti-
vate a need for a standardized and comprehensive benchmark to assess baseline attack and defense
mechanisms in the context of FL and federated LLMs.

To this end, this paper introduces FedSecurity, a benchmark that simulates attacks and defenses in
FL.1 FedSecurity comprises two primary components: FedAttacker and FedDefender. FedAttacker
simulates attacks in FL to help understand and prepare for potential security risks, while FedDe-
fender is equipped with various defense mechanisms to counteract the threats injected by FedAt-
tacker.Besides small model tasks, we also apply FedSecurity to federated LLMs. Our contributions
are summarized as follows:

i) Enabling benchmarking of various attacks and defenses in FL. FedSecurity imple-
ments attacks that are widely considered in the literature, including Byzantine attacks of ran-
dom/zero/flipping modes (Chen et al., 2017; Fang et al., 2020), label flipping backdoor attack (Tolpe-
gin et al., 2020), deep leakage gradient (Zhu et al., 2019), and model replacement backdoor at-
tack (Bagdasaryan et al., 2020). Some of the well-known defense mechanisms supported include
Norm Clipping (Sun et al., 2019), Robust Learning Rate (Ozdayi et al., 2021), Krum (and m-
Krum) (Blanchard et al., 2017), SLSGD (Xie et al., 2020), geometric median (Chen et al., 2017),
weak DP (Sun et al., 2019), CClip (Karimireddy et al., 2020), coordinate-wise median (Yin et al.,
2018), RFA (Pillutla et al., 2022), Foolsgold (Fung et al., 2020), CRFL (Xie et al., 2021), and
coordinate-wise trimmed mean (Yin et al., 2018).

ii) Flexible configuration. FedSecurity supports configurations using a .yaml file. Users can utilize
two parameters, “enable attack” and “enable defense”, to activate FedAttacker and FedDefender.
Sample configurations are respectively shown in Figures 14 and Figures 15of Appendix A.

iii) Supporting customization of attack and defense mechanisms. We provide APIs in FedSecu-
rity to enable users to integrate user-defined attacks and defenses in addition to the default baseline
attack and defense mechanisms included in FedSecurity.

iv) Supporting various models and FL optimizers. FedSecurity can be utilized with a wide range
of models, including Logistic Regression, LeNet (LeCun et al., 1998), ResNet (He et al., 2015),
CNN (LeCun et al., 1989), RNN (Rumelhart et al., 1986), GAN (Goodfellow et al., 2014), and
so on. FedSecurity is compatible with various FL optimizers, such as FedAVG (McMahan et al.,
2016), FedSGD (Shokri & Shmatikov, 2015), FedOPT (Reddi et al., 2021), FedPROX (Li et al.,
2020), FedGKT (He et al., 2020), FedGAN (Rasouli et al., 2020), FedNAS (He et al., 2021), Fed-
NOVA (Wang et al., 2020b), and so on.

v) Extensions to federated LLMs and real-world applications. FedSecurity is suitable for demon-
strating attacks and defenses during training of federated LLMs (Section 5.2). We also include a
real-world experiment, where we use edge devices for FL with FedSecurity instead of simulations
(Appendix E). These show the adaptability of the proposed FedSecurity benchmark.

Key takeaways: i) Byzantine attack of random mode (Chen et al., 2017; Fang et al., 2020) is effec-
tive in decreasing the test accuracy of the global model, and m-Krum (Blanchard et al., 2017) can
produce robust results against various attacks; ii) while introducing a defense mechanism can help
mitigate attacks, it might also affect the aggregation results, potentially compromising the model’s

1FedSecurity library: [We do not release the implementation in order not to hurt our anonymity.]
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performance. However, in actual FL systems, attacks are infrequent. Therefore, it’s crucial to weigh
the benefits against potential drawbacks before integrating a defense mechanism into real systems.

2 PRELIMINARIES AND OVERVIEW

In this section, we first discuss the related literature and introduce adversarial models considered in
FedSecurity. Then we present an overview of FedSecurity.

