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Abstract

Knowledge graphs contain rich knowledge about various entities and the relational
information among them, while temporal knowledge graphs (TKGs) describe
and model the interactions of the entities over time. In this context, automatic
temporal knowledge graph completion (TKGC) has gained great interest. Recent
TKGC methods integrate advanced deep learning techniques, e.g., Transformers,
and achieve superior model performance. However, this also introduces a large
number of excessive parameters, which brings a heavier burden for parameter
optimization. In this paper, we propose a simple but powerful graph encoder
for TKGC, called TARGCN. TARGCN is parameter-efficient, and it extensively
explores every entity’s temporal context for learning contextualized representations.
We find that instead of adopting various kinds of complex modules, it is more
beneficial to efficiently capture the temporal contexts of entities. We experiment
TARGCN on three benchmark datasets. Our model can achieve a more than 46%
relative improvement on the GDELT dataset compared with state-of-the-art TKGC
models. Meanwhile, it outperforms the strongest baseline on the ICEWS05-15
dataset with around 18% fewer parameters.

1 Introduction

A Knowledge Graph (KG) is a graph-structured Knowledge Base (KB) that stores relational facts. KGs
have drawn increasing research interest since they serve as key drivers for a wide range of downstream
tasks in artificial intelligence, e.g., question answering Ding et al. [2022b], commonsense reasoning
Xing et al. [2021], and recommender systems Wang et al. [2019]. A fact in a KG is described as a
triplet (s, r, o), e.g., (Joe Biden, is president of, USA), where s, o, r denote the subject entity, the
object entity, and the relation between s and o. While KGs contain rich knowledge about entities and
the relational information among them, they do not consider the nature of ever-evolving relational
facts over time. For example, consider a KG triplet (Donald Trump, is president of, USA). According
to world knowledge, this triplet is valid only before Joe Biden took the place of Donald Trump as the
president of the USA. This implies a shortcoming of KGs and calls for the introduction of Temporal
Knowledge Graphs (TKGs). In TKGs, every fact is augmented with a specific timestamp t such that
it can be described with a quadruple (s, r, o, t). In this way, every fact in TKGs has its own time
validity and this enables TKGs to capture the factual information in a time-varying context.

Temporal Knowledge Graph Completion (TKGC) is a task aiming to infer the missing facts in TKGs.
There exist two lines of TKGC methods. (1) A lot of prior methods attempt to incorporate temporal
information into the existing KG reasoning scoring models and build novel time-aware score functions
for TKGs Leblay and Chekol [2018], García-Durán et al. [2018], Ma et al. [2019], Lacroix et al.
[2020], Messner et al. [2021]. (2) Another line of work takes advantage of neural structures, e.g.,
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Graph Neural Networks (GNNs) Niepert et al. [2016], Kipf and Welling [2017] and recurrent models,
for modeling the temporal information in TKGC Wu et al. [2020], Jung et al. [2021]. Experimental
results show that neural structures help to achieve state-of-the-art performance on the TKGC task.
However, employing additional neural structures on top of the existing KG score functions normally
leads to a higher number of model parameters. The parameter consumption increases even more
when these models are equipped with advanced deep learning modules, e.g., attention mechanisms
and Transformers Vaswani et al. [2017], thus causing high memory consumption and bringing a
heavier burden for parameter optimization.

In this paper, we follow the trend of the second line of methods, aiming to design a neural-based
graph encoder for TKGC that helps to cut the parameter consumption and the model complexity
while maintaining superior model performance. We propose a time-aware relational graph encoder:
Time-aware Relational Graph Convolutional Network (TARGCN). We find that our light-weighted
time-aware relational graph encoder performs well on the TKGC task, and it requires relatively
few parameters. The contribution of our work can be summarized as follows: (i) We propose a
time-aware relational graph encoder, i.e., TARGCN, for the TKGC task. TARGCN learns an entity’s
time-aware representation by sampling a temporal neighboring graph which consists of extensive
temporal neighbors, and encodes temporal information by modeling time differences with a functional
time encoder. (ii) To test the robustness of TKGC models on irregular timestamped data, we propose
a new dataset ICEWS14-irregular. TARGCN achieves superior performance on it compared with
several recently proposed TKGC methods. Besides, TARGCN outperforms previous methods with a
huge margin in predicting the links at unseen timestamps, which also shows its strong robustness.
(iii) TARGCN serves as a parameter-efficient model. To achieve the same performance, it requires
much fewer parameters compared with two recently proposed neural-based TKG reasoning models,
TeMP Wu et al. [2020] and T-GAP Jung et al. [2021]. (iv) We evaluate TARGCN on three benchmark
TKGC datasets. It achieves superior performance on all datasets. On the GDELT Leetaru and Schrodt
[2013] dataset, it achieves a more than 46% relative improvement compared with the best baseline.

2 Preliminaries and related work

Knowledge graph embedding models. Knowledge graph embedding (KGE) models have shown
great success in KG reasoning tasks. TransE Bordes et al. [2013] is the first KGE model that
introduces translational embeddings into KG representation learning. Many further works Lin et al.
[2015], Sun et al. [2019], Abboud et al. [2020] are inspired and extend the relational translations
in different spaces to capture complex relational information. Another line of KGE methods are
tensor factorization-based models Nickel et al. [2011], Yang et al. [2015], Balazevic et al. [2019].
They encode entity and relation embeddings as vectors and then use bilinear functions to compute
the plausibility scores for KG facts. Besides, neural-based relational graph encoders have been
rapidly developed and have shown great power in capturing structural information of KGs. R-GCN
Schlichtkrull et al. [2018] incorporates relation information into a Graph Convolutional Network
(GCN) Kipf and Welling [2017] to enable relational reasoning on KGs. Recently, CompGCN
Vashishth et al. [2020] extends this idea and leverages a variety of composition operations between
KG entities and relations. It shows great effectiveness on KG reasoning tasks.