2.1 RELATED WORKS

Recent years, various benchmarks have been introduced for FL, such as TensorFlow Feder-
ated (Abadi et al., 2015), PySyft (Ziller et al., 2021), FATE (Liu et al., 2021), Flower (Beutel et al.,
2020), FedScale (Lai et al., 2022), NVIDIA FLARE (Roth et al., 2022), OpenFL (Reina et al.,
2021), Fed-BioMed (Silva et al., 2020), IBM Federated Learning (Ludwig et al., 2020), Federated-
Scope (Xie et al., 2022), and FLUTE (Dimitriadis et al., 2022). Among these, only FederatedScope
delves into the implications of adversarial attacks in FL, with a focus on data reconstruction attacks
that utilize models or gradients to revert sensitive information, including GAN-based leakage at-
tack (Hitaj et al., 2017), Passive Property Inference (Melis et al., 2019), and DLG attack (Zhu et al.,
2019). However, FederatedScope neglects to address attacks prevalent in the research literature,
e.g., Byzantine attacks (Yin et al., 2018; Yang et al., Dec 2019). It also does not include any defense
mechanisms for FL. It is worth noting that, while FederatedScope integrates secret-sharing (Beimel,
2011), it is in the scope of federated analytics (Elkordy et al., 2023; Ramage, 2020; Wang et al.,
2022a; Jung et al., 2012), instead of FL.

FedSecurity implements attacks that are widely considered in the literature (Yin et al., 2018; Tolpe-
gin et al., 2020; Zhu et al., 2019); it also integrates a wide range of defense mechanisms (Sun et al.,
2019; Ozdayi et al., 2021; Blanchard et al., 2017; Xie et al., 2020; Chen et al., 2017; Sun et al.,
2019; Karimireddy et al., 2020; Yin et al., 2018; Pillutla et al., 2022; Fung et al., 2020; Xie et al.,
2021; Yin et al., 2018). Designed with flexibility in mind, FedSecurity offers configurable settings
and APIs, enabling users to customize their attack and defense mechanisms.

2.2 ADVERSARIAL MODEL

Real-world adversaries in FL systems fall into two categories: active and passive adversaries.

Active Adversaries. Active adversaries intentionally manipulate training data or trained models to
achieve malicious goals. This might involve altering models to prevent global model convergence
(e.g., Byzantine attacks (Chen et al., 2017; Fang et al., 2020)), or subtly misclassifying a specific
set of samples to minimally impact the overall performance of the global model (e.g., backdoor at-
tacks (Bagdasaryan et al., 2020; Wang et al., 2020a; Zhang et al., 2022a)). Active adversaries can
take various forms, including: 1) malicious clients who manipulate their local models (Bagdasaryan
et al., 2020; Chen et al., 2017; Fang et al., 2020; Zhang et al., 2022a) or submit contrived models
without actual training (Wang, 2022); 2) a global “sybil” (Tolpegin et al., 2020; Fung et al., 2020)
that has full access to the FL system and possesses complete knowledge of the entire system, includ-
ing local and global models for each training round and clients’ local datasets. This “sybil” may also
modify data within the FL system, such as clients’ local datasets and their submitted local models;
and 3) external adversaries capable of monitoring the communication channel between clients and
the server, thereby intercepting and altering local models during the transfer process.

Passive Adversaries. Passive adversaries do not modify data or models, but may still pose a threat to
data privacy by potentially deducing sensitive information (such as local training data) from revealed
models (gradients, or model updates) (Zhu et al., 2019). Examples of passive adversaries include:
1) an adversarial FL server attempting to infer local training data using submitted local models; 2)
adversarial FL clients trying to deduce other clients’ training data using the global model provided
by the server; and 3) external adversaries, e.g., hackers, that access communication channels to
acquire local and global models transferred between clients and the FL server.

The adversaries can inject attacks at different stages of FL training. In summary, active adversaries
can conduct attacks that modify local models (model poisoning attacks) or poison local datasets
(data poisoning attack), while passive adversaries can infer sensitive information, such as user data,
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Figure 1: FedSecurity overview. FedSecurity enables injecting attacks (shown in red) and defenses (shown in
green) at various stages of FL training at the clients and at the server.

based on the models or gradients they observe (data reconstruction attacks). In the next subsection,
we illustrate how to inject those attacks at different stages of FL frameworks.

2.3 OVERVIEW OF FEDSECURITY

FedSecurity serves as an external component that injects attacks and defense mechanisms at different
stages of training without altering the existing processes in FL. FedSecurity utilizes FedAttacker
and FedDefender to initiate two instances and simulate attacks and defenses, respectively. The two
instances are initialized once and are accessible by other objects in the FL system2.