Temporal knowledge graph embedding models. Temporal knowledge graph embedding models
can be categorized into several classes according to their temporal information encoding techniques.
A series of models treat every timestamp separately and assign a high-dimensional vector as its
embedding Tresp et al. [2017], Leblay and Chekol [2018], Lacroix et al. [2020]. The assigned
timestamp embeddings lie in the same space as entity and relation embeddings. Another series of
models assume that every entity has a time-aware embedding that evolves over time Xu et al. [2020a],
Goel et al. [2020]. To achieve time-aware property, an entity together with a timestamp are input
into a function (or neural network) to yield a time-aware entity representation at this timestamp.
Besides, García-Durán et al. jointly encode entity, relation and time information with Recurrent
Neural Network (RNN) to learn time-aware graph representations García-Durán et al. [2018]. Some
recent models attempt to model time difference, i.e., time displacement, between the query event and
known events. It turns out that time displacement modeling can contribute to superior performance
on TKG reasoning tasks, including TKGC Wu et al. [2020], Jung et al. [2021] and TKG few-shot
learning Ding et al. [2022c,a].
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Temporal knowledge graph completion. Let E , R and T denote a finite set of entities, relations
and timestamps, respectively. A temporal knowledge graph G is a graph which represents the
evolution of interactions among entities over time. At any timestamp t ∈ T , G(t) is called the TKG
snapshot at t, and it can be taken as a static KG containing the facts valid at t. Any fact, i.e., event,
can be described with a quadruple (s, r, o, t), where s ∈ E represents the subject, o ∈ E represents
the object, r ∈ R represents the relation between s and o, and t ∈ T indicates the timestamp when
this fact is valid. Therefore, at t, the TKG snapshot can be summarized as a finite set of all the valid
facts at this timestamp t, i.e., G(t) = {(s, r, o, t)|s, o ∈ E , r ∈ R}. We denote a TKG as a sequence
of TKG snapshots G = {G(1), ...,G(T )}, where T = |T | is the number of timestamps. Similarly,
we can also denote a TKG as a finite set of all valid facts which happen at any timestamp t ∈ T ,
i.e., G = {(s, r, o, t)|s, o ∈ E , r ∈ R, t ∈ T }. We define the TKGC task as follows. For every
snapshot G(t) in an observed TKG G = {G(1), ...,G(T )}, it contains all the observed facts at t. Let
Ḡ(t) denote the set of all the true facts at t such that G(t) ∈ Ḡ(t). TKGC aims to predict the ground
truth object (or subject) entities of queries (s, r, ?, t) (or (?, r, o, t)), where (s, r, o, t) ∈ Ḡ(t) but
(s, r, o, t) /∈ G(t), given any t ∈ T . TKGC has recently gained increasing interest. Researchers have
paid great attention to better modeling the temporal information brought by the nature of TKGs. As
fancier techniques and advanced deep learning methods, e.g., attention mechanisms and Transformers
Vaswani et al. [2017], being extensively studied, recent TKG reasoning models Wu et al. [2020], Jung
et al. [2021] benefit from them and show great performance on TKGC.

3 Our method

Figure 1: The encoding process in TARGCN for the query (Angela Merkel, Express intent to meet or
negotiate, ?, 2014-10-15). The color darkness on each node implies its probability of being sampled
as an input at the aggregation step (the darker the higher).

To solve the TKGC task, our relational graph encoder TARGCN extensively collects information
from the whole temporal context and updates the time-aware representations of entities. For every
link prediction query (sq, rq, ?, tq), TARGCN first creates a subgraph for the subject sq, according
to its temporal associated neighbors. Then it derives time-aware representations for the neighbors
from the temporal neighborhood, and performs aggregation. After sq’s time-aware representation is
updated, a knowledge graph decoder (score function) is utilized to compute scores for every candidate
object, which yields the plausibility of every candidate object being the ground truth object in the link
prediction query (sq, rq, ?, tq). Note that we only consider object prediction queries (sq, rq, ?, tq) in
our work since we add reciprocal relations for every quadruple , i.e., adding (o, r−1, s, t) for every
(s, r, o, t). The restriction to only predict object entities does not lead to a loss of generality. An
example is presented in Figure 1 which shows the encoding process of our model. For the query
subject Angela Merkel appearing at 2014-10-15, TARGCN selects its temporal neighbors with a
time difference-dependent probability. Node aggregation is then performed to learn a contextualized
representation h(sq,tq), where sq , tq correspond to Angela Merkel and 2014-10-15, respectively.