Injection of attacks. Without loss of generality, we classify the attacks in FL into the following three
categories based on the targets of the attacks:

i) Data poisoning attacks that are conducted by active adversaries to modify clients’ local datasets
and are injected at clients (Tolpegin et al., 2020; Dang et al., 2021).

ii) Model poisoning attacks that are also conducted by active adversaries to temper with local models
submitted by clients (Fang et al., 2020; Shejwalkar & Houmansadr, 2021; Bhagoji et al., 2019).
FedAttacker injects these attacks before the aggregation of local models in each FL training round
at the server, so that it can get access to all client models submitted in that training round.

iii) Data reconstruction attacks that are conducted by passive adversaries by exploring local models
or updates to infer information about the training data (Melis et al., 2018; Zhang et al., 2020; Luo
et al., 2021; Wang et al., 2022b; Fowl et al., 2021). FedAttacker injects such attacks at the FL
server, as the FL server has access to all local models and the global model of each iteration, and
can perform the attacks with flexibility.

Injection of defenses. FedDefender integrates defenses to mitigate, if not completely nullify, the im-
pacts of the injected attacks. Since the defenses either address issues related to tampered local mod-
els by active adversaries3 or prevent adversaries from deducing information from the local/global
models shared between clients and the FL server, FedDefender deploys defenses at the FL server to
get access to all local models and global models in each FL training round. For this, FedDefender
can inject three functions at different stages of FL aggregation:

i) Before-aggregation functions that modify local models submitted by clients.

ii) On-aggregation functions that modify the FL aggregation function to mitigate the impacts of local
models submitted by adversarial clients.

iii) After-aggregation functions that modify the aggregated global model (e.g., by adding noise or
clipping) to protect the real global model or improve its quality.

Figure 1 summarizes the injections of attacks and defenses to the FL framework in FedSecurity.
We also provide detailed algorithms for injecting attacks and defenses to different stages of FL
training, as shown in Algorithm 1 (for server aggregation) and Algorithm 2 (for client training) in
Appendix B. Below, we explain the implementations of attacks and defenses in detail.

2Such design is achieved by the singleton design pattern (Gamma et al., 1995).
3Note that poisoning local datasets also results in tampered local models.
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3 IMPLEMENTATION OF ATTACKS IN FEDATTACKER

FedAttacker injects model poisoning, data poisoning, and data reconstruction attacks at different
stages of FL training and provides APIs for these attacks. We present each class of attacks and defer
the user integration of a new attack to FedSecurity to Appendix C.1 due to space limitations.

3.1 MODEL POISONING ATTACKS

Model poisoning attacks are designed to modify the local models submitted by clients. FedAttacker
injects such attacks before FL aggregation in each iteration, modifying each local model directly.
Model poisoning attacks implemented in FedAttacker include Byzantine attacks (Chen et al., 2017;
Fang et al., 2020) of three different modes and the model replacement backdoor attack (Bagdasaryan
et al., 2020). For example, FedAttacker implements three modes of Byzantine attacks, as follows:

• Zero mode that poisons the client models by setting their weights to zero.
• Random mode that manipulates client models by attributing random values to model weights.
• Flipping mode that updates the global model in the opposite direction by formulating a poisoned

local model based on the global model wg and the real local model wℓ as wg + (wg − wℓ).

APIs for Model Poisoning Attacks. FedAttacker has two APIs for model poisoning attacks.

• poison model(local models, auxiliary info), which takes the local models submitted by clients
in the current FL iteration and modifies the local models. The input local models is a list of tuples
containing the number of data samples and the submitted client models. The input auxiliary info
is any information used in the defense, e.g., the global model in the last FL iteration.

• is model poisoning attack(), which checks whether the attack component is activated and
whether the attack modifies local models.

3.2 DATA POISONING ATTACKS

Data poisoning attacks modify (or poison) local datasets of some clients to achieve some malicious
goals, e.g., degrading the performance of the global model or inducing the global model to misclas-
sify some samples. As an example, in label flipping attack (Tolpegin et al., 2020), a global “sybil”
controls some clients and modifies their local data by mislabeling samples of some classes to wrong
classes. Given a source class (or label) cs and a target class ct , the local dataset of each poisoned
client is modified such that all samples with class cs are now associated with an incorrect label ct .

APIs for Data Poisoning Attacks. FedAttacker has two APIs for data poisoning attacks.

• poison data(dataset), which takes a local dataset and mislabels a set of chosen samples based on
the clients’ (or attackers’) requirements, which are included in the configuration. Normally, clients
would change labels of a specific subset of samples to some other labels in the same dataset, or
label a set of samples to new classes that do not exist in the dataset.

• is data poisoning attack(), which examines whether FedAttacker is enabled and whether the
attack requires poisoning the datasets.