3.1 Subgraph sampling in temporal neighborhood

Given a TKGC query (sq, rq, ?, tq), TARGCN aims to learn a contextualized representation for
the subject entity sq. Inspired by the inference graph proposed in Han et al. [2021], we sample
a Temporal Neighboring Graph (TNG) for (sq, tq) in TKGC context, where (sq, tq) is the node
representing sq at tq . We first find out all the temporal neighbors of (sq, tq), which can be described
as a set N(sq,tq) = {(e, t)|(e, r, sq, t) ∈ G; e ∈ E , t ∈ T , r ∈ R}. The entity e of a temporal
neighbor (e, t) forms a link with sq at timestamp t and sq bears an incoming edge derived from
the temporal associated quadruple (e, r, sq, t). Note that in TKGC, though we cannot observe all
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the true quadruples, we still can observe part of true quadruples at every timestamp. This enables
TARGCN to search for the temporal neighbors of (sq, tq) along the whole time axis. Then we employ
weighted sampling strategy according to the absolute time difference |tq − t| between (sq, tq) and the
corresponding temporal neighbor (e, t). For every temporal neighbor (e, t), the probability of it being
sampled into (sq, tq)’s TNG is computed by: exp(−|tq − t|)/Σ(e,t′)∈N(sq,tq)

exp(−|tq − t′|). In this
way, higher probabilities are assigned to the temporal neighbors who are closer to (sq, tq) along the
time axis. We adopt this sampling strategy since we assume that for the inference of a fact at tq, it
is more likely to find clues from the factual information at nearer timestamps. Besides, we use a
hyperparameter to limit the maximum number of the temporal neighbors included in (sq, tq)’s TNG
to prevent over sampling less-concerned temporal neighbors. An example illustrating (sq, tq)’s TNG
is shown in Figure 5. In the process of TNG sampling, TARGCN does not include any parameter.
For (sq, tq), TARGCN selects the contributive temporal neighbors and generates a comprehensive
temporal context of it with a parameter-free TNG sampler, rather than using a trainable component,
e.g., a self-attention-based module employed in recent neural-based TKGC methods Wu et al. [2020],
Jung et al. [2021].

3.2 Time-aware relational aggregation

After sampling TNG for the subject entity sq , we then attempt to learn its contextualized representation
through neighborhood aggregation. Since we have access to temporal neighbors from the whole
timeline, we implicitly incorporate temporal information. Inspired by Xu et al. [2020b], we employ a
functional time encoder for reasoning TKGs, and learn a time-aware entity representation for every
temporal neighbor. In this way, we are able to distinguish the temporal neighbors, (e, t) and (e, t′),
who root from the same entity e but emerge at different timestamps t and t′. The time-aware entity
representation is computed as:

h(e,t) = f(he∥Φ(t, tq)), (1)

where he ∈ Rde denotes the time-invariant entity-specific representation of the entity e. Φ(t, tq) =√
1
dt
[cos(ω1(t− tq) + ϕ1), ..., cos(ωdt(t− tq) + ϕdt))] is a time difference encoder mapping t− tq

to a finite dimensional functional space Rdt , where ω1 to ωdt are trainable frequency components, ϕ1
to ϕdt are trainable phase components. We concatenate the time-invariant entity representation with
its corresponding time difference representation, and learn a combined representation of them with a
layer of feed-forward neural network f . Note that the sign of t− tq will affect the output of the time
difference encoding module. We aggregate the information from (sq, tq)’s temporal neighbors with a
relational graph aggregator:

h(sq,tq) =
1

|N̄(sq,tq)|
∑

(e,t)∈N̄(sq,tq)

W(h(e,t)∥hr). (2)

N̄(sq,tq) denotes a finite set of temporal neighbors sampled from (sq, tq)’s temporal neighborhood, i.e.,
all the neighbors in (sq, tq)’s TNG. r is the relation appearing in the temporal associated quadruple
(e, r, sq, t) where temporal neighbor (e, t) is sampled. We assume that relation representations are
time-invariant and we incorporate relational information into the graph encoder by concatenating
time-aware node representations with them. Our graph encoder outputs the time-aware representation
of sq at query time tq, by combining not only the raw entity representation he but also the implicit
time difference information from its temporal neighbors.

3.3 Learning and inference

Figure 2 illustrates how TARGCN, together with a KG score function, i.e., Distmult Yang et al.
[2015], predicts the ground truth missing object for the TKGC query (sq, rq, ?, tq). Given sq, we
use the sampling strategy and our time-aware relational graph encoder to compute a time dependent
node representation for (sq, tq). Then we use a KG score function to compute the plausibility of
every candidate entity. TARGCN can be coupled with any KG score function. We choose TARGCN
+ Distmult as the final model structure because it achieves a high parameter efficiency compared
with TARGCN coupled with other two KG score functions, i.e., ComplEx Trouillon et al. [2016] and
BiQUE Guo and Kok [2021], on the benchmark datasets (discussed in Appendix E), which encounters
our flavor of building a parameter-eficient TKGC model. Note that for the candidate entities, we do not
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Figure 2: Inference process of TARGCN + Distmult. h(o′,tq ) is the time-aware representation of
a candidate o′ at tq. For a TKGC query (sq, rq, ?, tq), we first sample a TNG rooting from (sq, tq).
Then we employ TARGCN encoder to compute the representation h(sq,tq) for (sq, tq). We provide
Distmult with time-aware representations of all candidates for score computation. The candidate
producing the highest score is selected as the predicted answer.

sample TNG for them to avoid huge time consumption during inference. Instead, for every candidate
entity o′, we simply derive its time-aware representation by computing h(o′,tq) = f(ho′∥Φ(tq, tq)).
The temporal encoder Φ(·, ·) will also return a unique representation when time difference equals
zero. We employ cross-entropy loss for parameter learning:

L =
∑

(s,r,o,t)∈G
−log

(
score(h(s,t),hr,h(o,t))

Σo′∈Escore(h(s,t),hr,h(o′,t))

)
, (3)

where o′ denotes all candidate entities and we sum over all observed quadruples in G. Note that our
TARGCN encoder can be equipped with any KG score functions since our encoder returns time-aware
representations for entities. In our work, score(h(s,t),hr,h(o′,t)) = (h(s,t) ⊙ hr)

⊤h(o′,t), where ⊙
denotes the Hadamard product.