3.3 DATA RECONSTRUCTION ATTACKS

Data reconstruction attacks are performed by passive adversaries that attempts to infer sensitive
information without actively interfering with the FL training or the local data. We assume that
there is no leakage during the local training process in FL, as clients are on their fully trusted local
machines. Thus, data reconstruction attacks take the trained models (either the global model or the
local models) to revert training data. For example, Deep Leakage from Gradients (DLG) attack (Zhu
et al., 2019) infers local training data from the publicly shared gradients. A passive adversary can
use the global model from the previous FL training round and the newly obtained model to compute
a “model update” between models in different FL training rounds to deduce the training data.

APIs for Data Reconstruction Attacks. We have two APIs for data reconstruction attacks.

• reconstruct data(model , auxiliary info), which takes a client model or a global model to recon-
struct the training data. It also takes some extra information (auxiliary info) to help infer.
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• is data reconstruction attack(), which examines whether the attack component is enabled and
whether the attack requires reconstructing training data using the trained models.

4 IMPLEMENTATION OF DEFENSES IN FEDDEFENDER

FedDefender injects defense functions at different stages of FL aggregation at the server. Based on
the point of injection, FedDefender provides three types of functions to support defense mechanisms,
including 1) before-aggregation, 2) on-aggregation, and 3) after-aggregation. Note that a defense
may inject functions at one or multiple stages of FL aggregation.

4.1 BEFORE-AGGREGATION DEFENSES

Before-aggregation functions operate on local models of each FL training iteration to mitigate (or
eliminate) the impacts of potential attacks. We use Krum (Blanchard et al., 2017) as an example.

Krum. Krum (Blanchard et al., 2017) tolerates f Byzantine clients among n clients by retaining
only one local model that is the most likely to be benign as the global model. That is, Krum selects
a single model as the global model in aggregation. A generalization of Krum is m-Krum (Blan-
chard et al., 2017) that selects m client models with the m lowest scores for aggregation, instead of
choosing only one local model. This approach requires less than n−m

2 − 1 clients to be malicious.

APIs for before-aggregation functions. We provide two APIs for before-aggregation functions:

• defend before aggregation(local models, auxiliary info), which modifies the client models of
the current FL iteration. The input local models is a list of tuples that contain the number of
samples and the local model submitted by each client in the current FL iteration. The input
auxiliary info can be any information that is utilized in the defense functions.

• is defense before aggregation(), which checks whether the FedDefender is activated and
whether the defense requires injecting functions before aggregating local models at the server.

4.2 ON-AGGREGATION DEFENSES

On-aggregation defense functions modify the aggregation function to a robust version that tolerates
or mitigates impacts of the potential adversarial client models. As an example, RFA (Robust Feder-
ated Aggregation) (Pillutla et al., 2022) computes a geometric median of the client models in each
iteration as the aggregated model, instead of simply averaging the client models. RFA defense ef-
fectively mitigates the impact of poisoned client models, as the geometric median can represent the
central tendency of the client models, and the median point is chosen in a way to minimize the sum
of distances between that point and the other client models of the current FL iteration. In practice,
the geometric median is calculated using the Smoothed Weiszfeld Algorithm (Pillutla et al., 2022).

APIs for on-aggregation defenses. We provide two APIs for on-aggregation defense functions:

• defend on aggregation(local models, auxiliary info), which takes the local models of the cur-
rent training round for aggregation. The input local models is a list of tuples that contain the
number of samples and the local model submitted by each client in the current FL iteration. The
input auxiliary info can include any information required by the defense functions.

• is defense on aggregation(), which checks if the defense component is enabled and whether the
current defense requires the injection of functions during aggregation.

4.3 AFTER-AGGREGATION DEFENSE

After-aggregation defense functions modify the aggregation result, i.e., the global model, of each FL
iteration to mitigate the effects of poisoned local models or protect the global model from potential
adversaries. As an example, CRFL (Xie et al., 2021) clips the global model to bound the norm of
the model each time after aggregation at the FL server. The FL server then adds Gaussian noise to
the clipped global model before distributing the global model to the clients for the next FL iteration.

APIs for After-Aggregation Defenses. We provide two APIs to support after-aggregation defenses:
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Figure 2: Attack comparison. Figure 3: Defense comparison. Figure 4: Label flipping exps.

Figure 5: Random-Byzantine exps. Figure 6: I.I.D. data evaluations. Figure 7: Scale # clients to 100.

• defend after aggregation(global model), which directly modifies the global model after aggre-
gation using methods such as clipping or adding noise.

• is defense after aggregation(), which checks if the defense component is activated and whether
the current defense requires injecting functions after aggregation.