4 Experiments

We compare our model with several existing TKGC methods on three TKGC benchmark datasets.
We prove the robustness of TARGCN and present ablation studies. To show the parameter efficiency
of our model, we further do an analysis of parameter usage on TARGCN.

4.1 Experimental setup

Datasets. We perform evaluation on three TKGC benchmark datasets: (1) ICEWS14 García-Durán
et al. [2018] (2) ICEWS05-15 García-Durán et al. [2018] (3) GDELT Leetaru and Schrodt [2013].
ICEWS14 and ICEWS05-15 are two subsets of Integrated Crisis Early Warning System (ICEWS)
database. ICEWS14 contains timestamped political facts happening in 2014, while the timestamps
of factual events in ICEWS05-15 span from 2005 to 2015. We follow Wu et al. [2020] and use the
GDELT subset proposed by Trivedi et al. [2017]. It contains global social facts from April 1, 2015 to
March 31, 2016. The detailed dataset statistics are presented in Table 5 in Appendix B.

Evaluation metrics. We employ two evaluation metrics for all experiments, i.e., Hits@1/3/10 and
Mean Reciprocal Rank (MRR). For every test fact (sq, rq, oq, tq) ∈ Ḡ ((sq, rq, oq, tq) /∈ G), we derive
an associated TKGC query q = (sq, rq, ?, tq). We let models compute the rank ψ of the ground truth
entity oq among all the candidates. Hits@1/3/10 are the proportions of the test facts where ground
truth entities are ranked as top 1, top 3, top 10, respectively. MRR is defined as 1

|Q|
∑
q∈Q

1
ψ , where

Q denotes the set of all queries. It computes the mean of the reciprocal ranks of ground truth entities.
We follow the filtered setting proposed by Bordes et al. [2013] to achieve fairer evaluation.

Baseline methods. We take ten methods as baseline models. The first four baselines are static KG
reasoning methods, i.e., ComplEx Trouillon et al. [2016] and SimplE Kazemi and Poole [2018]. The
other methods are developed to solve TKGC, including DE-SimplE Goel et al. [2020], ATiSE Xu
et al. [2020a], TNTComplEx Lacroix et al. [2020], ChronoR Sadeghian et al. [2021], TeLM Xu et al.
[2021], BoxTE Messner et al. [2021], TeMP Wu et al. [2020] and T-GAP Jung et al. [2021]. Among
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Table 1: Temporal knowledge graph completion results on three benchmark datasets. Evaluation
metrics are filtered MRR and Hits@1/3/10. The best results are marked in bold. Results marked with
[▼], [♡], [⋆] are taken from Wu et al. [2020], Jung et al. [2021], Messner et al. [2021], respectively.

Datasets ICEWS14 ICEWS05-15 GDELT
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ComplEx [▼] 0.442 0.400 0.430 0.664 0.464 0.347 0.524 0.696 0.213 0.133 0.225 0.366
SimplE [▼] 0.458 0.341 0.516 0.687 0.478 0.359 0.539 0.708 0.206 0.124 0.220 0.366

DE-SimplE [▼] 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
ATiSE [▼] 0.571 0.465 0.643 0.755 0.484 0.350 0.558 0.749 - - - -
TNTComplEx [▼] 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 - - - -
ChronoR [⋆] 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 - - - -
TeLM [⋆] 0.625 0.545 0.673 0.774 0.678 0.599 0.728 0.823 - - - -
BoxTE [⋆] 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511

TeMP-GRU [▼] 0.601 0.478 0.681 0.828 0.691 0.566 0.782 0.917 0.275 0.191 0.297 0.437
TeMP-SA [▼] 0.607 0.484 0.684 0.840 0.680 0.553 0.769 0.913 0.232 0.152 0.245 0.377
T-GAP [♡] 0.610 0.509 0.677 0.790 0.670 0.568 0.743 0.845 - - - -

TARGCN 0.636 0.576 0.672 0.746 0.702 0.635 0.743 0.823 0.515 0.423 0.557 0.689
± 0.001 ± 0.003 ± 0.001 ± 0.003 ± 0.001 ± 0.003 ± 0.002 ± 0.002 ± 0.002 ± 0.002 ± 0.001 ± 0.003

all baselines, only TeMP and T-GAP are neural-based methods that employ GNNs as graph encoders,
similar to our TARGCN setting. Therefore, we further compare the parameter efficiency among them.