5 EXPERIMENTAL EVALUATIONS

This section presents a comprehensive evaluation of FedSecurity to benchmark some of the well-
known attack and defense mechanisms in FL.

Experimental setting. A summary of datasets and models for evaluations can be found in Table 1
in Appendix D. By default, we employ ResNet20 and the non-i.i.d. CIFAR10 dataset (partition
parameter α = 0.5), as the non-i.i.d. setting closely captures real-world scenarios. We further extend
our evaluations to i.i.d. cases and various other models and datasets. For evaluations on LLMs, we
utilize FedLLM (FedML Inc., 2023) that trains LLMs in a federated manner. We employ the Pythia-
1B model (Biderman et al., 2023) and PubMedQA (Jin et al., 2019), a non-i.i.d. biomedical research
dataset that contains 212,269 questions for question answering. We utilize the “artificial” subset for
training and the “labelled” subset for testing. We utilize FedAVG in our experiments. Evaluations
are conducted on a server with 8 NVIDIA A100-SXM4-80GB GPUs.

5.1 EVALUATIONS ON FL

Unless otherwise noted, we use 10 clients, set the percentage of malicious clients to 10%, and eval-
uate results with the accuracy of the global model. We employ three attack mechanisms, including
label flipping attacks and Byzantine attacks of random mode and flipping mode. For the label flip-
ping attack, we set the attack to modify the local and test data labels of malicious clients from label
3 to label 9 and label 2 to label 1. We utilize three defense mechanisms: m-Krum (Blanchard et al.,
2017), Foolsgold (Fung et al., 2020), and RFA (Pillutla et al., 2022). For m-Krum, we set m to 5,
which means 5 out of 10 submitted local models participate in aggregation in each training round.

Exp 1: Attack Comparisons. This experiment evaluates the impact of various attacks on test
accuracy, using a no-attack scenario as a baseline. As illustrated in Figure 2, Byzantine attacks,
specifically in the random and zero modes, substantially degrade accuracy. In contrast, the label
flipping attack and the flipping mode of the Byzantine attack show a milder impact on accuracy.
This can be attributed to the nature of Byzantine attacks, where Byzantine attackers would prevent
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the global model from converging, especially for the random mode that generates weights for mod-
els arbitrarily, causing the most significant deviation from the benign local model. In subsequent
experiments, unless specified otherwise, we employ the Byzantine attack in the random mode as the
default attack, as it provides the strongest impact compared with the other three attacks.

Exp 2: Defense Comparisons. This experiment investigates the potential impact of defense mecha-
nisms on accuracy in the absence of attacks, i.e., whether defense mechanisms inadvertently degrade
accuracy when all clients are benign. We incorporate a scenario without any defense or attack as our
baseline. As illustrated in Figure 3, it becomes evident that when all clients are benign, involving de-
fense strategies to FL training might lead to a reduction in accuracy. This decrease might arise from
several factors: the exclusion of some benign local models from aggregation, e.g., as in m-Krum,
adjustments to the aggregation function, e.g., as in RFA, or re-weighting local models, e.g., as in
Foolsgold. Specifically, the RFA defense mechanism significantly impacts accuracy as it computes
a geometric median of the local models instead of leveraging the original FedAVG optimizer, which
introduces a degradation in accuracy.

Figure 8: ResNet56 (CV). Figure 9: RNN (NLP). Figure 10: CNN (CV).

Figure 11: Varying # adversaries. Figure 12: BERT evaluations. Figure 13: Pythia-1B evaluations.

Exp 3: Evaluations of defense mechanisms against activated attacks. This experiment evaluates
the effect of defense mechanisms in the context of ongoing attacks. We include two baseline sce-
narios: 1) an “original attack” scenario with an activated attack without any defense in place, and
2) a “benign” scenario with no activated attack or defense. We select label flipping attack and the
random mode of Byzantine attack based on their impacts in Exp1, where label flipping has the least
impact and the random mode of Byzantine attack exhibits the largest impact, as shown in Figure 2.
Results for the label flipping and the random mode of Byzantine attacks are in Figure 4 and Fig-
ure 5, respectively. These results indicate that the defenses may contribute to minor improvements
in accuracy for low-impact attacks, e.g., Foolsgold in Figure 4. In certain cases, it is noteworthy that
the defensive mechanisms may inadvertently compromise accuracy, such as the case with RFA in
Figure 4. For high-impact attacks, such as the Byzantine attack of the random mode, Krum exhibits
resilience, effectively neutralizing the negative impact of the attacks, as shown in Figure 5.

Exp 4: Evaluations on i.i.d. data. This experiment evaluates various defense mechanisms against
an attack on i.i.d. data. We select the random mode of the Byzantine attack, and employ Foolsgold,
m-Krum (m = 5), and RFA to counteract the adverse effects of this attack. As shown in Figure 6,
m-Krum is the most effective one among all the defense mechanisms, where the test accuracy is
close to the case where all the FL clients are honest, i.e., no attack scenario.
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Exp 5: Scaling the number of clients to 100. This experiment scales the number of clients to
100 and evaluates the defense mechanisms against the random mode of the Byzantine attack. We
employ Foolsgold, m-Krum (with m = 5), and RFA to counteract the adverse effects of this attack.
As shown in Figure 7, m-Krum is the most effective one among all the defense mechanisms, and
the test accuracy is very close to the case where no attack happens.

Exp 6: Evaluations on different models. We evaluate defense mechanisms against the random
mode of the Byzantine attack with different models and datasets, including: i) ResNet56 + CI-
FAR100, ii) RNN + Shakespeare, and iii) CNN + FEMNIST. The results are shown in Figures 8, 9,
and 10, respectively. The results show that while the defense mechanisms can mitigate the impact
of attacks in most cases, some attacks may fail some tasks, e.g., m-Krum fails RNN in Figure 9, and
Foolsgold fails CNN in Figure 10. This is because the two defense mechanisms either select several
local models for aggregation in each FL training round, or significantly re-weight the local models,
which may eliminate some local models that are important to the aggregation in the first several FL
training iterations, leading to unchanged test accuracy in later FL iterations.

Exp 7: Varying the number of malicious clients. This experiment evaluates the impact of varying
numbers of malicious clients on test accuracy. We utilize m-Krum to protect against 1, 2, and
3 malicious clients out of 10 clients in each FL training round. As shown in Figure 11, the test
accuracy remains relatively consistent across different numbers of malicious clients, as in each FL
training round, m-Krum selects a local model that is the most likely to be benign to represent the
other models, effectively minimizing the impact of malicious client models on the aggregation.

We present an experiment that utilizes real-world edge devices in Theta network (Theta Network.,
2023) to showcase the scalability of FedSecurity to real-world applications in Appendix E.

5.2 EVALUATIONS ON FEDERATED LLMS

We employ two LLMs, BERT (Devlin et al., 2018) and Pythia (Biderman et al., 2023), to showcase
the scalability of FedSecurity and its applicability to federated LLM scenarios. We notice that some
defenses (e.g., Foolsgold (Fung et al., 2020)) that require memorizing intermediate results, such as
models of previous FL training rounds, might encounter limitations when integrated with LLMs due
to the significant cache introduced. Considering this, we utilize m-Krum for our experiments, as
it does not require storing intermediate results and demonstrates consistent performance in most of
our previous experiments.

Exp 8: Evaluations of Krum against model replacement backdoor attack on BERT. This ex-
periment utilizes BERT (Devlin et al., 2018) and the 20 news dataset (Lang, 1995) for a classification
task. We employ 10 clients and set 1 client to be malicious in each FL training round. We set m
to 5 in m-Krum, i.e., 5 out of 10 local models participate in aggregation in each FL training round.
Results in Figure 12 show that m-Krum effectively mitigates the adversarial effect, bringing the
accuracy closer to the level of the attack-free case.

Exp 9: Evaluations of Krum against the Byzantine attack on Pythia-1B. We employ 7 clients for
FL training, and 1 out of 7 clients is malicious in each round of FL training. We set the m parameter
in m-Krum to 2, signifying that 2 out of 7 submitted local models participate in the aggregation in
each FL training round. The performance is evaluated based on the test loss. Results in Figure 13
show that Byzantine attack significantly increases the test loss during training. Nevertheless, m-
Krum effectively mitigates the adversarial effect.

6 CONCLUSION

This paper presents FedSecurity, a library designed to demonstrate potential adversarial attacks and
corresponding defense strategies in FL to bolster innovation in the secure FL domain. FedSecurity
contains two components: FedAttacker that simulates various attacks that can be injected during
FL training, and FedDefender, which facilitates defense strategies to mitigate the impacts of these
attacks. FedSecurity is open-sourced, and we welcome contributions from the research community
to enrich the benchmark repository with novel attack and defense strategies to foster a diverse,
comprehensive, and robust foundation for ongoing research in FL security.
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7 ETHICS STATEMENT

FedSecurity is under the Apache 2.0 license, ensuring open access and customization. All datasets
used for evaluations are publicly available, such as CIFAR10 (Krizhevsky et al., 2009), FEM-
NIST (Caldas et al., 2018), Shakespeare (McMahan et al., 2017b), and so on. All models for
evaluations are publicly available as well.