4.2 Experimental results

Table 1 reports the experimental results of all methods on three benchmark datasets. We can observe
that TARGCN outperforms all baselines on all datasets. The margin is particularly huge on the
GDELT dataset. TARGCN achieves an over 46% relative improvement on MRR compared with the
strongest baseline BoxTE. TARGCN also leads in Hits metrics greatly. It improves Hits@1/3/10 by
57.25%, 47.75%, and 34.83%, respectively. On ICEWS datasets, TARGCN still achieves the best
results on MRR and Hits@1. We argue that the performance gap varies because of the characteristics
of different datasets. While ICEWS datasets are sparse, GDELT is much denser. As discussed in
Wu et al. [2020], Messner et al. [2021], the temporal sparsity issue on ICEWS is much more severe
than it on GDELT. This implies that GDELT contains substantially more temporal patterns, while
ICEWS datasets are more prone to be biased by a large number of isolated events which are mainly
dominated by sparse entities and relations. Hence, we argue that reasoning on GDELT requires much
stronger techniques. For prior methods, though several TKGC methods outperform static methods
on GDELT, the improvements are not substantial. However, TARGCN achieves a more than 141%
relative improvement on MRR, compared with the strongest static KG baseline ComplEx. This shows
the superior effectiveness of our graph encoder in capturing various temporal patterns. For ICEWS
datasets, our model can also achieve state-of-the-art performance. This demonstrates its strong ability
in capturing the temporal KG information brought by sparse entities and relations.

4.3 Model analysis

Table 2: Performance of generalization to unseen timestamps and irregular timestamped data.

Datasets ICEWS14-unseen ICEWS14-irregular
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TComplEx 0.461 0.365 0.513 0.644 0.509 0.421 0.558 0.678
TNTComplEx 0.474 0.373 0.524 0.665 0.512 0.429 0.558 0.665
TeMP-SA - - - - 0.521 0.408 0.583 0.741
T-GAP 0.474 0.362 0.532 0.689 0.526 0.428 0.588 0.719
TARGCN 0.578 0.518 0.607 0.692 0.552 0.496 0.583 0.667

Generalization to unseen timestamps and irregular timestamped data. To prove the robustness
of our model, we follow Goel et al. [2020] to test its ability to predict the links at unseen timestamps.
We exclude every quadruple appearing on the 5th, 15th, and 25th day of each month in ICEWS14
to construct a new training set. We randomly split the excluded quadruples into validation and
test sets. We compare TARGCN with several recently proposed baselines on this new dataset
ICEWS14-unseen, and the results (Table 2) indicate the strong robustness of our model on timestamp
generalization. TARGCN greatly outperforms all baseline methods, especially in Hits@1. To infer
links at a timestamp, TeMP requires at least one fact seen at this timestamp during training, thus
making it unable to generalize to unseen timestamps. T-GAP employs discretized time displacement
embeddings. It trains different embeddings for different time differences. If some time differences
appear much fewer times in the training set, the corresponding time displacement embeddings will
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not be well trained. Compared with these two advanced neural-based TKGC methods, TARGCN
not only has the ability to perform link prediction at unseen timestamps, but also shows superior
generalization power. TARGCN computes time-aware representations with a functional time encoder
which is jointly trained on any time difference seen in the training set, which helps it outperform
T-GAP greatly.

Besides, we propose another new dataset ICEWS14-irregular to validate whether TKGC models can
generalize well to the TKG data collected at irregular-spaced timestamps. We randomly sample the
snapshots in ICEWS14 and keep the time interval between every two of the sampled neighboring
snapshots not greater than 4. We perform TKGC on ICEWS14-irregular and experimental results
in Table 2 show that TARGCN is superior in handling data with irregular timestamps. Compared
with TARGCN who takes advantage of the graph information from the whole timeline, TeMP utilizes
a fixed short time span of graph information to learn embeddings, which fails to capture a large
amount of graph information outside this span. T-GAP uses time displacement embeddings to encode
different time differences. However, experimental results show that TARGCN distinguishes irregular
time intervals better than T-GAP with the help of its functional time encoder that computes the
representation of any time difference with shared parameters. Appendix F provides more details.
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Figure 3: Filtered MRR on ICEWS14 achieved by TARGCN, T-GAP and TeMP-SA, with varied
number of parameters. More details in Appendix G.

Table 3: Parameter efficiency comparison on ICEWS05-15 and GDELT. Due to extremely high
memory consumption, we cannot train T-GAP on GDELT even when batch size equals 1.

Datasets ICEWS05-15 GDELT

Model Parameters MRR Parameter ↑ MRR ↓ Parameters MRR Parameter ↑ MRR ↓
TARGCN 2359200 0.702 - - 269200 0.515 - -
T-GAP 3088000 0.670 30.89% 4.56% - - - -
TeMP-SA 2645760 0.680 12.15% 3.13% 255232 0.232 -5.19% 54.95%
TeMP-GRU 2794528 0.691 18.45% 1.57% 404000 0.275 50.07 % 46.60%

Parameter efficiency analysis. While TARGCN serves as a strong TKGC model, it also keeps
a low parameter cost. We compare the parameter efficiency among TARGCN and two recently
proposed neural-based TKGC models, i.e., TeMP and T-GAP. On ICEWS14, for all three models,
we adjust the embedding size of both entities and relations to adjust the number of parameters.
We do not change model structures and other hyperparameter settings. In Figure 3, we show that
TARGCN performs better as we increase model parameters. More importantly, even with much
fewer parameters, TARGCN still outperforms TeMP and T-GAP. For ICEWS05-15 and GDELT, we
summarize the number of parameters as well as performance difference in Table 3. We compare
across the models with parameter settings that lead to the experimental results shown in Table 1. We
show that TARGCN enjoys superior parameter efficiency, especially on GDELT. We attribute such
high parameter efficiency to our simple but powerful graph encoder. Note that in the TNG sampling
process, we force our model to choose the temporal neighbors who are nearer to the source node
(sq, tq) on the time axis, by assigning higher sampling probabilities to them. Models like TeMP
and T-GAP employ self-attention modules to let models choose their attention themselves through
parameter learning. We argue that even if such modules are powerful, they can be simplified in the
context of TKGC. In our model, we force our TNG sampler to focus on the facts happening at the
timestamps that are closer to the query timestamp. Our TNG sampling process does not include any
parameter, while self-attention modules increase parameters, cause higher memory consumption,
and bring heavier burdens for parameter optimization. Apart from that, compared with TeMP who
encodes temporal information only from a fixed short time span of 2τ , our TNG sampling range spans
across the whole timeline. This means that even if a temporal neighbor is derived from a sparse entity
and it appears only at faraway timestamps from the query timestamp, our sampler still has the ability

7



to include it into the TNG and enable information aggregation. Similar to TARGCN, T-GAP, with the
help of its Preliminary GNN (PGNN), is able to find any temporal associated quadruples related to
any entity appearing at any time. However, in its PGNN, it employs three weight matrices together
with discretized time displacement embeddings h|∆t| to fully express the supporting information
coming from the past, the present and the future. We find it redundant to model time difference in this
way. In TARGCN, we do not use separate weight matrices during aggregation since our functional
time encoder distinguishes the sign of time difference itself. Besides, instead of learning different
discretized embeddings to represent different |∆t|, our model computes the representation of any
time difference with shared parameters, thus cutting parameter consumption.

Ablation study. To validate the effectiveness of different model components, we conduct several
ablation studies on ICEWS14 and GDELT. We first change the time difference encoding module into
an absolute time encoder, e.g., for a (sq, tq) and a temporal neighbor (e, t), we learn a representation
for t instead of t− tq. From Table 4, we observe performance drops on both datasets. This proves
the effectiveness of time difference modeling. Next, we adopt random sample in TNG sampling
process. The performance drops on both datasets, indicating that by sampling more neighbors nearer
in the temporal context, our model benefits more in learning better representations. Additionally, we
conduct another experiment by including all temporal neighbors during aggregation. We observe
huge performance drops on both datasets, which proves that our sampling strategy helps to exclude
noisy information from less-concerned neighbors.

Table 4: Ablation studies of TARGCN variants on ICEWS14 and GDELT.
Datasets ICEWS14 GDELT
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Absolute Time 0.622 0.556 0.660 0.739 0.502 0.408 0.545 0.678
Random Sample 0.618 0.551 0.656 0.735 0.433 0.312 0.502 0.640
Whole Neighborhood 0.481 0.433 0.501 0.568 0.431 0.312 0.497 0.633
TARGCN 0.636 0.576 0.672 0.746 0.515 0.423 0.557 0.689

Temporal neighborhood exploration. We further conduct an experiment to study how TARGCN
performs while the search range varies. We report in Figure 4 our model’s performance on ICEWS14
with different search range, namely, 15, 50, 100, 200, 300, and 365 (whole timeline). For all the
metrics, TARGCN’s performance improves greatly and constantly as the search range increases. This
proves that the effectiveness of TARGCN mainly comes from its superiority in exploring the temporal
context. The amount of available temporal information is decisive for our simple-structured model.
Compared with the models that only make use of graph snapshots near to the query timestamp tq,
e.g., TeMP, we simplify the model structure but take advantage of as much temporal information as
we can.
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Figure 4: Temporal neighborhood exploration analysis on ICEWS14.

5 Conclusion

We propose a simple but powerful graph encoder TARGCN for Temporal Knowledge Graph Comple-
tion (TKGC). TARGCN employs a Temporal Neighboring Graph (TNG) sampling strategy, which
enables it to extensively utilize the information from the whole temporal context. Experimental
results show that TARGCN achieves state-of-the-art performance on three benchmark TKGC datasets.
Besides, TARGCN enjoys a high parameter efficiency. It beats two recently proposed neural-based
TKGC methods, i.e., TeMP and T-GAP, with much fewer parameters. Thanks to its time difference
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learning module and temporal neighbor sampler, TARGCN also shows strong robustness to inferring
links on irregular timestamped data or at unseen timestamps. We find that it is not always necessary
to incorporate complex modules, e.g., Transformers, into TKG reasoning models. Instead, developing
methods to better and more efficiently capture temporal information is more beneficial to TKGC.
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Appendix

A Example of temporal neighborhood

Figure 5 shows an example of the temporal neighborhood of (sq, tq), generated from a TKGC
query (sq, rq, ?, tq). We can represent it as N(sq,tq) = {(e1, tq − 1), (e2, tq + 1), (e3, tq −
3), (e4, t1), (e5, tT − 1)}. The probability of each temporal neighbor being sampled into (sq, tq)’s
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Figure 5: Temporal neighborhood of (sq, tq) derived from an object prediction query (sq, rq, ?, tq).
We use a dashed line (labeled with relation type) to denote a temporal associated link connecting sq
with its temporal neighbor, e.g., the dashed line labeled with r4 corresponds to the temporal associated
quadruple (e4, r4, sq, t1). A temporal neighbor with darker color is assigned a higher probability to
be sampled into (sq, tq)’s TNG. Since (e1, tq − 1) and (e2, tq + 1) has the same temporal distance
from tq , they are assigned with the same sampling probability (denoted with the same color darkness).