7.1 CODE OF ETHICS

Data Handling and Protection. We are aware of the risks associated with data processing in FL
settings. Users can use the open-sourced FedSecurity library to simulate attacks and defenses on
any machine without uploading their raw data and model. If users use our MLOps platform for
simulation, only the model weights are uploaded. The uploaded model weights are encrypted (i.e.,
only users with proper ownership can decrypt them) and can be deleted upon request. That is, we
have no access to raw user data and we do not claim any data and model ownership.

Benchmark Model Documentation and Transparency. We are committed to: i) providing com-
prehensive documentation on the functionalities of the benchmark; ii) making a detailed datasheet
available for the benchmark model, outlining its specifications, capabilities, and intended use cases;
and iii) offering transparent and well-documented APIs for users.

7.2 LIMITATIONS AND FURTHER IMPROVEMENT

While FedSecurity offers a foundation for ML security research, we recognize its limitations and
potential for further enhancement. Our plans for improvement are as follows: i) conducting more
experiments on federated LLMs to provide a comprehensive understanding of vulnerabilities of
LLMs within the FL context; and ii) designing and implementing advanced defense mechanisms
against potential adversaries in asynchronous FL scenarios.

7.3 POTENTIAL NEGATIVE SOCIAL IMPACTS

Even though we put our best efforts in mitigating negative social impacts, the proposed FedSecurity
benchmark might still be subject to some indistinct negative social impact, including:

• Potential misuse: While our module simulates attacks and defenses in FL to help the communities
to better understand and compare the attacks in FL, it is not immune to malicious use. The platform
could potentially be used to exploit vulnerabilities or develop advanced attack techniques in FL
systems.

• Data security: FL is susceptible to various threats such as data poisoning. We acknowledge these
inherent risks and are actively working on introducing defenses mechanisms to mitigate such
attacks.

• Privacy Concerns: Although FL aims to train models without sharing raw data, there remains
a risk of indirect data leakage, for example, attackers might utilize the models to infer whether
specific data points are in the training datasets, where users should be cautious and informed.
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APPENDIX

A EXAMPLE CONFIGURATION FILES FOR ATTACKS AND DEFENSES

We provide example configuration files for Byzantine attack (Chen et al., 2017; Fang et al., 2020) in
Figure 14 and for m-Krum defense (Blanchard et al., 2017) in Figure 15.

attack_args:
enable_attack: true
attack_type: byzantine
attack_mode: random
byzantine_client_num: 1

defense_args:
enable_defense: true
defense_type: krum
krum_param_m: 5
byzantine_client_num: 1

Figure 14: Configuration for Byzantine attack (Chen et al., 2017; Fang et al., 2020).

attack_args:
enable_attack: true
attack_type: byzantine
attack_mode: random
byzantine_client_num: 1

defense_args:
enable_defense: true
defense_type: krum
krum_param_m: 5
byzantine_client_num: 1

Figure 15: Configuration for m-Krum (Blanchard et al., 2017) defense.
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B ALGORITHMS FOR FL SERVER AGGREGATION AND CLIENT TRAINING

The algorithms for injecting attacks and defenses in FL training are described in Algorithm 1 (for
FL server aggregation) and Algorithm 2 (for client training).

Algorithm 1: Server Aggregation
Inputs: w′

g: the global model of last FL training round;Wl: the list of local models submitted
by each client in the current FL training round.

Variables: A: A FedAttacker instance initialized based on the FL configuration file; D: A
FedDefender instance that is initialized based on the FL configuration file.

1 Function server aggregation(Wl) begin
2 Wl ← before aggregation process(Wl,w

′
g)

3 wg ← before aggregation process(Wl,w
′
g)

4 return after aggregation process(Wl,wg)

5 Function before aggregation process(Wl,w
′
g) begin

6 if A.is attack enabled() then
7 if A.is data reconstruction attack() then A.reconstruct data(Wl,w

′
g) ;

if A.is model poisoning attack() thenWl ← A.poison model(Wl,w
′
g);

8 if D.is defense enabled() & D.is defense before aggregation() then
Wl ← D.defend before aggregation(Wl,w

′
g)

9 returnWi

10 Function on aggregation process(Wl,wg) begin
11 if D.is defense enabled() & D.is defense on aggregation() then

return D.defend on aggregation(Wl,wg)