TNG is determined according to the time difference between tq and the timestamp of this temporal
neighbor (the darker the temporal neighbor shows, the higher the probability).

B Dataset statistics

Table 5 contains the dataset statistics of all three benchmark datasets and two newly created datasets,
i.e., ICEWS14-unseen and ICEWS14-irregular. The data creation process of ICEWS14-unseen and
ICEWS14-irregular is discussed in Appendix F.

Table 5: Dataset statistics. Ntrain, Nvalid, Ntest represent the number of quadruples in the training set,
validation set, and test set, respectively. |T | denotes the number of timestamps, where we take a
snapshot of a TKG at each timestamp. All facts in all datasets are denoted in English.

Dataset Ntrain Nvalid Ntest |E| |R| |T |
ICEWS14 72, 826 8, 941 8, 963 7, 128 230 365

ICEWS05-15 386, 962 46, 275 46, 092 10, 488 251 4, 017
GDELT 2, 735, 685 341, 961 341, 961 500 20 366

ICEWS14-unseen 65, 679 3, 420 3, 420 6, 601 230 365
ICEWS14-irregular 29, 102 3, 555 3, 607 5, 093 210 146

C Implementation details

We implement all experiments with PyTorch Paszke et al. [2019] and use a single NVIDIA Tesla
T4 for computation. We allow TARGCN to search for neighbors along the whole timeline. The
hyperparameter searching strategies are reported in Table 6 and the hyperparameter settings producing
the reported experimental results (in Table 1) are presented in Table 7. We do 180 trials for each
dataset and run the models for 20, 20 and 2 epochs on ICEWS14, ICEWS05-15 and GDELT,
repectively. We choose the trial leading to the best MRR as the best hyperparameter setting. We
use the official implementation of TComplEx, TNTComplEx 2, TeMP 3 and T-GAP 4. We find that
T-GAP has an extremely high memory demand. Training GDELT with T-GAP on a 16GB NVIDIA
Tesla T4 causes out-of-memory error even when we set batch size to 1. This is due to its PGNN
which constructs a huge temporal associative graph for every entity in training examples.

The training time and the memory usage of TARGCN are reported in Table 8. The training time
of TARGCN scales with the number of training quadruples in each dataset. Sampling temporal
neighbors for every query subject requires relatively long computation time. This may cause timeout

2https://github.com/facebookresearch/tkbc
3https://github.com/JiapengWu/TeMP
4https://github.com/sharkmir1/T-GAP
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problems during the training process when TARGCN is used to train large-scale datasets (even much
larger than GDELT). However, the memory usage of our model remains quite low, which enables
training on smaller GPUs.

Table 6: Hyperparameter searching strategy.

Datasets ICEWS14 ICEWS05-15 GDELT
Hyperparameter

Embedding Size {150, 200, 300} {150, 200, 300} {150, 200, 300}
# Aggregation Step {1, 2} {1, 2} {1, 2}
Activation Function {Tanh, ReLU} {Tanh, ReLU} {Tanh, ReLU}
Search Range {15, 100, 200, 300, 365} {100, 500, 1000, 4017} {100, 200, 366}
# Temporal Neighbor {50, 100, 500} {50, 100, 500} {50, 100, 500}

Table 7: Best hyperparameter settings on each dataset.

Datasets ICEWS14 ICEWS05-15 GDELT
Hyperparameter

Embedding Size 300 200 200
# Aggregation Step 1 1 1
Activation Function Tanh Tanh Tanh
Search Range 365 4017 366
# Temporal Neighbor 100 100 100

Table 8: Computational budget of TARGCN on benchmark datasets.

Datasets ICEWS14 ICEWS05-15 GDELT
GPU Memory Usage (MB) 1,375 1,385 1,261
Train Time/ Epoch (s) 405 9,900 145,200
# Train Epochs 100 100 10

D Validation results

In Table 9, we report the experimental results of TARGCN on validation sets on all three benchmark
datasets. The results are produced by the same trained models reported in Table 1.

E Comparison over different KG socre functions.

We couple TARGCN with three different KG score functions, i.e., ComplEx Trouillon et al. [2016],
BiQUE Guo and Kok [2021], Distmult Yang et al. [2015], and report their performances on ICEWS14
and ICEWS05-15 in Table 10. All these KG score functions do not include additional parameters
besides the entity and relation representations. TARGCN’s number of parameters only scales with
the embedding size, indicating that as long as the embedding size remains unchanged, there is no
change in the number of parameters when TARGCN is couple with another KG score function, e.g.,
switching from Distmult to ComplEx. For TARGCN + ComplEx, we keep the embedding size of
both entities and relations as same as the size in TARGCN + Distmult that generates the results in
Table 1 (300 on ICEWS14 and 200 on ICEWS05-15, reported in Table 7). BiQUE requires that
the embedding size is divisible by 8. Since 300 is not divisible by 8, we set the embedding size of
TARGCN + BiQUE to 320 on ICEWS14, and to 200 on ICEWS05-15. From Table 10, we observe
that TARGCN + Distmult achieves the best performance on both datasets, even when TARGCN +
BiQUE has more parameters on ICEWS14. To this end, we choose TARGCN + Distmult as our
final model structure due to its high parameter efficiency. We also notice that TARGCN constantly
shows strong performance when it is applied with different KG score functions. Though TARGCN
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Table 9: Temporal knowledge graph completion results on the validation sets of three benchmark
datasets. Evaluation metrics are filtered MRR and Hits@1/3/10.

Datasets ICEWS14 ICEWS05-15 GDELT
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TARGCN 0.647 0.591 0.679 0.748 0.705 0.641 0.742 0.821 0.510 0.418 0.552 0.685

Table 10: Performance of TARGCN coupled with different KG score functions. Embsize means the
embedding size of entity and relation representations.

Datasets ICEWS14 ICEWS05-15
Model MRR Hits@1 Hits@3 Hits@10 Embsize MRR Hits@1 Hits@3 Hits@10 Embsize

TARGCN + ComplEx 0.628 0.562 0.667 0.745 300 0.692 0.624 0.734 0.816 200
TARGCN + BiQUE 0.629 0.561 0.666 0.753 320 0.701 0.634 0.739 0.824 200
TARGCN + Distmult 0.636 0.576 0.672 0.746 300 0.702 0.635 0.743 0.823 200

+ ComplEx performs the worst in Table 10, it still outperforms previous TKGC methods on the
benchmark datasets.

F Further details of generalization to unseen timestamps and irregular
timestamped data

We choose four strong baselines to compare with TARGCN, namely, TComplEx Lacroix et al. [2020],
TNTComplEx Lacroix et al. [2020], TeMP-SA Wu et al. [2020], and T-GAP Jung et al. [2021]. We
choose TeMP-SA since it is reported with better results on ICEWS14 (newly created datasets are
based on ICEWS14). We cannot perform unseen timestamps generalization with TeMP-SA since it
requires the unavailable KG snapshot G(tq) for every link prediction query (sq, rq, ?, tq).

F.1 Unseen timestamps generalization

We do not use the same unseen timestamps generalization datasets proposed in Goel et al. [2020]
and Jung et al. [2021], since they did not release their datasets. We follow Goel et al. [2020] and
create ICEWS14-unseen by ourselves. We exclude every quadruple appearing on the 5th, 15th, and
25th day of each month in ICEWS14 to construct a new training set. We randomly split the excluded
quadruples into validation and test sets. We make sure that every entity appearing in the validation
and test sets is seen in the training set.

By comparing the results in Table 1 and Table 2, we observe that the performance improvement of
TARGCN becomes even much larger on ICEWS14-unseen than on the original dataset. TARGCN
achieves a relative improvement of 21.94% on MRR compared with T-GAP and TNTComplEx.
More surprisingly, it also achieves a relative improvement of 43.09% on Hits@1 compared with the
strongest baseline T-GAP on unseen timestamps generalization. This proves the extremely strong
robustness of our model to link inference at unseen timestamps.

F.2 Performance on irregular timestamped data

We sample the KG snapshots from the original ICEWS14 dataset. The value of the time interval
between every two neighboring snapshots can be randomly assigned either to 1, 2, 3, or 4. In this
way, we create a dataset simulating that the TKG data is observed and collected at irregular-spaced
timestamps.

TARGCN enlarges the performance gap between itself and other baselines, compared with the results
regarding TKGC on the original dataset reported in Table 1. Besides, we observe that TeMP-SA and
T-GAP outperform TNTComplEx on ICEWS14-irregular, while they perform worse on the original
dataset. This is due to their time displacement temporal encoders which learn different temporal
embeddings for different time intervals. For TARGCN, it employs a time difference temporal encoder
that maps time-aware entity representations with the explicit value of time differences, thus being
able to capture accurate temporal information provided by irregular timestamped data.

15



G Parameter efficiency analysis details

Table 11: Parameter efficiency comparison on ICEWS14. We adopt relative change to define the
increase in parameter numbers and the drop in MRR.

Datasets ICEWS14
Model Parameters MRR Parameter ↑ MRR ↓
TARGCN 1229100 0.627 - -
T-GAP 1912350 0.610 55.59% 2.71%
TeMP-SA 1264640 0.607 2.89% 3.19%
TeMP-GRU 1413408 0.601 15.00% 4.15%

Similar to Table 3, Table 11 summarizes the number of parameters as well as performance difference
on ICEWS14. For TARGCN, the model producing results in Table 1 has more parameters than T-GAP
and TeMP. Therefore, we decrease the embedding size of TARGCN to 150 so that its parameter
number becomes the smallest among all models. We keep T-GAP and TeMP with their optimal
parameter settings and compare them with TARGCN. From Table 1 and Table 11, we observe that
even when we decrease the embedding size of TARGCN from 300 to 150, our model still performs
well (MRR drops from 0.635 to 0.627), and it still outperforms T-GAP and TeMP on ICEWS14.
TeMP variants show the worst performance, even when they have more parameters than TARGCN.
T-GAP performs better than TeMP variants. However, it uses 55.59% more parameters than TARGCN,
while it is beaten with a 2.71% performance drop.

All the points in Figure 3 are based on the results in Table 12. Note that we control the number of
parameters only by changing embedding size, without changing any other hyperparameters or model
structures.

Table 12: Experimental results as well as the number of parameters that lead to Figure 3. Underlined
results are taken from Table 1.

Datasets ICEWS14
Model Embedding Size Parameters MRR

TARGCN 100 799400 0.605
150 1229100 0.627
200 1678800 0.629
300 2638200 0.636

T-GAP 50 928675 0.582
100 1912350 0.610
200 2951025 0.596

TeMP-SA 64 611840 0.595
128 1264640 0.607
256 2928640 0.618
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