12 return aggregate(Wi)

13 Function after aggregation process(wg) begin
14 if D.is defense enabled() & D.is defense after aggregation() then

return D.defend after aggregation(wg)

15 return wg

Algorithm 2: Client Training
Inputs: dataset : the local dataset of a client.
Variables: A: A FedAttacker instance initialized based on the FL configuration file;

1 Function client training(dataset) begin
2 if A.is attack enabled() & A.is data poisoning attack() then

dataset ← A.poison data(dataset)

3 wl ← train(dataset)
4 send to server(wl)

C INTEGRATION OF NEW ATTACKS AND DEFENSES

C.1 INTEGRATION OF A NEW ATTACK

To customize a new attack, users should follow these steps: i) determine the type of the at-
tack, i.e., model poisoning, data poisoning, or data reconstruction; ii) create a new class for
the attack and implement functions using the APIs, e.g., attack model(∗), poison data(∗),
and reconstruct data(∗), to inject attacks at the appropriate stages of FL training; and iii)
add the attack name to the corresponding enabler functions, i.e., is model poisoning attack(),
is data poisoning attack(), and is data reconstruction attack(), within the FedAttacker class
to ensure that the injected attacks are activated at the proper stages of FL training.
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C.2 INTEGRATION OF A NEW DEFENSE

To implement a self-designed defense mechanism, users should first determine the stages to
inject the defense functions (i.e., before/on/after-aggregation), add a class for the new de-
fense and implement the corresponding defense functions using the aforementioned APIs, i.e.,
defend before aggregation(∗), defend on aggregation(∗), and defend after aggregation(∗), to
inject functions at appropriate stages of FL. Note that some defenses involve more than one stage;
thus, users need to implement all relevant functions. Users should add the name of the defense to the
enabler functions to activate the injected function at the different stages of FL. The approach com-
putes some scores using local models submitted by clients, and uses the scores to identify outlier
local models before aggregating the local models. As such process only happens before aggrega-
tion, we only need to implement defend before aggregation(∗) for the defense class, and include
the name of the defense in is defense after aggregation().

D MODELS AND DATASETS FOR EVALUATIONS

Models and datasets used in this work are given in Table 1.

Model Dataset
ResNet20 (He et al., 2016) CIFAR10 (Krizhevsky et al., 2009)
ResNet56 (He et al., 2016) CIFAR100 (Krizhevsky et al., 2009)
CNN (McMahan et al., 2017a) FEMNIST (Caldas et al., 2018)
RNN (bi-LSTM) (McMahan et al., 2017a) Shakespeare (McMahan et al., 2017b)
BERT (Devlin et al., 2018) 20News (Lang, 1995)
Pythia-1B (Biderman et al., 2023) PubMedQA (Luo et al., 2022)

Table 1: Models and datasets for evaluations.

E SUPPLEMENTARY EXPERIMENT

In this section, to demonstrate the scalability of our benchmark, we include an experiment using
real-world devices, instead of simulations.

Exp10: Evaluations in real-world applications. We utilize edge devices from the Theta net-
work (Theta Network., 2023) to validate the scalability of FedSecurity to real-world applications.
The FL client package is integrated into Theta’s edge nodes, which periodically fetches data from
the Theta back-end. Subsequently, the FL training platform capitalizes on these Theta edge nodes
and their associated data to train, fine-tune, and deploy machine learning models.

We select m-Krum as the defense and the Byzantine attack of random mode as the attack. Consid-
ering the challenges posed by real-world environments, such as devices equipped solely with CPUs
(lacking GPUs), potential device connectivity issues, network latency, and limited storage on edge
devices (for instance, some mobile devices might have less than 500MB of available storage), we
choose a simple task by employing the MNIST dataset for a logistic regression task.

In our experimental setup, we deploy 70 client edge devices, designating 7 of these as malicious for
each FL training round. For m-Krum, we set m to 35, meaning that 35 out of the 70 local models
are involved in aggregation during each FL training round. As illustrated in Figure 18, m-Krum
mitigates the adversarial effect of the random-mode Byzantine attack. We also include a screenshot
of the platform, as shown in Figure 16 for the FL training process and Figure 17 for the training
status of each device.
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Figure 16: Real-world application. Yellow: aggregation server waiting time; pink: aggregation time; green:
client training time; blue: client communication.

Figure 17: Real-world application: training status of devices.

Figure 18: m-Krum against random-mode Byzantine attack in a real-world application.
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